Exploiting symmetry in multidimensional arrays
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Patrick Mboma
am 13 Jul. 2014
Kommentiert: Roger Stafford
am 14 Jul. 2014
Dear all, In a symmetric matrix A of size [n,n], for two indices i and j such that 1<=i<=n and 1<=j<=n we have that A(i,j)=A(j,i). Suppose I know A(i,j) for i>=j how can I efficiently set A(j,i)?
More generally, if I have a hypercube A of size n^m, how can I, on the basis of A(i1,i2,...,im) with i1>=i2>=i3....>=im, set all A for all permutations of i1,i2,...,im instead of recalculating the entry for each permutation.
Thanks,
0 Kommentare
Akzeptierte Antwort
Roger Stafford
am 13 Jul. 2014
For a general m-dimensional n^m array, A, do this:
[I1,I2,...,Im] = ndgrid(1:n);
P = [I1(:),I2(:),...,Im(:)];
Q = sort(P,2,'descend');
A(sub2ind(size(P),P(:,1),P(:,2),...,P(:,m))) = ...
A(sub2ind(size(Q),Q(:,1),Q(:,2),...,Q(:,m)))
Note: The four three-dot ellipses (...) shown above (but not the one following the '=' sign) are to be filled in by the user.
4 Kommentare
Roger Stafford
am 14 Jul. 2014
@Patrick. Yes, you are quite right. I should have used size(A). I must have had a mental black out at that point! :-)
Weitere Antworten (1)
Roger Stafford
am 13 Jul. 2014
For a 2D array it's easy:
B = tril(A,-1)
A = B+B.'+diag(A);
0 Kommentare
Siehe auch
Kategorien
Mehr zu Matrices and Arrays finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!