pochhammer

Pochhammer symbol

Description

example

pochhammer(x,n) returns the Pochhammer Symbol (x)n.

Examples

Find Pochhammer Symbol for Numeric and Symbolic Inputs

Find the Pochhammer symbol for the numeric inputs x = 3 at n = 2.

pochhammer(3,2)
ans =
    12

Find the Pochhammer symbol for the symbolic input x at n = 3. The pochhammer function does not automatically return the expanded form of the expression. Use expand to force pochhammer to return the form of the expanded expression.

syms x
P = pochhammer(x, 3)
P = expand(P)
P =
pochhammer(x, 3)
P =
x^3 + 3*x^2 + 2*x

Rewrite and Factor Outputs of Pochhammer

If conditions are satisfied, expand rewrites the solution using gamma.

syms n x
assume(x>0)
assume(n>0)
P = pochhammer(x, n);
P = expand(P)
P =
gamma(n + x)/gamma(x)

To use the variables in further computations, clear their assumptions by recreating them using syms.

syms n x

To convert expanded output of pochhammer into its factors, use factor.

P = expand(pochhammer(x, 4));
P = factor(P)
P =
[ x, x + 3, x + 2, x + 1]

Differentiate Pochhammer Symbol

Differentiate pochhammer once with respect to x.

syms n x
diff(pochhammer(x,n),x)
ans =
pochhammer(x, n)*(psi(n + x) - psi(x))

Differentiate pochhammer twice with respect to n.

diff(pochhammer(x,n),n,2)
ans =
pochhammer(x, n)*psi(n + x)^2 + pochhammer(x, n)*psi(1, n + x)

Taylor Series Expansion of Pochhammer Symbol

Use taylor to find the Taylor series expansion of pochhammer with n = 3 around the expansion point x = 2.

syms x
taylor(pochhammer(x,3),x,2)
ans =
26*x + 9*(x - 2)^2 + (x - 2)^3 - 28

Plot Pochhammer Symbol

Plot the Pochhammer symbol from n = 0 to n = 4 for x. Use axis to display the region of interest.

syms x
fplot(pochhammer(x,0:4))
axis([-4 4 -4 4])

grid on
legend('n = 0','n = 1','n = 2','n = 3','n = 4','Location','Best')
title('Pochhammer symbol (x)_n for n=0 to n=4')

Input Arguments

collapse all

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

More About

collapse all

Pochhammer Symbol

Pochhammer’s symbol is defined as

(x)n=Γ(x+n)Γ(x),

where Γ is the Gamma function.

If n is a positive integer, Pochhammer’s symbol is

(x)n=x(x+1)...(x+n1)

Algorithms

  • If x and n are numerical values, then an explicit numerical result is returned. Otherwise, a symbolic function call is returned.

  • If both x and x + n are nonpositive integers, then

    (x)n=(1)nΓ(1x)Γ(1xn).

  • The following special cases are implemented.

    (x)0=1(x)1=x(x)1=1x1(1)n=Γ(n+1)(2)n=Γ(n+2)

  • If n is a positive integer, then expand(pochhammer(x,n)) returns the expanded polynomial x(x+1)...(x+n1).

  • If n is not an integer, then expand(pochhammer(x,n)) returns a representation in terms of gamma.

See Also

|

Introduced in R2014b