matlab program in 3- piont guassian quadrature to evaluate integral f(x)= sin(x/10)

11 Ansichten (letzte 30 Tage)
n/a
  1 Kommentar
Mahesh
Mahesh am 9 Dez. 2024
Consider the following integral: R 3 0 xe2x dx Write all the relevant commands on a MATLAB script to compute the value of the above integral using two-point Gaussian quadrature rule

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Avni Agrawal
Avni Agrawal am 20 Jan. 2025
Bearbeitet: Walter Roberson am 20 Jan. 2025
Hi Rikesh,
I understand that you are trying to evaluate the integral of using the 3-point Gaussian quadrature method.
Here is step by step explanation on how to do this:
1. Define the Function and Interval:
f = @(x) sin(x/10);
a = 0; % Lower limit
b = pi; % Upper limit
2. Gaussian Quadrature Points and Weights:
x = [-sqrt(3/5), 0, sqrt(3/5)];
w = [5/9, 8/9, 5/9];
3. Map Points and Evaluate Function:
x_mapped = 0.5 * ((b - a) * x + a + b);
f_values = f(x_mapped);
4. Compute the Integral:
integral = ((b - a) / 2) * sum(w .* f_values);
disp(integral);
This approach uses Gaussian quadrature to accurately approximate the integral over the interval \([a, b]\).
I hope this helps!

Kategorien

Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by