Solving System of 3 equations non trivial
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Jonathan Leutz
am 14 Apr. 2023
Kommentiert: Jonathan Leutz
am 15 Apr. 2023
Px = 8.08*10^5
Py = 4.63*10^5
P_A = 9.54*10^4
pCr = .89*10^5
m = [0 (pCr-Px) (pCr*.076);(pCr-Py) 0 0; 0 (.076*pCr) (.0089*(pCr-P_A))]
B = [0; 0; 0];
for pCr = .88*10^5:.1:.9*10^5
m = [0 (pCr-Px) (pCr*.076);(pCr-Py) 0 0; 0 (.076*pCr) (.0089*(pCr-P_A))]
X = linsolve(m,B)
if X ~= [0;0;0]
PCrit = pcr;
break;
end
end
I already know one critical values and my current proccess odviously does not work by testing a lot of Pcr values until I do not have a trivial I think there is a way to do it through Linear Algebra but I am brain farting right now.
0 Kommentare
Akzeptierte Antwort
Walter Roberson
am 14 Apr. 2023
Px = 8.08*10^5
Py = 4.63*10^5
P_A = 9.54*10^4
syms pCr;
m = [0 (pCr-Px) (pCr*.076);(pCr-Py) 0 0; 0 (.076*pCr) (.0089*(pCr-P_A))]
%are there general X such that m*x = [0;0;0] ?
%if so that would be the null space
null(m)
%nope, it is generally empty.
%what happens if we substitute in a particular value for pCr
m123 = subs(m, pCr, 123);
rank(m123)
null(m123)
%nope, full rank, no non-trival null space.
%but are there specific values of pCr that lead to lower rank?
pCrit = solve(det(m))
vpa(pCrit)
for K = 1 : size(pCrit,1)
disp('value being substituted for pCr:')
disp(pCrit(K))
disp('substituted matrix')
M = subs(m, pCr, pCrit(K))
disp('rank of substituted')
rank(M)
disp('null space of substituted')
null(M)
end
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!