how to calculate biokinetic parameters?

3 Ansichten (letzte 30 Tage)
Pooja
Pooja am 23 Sep. 2022
Kommentiert: Pooja am 29 Sep. 2022

Akzeptierte Antwort

Davide Masiello
Davide Masiello am 23 Sep. 2022
You can use MatLab's fit function. Let me give you an example.
Let us assume you have the following set of 50 experimental values of S and mu
S = linspace(0,10000,50);
mu = 0.1160*S./(43.53+S+(S.^2/387))-0.5*rand(size(S))/500; % I have added random noise to the measured values
Now, you can create a fittype using, let's say, the Haldane model.
fitfunc = fittype(@(mumax,KS,KI,x) mumax*x./(KS+x+x.^2/KI));
The you give initial guesses for the three parameters.
x0 = [0.1 50 300];
And eventually use fit to optimize the parameters using the experimental data.
f = fit(S',mu',fitfunc,'StartPoint',x0);
coeffvals = coeffvalues(f)
coeffvals = 1×3
0.1280 67.0570 328.6587
plot(f,S,mu)
As you can see, the coefficient values are slightly different from those specified in your table due to my adding of a random noise to simulate experimental data.
You can use the same procedure with the other functions listed in your table.
  6 Kommentare
Pooja
Pooja am 26 Sep. 2022
It works.
Thank you so much.
Pooja
Pooja am 29 Sep. 2022
thank you so much.
sir little problem arise with code, I am not familier with Matlab. I can't recognise the code issue.
Please sir Help me.
It's code Quarry
figure plot(s, mu, '.', 'DisplayName','Data')
Error using figure
Argument must be a Figure object or a positive integer.
hold on plot(sv, ypred, '-r', 'DisplayName','Regression')
Error using hold
First argument must be an axes object.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Linear and Nonlinear Regression finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by