cv partition for categorical values
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
I am trying to use k fold cross validation for my dataset which has categorical and numerical features.
% Create a cvpartition object that defined the folds
c = cvpartition(Y,'holdout',.5);
% I tried c = cvpartition(Y,'kFold',3); as well
% Create a training set
x = array2table(X(training(c,1),:));
y = array2table(Y(training(c,1)));
% test set
u=array2table(X(test(c,1),:));
v=array2table(Y(test(c,1),:));
y.Properties.VariableNames{1} = 'churn';
v.Properties.VariableNames{1} = 'churn';
x.Properties.VariableNames(1:12)=adjusted_dataset.Properties.VariableNames(1:12);
u.Properties.VariableNames(1:12)=adjusted_dataset.Properties.VariableNames(1:12);
TrainingData= [x y];
TestDatawChurn=[u v];
After I execute this, it changes the categorical values into some random numbers. For example I see value 127 where it supposed to be 'yes'. What is it that I am doing wrong?
0 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Gaussian Process Regression finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!