How to calculate the integral of the complicated functions of function handles in a cell?

6 Ansichten (letzte 30 Tage)
Hi, I stuck for two days. I don't know how to calculate the integral of the sum of function handles in a cell. Please see the below examples:
f{1} = @(x) x;
f{2} = @(x) x^2;
g = @(x) sum(cellfun(@(y) y(x), f));
integral(@(x) g, -3,3);
Error: Input function must return 'double' or 'single' values. Found 'function_handle'.
PS: please don't change the formula, because this is just an example. My real problem is far more complicated than this. It has log and exp of this sum (integral(log(sum), -inf, inf)). So I can't break them up to do the integral individually and sum the integrals.I need to use sum(cellfun). Thank you.
Version: Matlab R2012a
Can anyone help me? Really appreciate.
  2 Kommentare
Patrik Ek
Patrik Ek am 1 Apr. 2014
Bearbeitet: Patrik Ek am 1 Apr. 2014
integral(f{1}+f{2}) = integral(f{1}) + integral(f{2}). This is a fundamental theorem of mathematics.
smashing
smashing am 1 Apr. 2014
Hi Patrik,
Thanks for the tip. As I said, my problem is comlicated than this example. It is not a sum, it has log and exp. So I can't break them up to do the integral individually and sum the integrals.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Azzi Abdelmalek
Azzi Abdelmalek am 1 Apr. 2014
f{1} = @(x) x;
f{2} = @(x) x.^2;
g=@(x) f{1}(x)+f{2}(x)
integral(@(x) g(x), -3,3)
  3 Kommentare
Azzi Abdelmalek
Azzi Abdelmalek am 1 Apr. 2014
Bearbeitet: Azzi Abdelmalek am 1 Apr. 2014
Maybe there is better. for the moment I have one solution using eval
f{1} = @(x) x;
f{2} = @(x) x.^2;
n=numel(f)
d=['g=@(x)' sprintf('f{%d}(x)+',1:n)]
d(end)=[]
eval(d)
integral(@(x) g(x), -3,3)
smashing
smashing am 1 Apr. 2014
Bearbeitet: Image Analyst am 1 Apr. 2014
This is great! I think this is the solution I am looking for. Thanks Azzi.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (1)

Sean de Wolski
Sean de Wolski am 1 Apr. 2014
Bearbeitet: Sean de Wolski am 1 Apr. 2014
Here's a method that scales:
f{1} = @(x) x;
f{2} = @(x) x.^2;
f{3} = @(x) exp(x)-log(x);
I = sum(cellfun(@(fun)integral(fun,-3,3),f))
Instead of using cellfun to evaluate the functions, use it to evaluate the integral and sum the integrals as Patrik suggested above.
Note you need to vectorize the functions (. before /*^)
  3 Kommentare
Sean de Wolski
Sean de Wolski am 1 Apr. 2014
Huh?
cellfun(@(fun)integral(fun,-3,3),f)
Evaluates the integral over the range for each function in funs. Do with this info as you wish!
Azzi Abdelmalek
Azzi Abdelmalek am 1 Apr. 2014
Smashing, you have to be clear, your question was about the sum. If there is something else, please edit your question and make it precise.

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Loops and Conditional Statements finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by