The problem of constants in linear least squares

2 Ansichten (letzte 30 Tage)
Jiapeng
Jiapeng am 10 Nov. 2022
Kommentiert: Walter Roberson am 10 Nov. 2022
The equation of the model is ay^2+bxy+cx+dy+e=x^2.
Since e is a constant not associated with any variable, how should we get the value of e?
x = [1.02; 0.95; 0.77; 0.67; 0.56; 0.30; 0.16; 0.01];
y = [0.39; 0.32; 0.22; 0.18; 0.15; 0.12; 0.13; 0.15];

Akzeptierte Antwort

Star Strider
Star Strider am 10 Nov. 2022
Bearbeitet: Walter Roberson am 10 Nov. 2022
since it is a constant, e becomes a vector of ones
x = [1.02; 0.95; 0.77; 0.67; 0.56; 0.30; 0.16; 0.01];
y = [0.39; 0.32; 0.22; 0.18; 0.15; 0.12; 0.13; 0.15];
B = [y.^2 x.*y x y ones(size(x))] \ x.^2;
fprintf('\na = %10.6f\nb = %10.6f\nc = %10.6f\nd = %10.6f\ne = %10.6f\n',B)
a = -2.876811 b = 0.223246 c = 0.538057 d = 3.276223 e = -0.435324
.
  1 Kommentar
Walter Roberson
Walter Roberson am 10 Nov. 2022
("becomes a vector of ones" for the purpose of doing fitting using the Vandermode-type matrix and the \ operator)

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Mathematics finden Sie in Help Center und File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by