Create custom NARX net
9 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi,
I'm strugglinng to create a series parallel architecture net(Pic1). I want to use this architecture to train my net.
Could somebody tell me how I can connect the ouptut to the first layer? Aferwards I'd like to use this net:
CODE (Pic2)
BattCurrent = Experiment.Results(1).BattCurrent__A_;
CellVolt = Experiment.Results(1).CellVolt__V_;
SOC = Experiment.Results(1).SOC__0_1_;
CellTemperature = Experiment.Results(1).CellTemperature__K_;
NumberOfChargeProcedures = Experiment.Results(1).NumberOfChargeProcedures____;
AgeingCapacity = Experiment.Results(1).AgeingCapacity;
% Input Vektor X
X = [BattCurrent CellVolt SOC CellTemperature NumberOfChargeProcedures]';
%X = con2seq(X);
%Output Vektor T
T = [AgeingCapacity]';
%T = con2seq(T);
[Xn,Xs] = mapminmax(X);
[Tn,Ts] = mapminmax(T);
% ANN
net = network;
net.name = 'Test';
net.numInputs = 1;
net.numLayers = 3;
net.biasConnect = [1; 1; 1];
net.inputConnect(1,1) = 1;
net.layerConnect(2,1) =1;
net.layerConnect(3,2) =1;
net.layerConnect(1,3) =1;
net.outputConnect(1,3) = 1;
%Layers
net.layers{1}.size = 15;
net.layers{1}.transferFcn = 'tansig';
net.layers{1}.initFcn = 'initnw';
net.layers{1}.name = 'Hidden Layer 1';
net.layers{2}.size = 15;
net.layers{2}.transferFcn = 'tansig';
net.layers{2}.initFcn = 'initnw';
net.layers{2}.name = 'Hidden Layer 2';
net.layers{3}.size = 1;
net.layers{3}.transferFcn = 'purelin';
net.layers{3}.initFcn = 'initnw';
net.layers{3}.name = 'Output';
%NARX
net.layerWeights{1,3}.delays = [1];
%Functions
net.initFcn = 'initlay';
net.performFcn = 'mse';
net.trainFcn = 'trainbr';
net.divideFcn = 'dividerand';
%Plots
net.plotFcns = {'plotperform','plottrainstate'};
view(net)
Thank you in advance! Best, Stefan
0 Kommentare
Antworten (2)
Jayaram Theegala
am 19 Jun. 2017
You can use "closeloop" function to connect output to the first layer, in other words to convert a neural network into a closed loop network. For more information about this function, click on the following URL:
After creating the above closed loop network, you can create a feed forward network using the "feedforwardnet" function, and to find more information about this function click on the following MATLAB documentation page:
0 Kommentare
Greg Heath
am 20 Jun. 2017
See the documentation examples
help narxnet
doc narxnet
The only significant difference between your design and the documentation examples is that you have 2 hidden layers
However
1. Use DIVIDEBLOCK for training
Hope this helps.
Greg
0 Kommentare
Siehe auch
Kategorien
Mehr zu Sequence and Numeric Feature Data Workflows finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!