How to keep main signal and suppress/remove other signal?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Vivian Yu
am 15 Feb. 2022
Kommentiert: Vivian Yu
am 25 Mär. 2022
clc
clf
close all
clear all
%%
%import spectrum
load('I_d.mat');
load('depth.mat');
Fs = 200*1e3; %sampling rate: 200 kHz
time = 1/Fs:1/Fs:0.006; %time interval (unit:s)
figure(1)
plot(time,I_d);
title('original signal');
xlabel('time (s)');
ylabel('Amplitude');
signal = I_d;
window = hanning(length(signal));
signal = signal.* window;
FFT = abs(fftshift(fft(signal,2048)));
FFT = FFT/max(FFT);
figure(2)
plot(depth,log(FFT),'linewidth',1);
title('after doing FFT')
xlabel('Depth (µm)');
ylabel('Amplitude');
set(gca,'linewidth',1,'fontsize',15);
grid on
%% plot spectrum with the other method
Fs = 2001e3; %sampling rate
time = 1/Fs:1/Fs:0.006; %time interval (unit:s)
%Default window is hamming window
figure(3)
pwelch(signal,[],[],[],Fs); %[] length of window to be used

The main signal is at the 2000µm depth (figure).
How do I suppress other signal besides this main signal and maintain signal to noise ratio?
0 Kommentare
Akzeptierte Antwort
Image Analyst
am 15 Feb. 2022
That's not PSF (Point Spread Function). pwelch() computes PSD (Power Spectral Density). Basically you can fft the signal, then zero out all elements except those at or around 2000 and -2000, and then inverse transform.
2 Kommentare
Image Analyst
am 17 Feb. 2022
Not sure why your x axis has units of depth (space domain) instead of Hz (frequency domain). Can you explain?
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Parametric Spectral Estimation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!