help with the resolution of the problem

2 Ansichten (letzte 30 Tage)
FRANCISCO
FRANCISCO am 30 Okt. 2013
Kommentiert: FRANCISCO am 31 Okt. 2013
good, I previously had a binary sequence and my purpose was the creation of substrings of various lengths, eg length 4: Sequence
*1(1), 0(2), 1(3), 1(4), 0(5), 0(6), 1(7), 0(8), 0(9), 1(10), 1(11), 1(12),
1(13), 0(14), 0(15), 0(16), 1(17), 1(18), 1(19), 0(20)*
_Substrings_
*01: 1(01), 0(02), 1(03), 1(04) -> [1,0,1,1],
02: 1(01), 1(03), 0(05), 1(07) -> [1,1,0,1],
03: 1(01), 1(04), 1(07), 1(10) -> [1,1,1,1],
04: 1(01), 0(05), 0(09), 1(13) -> [1,0,0,1],
05: 1(01), 0(06), 1(11), 0(16) -> [1,0,1,0],
06: 1(01), 1(07), 1(13), 1(19) -> [1,1,1,1],
07: 0(02), 1(03), 1(04), 0(05) -> [0,1,1,0],
08: 0(02), 1(04), 0(06), 0(08) -> [0,1,0,0],
09: 0(02), 0(05), 0(08), 1(11) -> [0,0,0,1],
10: 0(02), 0(06), 1(10), 0(14) -> [0,0,1,0],
11: 0(02), 1(07), 1(12), 1(17) -> [0,1,1,1],
12: 0(02), 0(08), 0(14), 0(20) -> [0,0,0,0],
13: 1(03), 1(04), 0(05), 0(06) -> [1,1,0,0],
14: 1(03), 0(05), 1(07), 0(09) -> [1,0,1,0],
15: 1(03), 0(06), 0(09), 1(12) -> [1,0,0,1],
16: 1(03), 1(07), 1(11), 0(15) -> [1,1,1,0],
17: 1(03), 0(08), 1(13), 1(18) -> [1,0,1,1],
18: 1(04), 0(05), 0(06), 1(07) -> [1,0,0,1],
19: 1(04), 0(06), 0(08), 1(10) -> [1,0,0,1],
20: 1(04), 1(07), 1(10), 1(13) -> [1,1,1,1],
21: 1(04), 0(08), 1(12), 0(16) -> [1,0,1,0],
22: 1(04), 0(09), 0(14), 1(19) -> [1,0,0,1],
23: 0(05), 0(06), 1(07), 0(08) -> [0,0,1,0],
24: 0(05), 1(07), 0(09), 1(11) -> [0,1,0,1],
25: 0(05), 0(08), 1(11), 0(14) -> [0,0,1,0],
26: 0(05), 0(09), 1(13), 1(17) -> [0,0,1,1],
27: 0(05), 1(10), 0(15), 0(20) -> [0,1,0,0],
28: 0(06), 1(07), 0(08), 0(09) -> [0,1,0,0],
29: 0(06), 0(08), 1(10), 1(12) -> [0,0,1,1],
30: 0(06), 0(09), 1(12), 0(15) -> [0,0,1,0],
31: 0(06), 1(10), 0(14), 1(18) -> [0,1,0,1],
32: 1(07), 0(08), 0(09), 1(10) -> [1,0,0,1],
33: 1(07), 0(09), 1(11), 1(13) -> [1,0,1,1],
34: 1(07), 1(10), 1(13), 0(16) -> [1,1,1,0],
35: 1(07), 1(11), 0(15), 1(19) -> [1,1,0,1],
36: 0(08), 0(09), 1(10), 1(11) -> [0,0,1,1],
37: 0(08), 1(10), 1(12), 0(14) -> [0,1,1,0],
38: 0(08), 1(11), 0(14), 1(17) -> [0,1,0,1],
39: 0(08), 1(12), 0(16), 0(20) -> [0,1,0,0],
40: 0(09), 1(10), 1(11), 1(12) -> [0,1,1,1],
41: 0(09), 1(11), 1(13), 0(15) -> [0,1,1,0],
42: 0(09), 1(12), 0(15), 1(18) -> [0,1,0,1],
43: 1(10), 1(11), 1(12), 1(13) -> [1,1,1,1],
44: 1(10), 1(12), 0(14), 0(16) -> [1,1,0,0],
45: 1(10), 1(13), 0(16), 1(19) -> [1,1,0,1],
46: 1(11), 1(12), 1(13), 0(14) -> [1,1,1,0],
47: 1(11), 1(13), 0(15), 1(17) -> [1,1,0,1],
48: 1(11), 0(14), 1(17), 0(20) -> [1,0,1,0],
49: 1(12), 1(13), 0(14), 0(15) -> [1,1,0,0],
50: 1(12), 0(14), 0(16), 1(18) -> [1,0,0,1],
51: 1(13), 0(14), 0(15), 0(16) -> [1,0,0,0],
52: 1(13), 0(15), 1(17), 1(19) -> [1,0,1,1],
53: 0(14), 0(15), 0(16), 1(17) -> [0,0,0,1],
54: 0(14), 0(16), 1(18), 0(20) -> [0,0,1,0],
55: 0(15), 0(16), 1(17), 1(18) -> [0,0,1,1],
56: 0(16), 1(17), 1(18), 1(19) -> [0,1,1,1],
57: 1(17), 1(18), 1(19), 0(20) -> [1,1,1,0],*
using the following code
if true
% code
N = 20;
n = 4;
A = hankel(1:N-n+1,N-n+1:N);
k = 0:n-1;
c = ceil((N - A(:,end) + 1)/k(end));
i2 = cumsum(c);
i1 = i2 - c + 1;
idx = zeros(i2(end),n);
for jj = 1:N-n+1
idx(i1(jj):i2(jj),:) = bsxfun(@plus,A(jj,:),(0:c(jj)-1)'*k);
end
[j1,j2,j2] = unique(s(idx),'rows')
out = [j1, histc(j2,1:max(j2))/i2(end)]; % This row corrected
end
and at the end get a count of the times to repeat each pattern and their relative frequency:
*0 0 0 0------ 161697-- 0,0606515378844711
0 0 0 1------ 163593-- 0,0613627156789197
0 0 1 0------ 164201-- 0,0615907726931733
0 0 1 1------ 166680-- 0,0625206301575394
0 1 0 0------ 164105-- 0,0615547636909227
0 1 0 1------ 166501-- 0,0624534883720930
0 1 1 0------ 167099-- 0,0626777944486122
0 1 1 1------ 168835-- 0,0633289572393098
1 0 0 0------ 164086-- 0,0615476369092273
1 0 0 1------ 166963-- 0,0626267816954239
1 0 1 0------ 166931-- 0,0626147786946737
1 0 1 1------ 169470-- 0,0635671417854464
1 1 0 0------ 166622-- 0,0624988747186797
1 1 0 1------ 169326-- 0,0635131282820705
1 1 1 0------ 169251-- 0,0634849962490623
1 1 1 1------ 170640-- 0,0640060015003751*
The problem that arises is that when I processed this way I only processes some 4000 data and need to process many more. I have 4GB of RAM and Matlab 2012. What I thought is this: Assign each patron an integer:
*0 0 0 0------ 1
0 0 0 1-------2
0 0 1 0-------3
0 0 1 1-------4
0 1 0 0-------5
0 1 0 1-------6
0 1 1 0-------7
0 1 1 1-------8
1 0 0 0-------9
1 0 0 1-------10
1 0 1 0-------11
1 0 1 1-------12
1 1 0 0-------13
1 1 0 1-------14
1 1 1 0-------15
1 1 1 1-------16*
and set as a counter to assign the number of times to repeat that integer. In this way perhaps get as many data processing. thank you very much Can anyone help me do this processing, since otherwise the large number of data means that no processing occurs
  7 Kommentare
FRANCISCO
FRANCISCO am 30 Okt. 2013
Sorry I confused. I point the instructions I have given in the previous and delete it. It's because I do not know how to do it
FRANCISCO
FRANCISCO am 31 Okt. 2013
Can anyone help me realize this algorithm for the conversion and counting? thank you very much

Melden Sie sich an, um zu kommentieren.

Antworten (0)

Kategorien

Mehr zu Get Started with MATLAB finden Sie in Help Center und File Exchange

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by