matlab program in 3- piont guassian quadrature to evaluate integral f(x)= sin(x/10)
11 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
n/a
1 Kommentar
Mahesh
am 9 Dez. 2024
Consider the following integral: R 3 0 xe2x dx Write all the relevant commands on a MATLAB script to compute the value of the above integral using two-point Gaussian quadrature rule
Antworten (1)
Avni Agrawal
am 20 Jan. 2025
Bearbeitet: Walter Roberson
am 20 Jan. 2025
Hi Rikesh,
I understand that you are trying to evaluate the integral of
using the 3-point Gaussian quadrature method.
Here is step by step explanation on how to do this:
1. Define the Function and Interval:
f = @(x) sin(x/10);
a = 0; % Lower limit
b = pi; % Upper limit
2. Gaussian Quadrature Points and Weights:
x = [-sqrt(3/5), 0, sqrt(3/5)];
w = [5/9, 8/9, 5/9];
3. Map Points and Evaluate Function:
x_mapped = 0.5 * ((b - a) * x + a + b);
f_values = f(x_mapped);
4. Compute the Integral:
integral = ((b - a) / 2) * sum(w .* f_values);
disp(integral);
This approach uses Gaussian quadrature to accurately approximate the integral over the interval \([a, b]\).
I hope this helps!
0 Kommentare
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!