# How to compute the slop of bootstrap population with its confidence interval?

1 view (last 30 days)
Andi on 14 Aug 2022
Commented: Jeff Miller on 16 Aug 2022
Hi everyone,
I read through all the documentions and avaible function of Bootsrap in matlab most of them compute the mean or correlation of each iteration. However, i need to compute the slop of bootstrap population. For example:
My data set consist of around 50 observations, i like to randomly pick 100 observations with replacmenet for 2000 bootstrap iterations. For each iteration, i require to compute the slop and eventually, i will get 2000 slop observations. Then i need to compute the 95% confidence interval of these observations.
May someone suggets me how i can do this:
Here is a simpel start:
A = [0.045494, 0.065669, 0.073061, 0.104542, 0.296978, 0.498353, 0.503342...
0.515458, 0.660300, 0.663664, 0.677255, 0.724817, 0.805800, 0.899355...
0.987775, 2.121619, 2.165055, 2.196833, 3.265653, 3.479858, 8.702472 ...
10.070092, 10.720080, 12.896169, 12.912647, 14.24436,1 14.287428, 17.337397, 18.903783, 20.940314, 21.404639, 22.234169]
% A is the data
m = bootstrp(100,@mean,A);
##### 2 CommentsShowHide 1 older comment
Andi on 15 Aug 2022
For slope, we use number of observations as X and Y is the bootstrap population. For example, if we set bootstrap population 30 then the x is 1, 2, 3... 30,
Regarding the second, point, I think it be good for me to test both approaches, and see how it effect my analysis.

Jeff Miller on 16 Aug 2022
Edited: Jeff Miller on 16 Aug 2022
It sounds like this is what you are after, although I'm not sure why you want to do it:
m = bootstrp(100,@mySlope,A);
LowerCI = prctile(m,2.5); % lower / upper bounds for 95% conf interval
UpperCI = prctile(m,97.5);
function slope = mySlope(Yvals)
Xvals = 1:numel(Yvals);
P = polyfit(Xvals,Yvals,1);
slope = P(1);
end
##### 2 CommentsShowHide 1 older comment
Jeff Miller on 16 Aug 2022
see edit

### Categories

Find more on Time Series in Help Center and File Exchange

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by