For expmv it works. It's actually the matrix exponential vector product that I need, so I can apply CST on expmv.
Complex Step Derivative of 3D rotation in exponential coordinates at u = [0 0 0] not working?
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Applying complex step differentiation to the matrix exponential works fine, except at u = [0 0 0]. Here, the exponential coordinates have a removable singularity. Why does the complex differentiation fail only at this point? Can you think of a complex differentiable matrix exponential that returns the correct derivative at u = [0 0 0]? Similar to the Complex-step-compatible atan2()?
Thank you for your time.
u0 = [0;0;0]; % The problematic point
% Central finite-difference
sh = 1e-5;
for ii = 1:3
dh = zeros(3,1);
dh(ii) = sh;
JFD(:,ii) = (vec(rexpm(u0+dh)) - vec(rexpm(u0-dh))) / (2*sh);
end
% Complex step differentiation
sh = 1e-16;
for ii = 1:3
dh = zeros(3,1);
dh(ii) = sh*1i;
JCS(:,ii) = imag(vec(rexpm(u0+dh))) / (sh);
end
JFD - JCS % should be close to 0!
% Functions
function R = rexpm(u)
Su = [ 0 -u(3) u(2)
u(3) 0 -u(1)
-u(2) u(1) 0];
R = expm(Su);
end
function y = vec(x)
y = x(:);
end
Antworten (0)
Siehe auch
Kategorien
Mehr zu Resizing and Reshaping Matrices finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!