cross validation for neural network
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
kelvina
am 7 Feb. 2014
Beantwortet: Greg Heath
am 12 Feb. 2014
i want to use cross validation method to decide the number of hidden neurons of a neural network.
i want 5 fold cross validation. and right now i am using following NN architecture:
if true
net=newff(minmax(in'),[7,3],{'tansig','purelin'},'traingdx');
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.mc = 0.7;
net.trainParam.epochs = 3500;
net.trainParam.goal = 1e-2;
a1 = net.b{1};
a2 = net.b{2};
w1 = net.iw{1};
w2 = net.lw{2};
end
how can i use cross validation for this. and where the errors of each fold will be stored......
0 Kommentare
Akzeptierte Antwort
Greg Heath
am 12 Feb. 2014
Search the NEWSGROUP and ANSWERS using
greg crossvalidation
and
greg cross-validation
and
greg cross validation
Please post the addresses of any posts that are useful.
Hope this helps.
Thank you for formally accepting my answer
Greg
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Define Shallow Neural Network Architectures finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!