Please how will I insert this initial data u(x)=1 for -1<x<0 and u(x)=-1/2 for 0<x<=1 in advection equation using backward finite difference
6 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Lmax = -1 t0 1; % Maximum length %Tmax = (4/400); % Maximum time c = 2.0; % Advection velocity % Parameters needed to solve the equation within the Lax method maxt = 40; % Number of time steps dt=(1/400); %dt = Tmax/maxt; n = 200; % Number of space steps nint=40; % The wave-front: intermediate point from which u=0 %(nint<n)!! h = Lmax/n; b = c*dt/(2.*h); % Initial data for i = 1:(n+1) if i < nint u(i,1)=1.; else u(i,1)=-1/2.; end x(i) =(i-1)*h; end
% boundary condition for k=1:maxt+1 u(1,k) = 1.; u(n+1,k) =-1/2.; time(k) = (k-1)*dt; end % Implementation of the Lax friedrich method for k=1:maxt % Time loop for i=2:n % Space loop u(i,k+1) =u(i,k)-b*(u(i,k)-u(i-1,k)); end end
% Graphical representations of the evolution of the eqaution figure(1) mesh(x,time,u') title('Square-wave test within the BDF Method') xlabel('X') ylabel('T') figure(2) plot(x,u(:,10),'-',x,u(:,20),'-',x,u(:,30),'-',x,u(:,40),'-') title('Square-wave test within the BDF Method') xlabel('X') ylabel('Amplitude(X)')
0 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Behavior and Psychophysics finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!