The problem of constants in linear least squares
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Jiapeng
am 10 Nov. 2022
Kommentiert: Walter Roberson
am 10 Nov. 2022
The equation of the model is ay^2+bxy+cx+dy+e=x^2.
Since e is a constant not associated with any variable, how should we get the value of e?
x = [1.02; 0.95; 0.77; 0.67; 0.56; 0.30; 0.16; 0.01];
y = [0.39; 0.32; 0.22; 0.18; 0.15; 0.12; 0.13; 0.15];
0 Kommentare
Akzeptierte Antwort
Star Strider
am 10 Nov. 2022
Bearbeitet: Walter Roberson
am 10 Nov. 2022
x = [1.02; 0.95; 0.77; 0.67; 0.56; 0.30; 0.16; 0.01];
y = [0.39; 0.32; 0.22; 0.18; 0.15; 0.12; 0.13; 0.15];
B = [y.^2 x.*y x y ones(size(x))] \ x.^2;
fprintf('\na = %10.6f\nb = %10.6f\nc = %10.6f\nd = %10.6f\ne = %10.6f\n',B)
.
1 Kommentar
Walter Roberson
am 10 Nov. 2022
("becomes a vector of ones" for the purpose of doing fitting using the Vandermode-type matrix and the \ operator)
Weitere Antworten (0)
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!