PDE and indefinite integral defining in Matlab
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello,
I'm setting up the indefinite integral based on time and heat u
Integral t from 0 to infinity (u) * du/dt
How do I set this up and plot it?
Thank you.
1 Kommentar
Antworten (1)
Divyam
am 16 Jul. 2024
Bearbeitet: Divyam
am 18 Jul. 2024
Hi Robert, to achieve this, define the variable t and the heat function u. Then compute
using the "diff" function in MATLAB. Finally using the "int" function calculate the integral of
.
% Define t
syms t
% Define u, assuming it to be exp(-t)
u = exp(-t);
% Define du/dt
du_dt = diff(u,t);
% Integrating u* du/dt from t = 0 to t = inf
integral_idf = int(u*du_t,t);
integral = int(u*du_dt, t, 0, inf);
% Printing the result
fprintf("The solution to the integral is: %s\n", integral);
For plotting the above function u and the integral numerically, the "plot" and "cumtrapz" function can be used as shown below
% Create the values for time
time = linspace(0,100,100000000); % You can tweak the number of time values for faster runtime
% Get the values for u
uValue = exp(-time);
% Get the values for du/dt
du_dt_Value = -exp(-time);
% Get the values for the integral using the cumtrapz function
integralValue = cumtrapz(time, uValue .* du_dt_Value);
% Plot the function
figure;
subplot(2, 1, 1);
plot(time, uValue);
title('Function u(t)');
xlabel('Time');
ylabel('u(t)');
% Plot the integral numerically
subplot(2, 1, 2);
plot(time, integralValue);
title('Integral of u(t) * du/dt');
xlabel('Time');
ylabel('Integral');
To plot the function symbolically, refer to this documentation here: https://www.mathworks.com/help/symbolic/sym.matlabfunction.html
0 Kommentare
Siehe auch
Kategorien
Mehr zu Boundary Conditions finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
