Class: RegressionGP
Resubstitution prediction from a trained Gaussian process regression model
ypred = resubPredict(gprMdl)
[ypred,ysd]
= resubPredict(gprMdl)
[ypred,ysd,yint]
= predict(gprMdl)
[ypred,ysd,yint]
= predict(gprMdl,Name,Value)
returns
the predicted responses, ypred
= resubPredict(gprMdl
)ypred
, for the trained
Gaussian process regression (GPR) model, gprMdl
.
[
also returns
the estimated standard deviations of the predicted responses corresponding
to the rows of ypred
,ysd
]
= resubPredict(gprMdl
)gprMdl.X
.
[
also returns the
95% prediction intervals, ypred
,ysd
,yint
]
= predict(gprMdl
)yint
, for the true
responses corresponding to each row of training data, gprMdl.X
.
[
returns
the prediction intervals with additional options, specified by one
or more ypred
,ysd
,yint
]
= predict(gprMdl
,Name,Value
)Name,Value
pair arguments. For example,
you can specify the confidence level of the prediction interval.
You can choose the prediction method while training
the GPR model using the PredictMethod
name-value
pair argument in fitrgp
. The
default prediction method is 'exact'
for n ≤
10000, where n is the number of observations in
the training data, and 'bcd'
(block coordinate
descent), otherwise.
Computation of standard deviations, ysd
,
and prediction intervals, yint
, is not supported
when PredictMethod
is 'bcd'
.
To compute the predicted responses for new data, use predict
.
[1] Harrison, D. and D.L., Rubinfeld. "Hedonic prices and the demand for clean air." J. Environ. Economics & Management. Vol.5, 1978, pp. 81-102.
[2] Lichman, M. UCI Machine Learning Repository, Irvine, CA: University of California, School of Information and Computer Science, 2013. http://archive.ics.uci.edu/ml.
fitrgp
| predict
| RegressionGP
| resubLoss