How to calculate and plot ndefinite triple integral?
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I have a triple indefinite integral (image attached).
Here respectively sx = sy = s*sin(a)/sqrt(2) and sz= s*cos(a). Parameter s=0.1 and parameter a changes from 0 to pi/2 – 10 points can be chosen [0 10 20 30 40 50 60 70 80 90]. Is it possible to solve such integral and to obtain the curve – plot(a,F)?
s=0.1;
a = 0:10:90;
fun = @(x,y,z) ((x.*z)./((x.^2+y.^2+z.^2))).*((2*pi)^(3/2))*exp(-(0.5.*sqrt(x.^2+y.^2+z.^2))).*exp(1i.*x*(s*sin(p)/sqrt(2))-2*((x.^2+y.^2+z.^2)+((z.^2)./((x.^2+y.^2+z.^2))))).*exp(1i.*y*(s*sin(p)/sqrt(2))-2*((x.^2+y.^2+z.^2)+((z.^2)./((x.^2+y.^2+z.^2))))).*exp(1i.*z*(s*cos(p))-2*((x.^2+y.^2+z.^2)+((z.^2)./((x.^2+y.^2+z.^2)))));
f3 = arrayfun(@(p)integral3(@(x,y,z)fun(x,y,z,p)),a);
plot(a,f3);
3 Kommentare
Torsten
am 12 Apr. 2023
I forgot about the coefficient (2*pi)^(3/2) before exponent, but it does not matter much.
There are many more differences.
In your formula:
exp(-0.5.*(x.^2+y.^2+z.^2))
In your code:
exp(-(0.5.*sqrt(x.^2+y.^2+z.^2)))
In your formula:
exp(1i.*x*(s*sin(p)/sqrt(2))+1i.*y*(s*sin(p)/sqrt(2))+1i*z.*(s*cos(p))-2*(x.^2+y.^2+z.^2+z.^2./(x.^2+y.^2+z.^2)))
In your code:
exp(1i.*x*(s*sin(p)/sqrt(2))-2*((x.^2+y.^2+z.^2)+((z.^2)./((x.^2+y.^2+z.^2))))).*exp(1i.*y*(s*sin(p)/sqrt(2))-2*((x.^2+y.^2+z.^2)+((z.^2)./((x.^2+y.^2+z.^2))))).*exp(1i.*z*(s*cos(p))-2*((x.^2+y.^2+z.^2)+((z.^2)./((x.^2+y.^2+z.^2)))))
Akzeptierte Antwort
Torsten
am 12 Apr. 2023
s = 0.1;
a = 0:5:360;
a = a*pi/180;
fun = @(x,y,z,p) x.*z./(x.^2+y.^2+z.^2).*exp(-0.5*(x.^2+y.^2+z.^2)).*exp(1i*x*(s*sin(p)/sqrt(2))+1i*y*(s*sin(p)/sqrt(2))+1i*z*(s*cos(p))-2*(x.^2+y.^2+z.^2+z.^2./(x.^2+y.^2+z.^2)));
f3 = (2*pi)^1.5*arrayfun(@(p)integral3(@(x,y,z)fun(x,y,z,p),0,Inf,0,2*pi,0,pi),a);
figure(1)
plot(a,real(f3))
figure(2)
plot(a,imag(f3))
8 Kommentare
Torsten
am 19 Apr. 2023
Bearbeitet: Torsten
am 19 Apr. 2023
Why do you replace s by k and not by m in your code ?
And if you loop over the elements of a, why do you use the arrayfun ? Arrayfun computes the values for f3 for the complete vector a over and over again. I can understand that your code takes a while to finish.
Since the results for f3 are complex-valued, you can only apply surf on abs(f3) or imag(f3) or real(f3), but not f3 itself.
n = 1;
t = 1;
r = 1;
S = 1:0.5:5;
P = 0:10:180;
P = P*pi/180;
for i = 1:numel(S)
s = S(i);
for j = 1:numel(P)
p = P(j);
fun = @(x,y,z) x.*z./(x.^2+y.^2+z.^2).*exp(-0.5*(x.^2+y.^2+z.^2)).*exp(1i*x*(s*sin(p)/sqrt(2))+1i*y*(s*sin(p)/sqrt(2))+1i*z* (s*cos(p))-2*(x.^2+y.^2+z.^2+z.^2./(x.^2+y.^2+z.^2)));
f3(i,j) = (2*pi)^1.5*integral3(fun,0,Inf,0,2*pi,0,pi);
end
end
f3
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Graphics Performance finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!