How to calculate and plot ndefinite triple integral?

5 Ansichten (letzte 30 Tage)
Hexe
Hexe am 10 Apr. 2023
Kommentiert: Hexe am 21 Apr. 2023
I have a triple indefinite integral (image attached).
Here respectively sx = sy = s*sin(a)/sqrt(2) and sz= s*cos(a). Parameter s=0.1 and parameter a changes from 0 to pi/2 – 10 points can be chosen [0 10 20 30 40 50 60 70 80 90]. Is it possible to solve such integral and to obtain the curve – plot(a,F)?
s=0.1;
a = 0:10:90;
fun = @(x,y,z) ((x.*z)./((x.^2+y.^2+z.^2))).*((2*pi)^(3/2))*exp(-(0.5.*sqrt(x.^2+y.^2+z.^2))).*exp(1i.*x*(s*sin(p)/sqrt(2))-2*((x.^2+y.^2+z.^2)+((z.^2)./((x.^2+y.^2+z.^2))))).*exp(1i.*y*(s*sin(p)/sqrt(2))-2*((x.^2+y.^2+z.^2)+((z.^2)./((x.^2+y.^2+z.^2))))).*exp(1i.*z*(s*cos(p))-2*((x.^2+y.^2+z.^2)+((z.^2)./((x.^2+y.^2+z.^2)))));
f3 = arrayfun(@(p)integral3(@(x,y,z)fun(x,y,z,p)),a);
plot(a,f3);
  3 Kommentare
Hexe
Hexe am 12 Apr. 2023
Bearbeitet: Hexe am 12 Apr. 2023
You are right. I forgot about the coefficient (2*pi)^(3/2) before exponent, but it does not matter much. The inportant thing is that in the second exponent there are 2 vectors: q and s. For the qx and qy sx=sy=s*sin(a)/sqrt(2) and for the qz sz=s*cos(a). Thus the code looks different than the written formula. Or the code for this case muct be written otherwise?
Thank you, I forgot about integration limits: [0, inf, 0, 2*pi, 0, pi].
Torsten
Torsten am 12 Apr. 2023
I forgot about the coefficient (2*pi)^(3/2) before exponent, but it does not matter much.
There are many more differences.
In your formula:
exp(-0.5.*(x.^2+y.^2+z.^2))
In your code:
exp(-(0.5.*sqrt(x.^2+y.^2+z.^2)))
In your formula:
exp(1i.*x*(s*sin(p)/sqrt(2))+1i.*y*(s*sin(p)/sqrt(2))+1i*z.*(s*cos(p))-2*(x.^2+y.^2+z.^2+z.^2./(x.^2+y.^2+z.^2)))
In your code:
exp(1i.*x*(s*sin(p)/sqrt(2))-2*((x.^2+y.^2+z.^2)+((z.^2)./((x.^2+y.^2+z.^2))))).*exp(1i.*y*(s*sin(p)/sqrt(2))-2*((x.^2+y.^2+z.^2)+((z.^2)./((x.^2+y.^2+z.^2))))).*exp(1i.*z*(s*cos(p))-2*((x.^2+y.^2+z.^2)+((z.^2)./((x.^2+y.^2+z.^2)))))

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Torsten
Torsten am 12 Apr. 2023
s = 0.1;
a = 0:5:360;
a = a*pi/180;
fun = @(x,y,z,p) x.*z./(x.^2+y.^2+z.^2).*exp(-0.5*(x.^2+y.^2+z.^2)).*exp(1i*x*(s*sin(p)/sqrt(2))+1i*y*(s*sin(p)/sqrt(2))+1i*z*(s*cos(p))-2*(x.^2+y.^2+z.^2+z.^2./(x.^2+y.^2+z.^2)));
f3 = (2*pi)^1.5*arrayfun(@(p)integral3(@(x,y,z)fun(x,y,z,p),0,Inf,0,2*pi,0,pi),a);
figure(1)
plot(a,real(f3))
figure(2)
plot(a,imag(f3))
  8 Kommentare
Torsten
Torsten am 19 Apr. 2023
Bearbeitet: Torsten am 19 Apr. 2023
Why do you replace s by k and not by m in your code ?
And if you loop over the elements of a, why do you use the arrayfun ? Arrayfun computes the values for f3 for the complete vector a over and over again. I can understand that your code takes a while to finish.
Since the results for f3 are complex-valued, you can only apply surf on abs(f3) or imag(f3) or real(f3), but not f3 itself.
n = 1;
t = 1;
r = 1;
S = 1:0.5:5;
P = 0:10:180;
P = P*pi/180;
for i = 1:numel(S)
s = S(i);
for j = 1:numel(P)
p = P(j);
fun = @(x,y,z) x.*z./(x.^2+y.^2+z.^2).*exp(-0.5*(x.^2+y.^2+z.^2)).*exp(1i*x*(s*sin(p)/sqrt(2))+1i*y*(s*sin(p)/sqrt(2))+1i*z* (s*cos(p))-2*(x.^2+y.^2+z.^2+z.^2./(x.^2+y.^2+z.^2)));
f3(i,j) = (2*pi)^1.5*integral3(fun,0,Inf,0,2*pi,0,pi);
end
end
f3
f3 =
Columns 1 through 10 0.2759 + 0.0978i 0.2654 + 0.1215i 0.2546 + 0.1408i 0.2450 + 0.1555i 0.2375 + 0.1655i 0.2330 + 0.1710i 0.2320 + 0.1722i 0.2346 + 0.1689i 0.2405 + 0.1613i 0.2490 + 0.1491i 0.2481 + 0.1379i 0.2262 + 0.1685i 0.2041 + 0.1917i 0.1847 + 0.2080i 0.1700 + 0.2183i 0.1613 + 0.2237i 0.1594 + 0.2247i 0.1644 + 0.2215i 0.1759 + 0.2138i 0.1929 + 0.2008i 0.2134 + 0.1689i 0.1782 + 0.2014i 0.1439 + 0.2231i 0.1145 + 0.2360i 0.0928 + 0.2427i 0.0802 + 0.2455i 0.0776 + 0.2459i 0.0849 + 0.2442i 0.1017 + 0.2396i 0.1268 + 0.2302i 0.1750 + 0.1897i 0.1269 + 0.2193i 0.0816 + 0.2345i 0.0444 + 0.2395i 0.0179 + 0.2392i 0.0031 + 0.2375i 0.0001 + 0.2369i 0.0087 + 0.2377i 0.0288 + 0.2387i 0.0599 + 0.2368i 0.1360 + 0.2006i 0.0769 + 0.2231i 0.0239 + 0.2278i -0.0173 + 0.2221i -0.0451 + 0.2130i -0.0598 + 0.2061i -0.0627 + 0.2044i -0.0540 + 0.2083i -0.0334 + 0.2160i -0.0002 + 0.2235i 0.0991 + 0.2028i 0.0321 + 0.2151i -0.0244 + 0.2074i -0.0651 + 0.1900i -0.0903 + 0.1722i -0.1028 + 0.1605i -0.1050 + 0.1579i -0.0976 + 0.1646i -0.0794 + 0.1787i -0.0481 + 0.1958i 0.0660 + 0.1979i -0.0053 + 0.1987i -0.0608 + 0.1782i -0.0967 + 0.1502i -0.1163 + 0.1255i -0.1247 + 0.1104i -0.1259 + 0.1072i -0.1208 + 0.1159i -0.1073 + 0.1349i -0.0814 + 0.1600i 0.0379 + 0.1880i -0.0342 + 0.1771i -0.0849 + 0.1451i -0.1130 + 0.1090i -0.1249 + 0.0802i -0.1284 + 0.0635i -0.1285 + 0.0602i -0.1263 + 0.0699i -0.1188 + 0.0914i -0.1004 + 0.1218i 0.0149 + 0.1748i -0.0549 + 0.1531i -0.0981 + 0.1121i -0.1165 + 0.0712i -0.1201 + 0.0412i -0.1188 + 0.0250i -0.1180 + 0.0220i -0.1186 + 0.0315i -0.1172 + 0.0532i -0.1072 + 0.0857i Columns 11 through 19 0.2593 + 0.1324i 0.2701 + 0.1111i 0.2801 + 0.0856i 0.2880 + 0.0566i 0.2929 + 0.0252i 0.2940 - 0.0074i 0.2912 - 0.0397i 0.2849 - 0.0702i 0.2759 - 0.0978i 0.2136 + 0.1816i 0.2357 + 0.1553i 0.2566 + 0.1218i 0.2736 + 0.0818i 0.2841 + 0.0369i 0.2866 - 0.0104i 0.2807 - 0.0571i 0.2672 - 0.1003i 0.2481 - 0.1379i 0.1583 + 0.2137i 0.1930 + 0.1877i 0.2267 + 0.1509i 0.2546 + 0.1034i 0.2724 + 0.0476i 0.2768 - 0.0125i 0.2670 - 0.0718i 0.2446 - 0.1251i 0.2134 - 0.1689i 0.1001 + 0.2277i 0.1462 + 0.2071i 0.1925 + 0.1718i 0.2322 + 0.1209i 0.2581 + 0.0570i 0.2649 - 0.0137i 0.2510 - 0.0833i 0.2189 - 0.1438i 0.1750 - 0.1897i 0.0450 + 0.2250i 0.0994 + 0.2139i 0.1566 + 0.1843i 0.2075 + 0.1338i 0.2418 + 0.0651i 0.2514 - 0.0140i 0.2335 - 0.0916i 0.1920 - 0.1564i 0.1360 - 0.2006i -0.0024 + 0.2090i 0.0562 + 0.2094i 0.1212 + 0.1888i 0.1817 + 0.1421i 0.2241 + 0.0715i 0.2368 - 0.0133i 0.2154 - 0.0967i 0.1652 - 0.1631i 0.0991 - 0.2028i -0.0395 + 0.1839i 0.0189 + 0.1963i 0.0882 + 0.1862i 0.1560 + 0.1461i 0.2055 + 0.0763i 0.2215 - 0.0118i 0.1975 - 0.0989i 0.1400 - 0.1649i 0.0660 - 0.1979i -0.0654 + 0.1541i -0.0110 + 0.1773i 0.0589 + 0.1781i 0.1313 + 0.1461i 0.1867 + 0.0796i 0.2060 - 0.0096i 0.1803 - 0.0986i 0.1172 - 0.1627i 0.0379 - 0.1880i -0.0810 + 0.1233i -0.0332 + 0.1550i 0.0340 + 0.1660i 0.1082 + 0.1428i 0.1680 + 0.0814i 0.1906 - 0.0070i 0.1642 - 0.0964i 0.0971 - 0.1576i 0.0149 - 0.1748i
Hexe
Hexe am 21 Apr. 2023
Thank you very much. Your notes helped me to build the necessary surface.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Graphics Performance finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by