How to calculate double integral?

3 Ansichten (letzte 30 Tage)
Hexe
Hexe am 16 Dez. 2022
Kommentiert: Hexe am 16 Dez. 2022
Hi! I have a problem with solution of double integral. The syms solves too long and it cannot be used.But in another way I have problem.
I have an integral fun2 on z and it has x which is a variable in the integral fun0. How can I set a variable x to first calculate the integral f2 over z, and then integral f3 over x? (Of course, when I set x=some number I obtain a curve or a set of curves if x=0:0.1:1 and make for j = 1:length(x), but I doubt about this result, because the behavior of curves is not correct).
clear all, close all
n=1;
t=1;
r=1;
s=0:0.2:10;
for i = 1:length(s)
k=s(i);
fun2=@(z)(z.*exp(2.*n.*t.*z.^2).*(besselj(0,(k.*z.*x)))./sqrt(1-z.^2));
f2(i,:)=integral(fun2,0,1);
fun0=@(x)(((((x.^2.*exp(-2.*t.*x.^2)./(x.^2+1/(r.^2)).^2)))).*f2(i));
f3(i,:)=integral(fun0,0,inf);
end
Cor=8/(r*(pi)^(3/2))*sqrt(2*n*t)*exp(-2*n*t)/(erf(sqrt(2*n*t))*((1+4*t/r^2)*exp(2*t/r^2)*erfc(sqrt(2*t/r^2))-2*sqrt(2*t)/(r*sqrt(pi)))).*f3;
plot(s,Cor,'b-');

Akzeptierte Antwort

Torsten
Torsten am 16 Dez. 2022
Bearbeitet: Torsten am 16 Dez. 2022
n = 1 ;
t = 1;
r = 1;
s = 0:0.2:10;
fun = @(x,z,k) x.^2.*exp(-2.*t.*x.^2)./(x.^2+1/r^2).^2 .* z.*exp(2*n*t.*z.^2).*besselj(0,k.*z.*x)./sqrt(1-z.^2);
f3 = arrayfun(@(k)integral2(@(x,z)fun(x,z,k),0,Inf,0,1),s)
f3 = 1×51
0.2959 0.2948 0.2915 0.2860 0.2784 0.2690 0.2579 0.2454 0.2316 0.2169 0.2015 0.1857 0.1697 0.1538 0.1381 0.1229 0.1083 0.0945 0.0815 0.0694 0.0583 0.0483 0.0392 0.0311 0.0240 0.0177 0.0123 0.0077 0.0038 0.0005
Cor = 8/(r*(pi)^(3/2))*sqrt(2*n*t)*exp(-2*n*t)/(erf(sqrt(2*n*t))*((1+4*t/r^2)*exp(2*t/r^2)*erfc(sqrt(2*t/r^2))-2*sqrt(2*t)/(r*sqrt(pi))))*f3
Cor = 1×51
1.0000 0.9962 0.9849 0.9663 0.9409 0.9091 0.8716 0.8292 0.7828 0.7331 0.6811 0.6276 0.5735 0.5196 0.4667 0.4153 0.3659 0.3192 0.2753 0.2346 0.1972 0.1631 0.1324 0.1051 0.0809 0.0598 0.0416 0.0259 0.0127 0.0017
plot(s,Cor,'b-')
grid on
  1 Kommentar
Hexe
Hexe am 16 Dez. 2022
Dear Torsten, thank you very much :) It solves my problem and now I will know what to do with integrals like these.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Thermodynamics & Statistical Physics finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by