Using ifft to get the Fourier Coefficient
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
What exactly does the ifft() gives me?
I have a real data in 'x' where,
f=summation over -N to N-1 [C(n)exp(2*pi*1i*x/L)]
So, here f is known at every point (2N points in total). fftshift(ifft(f)) also gives an array of 2N size. So, does it gives me the coefficients C(n). If so, then can you please check the following code.
N=256;
X=2*N;
L=2*pi;
x=linspace(-pi,pi,X);
c=0;
for n=1:2*N
k(n)=2*pi*(n-N-1)/L;
end
y=x;
z=fftshift(ifft(y));
for i=1:2*N
c=c+z(i)*exp(1i*k(i)*x);
end
plot(x,y);hold on;plot(x,c);
Here, if ifft() gave the coefficients, then shouldn't the plots have matched?
3 Kommentare
Antworten (1)
Jan Orwat
am 27 Jun. 2016
N=256;
X=2*N;
L=2*pi;
x=linspace(-pi,pi,X);
c=0;
k = 2*pi*((1:2*N)-N-1)/L; % vectorised
y = sin(x); % don't understand why it is here, why not defined earlier
z = ifftshift(ifft(y)); % would be more logical to use fft here
for i=1:2*N
c=c+z(i)*exp(1i*k(i)*(pi-x));
end
plot(x,y);hold on;plot(x,real(c));
1 Kommentar
Jan Orwat
am 27 Jun. 2016
Bearbeitet: Jan Orwat
am 27 Jun. 2016
I'm still not sure why you calculate ifft of signal, then dft of ifft and compare with original signal. From mathematical point of view it makes no difference, because y, ifft(fft(y)) and fft(ifft(y)) are equal (within numerical precision), but it's logically weak.
Siehe auch
Kategorien
Mehr zu Fourier Analysis and Filtering finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!