How to Contact MathWorks

Latest news: www.mathworks.com
Sales and services: www.mathworks.com/sales_and_services
User community: www.mathworks.com/matlabcentral
Technical support: www.mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Deep Learning Toolbox™ Reference

The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.
Revision History

June 1992 First printing
April 1993 Second printing
January 1997 Third printing
July 1997 Fourth printing
January 1998 Fifth printing Revised for Version 3 (Release 11)
September 2000 Sixth printing Revised for Version 4 (Release 12)
June 2001 Seventh printing Minor revisions (Release 12.1)
July 2002 Online only Minor revisions (Release 13)
January 2003 Online only Minor revisions (Release 13SP1)
June 2004 Online only Revised for Version 4.0.3 (Release 14)
October 2004 Online only Revised for Version 4.0.4 (Release 14SP1)
October 2004 Eighth printing Revised for Version 4.0.4
March 2005 Online only Revised for Version 4.0.5 (Release 14SP2)
March 2006 Online only Revised for Version 5.0 (Release 2006a)
September 2006 Ninth printing Minor revisions (Release 2006b)
March 2007 Online only Minor revisions (Release 2007a)
September 2007 Online only Revised for Version 5.1 (Release 2007b)
March 2008 Online only Revised for Version 6.0 (Release 2008a)
October 2008 Online only Revised for Version 6.0.1 (Release 2008b)
March 2009 Online only Revised for Version 6.0.2 (Release 2009a)
September 2009 Online only Revised for Version 6.0.3 (Release 2009b)
March 2010 Online only Revised for Version 6.0.4 (Release 2010a)
September 2010 Online only Revised for Version 7.0 (Release 2010b)
April 2011 Online only Revised for Version 7.0.1 (Release 2011a)
September 2011 Online only Revised for Version 7.0.2 (Release 2011b)
March 2012 Online only Revised for Version 7.0.3 (Release 2012a)
September 2012 Online only Revised for Version 8.0 (Release 2012b)
March 2013 Online only Revised for Version 8.0.1 (Release 2013a)
September 2013 Online only Revised for Version 8.1 (Release 2013b)
March 2014 Online only Revised for Version 8.2 (Release 2014a)
October 2014 Online only Revised for Version 8.2.1 (Release 2014b)
March 2015 Online only Revised for Version 8.3 (Release 2015a)
September 2015 Online only Revised for Version 8.4 (Release 2015b)
March 2016 Online only Revised for Version 9.0 (Release 2016a)
September 2016 Online only Revised for Version 9.1 (Release 2016b)
March 2017 Online only Revised for Version 10.0 (Release 2017a)
September 2017 Online only Revised for Version 11.0 (Release 2017b)
March 2018 Online only Revised for Version 11.1 (Release 2018a)
September 2018 Online only Revised for Version 12.0 (Release 2018b)
March 2019 Online only Revised for Version 12.1 (Release 2019a)
September 2019 Online only Revised for Version 13 (Release 2019b)
March 2020 Online only Revised for Version 14 (Release 2020a)
September 2020 Online only Revised for Version 14.1 (Release 2020b)
Deep Learning Functions

1

Approximation, Clustering, and Control Functions

2

Deep Learning Blocks

3
Deep Learning Functions
Deep Network Designer

Design, visualize, and train deep learning networks

Description
The Deep Network Designer app lets you build, visualize, edit, and train deep learning networks. Using this app, you can:

- Build, import, edit, and combine networks.
- Load pretrained networks and edit them for transfer learning.
- View and edit layer properties and add new layers and connections.
- Analyze the network to ensure that the network architecture is defined correctly, and detect problems before training.
- Import and visualize datastores and image data for training and validation.
- Apply augmentations to image classification training data and visualize the distribution of the class labels.
- Train networks and monitor training with plots of accuracy, loss, and validation metrics.
- Generate MATLAB® code for building and training networks.
Open the Deep Network Designer App

• MATLAB Toolstrip: On the Apps tab, under Machine Learning and Deep Learning, click the app icon.
• MATLAB command prompt: Enter deepNetworkDesigner.

Examples

Select Pretrained Image Classification Network

Examine a simple pretrained image classification network in Deep Network Designer.

Open the app and select a pretrained network. You can also load a pretrained network by selecting the Designer tab and clicking New. If you need to download the network, then click Install to open the Add-On Explorer.

Tip To get started, try choosing one of the faster networks, such as SqueezeNet or GoogLeNet. Once you gain an understanding of which settings work well, try a more accurate network, such as Inception-v3 or a ResNet, and see if that improves your results. For more information on selecting a pretrained network, see “Pretrained Deep Neural Networks”.

In the Designer pane, visualize and explore the network. For a list of available pretrained networks and how to compare them, see “Pretrained Deep Neural Networks”.
For information on constructing networks using Deep Network Designer, see “Build Networks with Deep Network Designer”.

Edit Pretrained Network for Transfer Learning

Prepare a network for transfer learning by editing it in Deep Network Designer.

Transfer learning is the process of taking a pretrained deep learning network and fine-tuning it to learn a new task. You can quickly transfer learned features to a new task using a smaller number of training images. Transfer learning is therefore often faster and easier than training a network from scratch. To use a pretrained network for transfer learning, you must change the number of classes to match your new data set.

Open Deep Network Designer with SqueezeNet.

depDeepNetworkDesigner(squeezenet)

To prepare the network for transfer learning, replace the last learnable layer and the final classification layer. For SqueezeNet, the last learnable layer is a 2-D convolutional layer named 'conv10'.

- Drag a new convolution2dLayer onto the canvas. Set the FilterSize property to 1,1 and the NumFilters property to the new number of classes.
- Change the learning rates so that learning is faster in the new layer than in the transferred layers by increasing the WeightLearnRateFactor and BiasLearnRateFactor.
• Delete the last `convolution2dLayer` and connect your new layer instead.

Tip For most pretrained networks (for example, GoogLeNet) the last learnable layer is the fully connected layer. To prepare the network for transfer learning, replace the fully connected layer with a new fully connected layer and set the `OutputSize` property to the new number of classes. For an example, see “Get Started with Deep Network Designer”.

Next, delete the classification output layer. Then, drag a new `classificationLayer` onto the canvas and connect it instead. The default settings for the output layer mean the network learns the number of classes during training.

Check your network by clicking **Analyze** in the **Designer** tab. The network is ready for training if Deep Learning Network Analyzer reports zero errors. For an example showing how to train a network to classify new images, see “Transfer Learning with Deep Network Designer”.

Get Help on Layer Properties

For help understanding and editing layer properties, click the help icon next to the layer name.

On the **Designer** pane, select a layer to view and edit the properties. Click the help icon next to the layer name for more information about the properties of the layer.
Add Custom Layer to Network

Add layers from the workspace to a network in Deep Network Designer.

In Deep Network Designer, you can build a network by dragging built-in layers from the Layer Library to the Designer pane and connecting them. You can also add custom layers from the workspace to a network in the Designer pane. Suppose that you have a custom layer stored in the variable myCustomLayer.

1. Click New in the Designer tab.
2. Pause on From Workspace and click Import.
3. Select myCustomLayer and click OK.
4. Click Add.

The app adds the custom layer to the top of the Designer pane. To see the new layer, zoom-in using a mouse or click Zoom in.

Connect myCustomLayer to the network in the Designer pane. For an example showing how to use a custom output layer to build a weighted classification network in Deep Network Designer, see “Import Custom Layer into Deep Network Designer”.

You can also combine networks in Deep Network Designer. For example, you can create a semantic segmentation network by combining a pretrained network with a decoder subnetwork.

Import Data for Training

Import data into Deep Network Designer for training.
You can use the **Data** tab of Deep Network Designer to import training and validation data. Deep Network Designer supports the import of image data and datastore objects. Select an import method based on the type of task.

<table>
<thead>
<tr>
<th>Task</th>
<th>Data Type</th>
<th>Data Import Method</th>
<th>Example Visualization</th>
</tr>
</thead>
</table>
| Image classification| ImageDatastore or a folder with subfolders containing images by class. The class labels are sourced from the subfolder names. | Select **Import Data**
Select **Import Image Data** | ![Image classification example visualization](image) |

You can select augmentation options and specify the validation data in the Import Image Data dialog box. For more information, see "Import Data into Deep Network Designer".
## Task	Data Type	Data Import Method	Example Visualization
Other extended workflows (such as numeric feature input, out-of-memory data, image processing, and audio and speech processing) | Datastore. For other extended workflows, use a suitable datastore object. For example, AugmentedImageDatastore, CombinedDatastore, pixelLabelImageDatastore, or custom datastore. You can import and train any datastore object that works with the trainNetwork function. For more information about constructing and using datastore objects for deep learning applications, see “Datastores for Deep Learning”. | Select Import Data Import Dataset. | ![Image of Import Dataset dialog box with examples of training, validation, and preview data.]

To train a network on data you import into Deep Network Designer, on the **Training** tab, click **Train**. If you require greater control over the training, click **Training Options** to select the training settings. For more information about selecting training options, see **trainingOptions**. For an example showing how to train an image classification network, see “Transfer Learning with Deep Network Designer”.

Export Network Architecture

Create and export the network architecture created in Deep Network Designer to the workspace.

- To export the network architecture with the initial weights, on the **Designer** tab, click **Export**. Depending on the network architecture, Deep Network Designer exports the network as a `LayerGraph` object or as a `Layer` object.
- To export the network architecture with the trained weights, on the **Training** tab, click **Export**. Deep Network Designer exports the trained network architecture as a `DAGNetwork` object.
trainedNetwork. Deep Network Designer also exports the results from training, such as training and validation accuracy, as the structure array trainInfoStruct.

Generate MATLAB Code

To recreate a network that you construct and train in Deep Network Designer, generate MATLAB code.

To recreate the network layers, on the Designer tab, select Export > Generate Code. Alternatively, you can recreate your network, including any learnable parameters, by selecting Export > Generate Code with Initial Parameters. After generating a script, you can perform the following tasks.

- To recreate the network layers created in the app, run the script.
- To train the network, run the script and then supply the layers to the trainNetwork function.
- Examine the code to learn how to create and connect layers programmatically.
- To modify the layers, edit the code. You can also run the script and import the network back into the app for editing.

To recreate the network, data import, and training, on the Training tab, select Export > Generate Code for Training. After generating a script, you can perform the following tasks.

- To recreate the network layers and the training performed in the app, run the script.
- Examine the code to learn how to import data programmatically, and construct and train a network.
- Modify the code to try different network architectures and training options, and see how they affect the results.

For more information, see “Generate MATLAB Code from Deep Network Designer”.

- “Transfer Learning with Deep Network Designer”
- “Build Networks with Deep Network Designer”
- “Import Data into Deep Network Designer”
- “Create Simple Sequence Classification Network Using Deep Network Designer”
- “Create Simple Semantic Segmentation Network in Deep Network Designer”
- “Image-to-Image Regression in Deep Network Designer”
- “Import Custom Layer into Deep Network Designer”
- “Generate MATLAB Code from Deep Network Designer”
- “List of Deep Learning Layers”

Programmatic Use

depthNetworkDesigner opens the Deep Network Designer app. If Deep Network Designer is already open, depthNetworkDesigner brings focus to the app.

depthNetworkDesigner(net) opens the Deep Network Designer app and loads the specified network into the app. The network can be a series network, DAG network, layer graph, or an array of layers.
For example, open Deep Network Designer with a pretrained SqueezeNet network.

g = squeezenet;
department(1, g);

If Deep Network Designer is already open, `deepNetworkDesigner(g)` brings focus to the app and prompts you to add to or replace any existing network.

Tips

To train multiple networks and compare the results, try **Experiment Manager**.

See Also

Functions

- Experiment Manager | analyzeNetwork | trainNetwork | trainingOptions

Topics

- "Transfer Learning with Deep Network Designer"
- "Build Networks with Deep Network Designer"
- "Import Data into Deep Network Designer"
- "Create Simple Sequence Classification Network Using Deep Network Designer"
- "Create Simple Semantic Segmentation Network in Deep Network Designer"
- "Image-to-Image Regression in Deep Network Designer"
- "Import Custom Layer into Deep Network Designer"
- "Generate MATLAB Code from Deep Network Designer"
- "List of Deep Learning Layers"

Introduced in R2018b
Deep Network Quantizer

Quantize a deep neural network to 8-bit scaled integer data types

Description

Use the Deep Network Quantizer app to reduce the memory requirement of a deep neural network by quantizing weights, biases, and activations of convolution layers to 8-bit scaled integer data types. Using this app you can:

- Visualize the dynamic ranges of convolution layers in a deep neural network.
- Select individual network layers to quantize.
- Assess the performance of a quantized network.
- Generate GPU code to deploy the quantized network using GPU Coder.

Quantization of a neural network requires a GPU, the GPU Coder™ Interface for Deep Learning Libraries support package, and the Deep Learning Toolbox Model Quantization Library support package. Using a GPU requires a CUDA® enabled NVIDIA® GPU with compute capability 6.1, 6.3 or higher.
Open the Deep Network Quantizer App

- MATLAB command prompt: Enter deepNetworkQuantizer.

Examples

Quantize a Network

To explore the behavior of a neural network with quantized convolution layers, use the Deep Network Quantizer app. This example quantizes the learnable parameters of the convolution layers of the squeezenet neural network after retraining the network to classify new images according to the “Train Deep Learning Network to Classify New Images” example.

Load the network to quantize into the base workspace.

```
net
```

```
net = 

DAGNetwork with properties:
    
    Layers: [68x1 nnet.cnn.layer.Layer]
    Connections: [75x2 table]
    InputNames: {'data'}
    OutputNames: {'new_classoutput'}
```

Define calibration and validation data.

The app uses calibration data to exercise the network and collect the dynamic ranges of the weights and biases in the convolution and fully connected layers of the network and the dynamic ranges of the activations in all layers of the network. For the best quantization results, the calibration data must be representative of inputs to the network.

The app uses the validation data to test the network after quantization to understand the effects of the limited range and precision of the quantized learnable parameters of the convolution layers in the network.

In this example, use the images in the MerchData data set. Define an augmentedImageDatastore object to resize the data for the network. Then, split the data into calibration and validation data sets.

```
unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');
[calData, valData] = splitEachLabel(imds, 0.7, 'randomized');
aug_calData = augmentedImageDatastore([227 227], calData);
aug_valData = augmentedImageDatastore([227 227], valData);
```

At the MATLAB command prompt, open the app.

```
deepNetworkQuantizer
```

In the app, click the New button. The app verifies your execution environment. To use the Deep Network Quantizer app, you must have a GPU execution environment. If there is no GPU available, this step produces an error.
In the dialog, select the network to quantize from the base workspace.

After selecting the network, the app displays the layer graph of the network.

In the **Calibrate** section of the toolstrip, under **Calibration Data**, select the `augmentedImageDatastore` object from the base workspace containing the calibration data, `calData`.

Click **Calibrate**.

The **Deep Network Quantizer** uses the calibration data to exercise the network and collect range information for the learnable parameters in the network layers.

When the calibration is complete, the app displays a table containing the weights and biases in the convolution and fully connected layers of the network and the dynamic ranges of the activations in all layers of the network and their minimum and maximum values during the calibration. To the right of the table, the app displays histograms of the dynamic ranges of the parameters. The gray regions of the histograms indicate data that cannot be represented by the quantized representation. For more information on how to interpret these histograms, see “Quantization of Deep Neural Networks”.
In the **Quantize** column of the table, indicate whether to quantize the learnable parameters in the layer. Layers that are not convolution layers cannot be quantized, and therefore cannot be selected. Layers that are not quantized remain in single-precision after quantization.

In the **Validate** section of the toolstrip, under **Validation Data**, select the `augmentedImageDatastore` object from the base workspace containing the validation data, `valData`.

Click **Quantize and Validate**.

The **Deep Network Quantizer** quantizes the weights, activations, and biases of convolution layers in the network to scaled 8-bit integer data types and uses the validation data to exercise the network. The app determines a metric function to use for the validation based on the type of network that is being quantized.

<table>
<thead>
<tr>
<th>Type of Network</th>
<th>Metric Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td>Top-1 Accuracy – Accuracy of the network</td>
</tr>
<tr>
<td>Regression</td>
<td>MSE – Mean squared error of the network</td>
</tr>
</tbody>
</table>

When the validation is complete, the app displays the results of the validation, including:

- Metric function used for validation
- Result of the metric function before and after quantization
After quantizing and validating the network, you can choose to export the quantized network.

Click the Export button. In the drop down, select Export Quantizer to create a dlquantizer object in the base workspace. To open the GPU Coder app and generate GPU code from the quantized neural network, select Generate Code. Generating GPU code requires a GPU Coder license.

If the performance of the quantized network is not satisfactory, you can choose to not quantize some layers by deselecting the layer in the table. To see the effects, click Quantize and Validate again.

See Also

Functions
calibrate | dlquantizationOptions | dlquantizer | validate

Topics
“Quantization of Deep Neural Networks”

Introduced in R2020a
Experiment Manager

Design and run experiments to train and compare deep learning networks

Description

The Experiment Manager app enables you to create a deep learning experiment to train networks under various initial conditions and compare the results. For example, you can use deep learning experiments to:

- Sweep through a range of hyperparameter values or use Bayesian optimization to find optimal training options. Bayesian optimization requires Statistics and Machine Learning Toolbox™.
- Compare the results of using different data sets to train a network.
- Test different deep network architectures by reusing the same set of training data on several networks.

Experiment Manager provides visualization tools such as training plots and confusion matrices, filters to refine your experiment results, and the ability to define custom metrics to evaluate your results. To improve reproducibility, every time that you run an experiment, Experiment Manager stores a copy of the experiment definition. You can access past experiment definitions to keep track of the hyperparameter combinations that produce each of your results.

Experiment Manager organizes your experiments and results in a project.

- You can store several experiments in the same project.
- Each experiment contains a set of results for each time that you run the experiment.
- Each set of results consists of one or more trials corresponding to a different combination of hyperparameters.

By default, Experiment Manager runs one trial at a time. If you have Parallel Computing Toolbox™, you can configure your experiment to run multiple trials simultaneously. Running an experiment in parallel allows you to use MATLAB while the training is in progress.

The Experiment Browser pane displays the hierarchy of experiments and results in the project. For instance, this project has two experiments, each of which has several sets of results. To open the configuration for an experiment and view its results, double-click the name of an experiment or a set of results.
Open the Experiment Manager App

- MATLAB Toolstrip: On the Apps tab, under Machine Learning and Deep Learning, click the app icon.
- MATLAB command prompt: Enter experimentManager.
Examples

Sweep Hyperparameters to Train a Classification Network

This example shows how to use the default experiment setup function to train an image classification network by sweeping hyperparameters. For more examples of solving image classification problems with Experiment Manager, see “Create a Deep Learning Experiment for Classification” and “Use Experiment Manager to Train Networks in Parallel”. For more information on an alternative strategy to sweeping hyperparameters, see “Tune Experiment Hyperparameters by Using Bayesian Optimization”.

Open the example to load a project with a preconfigured experiment that you can inspect and run. To open the experiment, in the **Experiment Browser** pane, double-click the name of the experiment (Experiment1).

![Experiment Manager Interface](image)

Alternatively, you can configure the experiment yourself by following these steps.

1. Open Experiment Manager.

2. Click **New > Project** and select the location and name for a new project. Experiment Manager opens a new experiment in the project. The **Experiment** pane displays the description, hyperparameters, setup function, and metrics that define the experiment.

3. In the **Description** box, enter a description of the experiment:
Classification of digits, using various initial learning rates.

4. Under Hyperparameters, replace the value of myInitialLearnRate with 0.0025:0.0025:0.015. Verify that Strategy is set to Exhaustive Sweep.

5. Under Setup Function, click Edit. The setup function opens in MATLAB Editor. The setup function specifies the training data, network architecture, and training options for the experiment. By default, the template for the setup function has three sections.

- **Load Image Data** defines image datastores containing the training and validation data for the experiment. The experiment uses the Digits data set, which consists of 10,000 28-by-28 pixel grayscale images of digits from 0 to 9, categorized by the digit they represent. For more information on this data set, see “Image Data Sets”.

- **Define Network Architecture** defines the architecture for a simple convolutional neural network for deep learning classification.

- **Specify Training Options** defines a trainingOptions object for the experiment. By default, the template loads the values for the training option 'InitialLearnRate' from the myInitialLearnRate entry in the hyperparameter table.

When you run the experiment, Experiment Manager trains the network defined by the setup function six times. Each trial uses one of the learning rates specified in the hyperparameter table. By default, Experiment Manager runs one trial at a time. If you have Parallel Computing Toolbox, you can run multiple trials at the same time. For best results, before you run your experiment, start a parallel pool with as many workers as GPUs. For more information, see “Use Experiment Manager to Train Networks in Parallel”.

- To run one trial of the experiment at a time, in the Experiment Manager toolstrip, click Run.

- To run multiple trials at the same time, click Use Parallel and then Run. If there is no current parallel pool, Experiment Manager starts one using the default cluster profile. Experiment Manager then executes multiple simultaneous trials, depending on the number of parallel workers available.

A table of results displays the accuracy and loss for each trial.

<table>
<thead>
<tr>
<th>Trial</th>
<th>Status</th>
<th>Progress</th>
<th>Elapsed Time</th>
<th>myInitialLearnRate</th>
<th>Training Accuracy (%)</th>
<th>Training Loss</th>
<th>Validation Accuracy (%)</th>
<th>Validation Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Complete</td>
<td>100%</td>
<td>0 hr 1 min 51 sec</td>
<td>0.0025</td>
<td>100.0000</td>
<td>0.0042</td>
<td>60.0000</td>
<td>1.2523</td>
</tr>
<tr>
<td>2</td>
<td>Complete</td>
<td>100%</td>
<td>0 hr 1 min 10 sec</td>
<td>0.0050</td>
<td>100.0000</td>
<td>0.0052</td>
<td>62.0000</td>
<td>1.3163</td>
</tr>
<tr>
<td>3</td>
<td>Running</td>
<td>57.6%</td>
<td>0 hr 0 min 42 sec</td>
<td>0.0075</td>
<td>100.0000</td>
<td>0.0065</td>
<td>62.0000</td>
<td>1.3163</td>
</tr>
<tr>
<td>4</td>
<td>Queued</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0100</td>
<td>0.0100</td>
<td>0.0100</td>
<td>0.0100</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Queued</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0125</td>
<td>0.0125</td>
<td>0.0125</td>
<td>0.0125</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Queued</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0150</td>
<td>0.0150</td>
<td>0.0150</td>
<td>0.0150</td>
<td></td>
</tr>
</tbody>
</table>

While the experiment is running, click Training Plot to display the training plot and track the progress of each trial. You can also monitor the training progress in the MATLAB Command Window.
Click **Confusion Matrix** to display the confusion matrix for the validation data in each completed trial.

When the experiment finishes, you can sort the table by column or filter trials by using the **Filters** pane. For more information, see “Sort and Filter Experiment Results” on page 1-25.

To test the performance of an individual trial, export the trained network or the training information for the trial. On the **Experiment Manager** toolstrip, select **Export > Trained Network** or **Export > Training Information**, respectively. For more information, see “net” on page 1-0 and “info” on page 1-0.

To close the experiment, in the **Experiment Browser** pane, right-click the name of the project and select **Close Project**. Experiment Manager closes all of the experiments and results contained in the project.

Sweep Hyperparameters to Train Regression Network

This example shows how to configure an experiment to train an image regression network by sweeping hyperparameters. For another example of solving a regression problem with Experiment Manager, see “Create a Deep Learning Experiment for Regression”.

Open the example to load a project with a preconfigured experiment that you can inspect and run. To open the experiment, in the **Experiment Browser** pane, double-click the name of the experiment (Experiment1).
Alternatively, you can configure the experiment yourself by following these steps.

1. Open Experiment Manager.

2. Click New > Project and select the location and name for a new project. Experiment Manager opens a new experiment in the project. The Experiment pane displays the description, hyperparameters, setup function, and metrics that define the experiment.

3. In the Description box, enter a description of the experiment:

Regression to predict angles of rotation of digits, using various initial learning rates.

4. Under Hyperparameters, replace the value of myInitialLearnRate with 0.001:0.001:0.006. Verify that Strategy is set to Exhaustive Sweep.

5. Under Setup Function, click Edit. The setup function opens in MATLAB Editor.
 - Modify the setup function signature to return four outputs. These outputs are used to call the trainNetwork function to train a network for image regression problems.

 function [XTrain,YTrain,layers,options] = Experiment1_setup1(params)

 - Modify the Load Image Data section of the setup function to define the training and validation data for the experiment as 4-D arrays. In this experiment, the training and validation data each consist of 5000 images from the Digits data set. Each image shows a digit from 0 to 9, rotated by a certain angle. The regression values correspond to the angles of rotation. For more information on
this data set, see “Image Data Sets”. Be sure to delete all of the existing code in this section of the setup function.

[XTrain,~,YTrain] = digitTrain4DArrayData;
[XValidation,~,YValidation] = digitTest4DArrayData;

- Modify the **Define Network Architecture** section of the setup function to define a convolutional neural network for regression. Be sure to delete all of the existing code in this section of the setup function.

layers = [
 imageInputLayer([28 28 1])
 convolution2dLayer(3,8, 'Padding', 'same')
 batchNormalizationLayer
 reluLayer
 averagePooling2dLayer(2, 'Stride', 2)
 convolution2dLayer(3, 16, 'Padding', 'same')
 batchNormalizationLayer
 reluLayer
 averagePooling2dLayer(2, 'Stride', 2)
 convolution2dLayer(3, 32, 'Padding', 'same')
 batchNormalizationLayer
 reluLayer
 convolution2dLayer(3, 32, 'Padding', 'same')
 batchNormalizationLayer
 reluLayer
 dropoutLayer(0.2)
 fullyConnectedLayer(1)
 regressionLayer];

- Modify the **Specify Training Options** section of the setup function to use the validation data in the 4-D arrays XValidation and YValidation. This section of the setup function loads the values for the training option 'InitialLearnRate' from the myInitialLearnRate entry in the hyperparameter table.

options = trainingOptions('sgdm', ...
 'MaxEpochs', 5, ...
 'ValidationData', {XValidation, YValidation}, ...
 'ValidationFrequency', 30, ...
 'InitialLearnRate', params.myInitialLearnRate);

When you run the experiment, Experiment Manager trains the network defined by the setup function six times. Each trial uses one of the learning rates specified in the hyperparameter table. Each trial uses one of the learning rates specified in the hyperparameter table. By default, Experiment Manager runs one trial at a time. If you have Parallel Computing Toolbox, you can run multiple trials at the same time. For best results, before you run your experiment, start a parallel pool with as many workers as GPUs. For more information, see “Use Experiment Manager to Train Networks in Parallel”.

- To run one trial of the experiment at a time, in the Experiment Manager toolstrip, click **Run**.
- To run multiple trials at the same time, click **Use Parallel** and then **Run**. If there is no current parallel pool, Experiment Manager starts one using the default cluster profile. Experiment Manager then executes multiple simultaneous trials, depending on the number of parallel workers available.

A table of results displays the root mean squared error (RMSE) and loss for each trial.
While the experiment is running, click **Training Plot** to display the training plot and track the progress of each trial. You can also monitor the training progress in the MATLAB Command Window.

When the experiment finishes, you can sort the table by column or filter trials by using the **Filters** pane. For more information, see “Sort and Filter Experiment Results” on page 1-25.

To test the performance of an individual trial, export the trained network or the training information for the trial. On the **Experiment Manager** tab, select **Export > Trained Network** or **Export > Training Information**, respectively. For more information, see “net” on page 1-0 and “info” on page 1-0.

To close the experiment, in the **Experiment Browser** pane, right-click the name of the project and select **Close Project**. Experiment Manager closes all of the experiments and results contained in the project.

Configure Deep Learning Experiment

This example shows how to set up an experiment using the Experiment Manager app.

Experiment definitions consist of a description, a table of hyperparameters, a setup function, and (optionally) a collection of metric functions to evaluate the results of the experiment.

In the **Description** box, enter a description of the experiment.

Under **Hyperparameters**, select the strategy to use for your experiment.

- To sweep through a range of hyperparameter values, set **Strategy** to **Exhaustive Sweep**. In the hyperparameter table, specify the values of the hyperparameters used in the experiment. You can specify hyperparameter values as scalars or vectors with numeric, logical, or string values. For example, these are valid hyperparameter specifications:

 - \[0.01\]
When you run the experiment, Experiment Manager trains the network using every combination of the hyperparameter values specified in the table.

To use Bayesian optimization to find optimal training options, set **Strategy** to **Bayesian Optimization**. In the hyperparameter table, specify these properties of the hyperparameters used in the experiment:

- **Range** — Enter a two-element vector that gives the lower bound and upper bound of a real- or integer-valued hyperparameter, or a string array or cell array that lists the possible values of a categorical hyperparameter.
- **Type** — Select **real** (real-valued hyperparameter), **integer** (integer-valued hyperparameter), or **categorical** (categorical hyperparameter).
- **Transform** — Select **none** (no transform) or **log** (logarithmic transform). For **log**, the hyperparameter must be **real** or **integer** and positive. The hyperparameter is searched and modeled on a logarithmic scale.

When you run the experiment, Experiment Manager searches for the best combination of hyperparameters. Each trial in the experiment uses a new combination of hyperparameter values based on the results of the previous trials. To specify the duration of your experiment, under **Bayesian Optimization Options**, enter the maximum time (in seconds) and the maximum number of trials to run. Bayesian optimization requires Statistics and Machine Learning Toolbox. For more information, see “Tune Experiment Hyperparameters by Using Bayesian Optimization”.

The **Setup Function** configures the training data, network architecture, and training options for the experiment. The input to the setup function is a **struct** with fields from the hyperparameter table. The output of the setup function must match the input of the **trainNetwork** function. This table lists the supported signatures for the setup function.

<table>
<thead>
<tr>
<th>Goal of Experiment</th>
<th>Setup Function Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train a network for image classification problems using the image datastore imds to store the input image data.</td>
<td>function [imds,layers,options] = Experiment_setup(params) ... end</td>
</tr>
<tr>
<td>Train a network using the datastore ds.</td>
<td>function [ds,layers,options] = Experiment_setup(params) ... end</td>
</tr>
<tr>
<td>Train a network for image classification and regression problems using the numeric arrays X to store the predictor variables and Y to store the categorical labels or numeric responses.</td>
<td>function [X,Y,layers,options] = Experiment_setup(params) ... end</td>
</tr>
<tr>
<td>Train a network for sequence classification and regression problems using sequences to store sequence or time-series predictors and Y to store the responses.</td>
<td>function [sequences,Y,layers,options] = Experiment_setup(params) ... end</td>
</tr>
<tr>
<td>Train a network for classification and regression problems using the table tbl to store numeric data or file paths to the data.</td>
<td>function [tbl,layers,options] = Experiment_setup(params) ... end</td>
</tr>
</tbody>
</table>
Goal of Experiment

Train a network for classification and regression problems using `responseNames` to specify the response variables in `tbl`.

Setup Function Signature

```matlab
function [tbl,responseNames,layers,options] = Experiment_setup(params)
... end
```

Note Experiment Manager does not support parallel execution when you set the training option “'ExecutionEnvironment'” on page 1-0 to 'multi-gpu' or 'parallel' or enable the training option “'DispatchInBackground'” on page 1-0. For more information, see “Use Experiment Manager to Train Networks in Parallel”.

The **Metrics** section specifies functions to evaluate the results of the experiment. The input to a metric function is a struct with three fields:

- `trainedNetwork` is the SeriesNetwork object or DAGNetwork object returned by the `trainNetwork` function. For more information, see Trained Network on page 1-0.
- `trainingInfo` is a struct containing the training information returned by the `trainNetwork` function. For more information, see Training Information on page 1-0.
- `parameters` is a struct with fields from the hyperparameter table.

The output of a metric function must be a scalar number, a logical value, or a string.

If your experiment uses Bayesian optimization, select a metric to optimize from the **Optimize** list. In the **Direction** list, specify that you want to **Maximize** or **Minimize** this metric. Experiment Manager uses this metric to determine the best combination of hyperparameters for your experiment. You can choose a standard training or validation metric (such as accuracy, RMSE, or loss) or a custom metric from the table.

Sort and Filter Experiment Results

This example shows how to compare the results of running an experiment.

When you run an experiment, Experiment Manager trains the network defined by the setup function multiple times. Each trial uses a different combination of hyperparameters. When the experiment finishes, a table displays training and validation metrics (such as accuracy, RMSE, and loss) for each trial. To compare the results of an experiment, you can use the training and validation metrics to sort the results table and filter trials.

To sort the trials in the results table, use the drop-down menu for the column corresponding to a training or validation metric.

1. Point to the header of a column by which you want to sort.
2. Click the triangle icon.
3. Select **Sort in Ascending Order** or **Sort in Descending Order**.
To filter trials from the results table, use the **Filters** pane.

1. **On the Experiment Manager toolstrip, select Filters.**

The **Filters** pane shows histograms for the numeric metrics in the results table. To remove a histogram from the **Filters** pane, in the results table, open the drop-down menu for the corresponding column and clear the **Show Filter** check box.

2. **Adjust the sliders under the histogram for the training or validation metric by which you want to filter.**

The results table shows only the trials with a metric value in the selected range.

3. **To restore all of the trials in the results table, close the Experiment Result pane and reopen the results from the Experiment Browser pane.**

View Source of Past Experiment Definitions

This example shows how to inspect the configuration of an experiment that produced a given result.

After you run an experiment, you can open the **Experiment Source** pane to see a read-only copy of the experiment description and hyperparameter table, as well as links to the setup and metric...
functions called by the experiment. You can use the information in this pane to track the configuration of data, network, and training options that produce each of your results.

For instance, suppose that you run an experiment multiple times. Each time that you run the experiment, you change the contents of the setup function but always use the same name. The first time that you run the experiment, you use the default classification network provided by the setup function template. The second time that you run the experiment, you modify the setup function to load a pretrained GoogLeNet network, replacing the final layers with new layers for transfer learning. For an example that uses these two network architectures, see “Create a Deep Learning Experiment for Classification”.

On the first Experiment Result pane, click the View Experiment Source link. Experiment Manager opens an Experiment Source pane that contains the experiment definition that produced the first set of results. Click the link at the bottom of the pane to open the setup function that you used the first time you ran the experiment. You can copy this setup function to rerun the experiment using a simple classification network.

On the second Experiment Result pane, click the View Experiment Source link. Experiment Manager opens an Experiment Source pane that contains the experiment definition that produced the second set of results. Click the link at the bottom of the pane to open the setup function that you used the second time you ran the experiment. You can copy this setup function to rerun the experiment using transfer learning.

Experiment Manager stores a copy of the setup and custom metric functions that you use, so you do not have to manually rename these functions when you modify and rerun an experiment.

- “Create a Deep Learning Experiment for Classification”
- “Create a Deep Learning Experiment for Regression”
- “Use Experiment Manager to Train Networks in Parallel”
- “Evaluate Deep Learning Experiments by Using Metric Functions”
- “Tune Experiment Hyperparameters by Using Bayesian Optimization”
- “Try Multiple Pretrained Networks for Transfer Learning”
- “Experiment with Weight Initializers for Transfer Learning”

Tips

To visualize, build, and train a network without sweeping hyperparameters, try the Deep Network Designer app.

See Also

Deep Network Designer | trainNetwork | trainingOptions

Topics

“Create a Deep Learning Experiment for Classification”
“Create a Deep Learning Experiment for Regression”
“Use Experiment Manager to Train Networks in Parallel”
“Evaluate Deep Learning Experiments by Using Metric Functions”
“Tune Experiment Hyperparameters by Using Bayesian Optimization”
“Try Multiple Pretrained Networks for Transfer Learning”
“Experiment with Weight Initializers for Transfer Learning”
Introduced in R2020a
adamupdate

Update parameters using adaptive moment estimation (Adam)

Syntax

[dlnet,averageGrad,averageSqGrad] = adamupdate(dlnet,grad,averageGrad,averageSqGrad,iteration)
[params,averageGrad,averageSqGrad] = adamupdate(params,grad,averageGrad,averageSqGrad,iteration)
[___] = adamupdate(___ learnRate,gradDecay,sqGradDecay,epsilon)

Description

Update the network learnable parameters in a custom training loop using the adaptive moment estimation (Adam) algorithm.

Note This function applies the Adam optimization algorithm to update network parameters in custom training loops that use networks defined as dlnetwork objects or model functions. If you want to train a network defined as a Layer array or as a LayerGraph, use the following functions:

- Create a TrainingOptionsADAM object using the trainingOptions function.
- Use the TrainingOptionsADAM object with the trainNetwork function.

Examples

Update Learnable Parameters Using adamupdate

Perform a single adaptive moment estimation update step with a global learning rate of 0.05, gradient decay factor of 0.75, and squared gradient decay factor of 0.95.

Create the parameters and parameter gradients as numeric arrays.
params = rand(3,3,4);
grad = ones(3,3,4);

Initialize the iteration counter, average gradient, and average squared gradient for the first iteration.

iteration = 1;
averageGrad = [];
averageSqGrad = [];

Specify custom values for the global learning rate, gradient decay factor, and squared gradient decay factor.
learnRate = 0.05;
gradDecay = 0.75;
sqGradDecay = 0.95;

Update the learnable parameters using adamupdate.
[params,averageGrad,averageSqGrad] = adamupdate(params,grad,averageGrad,averageSqGrad,iteration,learnRate,gradDecay,sqGradDecay);

Update the iteration counter.
iteration = iteration + 1;

Train Network Using adamupdate

Use adamupdate to train a network using the Adam algorithm.

Load Training Data

Load the digits training data.

[XTrain,YTrain] = digitTrain4DArrayData;
classes = categories(YTrain);
numClasses = numel(classes);

Define Network

Define the network and specify the average image value using the 'Mean' option in the image input layer.

layers = [
 imageInputLayer([28 28 1], 'Name','input','Mean',mean(XTrain,4))
 convolution2dLayer(5,20,'Name','conv1')
 reluLayer('Name', 'relu1')
 convolution2dLayer(3,20,'Padding',1,'Name','conv2')
 reluLayer('Name','relu2')
 convolution2dLayer(3,20,'Padding',1,'Name','conv3')
 reluLayer('Name','relu3')
 fullyConnectedLayer(numClasses,'Name','fc')
 softmaxLayer('Name','softmax')];
lgraph = layerGraph(layers);

dlnet = dlnetwork(lgraph);
Define Model Gradients Function

Create the helper function `modelGradients`, listed at the end of the example. The function takes a `dlnetwork` object `dlnet` and a mini-batch of input data `dlX` with corresponding labels `Y`, and returns the loss and the gradients of the loss with respect to the learnable parameters in `dlnet`.

Specify Training Options

Specify the options to use during training.

```matlab
miniBatchSize = 128;
numEpochs = 20;
numObservations = numel(YTrain);
numIterationsPerEpoch = floor(numObservations./miniBatchSize);
```

Train on a GPU, if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA® enabled NVIDIA® GPU with compute capability 3.0 or higher.

```matlab
executionEnvironment = "auto";
```

Visualize the training progress in a plot.

```matlab
plots = "training-progress";
```

Train Network

Train the model using a custom training loop. For each epoch, shuffle the data and loop over mini-batches of data. Update the network parameters using the `adamupdate` function. At the end of each epoch, display the training progress.

```matlab
iteration = 0;
start = tic;
for epoch = 1:numEpochs
    % Shuffle data.
    idx = randperm(numel(YTrain));
    XTrain = XTrain(:,:,,:,idx);
    YTrain = YTrain(idx);
    for i = 1:numIterationsPerEpoch
```
iteration = iteration + 1;

% Read mini-batch of data and convert the labels to dummy variables.
idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
X = XTrain(:,:,,:,idx);

Y = zeros(numClasses, miniBatchSize, 'single');
for c = 1:numClasses
 Y(c,YTrain(idx)==classes(c)) = 1;
end

% Convert mini-batch of data to a dlarray.
dlX = dlarray(single(X),'SSCB');

% If training on a GPU, then convert data to a gpuArray.
if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
 dlX = gpuArray(dlX);
end

% Evaluate the model gradients and loss using dlfeval and the modelGradients helper function.
[grad,loss] = dlfeval(@modelGradients,dlnet,dlX,Y);

% Update the network parameters using the Adam optimizer.
[dlnet,averageGrad,averageSqGrad] = adamupdate(dlnet,grad,averageGrad,averageSqGrad,iteration);

% Display the training progress.
if plots == "training-progress"
 D = duration(0,0,toc(start),'Format','hh:mm:ss');
 addpoints(lineLossTrain,iteration,double(gather(extractdata(loss))))
 title("Epoch: " + epoch + ", Elapsed: " + string(D))
drawnow
end
end
end
Test Network

Test the classification accuracy of the model by comparing the predictions on a test set with the true labels.

\[[X_{\text{Test}}, Y_{\text{Test}}] = \text{digitTest4DArrayData}; \]

Convert the data to a dlarray with the dimension format 'SSCB'. For GPU prediction, also convert the data to a gpuArray.

\[\text{d}lX_{\text{Test}} = \text{dlarray}(X_{\text{Test}}, 'SSCB'); \]
\[
\text{if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"}
\]
\[
\text{d}lX_{\text{Test}} = \text{gpuArray}(\text{d}lX_{\text{Test}});\]
\[
\text{end}
\]

To classify images using a dlnetwork object, use the predict function and find the classes with the highest scores.

\[\text{d}lY_{\text{Pred}} = \text{predict}(\text{d}l\text{net}, \text{d}lX_{\text{Test}}); \]
\[
[-, \text{idx}] = \text{max}(<\text{extractdata}(\text{d}lY_{\text{Pred}}), [], 1);\]
\[Y_{\text{Pred}} = \text{classes}(\text{idx}); \]

Evaluate the classification accuracy.

\[\text{accuracy} = \text{mean}(Y_{\text{Pred}} == Y_{\text{Test}}) \]

\[\text{accuracy} = 0.9896 \]
Model Gradients Function

The `modelGradients` helper function takes a `dlnetwork` object `dlnet` and a mini-batch of input data `dlX` with corresponding labels `Y`, and returns the loss and the gradients of the loss with respect to the learnable parameters in `dlnet`. To compute the gradients automatically, use the `dlgradient` function.

```matlab
function [gradients,loss] = modelGradients(dlnet,dlX,Y)
    dYPred = forward(dlnet,dlX);
    loss = crossentropy(dYPred,Y);
    gradients = dlgradient(loss,dlnet.Learnables);
end
```

Input Arguments

`dlnet` — Network
dlnetwork object

Network, specified as a `dlnetwork` object.

The function updates the `dlnet.Learnables` property of the `dlnetwork` object. `dlnet.Learnables` is a table with three variables:

- **Layer** — Layer name, specified as a string scalar.
- **Parameter** — Parameter name, specified as a string scalar.
- **Value** — Value of parameter, specified as a cell array containing a `dlarray`.

The input argument `grad` must be a table of the same form as `dlnet.Learnables`.

`params` — Network learnable parameters
dlarray | numeric array | cell array | structure | table

Network learnable parameters, specified as a `dlarray`, a numeric array, a cell array, a structure, or a table.

If you specify `params` as a table, it must contain the following three variables:

- **Layer** — Layer name, specified as a string scalar.
- **Parameter** — Parameter name, specified as a string scalar.
- **Value** — Value of parameter, specified as a cell array containing a `dlarray`.

You can specify `params` as a container of learnable parameters for your network using a cell array, structure, or table, or nested cell arrays or structures. The learnable parameters inside the cell array, structure, or table must be `dlarray` or numeric values of data type `double` or `single`.

The input argument `grad` must be provided with exactly the same data type, ordering, and fields (for structures) or variables (for tables) as `params`.

Data Types: `single` | `double` | `struct` | `table` | `cell`
Gradients of the loss, specified as a `dlarray`, a numeric array, a cell array, a structure, or a table. The exact form of `grad` depends on the input network or learnable parameters. The following table shows the required format for `grad` for possible inputs to `adamupdate`.

<table>
<thead>
<tr>
<th>Input</th>
<th>Learnable Parameters</th>
<th>Gradients</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dlnet</code></td>
<td>Table <code>dlnet.Learnables</code> containing <code>Layer</code>, <code>Parameter</code>, and <code>Value</code> variables. The <code>Value</code> variable consists of cell arrays that contain each learnable parameter as a <code>dlarray</code>.</td>
<td>Table with the same data type, variables, and ordering as <code>dlnet.Learnables</code>. <code>grad</code> must have a <code>Value</code> variable consisting of cell arrays that contain the gradient of each learnable parameter.</td>
</tr>
<tr>
<td><code>params</code></td>
<td><code>dlarray</code></td>
<td><code>dlarray</code> with the same data type and ordering as <code>params</code></td>
</tr>
<tr>
<td></td>
<td>Numeric array</td>
<td>Numeric array with the same data type and ordering as <code>params</code></td>
</tr>
<tr>
<td></td>
<td>Cell array</td>
<td>Cell array with the same data types, structure, and ordering as <code>params</code></td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>Structure with the same data types, fields, and ordering as <code>params</code></td>
</tr>
<tr>
<td></td>
<td>Table with <code>Layer</code>, <code>Parameter</code>, and <code>Value</code> variables. The <code>Value</code> variable must consist of cell arrays that contain each learnable parameter as a <code>dlarray</code>.</td>
<td>Table with the same data types, variables, and ordering as <code>params</code>. <code>grad</code> must have a <code>Value</code> variable consisting of cell arrays that contain the gradient of each learnable parameter.</td>
</tr>
</tbody>
</table>

You can obtain `grad` from a call to `dlfeval` that evaluates a function that contains a call to `dlgradient`. For more information, see “Use Automatic Differentiation In Deep Learning Toolbox”.

Moving average of parameter gradients, specified as an empty array, a `dlarray`, a numeric array, a cell array, a structure, or a table.

The exact form of `averageGrad` depends on the input network or learnable parameters. The following table shows the required format for `averageGrad` for possible inputs to `adamupdate`.

<table>
<thead>
<tr>
<th>Input</th>
<th>Learnable Parameters</th>
<th>Gradients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>dlarray</code></td>
<td><code>dlarray</code> with the same data type and ordering as <code>params</code></td>
</tr>
<tr>
<td></td>
<td>Numeric array</td>
<td>Numeric array with the same data type and ordering as <code>params</code></td>
</tr>
<tr>
<td></td>
<td>Cell array</td>
<td>Cell array with the same data types, structure, and ordering as <code>params</code></td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>Structure with the same data types, fields, and ordering as <code>params</code></td>
</tr>
<tr>
<td></td>
<td>Table with <code>Layer</code>, <code>Parameter</code>, and <code>Value</code> variables. The <code>Value</code> variable must consist of cell arrays that contain each learnable parameter as a <code>dlarray</code>.</td>
<td>Table with the same data types, variables, and ordering as <code>params</code>. <code>grad</code> must have a <code>Value</code> variable consisting of cell arrays that contain the gradient of each learnable parameter.</td>
</tr>
<tr>
<td>Input</td>
<td>Learnable Parameters</td>
<td>Average Gradients</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>dlnet</td>
<td>Table dlnet.Learnables containing Layer, Parameter, and Value variables. The Value variable consists of cell arrays that contain each learnable parameter as a dlarray.</td>
<td>Table with the same data type, variables, and ordering as dlnet.Learnables. averageGrad must have a Value variable consisting of cell arrays that contain the average gradient of each learnable parameter.</td>
</tr>
<tr>
<td>params</td>
<td>dlarray</td>
<td>dlarray with the same data type and ordering as params</td>
</tr>
<tr>
<td></td>
<td>Numeric array</td>
<td>Numeric array with the same data type and ordering as params</td>
</tr>
<tr>
<td></td>
<td>Cell array</td>
<td>Cell array with the same data types, structure, and ordering as params</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>Structure with the same data types, fields, and ordering as params</td>
</tr>
<tr>
<td></td>
<td>Table with Layer, Parameter, and Value variables. The Value variable must consist of cell arrays that contain each learnable parameter as a dlarray.</td>
<td>Table with the same data types, variables, and ordering as params. averageGrad must have a Value variable consisting of cell arrays that contain the average gradient of each learnable parameter.</td>
</tr>
</tbody>
</table>

If you specify `averageGrad` and `averageSqGrad` as empty arrays, the function assumes no previous gradients and runs in the same way as for the first update in a series of iterations. To update the learnable parameters iteratively, use the `averageGrad` output of a previous call to `adamupdate` as the `averageGrad` input.

averageSqGrad — Moving average of squared parameter gradients

`[]` | dlarray | numeric array | cell array | structure | table

Moving average of squared parameter gradients, specified as an empty array, a dlarray, a numeric array, a cell array, a structure, or a table.

The exact form of `averageSqGrad` depends on the input network or learnable parameters. The following table shows the required format for `averageSqGrad` for possible inputs to `adamupdate`.
If you specify `averageGrad` and `averageSqGrad` as empty arrays, the function assumes no previous gradients and runs in the same way as for the first update in a series of iterations. To update the learnable parameters iteratively, use the `averageSqGrad` output of a previous call to `adamupdate` as the `averageSqGrad` input.

iteration — Iteration number

positive integer

Iteration number, specified as a positive integer. For the first call to `adamupdate`, use a value of 1. You must increment `iteration` by 1 for each subsequent call in a series of calls to `adamupdate`. The Adam algorithm uses this value to correct for bias in the moving averages at the beginning of a set of iterations.

learnRate — Global learning rate

0.001 (default) | positive scalar

Global learning rate, specified as a positive scalar. The default value of `learnRate` is 0.001.

If you specify the network parameters as a `dlnetwork`, the learning rate for each parameter is the global learning rate multiplied by the corresponding learning rate factor property defined in the network layers.
gradDecay — Gradient decay factor
0.9 (default) | positive scalar between 0 and 1

Gradient decay factor, specified as a positive scalar between 0 and 1. The default value of gradDecay is 0.9.

sqGradDecay — Squared gradient decay factor
0.999 (default) | positive scalar between 0 and 1

Squared gradient decay factor, specified as a positive scalar between 0 and 1. The default value of sqGradDecay is 0.999.

epsilon — Small constant
1e-8 (default) | positive scalar

Small constant for preventing divide-by-zero errors, specified as a positive scalar. The default value of epsilon is 1e-8.

Output Arguments

dlnet — Updated network
dlnetwork object

Network, returned as a dlnetwork object. The function updates the dlnet.Learnables property of the dlnetwork object.

params — Updated network learnable parameters
dlarray | numeric array | cell array | structure | table

Updated network learnable parameters, returned as a dlarray, a numeric array, a cell array, a structure, or a table with a Value variable containing the updated learnable parameters of the network.

averageGrad — Updated moving average of parameter gradients
dlarray | numeric array | cell array | structure | table

Updated moving average of parameter gradients, returned as a dlarray, a numeric array, a cell array, a structure, or a table.

averageSqGrad — Updated moving average of squared parameter gradients
dlarray | numeric array | cell array | structure | table

Updated moving average of squared parameter gradients, returned as a dlarray, a numeric array, a cell array, a structure, or a table.

More About

Adam

The function uses the adaptive moment estimation (Adam) algorithm to update the learnable parameters. For more information, see the definition of the Adam algorithm under “Stochastic Gradient Descent” on page 1-992 on the trainingOptions reference page.
Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

- When at least one of the following input arguments is a gpuArray or a dlarray with underlying data of type gpuArray, this function runs on the GPU.
 - grad
 - averageGrad
 - averageSqGrad
 - params

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | dlfeval | dlgradient | dlnetwork | dlupdate | forward | rmspropupdate | sgdupdate

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Specify Training Options in Custom Training Loop”
“Train Network Using Custom Training Loop”

Introduced in R2019b
activations

Compute deep learning network layer activations

Syntax

act = activations(net,imds,layer)
act = activations(net,ds,layer)
act = activations(net,X,layer)
act = activations(net,X1,...,XN)
act = activations(net,sequences,layer)
act = activations(net,tbl,layer)
act = activations(___ ,Name,Value)

Description

You can compute deep learning network layer activations on either a CPU or GPU. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. Specify the hardware requirements using the `ExecutionEnvironment` name-value pair argument.

act = activations(net,imds,layer) returns network activations for a specific layer using the trained network `net` and the image data in the image datastore `imds`.

act = activations(net,ds,layer) returns network activations using the data in the datastore `ds`.

act = activations(net,X,layer) returns network activations using the image or feature data in the numeric array `X`.

act = activations(net,X1,...,XN) returns network activations for the data in the numeric arrays `X1, ..., XN` for the multi-input network `net`. The input `Xi` corresponds to the network input `net.InputNames(i)`.

act = activations(net,sequences,layer) returns network activations for a recurrent network (for example, an LSTM or GRU network), where `sequences` contains sequence or time series predictors.

act = activations(net,tbl,layer) returns network activations using the data in the table `tbl`.

act = activations(___ ,Name,Value) returns network activations with additional options specified by one or more name-value pair arguments. For example, 'OutputAs','rows' specifies the activation output format as 'rows'. Specify name-value pair arguments after all other input arguments.

Examples
Feature Extraction Using AlexNet

This example shows how to extract learned image features from a pretrained convolutional neural network, and use those features to train an image classifier. Feature extraction is the easiest and fastest way to use the representational power of pretrained deep networks. For example, you can train a support vector machine (SVM) using fitcecoc (Statistics and Machine Learning Toolbox™) on the extracted features. Because feature extraction only requires a single pass through the data, it is a good starting point if you do not have a GPU to accelerate network training with.

Load Data

Unzip and load the sample images as an image datastore. imageDatastore automatically labels the images based on folder names and stores the data as an ImageDatastore object. An image datastore lets you store large image data, including data that does not fit in memory. Split the data into 70% training and 30% test data.

unzip('MerchData.zip');

imds = imageDatastore('MerchData', ...
 'IncludeSubfolders',true, ...
 'LabelSource','foldernames');

[imdsTrain,imdsTest] = splitEachLabel(imds,0.7,'randomized');

There are now 55 training images and 20 validation images in this very small data set. Display some sample images.

numImagesTrain = numel(imdsTrain.Labels);
idx = randperm(numImagesTrain,16);

for i = 1:16
 I{i} = readimage(imdsTrain,idx(i));
end

figure
imshow(imtile(I))
Load Pretrained Network

Load a pretrained AlexNet network. If the Deep Learning Toolbox Model for AlexNet Network support package is not installed, then the software provides a download link. AlexNet is trained on more than a million images and can classify images into 1000 object categories. For example, keyboard, mouse, pencil, and many animals. As a result, the model has learned rich feature representations for a wide range of images.

\[\text{net} = \text{alexnet}; \]

Display the network architecture. The network has five convolutional layers and three fully connected layers.
The first layer, the image input layer, requires input images of size 227-by-227-by-3, where 3 is the number of color channels.

The network constructs a hierarchical representation of input images. Deeper layers contain higher-level features, constructed using the lower-level features of earlier layers. To get the feature representations of the training and test images, use activations on the fully connected layer 'fc7'. To get a lower-level representation of the images, use an earlier layer in the network.

The network requires input images of size 227-by-227-by-3, but the images in the image datastores have different sizes. To automatically resize the training and test images before they are input to the network, create augmented image datastores, specify the desired image size, and use these datastores as input arguments to activations.
featuresTrain = activations(net,augimdsTrain,layer,'OutputAs','rows');
featuresTest = activations(net,augimdsTest,layer,'OutputAs','rows');

Extract the class labels from the training and test data.
YTrain = imdsTrain.Labels;
YTest = imdsTest.Labels;

Fit Image Classifier

Use the features extracted from the training images as predictor variables and fit a multiclass support vector machine (SVM) using `fitcecoc` (Statistics and Machine Learning Toolbox).

mdl = fitcecoc(featuresTrain,YTrain);

Classify Test Images

Classify the test images using the trained SVM model and the features extracted from the test images.

YPred = predict(mdl,featuresTest);

Display four sample test images with their predicted labels.

idx = [1 5 10 15];
figure
for i = 1:numel(idx)
 subplot(2,2,i)
 I = readimage(imdsTest,idx(i));
 label = YPred(idx(i));

 imshow(I)
 title(label)
end
Calculate the classification accuracy on the test set. Accuracy is the fraction of labels that the network predicts correctly.

\[
\text{accuracy} = \frac{\text{mean}(\text{YPred} == \text{YTest})}{1}
\]

This SVM has high accuracy. If the accuracy is not high enough using feature extraction, then try transfer learning instead.

Input Arguments

- **net** — Trained network
 SeriesNetwork object | DAGNetwork object

 Trained network, specified as a SeriesNetwork or a DAGNetwork object. You can get a trained network by importing a pretrained network (for example, by using the googlenet function) or by training your own network using trainNetwork.

- **imds** — Image datastore
 ImageDatastore object

 Image datastore, specified as an ImageDatastore object.

 ImageDatastore allows batch reading of JPG or PNG image files using prefetching. If you use a custom function for reading the images, then ImageDatastore does not prefetch.
Tip Use augmentedImageDatastore for efficient preprocessing of images for deep learning including image resizing.

Do not use the readFcn option of imageDatastore for preprocessing or resizing as this option is usually significantly slower.

ds — Datastore

datastore

Datastore for out-of-memory data and preprocessing. The datastore must return data in a table or a cell array. The format of the datastore output depends on the network architecture.

<table>
<thead>
<tr>
<th>Network Architecture</th>
<th>Datastore Output</th>
<th>Example Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single input</td>
<td>Table or cell array, where the first column specifies the predictors.</td>
<td><code>data = read(ds)</code></td>
</tr>
<tr>
<td></td>
<td>Table elements must be scalars, row vectors, or 1-by-1 cell arrays containing</td>
<td><code>data = </code></td>
</tr>
<tr>
<td></td>
<td>a numeric array.</td>
<td><code>4×1 table</code></td>
</tr>
<tr>
<td></td>
<td>Custom datastores must output tables.</td>
<td><code> Predictors</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>{224×224×3 double} {224×224×3 double} {224×224×3 double} {224×224×3 double}</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>data = read(ds)</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>data = </code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>4×1 cell array</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>{224×224×3 double} {224×224×3 double} {224×224×3 double} {224×224×3 double}</code></td>
</tr>
<tr>
<td>Multiple input</td>
<td>Cell array with at least numInputs columns, where numInputs is the number of</td>
<td><code>data = read(ds)</code></td>
</tr>
<tr>
<td></td>
<td>network inputs.</td>
<td><code>data = </code></td>
</tr>
<tr>
<td></td>
<td>The first numInputs columns specify the predictors for each input.</td>
<td><code>4×2 cell array</code></td>
</tr>
<tr>
<td></td>
<td>The order of inputs is given by the InputNames property of the network.</td>
<td><code>{224×224×3 double} {128×128×3 double} {224×224×3 double} {128×128×3 double}</code></td>
</tr>
</tbody>
</table>

The format of the predictors depend on the type of data.
### Data	Format of Predictors
2-D image | h-by-w-by-c numeric array, where h, w, and c are the height, width, and number of channels of the image, respectively.
3-D image | h-by-w-by-d-by-c numeric array, where h, w, d, and c are the height, width, depth, and number of channels of the image, respectively.
Vector sequence | c-by-s matrix, where c is the number of features of the sequence and s is the sequence length.
2-D image sequence | h-by-w-by-c-by-s array, where h, w, and c correspond to the height, width, and number of channels of the image, respectively, and s is the sequence length.
Each sequence in the mini-batch must have the same sequence length.
3-D image sequence | h-by-w-by-d-by-c-by-s array, where h, w, d, and c correspond to the height, width, depth, and number of channels of the image, respectively, and s is the sequence length.
Each sequence in the mini-batch must have the same sequence length.
Features | c-by-1 column vector, where c is the number of features.

For more information, see “Datastores for Deep Learning”.

X — Image or feature data

numeric array

Image or feature data, specified as a numeric array. The size of the array depends on the type of input:

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-D images</td>
<td>A h-by-w-by-c-by-N numeric array, where h, w, and c are the height, width, and number of channels of the images, respectively, and N is the number of images.</td>
</tr>
<tr>
<td>3-D images</td>
<td>A h-by-w-by-d-by-c-by-N numeric array, where h, w, d, and c are the height, width, depth, and number of channels of the images, respectively, and N is the number of images.</td>
</tr>
<tr>
<td>Features</td>
<td>A N-by-numFeatures numeric array, where N is the number of observations and numFeatures is the number of features of the input data.</td>
</tr>
</tbody>
</table>

If the array contains NaNs, then they are propagated through the network.

For networks with multiple inputs, you can specify multiple arrays X1, ..., XN, where N is the number of network inputs and the input Xi corresponds to the network input net.InputNames(i).
For image input, if the 'OutputAs' option is 'channels', then the images in the input data X can be larger than the input size of the image input layer of the network. For other output formats, the images in X must have the same size as the input size of the image input layer of the network.

sequences — Sequence or time series data
cell array of numeric arrays | numeric array | datastore

Sequence or time series data, specified as an N-by-1 cell array of numeric arrays, where N is the number of observations, a numeric array representing a single sequence, or a datastore.

For cell array or numeric array input, the dimensions of the numeric arrays containing the sequences depend on the type of data.

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector sequences</td>
<td>c-by-s matrices, where c is the number of features of the sequences and s is the sequence length.</td>
</tr>
<tr>
<td>2-D image sequences</td>
<td>h-by-w-by-c-by-s arrays, where h, w, and c correspond to the height, width, and number of channels of the images, respectively, and s is the sequence length.</td>
</tr>
<tr>
<td>3-D image sequences</td>
<td>h-by-w-by-d-by-c-by-s, where h, w, d, and c correspond to the height, width, depth, and number of channels of the 3-D images, respectively, and s is the sequence length.</td>
</tr>
</tbody>
</table>

For datastore input, the datastore must return data as a cell array of sequences or a table whose first column contains sequences. The dimensions of the sequence data must correspond to the table above.

tbl — Table of image or feature data
table

Table of image or feature data. Each row in the table corresponds to an observation.

The arrangement of predictors in the table columns depend on the type of input data.

<table>
<thead>
<tr>
<th>Input</th>
<th>Predictors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image data</td>
<td>• Absolute or relative file path to an image, specified as a character vector in a single column</td>
</tr>
<tr>
<td></td>
<td>• Image specified as a 3-D numeric array</td>
</tr>
<tr>
<td></td>
<td>Specify predictors in a single column.</td>
</tr>
<tr>
<td>Feature data</td>
<td>Numeric scalar.</td>
</tr>
<tr>
<td></td>
<td>Specify predictors in numFeatures columns of the table, where numFeatures is the number of features of the input data.</td>
</tr>
</tbody>
</table>

This argument supports networks with a single input only.
Data Types: table

layer — Layer to extract activations from
numeric index | character vector

Layer to extract activations from, specified as a numeric index or a character vector.

To compute the activations of a `SeriesNetwork` object, specify the layer using its numeric index, or as a character vector corresponding to the layer name.

To compute the activations of a `DAGNetwork` object, specify the layer as the character vector corresponding to the layer name. If the layer has multiple outputs, specify the layer and output as the layer name, followed by the character “/”, followed by the name of the layer output. That is, `layer` is of the form `'layerName/outputName'`.

Example: 3
Example: 'conv1'
Example: 'mpool/out'

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `activations(net,X,layer,'OutputAs','rows')`

OutputAs — Format of output activations

- `'channels'` (default) | `'rows'` | `'columns'`

Format of output activations, specified as the comma-separated pair consisting of `OutputAs` and either `'channels'`, `'rows'`, or `'columns'`. For descriptions of the different output formats, see `act`.

For image input, if the `OutputAs` option is `'channels'`, then the images in the input data `X` can be larger than the input size of the image input layer of the network. For other output formats, the images in `X` must have the same size as the input size of the image input layer of the network.

Example: `'OutputAs','rows'`

MiniBatchSize — Size of mini-batches

- `128` (default) | positive integer

Size of mini-batches to use for prediction, specified as a positive integer. Larger mini-batch sizes require more memory, but can lead to faster predictions.

Example: `'MiniBatchSize',256`

SequenceLength — Option to pad, truncate, or split input sequences

- `'longest'` (default) | `'shortest'` | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

- `'longest'` — Pad sequences in each mini-batch to have the same length as the longest sequence. This option does not discard any data, though padding can introduce noise to the network.
• ‘shortest’ — Truncate sequences in each mini-batch to have the same length as the shortest sequence. This option ensures that no padding is added, at the cost of discarding data.

• Positive integer — For each mini-batch, pad the sequences to the nearest multiple of the specified length that is greater than the longest sequence length in the mini-batch, and then split the sequences into smaller sequences of the specified length. If splitting occurs, then the software creates extra mini-batches. Use this option if the full sequences do not fit in memory. Alternatively, try reducing the number of sequences per mini-batch by setting the ‘MiniBatchSize’ option to a lower value.

To learn more about the effect of padding, truncating, and splitting the input sequences, see “Sequence Padding, Truncation, and Splitting”.

Example: ‘SequenceLength’, ‘shortest’

SequencePaddingValue — Value to pad input sequences

Value by which to pad input sequences, specified as a scalar. The option is valid only when **SequenceLength** is ‘longest’ or a positive integer. Do not pad sequences with NaN, because doing so can propagate errors throughout the network.

Example: ‘SequencePaddingValue’, -1

SequencePaddingDirection — Direction of padding or truncation

‘right’ (default) | ‘left’

Direction of padding or truncation, specified as one of the following:

• ‘right’ — Pad or truncate sequences on the right. The sequences start at the same time step and the software truncates or adds padding to the end of the sequences.

• ‘left’ — Pad or truncate sequences on the left. The software truncates or adds padding to the start of the sequences so that the sequences end at the same time step.

Because LSTM layers process sequence data one time step at a time, when the layer **OutputMode** property is ‘last’, any padding in the final time steps can negatively influence the layer output. To pad or truncate sequence data on the left, set the ‘SequencePaddingDirection’ option to ‘left’.

For sequence-to-sequence networks (when the **OutputMode** property is ‘sequence’ for each LSTM layer), any padding in the first time steps can negatively influence the predictions for the earlier time steps. To pad or truncate sequence data on the right, set the ‘SequencePaddingDirection’ option to ‘right’.

To learn more about the effect of padding, truncating, and splitting the input sequences, see “Sequence Padding, Truncation, and Splitting”.

Acceleration — Performance optimization

‘auto’ (default) | ‘mex’ | ‘none’

Performance optimization, specified as the comma-separated pair consisting of ‘Acceleration’ and one of the following:

• ‘auto’ — Automatically apply a number of optimizations suitable for the input network and hardware resource.
• 'mex' — Compile and execute a MEX function. This option is available when using a GPU only. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If Parallel Computing Toolbox or a suitable GPU is not available, then the software returns an error.
• 'none' — Disable all acceleration.

The default option is 'auto'. If 'auto' is specified, MATLAB will apply a number of compatible optimizations. If you use the 'auto' option, MATLAB does not ever generate a MEX function.

Using the 'Acceleration' options 'auto' and 'mex' can offer performance benefits, but at the expense of an increased initial run time. Subsequent calls with compatible parameters are faster. Use performance optimization when you plan to call the function multiple times using new input data.

The 'mex' option generates and executes a MEX function based on the network and parameters used in the function call. You can have several MEX functions associated with a single network at one time. Clearing the network variable also clears any MEX functions associated with that network.

The 'mex' option is only available when you are using a GPU. You must have a C/C++ compiler installed and the GPU Coder Interface for Deep Learning Libraries support package. Install the support package using the Add-On Explorer in MATLAB. For setup instructions, see “MEX Setup” (GPU Coder). GPU Coder is not required.

The 'mex' option does not support all layers. For a list of supported layers, see “Supported Layers” (GPU Coder). Recurrent neural networks (RNNs) containing a sequenceInputLayer are not supported.

The 'mex' option does not support networks with multiple input layers or multiple output layers.

You cannot use MATLAB Compiler™ to deploy your network when using the 'mex' option.

Example: 'Acceleration','mex'

ExecutionEnvironment — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource, specified as the comma-separated pair consisting of 'ExecutionEnvironment' and one of the following:
• 'auto' — Use a GPU if one is available; otherwise, use the CPU.
• 'gpu' — Use the GPU. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If Parallel Computing Toolbox or a suitable GPU is not available, then the software returns an error.
• 'cpu' — Use the CPU.

Example: 'ExecutionEnvironment','cpu'

Output Arguments

act — Activations from the network layer
numeric array | cell array

Activations from the network layer, returned as a numeric array or a cell array of numeric arrays. The format of act depends on the type of input data, the type of layer output, and the 'OutputAs' option.
Image or Folded Sequence Output

If the layer outputs image or folded sequence data, then \texttt{act} is a numeric array.

<table>
<thead>
<tr>
<th>'OutputAs'</th>
<th>act</th>
</tr>
</thead>
<tbody>
<tr>
<td>'channels'</td>
<td>For 2-D image output, \texttt{act} is an (h)-by-(w)-by-(c)-by-(n) array, where (h), (w), and (c) are the height, width, and number of channels for the output of the chosen layer, respectively, and (n) is the number of images. In this case, (\texttt{act(:,:,,:,i)}) contains the activations for the (i)th image. For 3-D image output, \texttt{act} is an (h)-by-(w)-by-(d)-by-(c)-by-(n) array, where (h), (w), (d), and (c) are the height, width, depth, and number of channels for the output of the chosen layer, respectively, and (n) is the number of images. In this case, (\texttt{act(:,:,,:,i)}) contains the activations for the (i)th image. For folded 2-D image sequence output, \texttt{act} is an (h)-by-(w)-by-(c)-by-((n)*(s)) array, where (h), (w), and (c) are the height, width, and number of channels for the output of the chosen layer, respectively, (n) is the number of sequences, and (s) is the sequence length. In this case, (\texttt{act(:,:,,:,,(t-1)n+k)}) contains the activations for time step (t) of the (k)th sequence. For folded 3-D image sequence output, \texttt{act} is an (h)-by-(w)-by-(d)-by-(c)-by-((n)(s)) array, where (h), (w), (d), and (c) are the height, width, depth, and number of channels for the output of the chosen layer, respectively, (n) is the number of sequences, and (s) is the sequence length. In this case, (\texttt{act(:,:,,:,,(t-1)*n+k)}) contains the activations for time step (t) of the (k)th sequence.</td>
</tr>
<tr>
<td>'rows'</td>
<td>For 2-D and 3-D image output, \texttt{act} is an (n)-by-(m) matrix, where (n) is the number of images and (m) is the number of output elements from the layer. In this case, (\texttt{act(i,:)}) contains the activations for the (i)th image. For folded 2-D and 3-D image sequence output, \texttt{act} is an ((n*s))-by-(m) matrix, where (n) is the number of sequences, (s) is the sequence length, and (m) is the number of output elements from the layer. In this case, (\texttt{act((t-1)*n+k,:)}) contains the activations for time step (t) of the (k)th sequence.</td>
</tr>
<tr>
<td>'columns'</td>
<td>For 2-D and 3-D image output, \texttt{act} is an (m)-by-(n) matrix, where (m) is the number of output elements from the chosen layer, and (n) is the number of images. In this case, (\texttt{act(:,i)}) contains the activations for the (i)th image. For folded 2-D and 3-D image sequence output, \texttt{act} is an (m)-by-((n*s)) matrix, where (m) is the number of output elements from the chosen layer, (n) is the number of sequences, and (s) is the sequence length. In this case, (\texttt{act(:,(t-1)*n+k)}) contains the activations for time step (t) of the (k)th sequence.</td>
</tr>
</tbody>
</table>

Sequence Output

If \texttt{layer} has sequence output (for example, LSTM layers with output mode 'sequence'), then \texttt{act} is a cell array. In this case, the 'OutputAs' option must be 'channels'.
'OutputAs'

| 'channels' | For vector sequence output, `act` is a `n`-by-1 cell array, of `c`-by-`s` matrices, where `n` is the number of sequences, `c` is the number of features in the sequence, and `s` is the sequence length.
| | For 2-D image sequence output, `act` is a `n`-by-1 cell array, of `h`-by-`w`-by-`c`-by-`s` matrices, where `n` is the number of sequences, `h`, `w`, and `c` are the height, width, and the number of channels of the images, respectively, and `s` is the sequence length.
| | For 3-D image sequence output, `act` is a `n`-by-1 cell array, of `h`-by-`w`-by-`c`-by-`d`-by-`s` matrices, where `n` is the number of sequences, `h`, `w`, `d`, and `c` are the height, width, depth, and the number of channels of the images, respectively, and `s` is the sequence length.
| | In these cases, `act{i}` contains the activations of the `i`th sequence.

Single Time-Step Output

If `layer` outputs a single time-step of a sequence (for example, an LSTM layer with output mode 'last'), then `act` is a numeric array.

| 'channels' | For a single time-step containing vector data, `act` is a `c`-by-`n` matrix, where `n` is the number of sequences and `c` is the number of features in the sequence.
| | For a single time-step containing 2-D image data, `act` is a `h`-by-`w`-by-`c`-by-`n` array, where `n` is the number of sequences, `h`, `w`, and `c` are the height, width, and the number of channels of the images, respectively.
| | For a single time-step containing 3-D image data, `act` is a `h`-by-`w`-by-`c`-by-`d`-by-`n` array, where `n` is the number of sequences, `h`, `w`, `d`, and `c` are the height, width, depth, and the number of channels of the images, respectively.
| 'rows' | `n`-by-`m` matrix, where `n` is the number of observations, and `m` is the number of output elements from the chosen layer. In this case, `act(i,:)` contains the activations for the `i`th sequence.
| 'columns' | `m`-by-`n` matrix, where `m` is the number of output elements from the chosen layer, and `n` is the number of observations. In this case, `act(:,i)` contains the activations for the `i`th image.

Algorithms

All functions for deep learning training, prediction, and validation in Deep Learning Toolbox perform computations using single-precision, floating-point arithmetic. Functions for deep learning include `trainNetwork`, `predict`, `classify`, and `activations`. The software uses single-precision arithmetic when you train networks using both CPUs and GPUs.
References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
- The input X must not have a variable size. The size must be fixed at code generation time.
- The layer argument must be constant.
- Only the 'OutputAs' name-value pair argument is supported. The value must be 'channels'.

For more information about generating code for deep learning neural networks, see “Workflow for Deep Learning Code Generation with MATLAB Coder” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:
- GPU code generation supports the following syntaxes:
 - act = activations(net,X,layer)
 - act = activations(net,sequences,layer)
 - act = activations(__,Name,Value)
- The input X must not have variable size. The size of the input must be fixed at code generation time.
- The cuDNN library supports vector and 2-D image sequences. The TensorRT library support only vector input sequences. The ARM® Compute Library for GPU does not support recurrent networks.
- For vector sequence inputs, the number of features must be a constant during code generation. The sequence length can be variable sized.
- For image sequence inputs, the height, width, and the number of channels must be a constant during code generation.
- The layer argument must be a constant during code generation.
- Only the 'OutputAs', 'MiniBatchSize', 'SequenceLength', 'SequencePaddingDirection', and 'SequencePaddingValue' name-value pair arguments are supported for code generation. All name-value pairs must be compile-time constants.
- The format of the output activations must be 'channels'.
- Only the 'longest' and 'shortest' option of the 'SequenceLength' name-value pair is supported for code generation.
• GPU code generation for the activations function supports inputs that are defined as half-precision floating point data types. For more information, see half.

See Also
classify | deepDreamImage | predict | trainNetwork

Topics
“Transfer Learning Using Pretrained Network”
“Visualize Activations of a Convolutional Neural Network”
“Visualize Activations of LSTM Network”
“Deep Learning in MATLAB”

Introduced in R2016a
additionLayer

Addition layer

Description

An addition layer adds inputs from multiple neural network layers element-wise.

Specify the number of inputs to the layer when you create it. The inputs to the layer have the names 'in1', 'in2',..., 'inN', where N is the number of inputs. Use the input names when connecting or disconnecting the layer by using connectLayers or disconnectLayers. All inputs to an addition layer must have the same dimension.

Creation

Syntax

layer = additionLayer(numInputs)
layer = additionLayer(numInputs,'Name',Name)

Description

layer = additionLayer(numInputs) creates an addition layer that adds numInputs inputs element-wise. This function also sets the NumInputs property.

layer = additionLayer(numInputs,'Name',Name) also sets the Name property. To create a network containing an addition layer, you must specify a layer name.

Properties

NumInputs — Number of inputs

Type: double
Value: Positive integer

Number of inputs to the layer, specified as a positive integer.

The inputs have the names 'in1', 'in2',..., 'inN', where N equals NumInputs. For example, if NumInputs equals 3, then the inputs have the names 'in1', 'in2', and 'in3'. Use the input names when connecting or disconnecting the layer by using connectLayers or disconnectLayers.

Name — Layer name

Type: character vector or string scalar

Layer name, specified as a character vector or a string scalar. To include this layer in a layer graph, you must specify a layer name.

Data Types: char | string
InputNames — Input Names

\{‘in1’, ‘in2’, …, ‘inN’\} (default)

Input names, specified as \{‘in1’, ‘in2’, …, ‘inN’\}, where N is the number of inputs of the layer.

Data Types: cell

NumOutputs — Number of outputs

1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames — Output names

\{‘out’\} (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Create and Connect Addition Layer

Create an addition layer with two inputs and the name ‘add_1’.

```MATLAB
add = additionLayer(2, 'Name', 'add_1')
```

```MATLAB
add =  
   AdditionLayer with properties:  
       Name: 'add_1'  
       NumInputs: 2  
       InputNames: {'in1'  'in2'}
```

Create two ReLU layers and connect them to the addition layer. The addition layer sums the outputs from the ReLU layers.

```MATLAB
relu_1 = reluLayer('Name','relu_1');  
relu_2 = reluLayer('Name','relu_2');  

lgraph = layerGraph;  
lgraph = addLayers(lgraph, relu_1);  
lgraph = addLayers(lgraph, relu_2);  
lgraph = addLayers(lgraph, add);  

lgraph = connectLayers(lgraph, 'relu_1', 'add_1/in1');  
lgraph = connectLayers(lgraph, 'relu_2', 'add_1/in2');  

plot(lgraph)
```
Create Simple DAG Network

Create a simple directed acyclic graph (DAG) network for deep learning. Train the network to classify images of digits. The simple network in this example consists of:

- A main branch with layers connected sequentially.
- A shortcut connection containing a single 1-by-1 convolutional layer. Shortcut connections enable the parameter gradients to flow more easily from the output layer to the earlier layers of the network.

Create the main branch of the network as a layer array. The addition layer sums multiple inputs element-wise. Specify the number of inputs for the addition layer to sum. All layers must have names and all names must be unique.

```matlab
layers = [
    imageInputLayer([28 28 1],'Name','input')
    convolution2dLayer(5,16,'Padding','same','Name','conv_1')
    batchNormalizationLayer('Name','BN_1')
    reluLayer('Name','relu_1')
    convolution2dLayer(3,32,'Padding','same','Stride',2,'Name','conv_2')
    batchNormalizationLayer('Name','BN_2')
    reluLayer('Name','relu_2')
    convolution2dLayer(3,32,'Padding','same','Name','conv_3')
    batchNormalizationLayer('Name','BN_3')
];
```
reluLayer('Name','relu_3')
additionLayer(2,'Name','add')
averagePooling2dLayer(2,'Stride',2,'Name','avpool')
fullyConnectedLayer(10,'Name','fc')
softmaxLayer('Name','softmax')
classificationLayer('Name','classOutput')

Create a layer graph from the layer array. `layerGraph` connects all the layers in `layers` sequentially. Plot the layer graph.

lgraph = layerGraph(layers);
figure
plot(lgraph)

Create the 1-by-1 convolutional layer and add it to the layer graph. Specify the number of convolutional filters and the stride so that the activation size matches the activation size of the 'relu_3' layer. This arrangement enables the addition layer to add the outputs of the 'skipConv' and 'relu_3' layers. To check that the layer is in the graph, plot the layer graph.

skipConv = convolution2dLayer(1,32,'Stride',2,'Name','skipConv');
lgraph = addLayers(lgraph,skipConv);
figure
plot(lgraph)
Create the shortcut connection from the 'relu_1' layer to the 'add' layer. Because you specified two as the number of inputs to the addition layer when you created it, the layer has two inputs named 'in1' and 'in2'. The 'relu_3' layer is already connected to the 'in1' input. Connect the 'relu_1' layer to the 'skipConv' layer and the 'skipConv' layer to the 'in2' input of the 'add' layer. The addition layer now sums the outputs of the 'relu_3' and 'skipConv' layers. To check that the layers are connected correctly, plot the layer graph.

```matlab
lgraph = connectLayers(lgraph,'relu_1','skipConv');
lgraph = connectLayers(lgraph,'skipConv','add/in2');
figure
plot(lgraph);
```
Load the training and validation data, which consists of 28-by-28 grayscale images of digits.

[XTrain,YTrain] = digitTrain4DArrayData;
[XValidation,YValidation] = digitTest4DArrayData;

Specify training options and train the network. trainNetwork validates the network using the validation data every ValidationFrequency iterations.

options = trainingOptions('sgdm',
 'MaxEpochs',8,
 'Shuffle','every-epoch',
 'ValidationData',{XValidation,YValidation},
 'ValidationFrequency',30,
 'Verbose',false,
 'Plots','training-progress');
net = trainNetwork(XTrain,YTrain,lgraph,options);
Display the properties of the trained network. The network is a DAGNetwork object.

```matlab
net
```

net = DAGNetwork with properties:

- Layers: [16×1 nnet.cnn.layer.Layer]
- Connections: [16×2 table]
- InputNames: {'input'}
- OutputNames: {'classOutput'}

Classify the validation images and calculate the accuracy. The network is very accurate.

```matlab
YPredicted = classify(net,XValidation);
accuracy = mean(YPredicted == YValidation)
```

accuracy = 0.9930

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also

depthConcatenationLayer | layerGraph | trainNetwork

1-62
Topics
“Create Simple Deep Learning Network for Classification”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Set Up Parameters and Train Convolutional Neural Network”
“Specify Layers of Convolutional Neural Network”
“Train Residual Network for Image Classification”
“List of Deep Learning Layers”

Introduced in R2017b
addLayers

Add layers to layer graph

Syntax

newlgraph = addLayers(lgraph,larray)

Description

newlgraph = addLayers(lgraph,larray) adds the network layers in larray to the layer graph lgraph. The new layer graph, newlgraph, contains the layers and connections of lgraph together with the layers in larray, connected sequentially. The layer names in larray must be unique, nonempty, and different from the names of the layers in lgraph.

Examples

Add Layers to Layer Graph

Create an empty layer graph and an array of layers. Add the layers to the layer graph and plot the graph. addLayers connects the layers sequentially.

lgraph = layerGraph;

layers = [imageInputLayer([32 32 3],'Name','input')
 convolution2dLayer(3,16,'Padding','same','Name','conv_1')
 batchNormalizationLayer('Name','BN_1')
 reluLayer('Name','relu_1')];

lgraph = addLayers(lgraph,layers);
figure
plot(lgraph)
Input Arguments

lgraph — Layer graph
LayerGraph object

Layer graph, specified as a LayerGraph object. To create a layer graph, use `layerGraph`.

larray — Network layers
Layer array

Network layers, specified as a Layer array.

For a list of built-in layers, see “List of Deep Learning Layers”.

Output Arguments

newlgraph — Output layer graph
LayerGraph object

Output layer graph, returned as a LayerGraph object.

See Also

`assembleNetwork` | `connectLayers` | `disconnectLayers` | `layerGraph` | `plot` | `removeLayers` | `replaceLayer`
Topics
“Train Residual Network for Image Classification”
“Train Deep Learning Network to Classify New Images”

Introduced in R2017b
addParameter

Add parameter to ONNXParameters object

Syntax

params = addParameter(params,name,value,type)
params = addParameter(params,name,value,type,NumDimensions)

Description

params = addParameter(params,name,value,type) adds the network parameter specified by name, value, and type to the ONNXParameters object params. The returned params object contains the model parameters of the input argument params together with the added parameter, stacked sequentially. The added parameter name must be unique, nonempty, and different from the parameter names in params.

params = addParameter(params,name,value,type,NumDimensions) adds the network parameter specified by name, value, type, and NumDimensions to params.

Examples

Add Parameters to Imported ONNX Model Function

Import a network saved in the ONNX format as a function and modify the network parameters.

Create an ONNX model from the pretrained alexnet network. Then import alexnet.onnx as a function. Import the pretrained ONNX network using importONNXFunction, which returns an ONNXParameters object that contains the network parameters. The function also creates a new model function in the current folder that contains the network architecture. Specify the name of the model function as alexnetFcn.

net = alexnet;
exportONNXNetwork(net,'alexnet.onnx');
params = importONNXFunction('alexnet.onnx','alexnetFcn');

A function containing the imported ONNX network has been saved to the file alexnetFcn.m. To learn how to use this function, type: help alexnetFcn.

Display the parameters that are updated during training (params.Learnables) and the parameters that remain unchanged during training (params.Nonlearnables).

params.Learnables

ans = struct with fields:
 data_Mean: [227x227x3 dlarray]
 conv1_W: [11x11x3x96 dlarray]
 conv1_B: [96x1 dlarray]
 conv2_W: [5x5x48x256 dlarray]
 conv2_B: [256x1 dlarray]
 conv3_W: [3x3x256x384 dlarray]
The network has parameters that represent three fully connected layers. You can add a fully connected layer in the original parameters `params` between layers `fc7` and `fc8`. The new layer might increase the classification accuracy.

Name the new layer `fc9`, because each added parameter name must be unique. The `addParameter` function always adds a new parameter sequentially to the `params.Learnables` or `params.Nonlearnables` structure. The order of the layers in the model function `alexnetFcn`
determines the order in which the network layers are executed. The order or the names of the parameters do not influence the execution order.

Add a new fully connected layer `fc9` with the same parameters as `fc7`.

```matlab
params = addParameter(params,'fc9_W',params.Learnables.fc7_W,'Learnable');
params = addParameter(params,'fc9_B',params.Learnables.fc7_B,'Learnable');
params = addParameter(params,'fc9_Stride',params.Nonlearnables.fc7_Stride,'Nonlearnable');
params = addParameter(params,'fc9_DilationFactor',params.Nonlearnables.fc7_DilationFactor,'Nonlearnable');
params = addParameter(params,'fc9_Padding',params.Nonlearnables.fc7_Padding,'Nonlearnable');
```

Display the updated learnable and nonlearnable parameters.

```matlab
params.Learnables
ans = struct with fields:
data_Mean: [227×227×3 dlarray]
conv1_W: [11×11×3×96 dlarray]
conv1_B: [96×1 dlarray]
conv2_W: [5×5×48×256 dlarray]
conv2_B: [256×1 dlarray]
conv3_W: [3×3×256×384 dlarray]
conv3_B: [384×1 dlarray]
conv4_W: [3×3×192×384 dlarray]
conv4_B: [384×1 dlarray]
conv5_W: [3×3×192×256 dlarray]
conv5_B: [256×1 dlarray]
fc6_W: [6×6×256×4096 dlarray]
fc6_B: [4096×1 dlarray]
fc7_W: [1×1×4096×4096 dlarray]
fc7_B: [4096×1 dlarray]
fc8_W: [1×1×4096×1000 dlarray]
fc8_B: [1000×1 dlarray]
fc9_W: [1×1×4096×4096 dlarray]
fc9_B: [4096×1 dlarray]
```

```matlab
params.Nonlearnables
ans = struct with fields:
conv1_Stride: [1×2 dlarray]
conv1_DilationFactor: [1×2 dlarray]
conv1_Padding: [1×1 dlarray]
pool1_PoolSize: [1×2 dlarray]
pool1_Stride: [1×2 dlarray]
pool1_Padding: [1×1 dlarray]
conv2_Stride: [1×2 dlarray]
conv2_DilationFactor: [1×2 dlarray]
pool2_PoolSize: [1×2 dlarray]
pool2_Stride: [1×2 dlarray]
pool2_Padding: [1×1 dlarray]
conv3_Stride: [1×2 dlarray]
conv3_DilationFactor: [1×2 dlarray]
conv3_Padding: [1×2 dlarray]
conv4_Stride: [1×2 dlarray]
conv4_DilationFactor: [1×2 dlarray]
conv4_Padding: [1×2 dlarray]
conv5_Stride: [1×2 dlarray]
```
Modify the architecture of the model function to reflect the changes in `params` so you can use the network for prediction with the new parameters or retrain the network. Open the model function by using `open alexnetFcn` and add the fully connected layer `fc9` between layers `fc7` and `fc8`.

Input Arguments

`params — Network parameters`
ONNXParameters object

Network parameters, specified as an `ONNXParameters` object. `params` contains the network parameters of the imported ONNX™ model.

`name — Name of parameter`
character vector | string scalar

Name of the parameter, specified as a character vector or string scalar.

Example: `'conv2_W'`
Example: `'conv2_Padding'`

`value — Value of parameter`
numeric array | character vector | string scalar

Value of the parameter, specified as a numeric array, character vector, or string scalar. To duplicate an existing network layer (stored in `params`), copy the parameter values of the network layer.

Example: `params.Learnables.conv1_W`
Example: `params.Nonlearnables.conv1_Padding`

Data Types: `single` | `double` | `char` | `string`

`type — Type of parameter`
'Learnable' | 'Nonlearnable' | 'State'

Type of parameter, specified as 'Learnable', 'Nonlearnable', or 'State'.

conv5_DilationFactor: [1x2 dlarray]
conv5_Padding: [2x2 dlarray]
pool5_PoolSize: [1x2 dlarray]
pool5_Stride: [1x2 dlarray]
pool5_Padding: [1x1 dlarray]
fc6_Stride: [1x2 dlarray]
fc6_DilationFactor: [1x2 dlarray]
fc6_Padding: [1x1 dlarray]
fc7_Stride: [1x2 dlarray]
fc7_DilationFactor: [1x2 dlarray]
fc7_Padding: [1x1 dlarray]
fc8_Stride: [1x2 dlarray]
fc8_DilationFactor: [1x2 dlarray]
fc8_Padding: [1x1 dlarray]
fc9_Stride: [1x2 dlarray]
fc9_DilationFactor: [1x2 dlarray]
fc9_Padding: [1x1 dlarray]
- The value 'Learnable' specifies a parameter that is updated by the network during training (for example, weights and bias of convolution).
- The value 'Nonlearnable' specifies a parameter that remains unchanged during network training (for example, padding).
- The value 'State' specifies a parameter that contains information remembered by the network between iterations and updated across multiple training batches.

Data Types: char | string

NumDimensions — Number of dimensions for every parameter

structure

Number of dimensions for every parameter, specified as a structure. NumDimensions includes trailing singleton dimensions.

Example: `params.NumDimensions.conv1_W`

Example: 4

Output Arguments

`params — Network parameters`[326]

ONNXParameters object

Network parameters, returned as an ONNXParameters object. params contains the network parameters updated by addParameter.

See Also

ONNXParameters | importONNXFunction | removeParameter

Introduced in R2020b
AlexNet convolutional neural network

Syntax

```matlab
net = alexnet
net = alexnet('Weights','imagenet')
layers = alexnet('Weights','none')
```

Description

AlexNet is a convolutional neural network that is 8 layers deep. You can load a pretrained version of the network trained on more than a million images from the ImageNet database [1]. The pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many animals. As a result, the network has learned rich feature representations for a wide range of images. The network has an image input size of 227-by-227. For more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

You can use `classify` to classify new images using the AlexNet network. Follow the steps of “Classify Image Using GoogLeNet” and replace GoogLeNet with AlexNet.

For a free hands-on introduction to practical deep learning methods, see Deep Learning Onramp.

`net = alexnet` returns an AlexNet network trained on the ImageNet data set.

This function requires Deep Learning Toolbox Model for AlexNet Network support package. If this support package is not installed, the function provides a download link. Alternatively, see Deep Learning Toolbox Model for AlexNet Network.

For more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

`net = alexnet('Weights','imagenet')` returns an AlexNet network trained on the ImageNet data set. This syntax is equivalent to `net = alexnet`.

`layers = alexnet('Weights','none')` returns the untrained AlexNet network architecture. The untrained model does not require the support package.

Examples

Download AlexNet Support Package

Download and install Deep Learning Toolbox Model for AlexNet Network support package.

Type `alexnet` at the command line.

`alexnet`

If Deep Learning Toolbox Model for AlexNet Network support package is not installed, then the function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click **Install**. Check that the installation is successful by typing `alexnet` at the command line.

```plaintext
alexnet
ans =
    SeriesNetwork with properties:
        Layers: [25×1 nnet.cnn.layer.Layer]
```

If the required support package is installed, then the function returns a `SeriesNetwork` object.

Transfer Learning Using AlexNet

This example shows how to fine-tune a pretrained AlexNet convolutional neural network to perform classification on a new collection of images.

AlexNet has been trained on over a million images and can classify images into 1000 object categories (such as keyboard, coffee mug, pencil, and many animals). The network has learned rich feature representations for a wide range of images. The network takes an image as input and outputs a label for the object in the image together with the probabilities for each of the object categories.

Transfer learning is commonly used in deep learning applications. You can take a pretrained network and use it as a starting point to learn a new task. Fine-tuning a network with transfer learning is usually much faster and easier than training a network with randomly initialized weights from scratch. You can quickly transfer learned features to a new task using a smaller number of training images.

Load Data

Unzip and load the new images as an image datastore. `imageDatastore` automatically labels the images based on folder names and stores the data as an `ImageDatastore` object. An image datastore enables you to store large image data, including data that does not fit in memory, and efficiently read batches of images during training of a convolutional neural network.

```plaintext
unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...)
```
Divide the data into training and validation data sets. Use 70% of the images for training and 30% for validation. `splitEachLabel` splits the images datastore into two new datastores.

```matlab
[imdsTrain, imdsValidation] = splitEachLabel(imds, 0.7, 'randomized');
```

This very small data set now contains 55 training images and 20 validation images. Display some sample images.

```matlab
numTrainImages = numel(imdsTrain.Labels);
idx = randperm(numTrainImages, 16);
figure
for i = 1:16
    subplot(4, 4, i)
    I = readimage(imdsTrain, idx(i));
    imshow(I)
end
```

Load Pretrained Network

Load the pretrained AlexNet neural network. If Deep Learning Toolbox™ Model for AlexNet Network is not installed, then the software provides a download link. AlexNet is trained on more than one million images and can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many animals. As a result, the model has learned rich feature representations for a wide range of images.
net = alexnet;

Use `analyzeNetwork` to display an interactive visualization of the network architecture and detailed information about the network layers.

```matlab
analyzeNetwork(net)
```

The first layer, the image input layer, requires input images of size 227-by-227-by-3, where 3 is the number of color channels.

```matlab
inputSize = net.Layers(1).InputSize
```

```matlab
inputSize = 1x3
227   227     3
```

Replace Final Layers

The last three layers of the pretrained network `net` are configured for 1000 classes. These three layers must be fine-tuned for the new classification problem. Extract all layers, except the last three, from the pretrained network.

```matlab
layersTransfer = net.Layers(1:end-3);
```

Transfer the layers to the new classification task by replacing the last three layers with a fully connected layer, a softmax layer, and a classification output layer. Specify the options of the new fully connected layer to match the size of 1000 classes.

```matlab
layersNew = layersTransfer; % Extract pre-trained layers

% Replace final layers
layersNew(end-2).class = fullyConnectedLayer(1000);
layersNew(end).softmax = softmaxLayer;
layersNew(end+1).classification = classificationLayer; % Specify the classification layer

% Merge layers
netTransfer = mergeLayers(layersNew); % Create new network
```
connected layer according to the new data. Set the fully connected layer to have the same size as the number of classes in the new data. To learn faster in the new layers than in the transferred layers, increase the `WeightLearnRateFactor` and `BiasLearnRateFactor` values of the fully connected layer.

```matlab
classNames = categories(imdsTrain.Labels);
numClasses = numel(classNames);
numClasses = 5
layers = [layersTransfer
          fullyConnectedLayer(numClasses,'WeightLearnRateFactor',20,'BiasLearnRateFactor',20)
          softmaxLayer
          classificationLayer];
```

Train Network

The network requires input images of size 227-by-227-by-3, but the images in the image datastores have different sizes. Use an augmented image datastore to automatically resize the training images. Specify additional augmentation operations to perform on the training images: randomly flip the training images along the vertical axis, and randomly translate them up to 30 pixels horizontally and vertically. Data augmentation helps prevent the network from overfitting and memorizing the exact details of the training images.

```matlab
pixelRange = [-30 30];
imageAugmenter = imageDataAugmenter(...
  'RandXReflection',true,...
  'RandXTranslation',pixelRange,...
  'RandYTranslation',pixelRange);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain,...
  'DataAugmentation',imageAugmenter);
```

To automatically resize the validation images without performing further data augmentation, use an augmented image datastore without specifying any additional preprocessing operations.

```matlab
augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);
```

Specify the training options. For transfer learning, keep the features from the early layers of the pretrained network (the transferred layer weights). To slow down learning in the transferred layers, set the initial learning rate to a small value. In the previous step, you increased the learning rate factors for the fully connected layer to speed up learning in the new final layers. This combination of learning rate settings results in fast learning only in the new layers and slower learning in the other layers. When performing transfer learning, you do not need to train for as many epochs. An epoch is a full training cycle on the entire training data set. Specify the mini-batch size and validation data. The software validates the network every `ValidationFrequency` iterations during training.

```matlab
options = trainingOptions('sgdm',...
  'MiniBatchSize',10,...
  'MaxEpochs',6,...
  'InitialLearnRate',1e-4,...
  'Shuffle','every-epoch',...
  'ValidationData',augimdsValidation,...
  'ValidationFrequency',3,...
  'Verbose',false,...
  'Plots','training-progress');
```

Train the network that consists of the transferred and new layers. By default, `trainNetwork` uses a GPU if one is available (requires Parallel Computing Toolbox™ and a CUDA® enabled GPU with
compute capability 3.0 or higher). Otherwise, it uses a CPU. You can also specify the execution environment by using the `ExecutionEnvironment` name-value pair argument of `trainingOptions`.

```matlab
netTransfer = trainNetwork(augimdsTrain,layers,options);
```

Classify Validation Images

Classify the validation images using the fine-tuned network.

```matlab
[YPred,scores] = classify(netTransfer,augimdsValidation);
```

Display four sample validation images with their predicted labels.

```matlab
idx = randperm(numel(imdsValidation.Files),4);
figure
for i = 1:4
    subplot(2,2,i)
    I = readimage(imdsValidation,idx(i));
    imshow(I)
    label = YPred(idx(i));
    title(string(label));
end
```
Calculate the classification accuracy on the validation set. Accuracy is the fraction of labels that the network predicts correctly.

\[\text{accuracy} = \frac{\text{mean}(\text{YPred} == \text{YValidation})}{1} \]

For tips on improving classification accuracy, see “Deep Learning Tips and Tricks”.

Classify an Image Using AlexNet

Read, resize, and classify an image using AlexNet. First, load a pretrained AlexNet model.

```matlab
net = alexnet;
```

Read the image using `imread`.

```matlab
I = imread('peppers.png');
figure
imshow(I)
```
The pretrained model requires the image size to be the same as the input size of the network.
Determine the input size of the network using the InputSize property of the first layer of the network.

```matlab
sz = net.Layers(1).InputSize
sz = 1x3
     227   227    3
```

Resize the image to the input size of the network.

```matlab
I = imresize(I,sz(1:2));
figure
imshow(I)
```
Classify the image using `classify`.

```matlab
label = classify(net,I)
```

```matlab
label = categorical
   bell pepper
```

Show the image and classification result together.

```matlab
figure
imshow(I)
title(label)
```
Feature Extraction Using AlexNet

This example shows how to extract learned image features from a pretrained convolutional neural network, and use those features to train an image classifier. Feature extraction is the easiest and fastest way to use the representational power of pretrained deep networks. For example, you can train a support vector machine (SVM) using fitcecoc (Statistics and Machine Learning Toolbox™) on the extracted features. Because feature extraction only requires a single pass through the data, it is a good starting point if you do not have a GPU to accelerate network training with.

Load Data

Unzip and load the sample images as an image datastore. imageDatastore automatically labels the images based on folder names and stores the data as an ImageDatastore object. An image datastore lets you store large image data, including data that does not fit in memory. Split the data into 70% training and 30% test data.

unzip('MerchData.zip');
imdss = imageDatastore('MerchData', ...
 'IncludeSubfolders',true, ...
 'LabelSource','foldernames');
[imdsTrain,imdsTest] = splitEachLabel(imds,0.7,'randomized');

There are now 55 training images and 20 validation images in this very small data set. Display some sample images.

numImagesTrain = numel(imdsTrain.Labels);
idx = randperm(numImagesTrain,16);
for i = 1:16
Load Pretrained Network

Load a pretrained AlexNet network. If the Deep Learning Toolbox Model for AlexNet Network support package is not installed, then the software provides a download link. AlexNet is trained on more than a million images and can classify images into 1000 object categories. For example,
keyboard, mouse, pencil, and many animals. As a result, the model has learned rich feature representations for a wide range of images.

```matlab
net = alexnet;
```

Display the network architecture. The network has five convolutional layers and three fully connected layers.

```matlab
net.Layers
ans =
25×1 Layer array with layers:
1   'data'     Image Input                   227x227x3 images with 'zerocenter' normalization
2   'conv1'    Convolution                   96 11x11x3 convolutions with stride [4  4] and padding [0  0  0  0]
3   'relu1'    ReLU                          ReLU
4   'norm1'    Cross Channel Normalization   cross channel normalization with 5 channels per element
5   'pool1'    Max Pooling                   3x3 max pooling with stride [2  2] and padding [0  0  0  0]
6   'conv2'    Grouped Convolution           2 groups of 128 5x5x48 convolutions with stride [1  1] and padding [2  2  2  2]
7   'relu2'    ReLU                          ReLU
8   'norm2'    Cross Channel Normalization   cross channel normalization with 5 channels per element
9   'pool2'    Max Pooling                   3x3 max pooling with stride [2  2] and padding [0  0  0  0]
10  'conv3'    Convolution                   384 3x3x256 convolutions with stride [1  1] and padding [1  1  1  1]
11  'relu3'    ReLU                          ReLU
12  'conv4'    Grouped Convolution           2 groups of 192 3x3x192 convolutions with stride [1  1] and padding [1  1  1  1]
13  'relu4'    ReLU                          ReLU
14  'conv5'    Grouped Convolution           2 groups of 128 3x3x192 convolutions with stride [1  1] and padding [1  1  1  1]
15  'relu5'    ReLU                          ReLU
16  'pool5'    Max Pooling                   3x3 max pooling with stride [2  2] and padding [0  0  0  0]
17  'fc6'      Fully Connected               4096 fully connected layer
18  'relu6'    ReLU                          ReLU
19  'drop6'    Dropout                       50% dropout
20  'fc7'      Fully Connected               4096 fully connected layer
21  'relu7'    ReLU                          ReLU
22  'drop7'    Dropout                       50% dropout
23  'fc8'      Fully Connected               1000 fully connected layer
24  'prob'     Softmax                       softmax
25  'output'   Classification Output         crossentropyex with 'tench' and 999 other classes
```

The first layer, the image input layer, requires input images of size 227-by-227-by-3, where 3 is the number of color channels.

```matlab
inputSize = net.Layers(1).InputSize
```

```
inputSize = 1×3
227  227     3
```

Extract Image Features

The network constructs a hierarchical representation of input images. Deeper layers contain higher-level features, constructed using the lower-level features of earlier layers. To get the feature representations of the training and test images, use `activations` on the fully connected layer `'fc7'`. To get a lower-level representation of the images, use an earlier layer in the network.

The network requires input images of size 227-by-227-by-3, but the images in the image datastores have different sizes. To automatically resize the training and test images before they are input to the...
network, create augmented image datastores, specify the desired image size, and use these
datastores as input arguments to activations.

\[
augimdsTrain = \text{augmentedImageDatastore}(\text{inputSize}(1:2), \text{imdsTrain});
\]
\[
augimdsTest = \text{augmentedImageDatastore}(\text{inputSize}(1:2), \text{imdsTest});
\]

layer = 'fc7';
featuresTrain = activations(net, augimdsTrain, layer, 'OutputAs', 'rows');
featuresTest = activations(net, augimdsTest, layer, 'OutputAs', 'rows');

Extract the class labels from the training and test data.

YTrain = imdsTrain.Labels;
YTest = imdsTest.Labels;

Fit Image Classifier

Use the features extracted from the training images as predictor variables and fit a multiclass support vector machine (SVM) using \text{fitcecoc} (Statistics and Machine Learning Toolbox).

mdl = fitcecoc(featuresTrain, YTrain);

Classify Test Images

Classify the test images using the trained SVM model and the features extracted from the test images.

YPred = predict(mdl, featuresTest);

Display four sample test images with their predicted labels.

idx = [1 5 10 15];
figure
for i = 1:numel(idx)
 subplot(2,2,i)
 I = readimage(imdsTest,idx(i));
 label = YPred(idx(i));
 imshow(I)
 title(label)
end
Calculate the classification accuracy on the test set. Accuracy is the fraction of labels that the network predicts correctly.

\[
\text{accuracy} = \frac{\text{mean}(Y_{\text{Pred}} == Y_{\text{Test}})}{}
\]

\[
\text{accuracy} = 1
\]

This SVM has high accuracy. If the accuracy is not high enough using feature extraction, then try transfer learning instead.

Output Arguments

- **net** — **Pretrained AlexNet convolutional neural network**
 SeriesNetwork object
 Pretrained AlexNet convolutional neural network, returned as a SeriesNetwork object.

- **layers** — **Untrained AlexNet convolutional neural network architecture**
 Layer array
 Untrained AlexNet convolutional neural network architecture, returned as a Layer array.

Tips

- For a free hands-on introduction to practical deep learning methods, see Deep Learning Onramp.
References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = alexnet or by passing the alexnet function to coder.loadDeepLearningNetwork. For example: net = coder.loadDeepLearningNetwork('alexnet').

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax alexnet('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• For code generation, you can load the network by using the syntax net = alexnet or by passing the alexnet function to coder.loadDeepLearningNetwork. For example: net = coder.loadDeepLearningNetwork('alexnet').

• For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).

• The syntax alexnet('Weights','none') is not supported for GPU code generation.

See Also
Deep Network Designer | densenet201 | googlenet | importCaffeNetwork | importKerasNetwork | inceptionresnetv2 | resnet18 | resnet50 | squeezenet | vgg16 | vgg19

Topics
“Deep Learning in MATLAB”
“Classify Webcam Images Using Deep Learning”
“Pretrained Deep Neural Networks”
“Train Deep Learning Network to Classify New Images”
“Visualize Features of a Convolutional Neural Network”
“Visualize Activations of a Convolutional Neural Network”
“Deep Learning Tips and Tricks”

Introduced in R2017a
analyzeNetwork

Analyze deep learning network architecture

Syntax

analyzeNetwork(net)
analyzeNetwork(layers)
analyzeNetwork(lgraph)
analyzeNetwork(dlnet)
analyzeNetwork(lgraph,'TargetUsage',target)

Description

Use analyzeNetwork to visualize and understand the architecture of a network, check that you have defined the architecture correctly, and detect problems before training. Problems that analyzeNetwork detects include missing or unconnected layers, incorrectly sized layer inputs, an incorrect number of layer inputs, and invalid graph structures.

analyzeNetwork(net) analyzes the SeriesNetwork or DAGNetwork object net. The function displays an interactive visualization of the network architecture and provides detailed information about the network layers. The layer information includes the sizes of layer activations and learnable parameters, the total number of learnable parameters, and the sizes of state parameters of recurrent layers.

analyzeNetwork(layers) analyzes the layer array layers and also detects errors and issues for trainNetwork workflows.

analyzeNetwork(lgraph) analyzes the layer graph lgraph and also detects errors and issues for trainNetwork workflows.

analyzeNetwork(dlnet) analyzes the dlnetwork object for custom training loop workflows.

analyzeNetwork(lgraph,'TargetUsage',target) analyzes the layer graph lgraph for the specified target workflow. Use this syntax when analyzing a layer graph for dlnetwork workflows.

Examples

Analyze Trained Network

Load a pretrained GoogLeNet convolutional neural network.

net = googlenet

net =
DAGNetwork with properties:

 Layers: [144x1 nnet.cnn.layer.Layer]
 Connections: [170x2 table]
Analyze the network. `analyzeNetwork` displays an interactive plot of the network architecture and a table containing information about the network layers.

Investigate the network architecture using the plot to the left. Select a layer in the plot. The selected layer is highlighted in the plot and in the layer table.

In the table, view layer information such as layer properties, layer type, and sizes of the layer activations and learnable parameters. The activations of a layer are the outputs of that layer.

Select a deeper layer in the network. Notice that activations in deeper layers are smaller in the spatial dimensions (the first two dimensions) and larger in the channel dimension (the last dimension). Using this structure enables convolutional neural networks to gradually increase the number of extracted image features while decreasing the spatial resolution.

Show the total number of learnable parameters in each layer by clicking the arrow in the top-right corner of the layer table and select **Total Learnables**. To sort the layer table by column value, hover the mouse over the column heading and click the arrow that appears. For example, you can determine which layer contains the most parameters by sorting the layers by the total number of learnable parameters.

`analyzeNetwork(net)`
Fix Errors in Network Architecture

Create a simple convolutional network with shortcut connections. Create the main branch of the network as an array of layers and create a layer graph from the layer array. `layerGraph` connects all the layers in `layers` sequentially.

```matlab
layers = [
    imageInputLayer([32 32 3], 'Name', 'input')
    convolution2dLayer(5,16, 'Padding', 'same', 'Name', 'conv_1')
    reluLayer('Name', 'relu_1')
    convolution2dLayer(3,16, 'Padding', 'same', 'Stride', 2, 'Name', 'conv_2')
    reluLayer('Name', 'relu_2')
    additionLayer(2, 'Name', 'add1')
    convolution2dLayer(3,16, 'Padding', 'same', 'Stride', 2, 'Name', 'conv_3')
    reluLayer('Name', 'relu_3')
    additionLayer(3, 'Name', 'add2')
    fullyConnectedLayer(10, 'Name', 'fc')
    classificationLayer('Name', 'output')];

lgraph = layerGraph(layers);
```

Create the shortcut connections. One of the shortcut connections contains a single 1-by-1 convolutional layer `skipConv`.

```matlab
    skipConv = convolution2dLayer(1,16, 'Stride', 2, 'Name', 'skipConv');
    lgraph = addLayers(lgraph, skipConv);
    lgraph = connectLayers(lgraph, 'relu_1', 'add1/in2');
    lgraph = connectLayers(lgraph, 'add1', 'add2/in2');
```

Analyze the network architecture. `analyzeNetwork` finds four errors in the network.

```matlab
analyzeNetwork(lgraph)
```
Investigate and fix the errors in the network. In this example, the following issues cause the errors:

- A softmax layer, which outputs class probabilities, must precede the classification layer. To fix the error in the output classification layer, add a softmax layer before the classification layer.
- The skipConv layer is not connected to the rest of the network. It should be a part of the shortcut connection between the add1 and add2 layers. To fix this error, connect add1 to skipConv and skipConv to add2.
- The add2 layer is specified to have three inputs, but the layers only has two inputs. To fix the error, specify the number of inputs as 2.
- All the inputs to an addition layer must have the same size, but the add1 layer has two inputs with different sizes. Because the conv_2 layer has a 'Stride' value of 2, this layer downsamples the activations by a factor of two in the first two dimensions (the spatial dimensions). To resize the input from the relu2 layer so that it has the same size as the input from relu1, remove the downsampling by setting the 'Stride' value of the conv_2 layer to 1.

Apply these modifications to the layer graph construction from the beginning of this example and create a new layer graph.

```matlab
layers = [
    imageInputLayer([32 32 3],'Name','input')
    convolution2dLayer(5,16,'Padding','same','Name','conv_1')
    reluLayer('Name','relu_1')
    convolution2dLayer(3,16,'Padding','same','Name','conv_2')
];
```
reluLayer('Name','relu_2')
additionLayer(2,'Name','add1')

convolution2dLayer(3,16,'Padding','same','Stride',2,'Name','conv_3')
reluLayer('Name','relu_3')
additionLayer(2,'Name','add2')

fullyConnectedLayer(10,'Name','fc')
softmaxLayer('Name','softmax');
classificationLayer('Name','output');

lgraph = layerGraph(layers);

skipConv = convolution2dLayer(1,16,'Stride',2,'Name','skipConv');
lgraph = addLayers(lgraph,skipConv);
lgraph = connectLayers(lgraph,'relu_1','add1/in2');
lgraph = connectLayers(lgraph,'add1','skipConv');
lgraph = connectLayers(lgraph,'skipConv','add2/in2');

Analyze the new architecture. The new network does not contain any errors and is ready to be trained.

analyzeNetwork(lgraph)
Analyze Layer Graph for Custom Training Loop

Create a layer graph for a custom training loop. For custom training loop workflows, the layer graph must not have an output layer:

```
layers = [
    imageInputLayer([28 28 1], 'Normalization','none','Name','input')
    convolution2dLayer(5, 20, 'Name','conv1')
    batchNormalizationLayer('Name','bn1')
    reluLayer('Name','relu1')
    convolution2dLayer(3,20, 'Padding',1, 'Name','conv2')
    batchNormalizationLayer('Name','bn2')
    reluLayer('Name','relu2')
    convolution2dLayer(3, 20, 'Padding', 1, 'Name','conv3')
    batchNormalizationLayer('Name','bn3')
    reluLayer('Name','relu3')
    fullyConnectedLayer(10, 'Name','fc')
    softmaxLayer('Name','softmax')
];
```

```
lgraph = layerGraph(layers);
```

Analyze the layer graph using the `analyzeNetwork` function and set the 'TargetUsage' option to 'dlnetwork'.

```
analyzeNetwork(lgraph,'TargetUsage','dlnetwork')
```

Here, the function does not report any issues with the layer graph.
Input Arguments

net — Trained network

SeriesNetwork object | DAGNetwork object

Trained network, specified as a SeriesNetwork or a DAGNetwork object. You can get a trained network by importing a pretrained network (for example, by using the googlenet function) or by training your own network using trainNetwork.

layers — Network layers

Layer array

Network layers, specified as a Layer array.

For a list of built-in layers, see “List of Deep Learning Layers”.

lgraph — Layer graph

LayerGraph object

Layer graph, specified as a LayerGraph object. To create a layer graph, use layerGraph.

dlnet — Network for custom training loops

dlnetwork object

Network for custom training loops, specified as a dlnetwork object.

target — Target workflow

'trainNetwork' (default) | 'dlnetwork'

Target workflow, specified as one of the following:

- 'trainNetwork' - Analyze layer graph for usage with the trainNetwork function. For example, the function checks that the layer graph has an output layer and no disconnected layer outputs.
- 'dlnetwork' - Analyze layer graph for usage with dlnetwork objects. For example, the function checks that the layer graph does not have any output layers.

See Also

DAGNetwork | Deep Network Designer | LayerGraph | SeriesNetwork | assembleNetwork | plot | trainNetwork

Topics

“Create Simple Deep Learning Network for Classification”
“Transfer Learning with Deep Network Designer”
“Build Networks with Deep Network Designer”
“Train Deep Learning Network to Classify New Images”
“Pretrained Deep Neural Networks”
“Visualize Activations of a Convolutional Neural Network”
“Deep Learning in MATLAB”

Introduced in R2018a
assembleNetwork

Assemble deep learning network from pretrained layers

Syntax

```matlab
assembledNet = assembleNetwork(layers)
```

Description

`assembleNetwork` creates deep learning networks from layers without training.

Use `assembleNetwork` for the following tasks:

- Convert a layer array or layer graph to a network ready for prediction.
- Assemble networks from imported layers.
- Modify the weights of a trained network.

To train a network from scratch, use `trainNetwork`.

`assembledNet = assembleNetwork(layers)` assembles the layer array or layer graph `layers` into a deep learning network ready to use for prediction.

Examples

Assemble Network from Pretrained Keras Layers

Import the layers from a pretrained Keras network, replace the unsupported layers with custom layers, and assemble the layers into a network ready for prediction.

Import Keras Network

Import the layers from a Keras network model. The network in 'digitsDAGnetwithnoise.h5' classifies images of digits.

```matlab
filename = 'digitsDAGnetwithnoise.h5';
lgraph = importKerasLayers(filename,'ImportWeights',true);
```

Warning: Unable to import some Keras layers, because they are not supported by the Deep Learning Toolbox. The `importKerasLayers` function displays a warning and replaces the unsupported layers with placeholder layers.

Replace Placeholder Layers

To replace the placeholder layers, first identify the names of the layers to replace. Find the placeholder layers using `findPlaceholderLayers` and display their Keras configurations.

```matlab
placeholderLayers = findPlaceholderLayers(lgraph); placeholderLayers.KerasConfiguration
```
ans = struct with fields:
 trainable: 1
 name: 'gaussian_noise_1'
 stddev: 1.5000

ans = struct with fields:
 trainable: 1
 name: 'gaussian_noise_2'
 stddev: 0.7000

Define a custom Gaussian noise layer by saving the file `gaussianNoiseLayer.m` in the current folder. Then, create two Gaussian noise layers with the same configurations as the imported Keras layers.

```matlab
gnLayer1 = gaussianNoiseLayer(1.5,'new_gaussian_noise_1');
gnLayer2 = gaussianNoiseLayer(0.7,'new_gaussian_noise_2');
```

Replace the placeholder layers with the custom layers using `replaceLayer`.

```matlab
lgraph = replaceLayer(lgraph,'gaussian_noise_1',gnLayer1);
lgraph = replaceLayer(lgraph,'gaussian_noise_2',gnLayer2);
```

Specify Class Names

The imported classification layer does not contain the classes, so you must specify these before assembling the network. If you do not specify the classes, then the software automatically sets the classes to 1, 2, ..., N, where N is the number of classes.

The classification layer has the name `'ClassificationLayer_activation_1'`. Set the classes to 0, 1, ..., 9, and then replace the imported classification layer with the new one.

```matlab
cLayer = lgraph.Layers(end);
cLayer.Classes = string(0:9);
lgraph = replaceLayer(lgraph,'ClassificationLayer_activation_1',cLayer);
```

Assemble Network

Assemble the layer graph using `assembleNetwork`. The function returns a `DAGNetwork` object that is ready to use for prediction.

```matlab
net = assembleNetwork(lgraph)
```

```
net = DAGNetwork with properties:
    Layers: [15x1 nnet.cnn.layer.Layer]
    Connections: [15x2 table]
    InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}
```

Input Arguments

- `layers` — Network layers
 Layer array | `LayerGraph` object
Network layers, specified as a Layer array or a LayerGraph object.

To create a network with all layers connected sequentially, you can use a Layer array as the input argument. In this case, the returned network is a SeriesNetwork object.

A directed acyclic graph (DAG) network has a complex structure in which layers can have multiple inputs and outputs. To create a DAG network, specify the network architecture as a LayerGraph object and then use that layer graph as the input argument to assembleNetwork.

For a list of built-in layers, see “List of Deep Learning Layers”.

Output Arguments

`assembledNet — Assembled network`
SeriesNetwork object | DAGNetwork object

Assembled network ready for prediction, returned as a SeriesNetwork object or a DAGNetwork object. The returned network depends on the layers input argument:

- If `layers` is a Layer array, then `assembledNet` is a SeriesNetwork object.
- If `layers` is a LayerGraph object, then `assembledNet` is a DAGNetwork object.

See Also

findPlaceholderLayers | importKerasLayers | importKerasNetwork | replaceLayer | trainNetwork

Topics

“Assemble Network from Pretrained Keras Layers”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Define Custom Deep Learning Layers”

Introduced in R2018b
augment

Apply identical random transformations to multiple images

Syntax

`augI = augment(augmenter,I)`

Description

`augI = augment(augmenter,I)` augments image `I` using a random transformation from the set of image preprocessing options defined by image data augmenter, `augmenter`. If `I` consists of multiple images, then `augment` applies an identical transformation to all images.

Examples

Augment Image Data with Custom Rotation Range

Create an image augmenter that rotates images by a random angle. To use a custom range of valid rotation angles, you can specify a function handle when you create the augmenter. This example specifies a function called `myrange` (defined at the end of the example) that selects an angle from within two disjoint intervals.

```matlab
imageAugmenter = imageDataAugmenter('RandRotation',@myrange);
```

Read multiple images into the workspace, and display the images.

```matlab
img1 = imread('peppers.png');
img2 = imread('corn.tif',2);
inImg = imtile({img1,img2});
imshow(inImg)
```
Augment the images with identical augmentations. The randomly selected rotation angle is returned in a temporary variable, angle.

```matlab
outCellArray = augment(imageAugmenter, {img1, img2});
angle = 8.1158
```

View the augmented images.

```matlab
outImg = imtile(outCellArray);
imshow(outImg);
```

Supporting Function

This example defines the `myrange` function that first randomly selects one of two intervals (-10, 10) and (170, 190) with equal probability. Within the selected interval, the function returns a single random number from a uniform distribution.

```matlab
function angle = myrange()
    if randi([0 1],1)
        a = -10;
        b = 10;
    else
        a = 170;
        b = 190;
    end
    angle = a + (b-a).*rand(1)
end
```

Input Arguments

- `augmenter` — Augmentation options
 - `imageDataAugmenter` object

 Augmentation options, specified as an `imageDataAugmenter` object.
I — Images to augment
numeric array | cell array of numeric and categorical images

Images to augment, specified as one of the following.

- Numeric array, representing a single grayscale or color image.
- Cell array of numeric and categorical images. Images can be different sizes and types.

Output Arguments

augI — Augmented images
numeric array | cell array of numeric and categorical images

Augmented images, returned as a numeric array or cell array of numeric and categorical images, consistent with the format of the input images I.

Tips

- You can use the augment function to preview the transformations applied to sample images.
- To perform image augmentation during training, create an augmentedImageDatastore and specify preprocessing options by using the 'DataAugmentation' name-value pair with an imageDataAugmenter. The augmented image datastore automatically applies random transformations to the training data.

See Also

augmentedImageDatastore | trainNetwork

Topics

“Deep Learning in MATLAB”
“Preprocess Images for Deep Learning”

Introduced in R2018b
augmentedImageDatastore

Transform batches to augment image data

Description

An augmented image datastore transforms batches of training, validation, test, and prediction data, with optional preprocessing such as resizing, rotation, and reflection. Resize images to make them compatible with the input size of your deep learning network. Augment training image data with randomized preprocessing operations to help prevent the network from overfitting and memorizing the exact details of the training images.

To train a network using augmented images, supply the augmentedImageDatastore to trainNetwork. For more information, see “Preprocess Images for Deep Learning”.

- When you use an augmented image datastore as a source of training images, the datastore randomly perturbs the training data for each epoch, so that each epoch uses a slightly different data set. The actual number of training images at each epoch does not change. The transformed images are not stored in memory.
- An imageInputLayer normalizes images using the mean of the augmented images, not the mean of the original data set. This mean is calculated once for the first augmented epoch. All other epochs use the same mean, so that the average image does not change during training.

By default, an augmentedImageDatastore only resizes images to fit the output size. You can configure options for additional image transformations using an imageDataAugmenter.

Creation

Syntax

auimds = augmentedImageDatastore(outputSize,imds)
auimds = augmentedImageDatastore(outputSize,X,Y)
auimds = augmentedImageDatastore(outputSize,X)
auimds = augmentedImageDatastore(outputSize,tbl)
auimds = augmentedImageDatastore(outputSize,tbl,responseNames)
auimds = augmentedImageDatastore(___ ,Name,Value)

Description

auimds = augmentedImageDatastore(outputSize,imds) creates an augmented image datastore for classification problems using images from image datastore imds, and sets the OutputSize property.

auimds = augmentedImageDatastore(outputSize,X,Y) creates an augmented image datastore for classification and regression problems. The array X contains the predictor variables and the array Y contains the categorical labels or numeric responses.

auimds = augmentedImageDatastore(outputSize,X) creates an augmented image datastore for predicting responses of image data in array X.
augmentedImageDatastore creates an augmented image datastore for classification and regression problems. The table, tbl, contains predictors and responses.

augmentedImageDatastore(outputSize,tbl) creates an augmented image datastore for classification and regression problems. The table, tbl, contains predictors and responses. The responseNames argument specifies the response variables in tbl.

augmentedImageDatastore(outputSize,tbl,responseNames) creates an augmented image datastore for classification and regression problems. The table, tbl, contains predictors and responses. The responseNames argument specifies the response variables in tbl.

augmentedImageDatastore(____,Name,Value) creates an augmented image datastore, using name-value pairs to set the ColorPreprocessing, DataAugmentation, OutputSizeMode, and DispatchInBackground properties. You can specify multiple name-value pairs. Enclose each property name in quotes.

For example,

augmentedImageDatastore([28,28],myTable,'OutputSizeMode','centercrop') creates an augmented image datastore that crops images from the center.

Input Arguments

- **imds** — Image datastore
 Image datastore, specified as an `ImageDatastore` object.

 `ImageDatastore` allows batch reading of JPG or PNG image files using prefetching. If you use a custom function for reading the images, then `ImageDatastore` does not prefetch.

 Tip Use `augmentedImageDatastore` for efficient preprocessing of images for deep learning including image resizing.

 Do not use the `readFcn` option of `ImageDatastore` for preprocessing or resizing as this option is usually significantly slower.

- **X** — Images
 4-D numeric array

 Images, specified as a 4-D numeric array. The first three dimensions are the height, width, and channels, and the last dimension indexes the individual images.

 If the array contains NaNs, then they are propagated through the training. However, in most cases, the training fails to converge.

 Data Types: `single` | `double` | `uint8` | `int8` | `uint16` | `int16` | `uint32` | `int32`

- **Y** — Responses for classification or regression
 array of categorical responses | numeric matrix | 4-D numeric array

 Responses for classification or regression, specified as one of the following:

 - For a classification problem, Y is a categorical vector containing the image labels.
 - For a regression problem, Y can be an:
 - n-by-r numeric matrix. n is the number of observations and r is the number of responses.
• h-by-w-by-c-by-n numeric array. h-by-w-by-c is the size of a single response and n is the number of observations.

Responses must not contain NaNs.

Data Types: categorical | double

tbl — Input data

table

Input data, specified as a table. *tbl* must contain the predictors in the first column as either absolute or relative image paths or images. The type and location of the responses depend on the problem:

• For a classification problem, the response must be a categorical variable containing labels for the images. If the name of the response variable is not specified in the call to `augmentedImageDatastore`, the responses must be in the second column. If the responses are in a different column of *tbl*, then you must specify the response variable name using the `responseNames` argument.

• For a regression problem, the responses must be numerical values in the column or columns after the first one. The responses can be either in multiple columns as scalars or in a single column as numeric vectors or cell arrays containing numeric 3-D arrays. When you do not specify the name of the response variable or variables, `augmentedImageDatastore` accepts the remaining columns of *tbl* as the response variables. You can specify the response variable names using the `responseNames` argument.

Responses must not contain NaNs. If there are NaNs in the predictor data, they are propagated through the training, however, in most cases the training fails to converge.

Data Types: table

responseNames — Names of response variables in the input table

character vector | cell array of character vectors | string array

Names of the response variables in the input table, specified as one of the following:

• For classification or regression tasks with a single response, `responseNames` must be a character vector or string scalar containing the response variable in the input table.

• For regression tasks with multiple responses, `responseNames` must be string array or cell array of character vectors containing the response variables in the input table.

Data Types: char | cell | string

Properties

ColorPreprocessing — Preprocessing color operations

'none' (default) | 'gray2rgb' | 'rgb2gray'

Preprocessing color operations performed on input grayscale or RGB images, specified as 'none', 'gray2rgb', or 'rgb2gray'. When the image datastore contains a mixture of grayscale and RGB images, use `ColorPreprocessing` to ensure that all output images have the number of channels required by `imageInputLayer`.
No color preprocessing operation is performed when an input image already has the required number of color channels. For example, if you specify the value 'gray2rgb' and an input image already has three channels, then no color preprocessing occurs.

Note The augmentedImageDatastore object converts RGB images to grayscale by using the `rgb2gray` function. If an image has three channels that do not correspond to red, green, and blue channels (such as an image in the L*a*b* color space), then using ColorPreprocessing can give poor results.

No color preprocessing operation is performed when the input images do not have 1 or 3 channels, such as for multispectral or hyperspectral images. In this case, all input images must have the same number of channels.

Data Types: char | string

DataAugmentation — Preprocessing applied to input images

'default' (default) | imageDataAugmenter object

Preprocessing applied to input images, specified as an imageDataAugmenter object or 'none'. When DataAugmentation is 'none', no preprocessing is applied to input images.

DispatchInBackground — Dispatch observations in background

false (default) | true

Dispatch observations in the background during training, prediction, or classification, specified as false or true. To use background dispatching, you must have Parallel Computing Toolbox.

Augmented image datastores only perform background dispatching when used with `trainNetwork` and inference functions such as `predict` and `classify`. Background dispatching does not occur when you call the `read` function of the datastore directly.

MiniBatchSize — Number of observations in each batch

128 | positive integer

Number of observations that are returned in each batch. You can change the value of MiniBatchSize only after you create the datastore. For training, prediction, and classification, the MiniBatchSize property is set to the mini-batch size defined in `trainingOptions`.

NumObservations — Total number of observations in the datastore

positive integer

This property is read-only.

Total number of observations in the augmented image datastore. The number of observations is the length of one training epoch.

OutputSize — Size of output images

vector of two positive integers

Size of output images, specified as a vector of two positive integers. The first element specifies the number of rows in the output images, and the second element specifies the number of columns.

Note If you create an augmentedImageDatastore by specifying the image output size as a three-element vector, then the datastore ignores the third element. Instead, the datastore uses the value of
ColorPreprocessing to determine the dimensionality of output images. For example, if you specify OutputSize as [28 28 1] but set ColorPreprocessing as 'gray2rgb', then the output images have size 28-by-28-by-3.

OutputSizeMode — Method used to resize output images
'resize' (default) | 'centercrop' | 'randcrop'

Method used to resize output images, specified as one of the following.

- 'resize' — Scale the image using bilinear interpolation to fit the output size.

 Note augmentedImageDatastore uses the bilinear interpolation method of imresize with antialiasing. Bilinear interpolation enables fast image processing while avoiding distortions such as caused by nearest-neighbor interpolation. In contrast, by default imresize uses bicubic interpolation with antialiasing to produce a high-quality resized image at the cost of longer processing time.

- 'centercrop' — Take a crop from the center of the training image. The crop has the same size as the output size.

- 'randcrop' — Take a random crop from the training image. The random crop has the same size as the output size.

Data Types: char | string

Object Functions

- combine: Combine data from multiple datastores
- hasdata: Determine if data is available to read
- numpartitions: Number of datastore partitions
- partition: Partition a datastore
- partitionByIndex: Partition augmentedImageDatastore according to indices
- preview: Preview subset of data in datastore
- read: Read data from augmentedImageDatastore
- readall: Read all data in datastore
- readByIndex: Read data specified by index from augmentedImageDatastore
- reset: Reset datastore to initial state
- shuffle: Shuffle data in augmentedImageDatastore
- subset: Create subset of datastore or file-set
- transform: Transform datastore
- isPartitionable: Determine whether datastore is partitionable
- isShuffleable: Determine whether datastore is shuffleable

Examples

Train Network with Augmented Images

Train a convolutional neural network using augmented image data. Data augmentation helps prevent the network from overfitting and memorizing the exact details of the training images.

Load the sample data, which consists of synthetic images of handwritten digits.

[XTrain,YTrain] = digitTrain4DArrayData;
digitTrain4DArrayData loads the digit training set as 4-D array data. XTrain is a 28-by-28-by-1-by-5000 array, where:

- 28 is the height and width of the images.
- 1 is the number of channels.
- 5000 is the number of synthetic images of handwritten digits.

YTrain is a categorical vector containing the labels for each observation.

Set aside 1000 of the images for network validation.

\[
\text{id}x = \text{randperm}(\text{size}(X\text{Train},4),1000);
\]
\[
X\text{Validation} = X\text{Train}(\text{,:,:,},\text{id}) ;
\]
\[
X\text{Train}(\text{,:,:,},\text{id}) = []; \\
Y\text{Validation} = Y\text{Train}(\text{id}) ; \\
Y\text{Train}(\text{id}) = []; \\
\]

Create an imageDataAugmenter object that specifies preprocessing options for image augmentation, such as resizing, rotation, translation, and reflection. Randomly translate the images up to three pixels horizontally and vertically, and rotate the images with an angle up to 20 degrees.

\[
\text{imageAugmenter} = \text{imageDataAugmenter(} \ldots \\
\quad \text{ 'RandRotation'},[-20,20], \ldots \\
\quad \text{ 'RandXTranslation'},[-3 3], \ldots \\
\quad \text{ 'RandYTranslation'},[-3 3]) \\
\]

Create an augmentedImageDatastore object to use for network training and specify the image output size. During training, the datastore performs image augmentation and resizes the images. The datastore augments the images without saving any images to memory. trainNetwork updates the network parameters and then discards the augmented images.

\[
\text{imageSize} = \left[28 \ 28 \ 1 \right]; \\
\text{augimds} = \text{augmentedImageDatastore}(\text{imageSize},X\text{Train},Y\text{Train},'\text{DataAugmentation}',\text{imageAugmenter}); \\
\]

Specify the convolutional neural network architecture.

\[
\text{layers} = [\\
\quad \text{imageInputLayer}(\text{imageSize}) \\
\quad \text{convolution2dLayer}(3,8,'Padding','same') \\
\quad \text{batchNormalizationLayer} \\
\]

1-105
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,16,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,32,'Padding','same')
batchNormalizationLayer
reluLayer
fullyConnectedLayer(10)
softmaxLayer
classificationLayer;

Specify training options for stochastic gradient descent with momentum.

opts = trainingOptions('sgdm', ...
'MaxEpochs',15, ...
'Shuffle','every-epoch', ...
'Plots','training-progress', ...
'Verbose',false, ...
'ValidationData',{XValidation,YValidation});

Train the network. Because the validation images are not augmented, the validation accuracy is higher than the training accuracy.

net = trainNetwork(augimds,layers,opts);
Tips

• You can visualize many transformed images in the same figure by using the `imtile` function. For example, this code displays one mini-batch of transformed images from an augmented image datastore called `auimds`.

```
minibatch = read(auimds);
imshow(imtile(minibatch.input))
```

• By default, resizing is the only image preprocessing operation performed on images. Enable additional preprocessing operations by using the `DataAugmentation` name-value pair argument with an `imageDataAugmenter` object. Each time images are read from the augmented image datastore, a different random combination of preprocessing operations are applied to each image.

See Also

`imageDataAugmenter` | `imageInputLayer` | `trainNetwork`

Topics

“Deep Learning in MATLAB”
“Preprocess Images for Deep Learning”

Introduced in R2018a
augmentedImageSource

(To be removed) Generate batches of augmented image data

Note augmentedImageSource will be removed in a future release. Create an augmented image datastore using the augmentedImageDatastore function instead. For more information, see “Compatibility Considerations”.

Syntax

\[
\text{auimds} = \text{augmentedImageSource}(\text{outputSize}, \text{imds}) \\
\text{auimds} = \text{augmentedImageSource}(\text{outputSize}, X, Y) \\
\text{auimds} = \text{augmentedImageSource}(\text{outputSize}, \text{tbl}) \\
\text{auimds} = \text{augmentedImageSource}(\text{outputSize}, \text{tbl}, \text{responseNames}) \\
\text{auimds} = \text{augmentedImageSource}(__, \text{Name, Value})
\]

Description

\text{auimds} = \text{augmentedImageSource}(\text{outputSize}, \text{imds}) creates an augmented image datastore, auimds, for classification problems using images from image datastore imds, with output image size outputSize.

\text{auimds} = \text{augmentedImageSource}(\text{outputSize}, X, Y) creates an augmented image datastore for classification and regression problems. The array X contains the predictor variables and the array Y contains the categorical labels or numeric responses.

\text{auimds} = \text{augmentedImageSource}(\text{outputSize}, \text{tbl}) creates an augmented image datastore for classification and regression problems. The table, tbl, contains predictors and responses.

\text{auimds} = \text{augmentedImageSource}(\text{outputSize}, \text{tbl}, \text{responseNames}) creates an augmented image datastore for classification and regression problems. The table, tbl, contains predictors and responses. The responseNames argument specifies the response variable in tbl.

\text{auimds} = \text{augmentedImageSource}(__, \text{Name, Value}) creates an augmented image datastore, using name-value pairs to configure the image preprocessing done by the augmented image datastore. You can specify multiple name-value pairs.

Examples

Train Network with Rotational Invariance Using augmentedImageSource

Preprocess images using random rotation so that the trained convolutional neural network has rotational invariance. This example uses the augmentedImageSource function to create an augmented image datastore object. For an example of the recommended workflow that uses the augmentedImageDatastore function to create an augmented image datastore object, see “Train Network with Augmented Images” on page 1-104.

Load the sample data, which consists of synthetic images of handwritten numbers.

[XTrain,YTrain] = digitTrain4DArrayData;
digitTrain4DArrayData loads the digit training set as 4-D array data. XTrain is a 28-by-28-by-1-by-5000 array, where:

- 28 is the height and width of the images.
- 1 is the number of channels
- 5000 is the number of synthetic images of handwritten digits.

YTrain is a categorical vector containing the labels for each observation.

Create an image augmenter that rotates images during training. This image augmenter rotates each image by a random angle.

```matlab
imageAugmenter = imageDataAugmenter('RandRotation',[-180 180])
```

```matlab
imageAugmenter =
    imageDataAugmenter with properties:

    FillValue: 0
    RandXReflection: 0
    RandYReflection: 0
    RandRotation: [-180 180]
    RandScale: [1 1]
    RandXScale: [1 1]
    RandYScale: [1 1]
    RandXShear: [0 0]
    RandYShear: [0 0]
    RandXTranslation: [0 0]
    RandYTranslation: [0 0]
```

Use the augmentedImageSource function to create an augmented image datastore. Specify the size of augmented images, the training data, and the image augmenter.

```matlab
imageSize = [28 28 1];
auimds = augmentedImageSource(imageSize,XTrain,YTrain,'DataAugmentation',imageAugmenter)
```

```matlab
auimds =
    augmentedImageDatastore with properties:

    NumObservations: 5000
    MiniBatchSize: 128
    DataAugmentation: [1x1 imageDataAugmenter]
    ColorPreprocessing: 'none'
    OutputSize: [28 28]
    OutputSizeMode: 'resize'
    DispatchInBackground: 0
```

Specify the convolutional neural network architecture.

```matlab
layers = [imageInputLayer([28 28 1])

    convolution2dLayer(3,16,'Padding',1)
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(2,'Stride',2)]
```
convolution2dLayer(3,32,'Padding',1)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)

convolution2dLayer(3,64,'Padding',1)
batchNormalizationLayer
reluLayer

fullyConnectedLayer(10)
softmaxLayer
classificationLayer);

Set the training options for stochastic gradient descent with momentum.

opts = trainingOptions('sgdm', ...
'MaxEpochs',10, ...
'Shuffle','every-epoch', ...
'InitialLearnRate',1e-3);

Train the network.

net = trainNetwork(auimds,layers,opts);

<table>
<thead>
<tr>
<th>Epoch</th>
<th>Iteration</th>
<th>Time Elapsed</th>
<th>Mini-batch Accuracy</th>
<th>Mini-batch Loss</th>
<th>Base Learning Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>00:00:01</td>
<td>7.81%</td>
<td>2.4151</td>
<td>0.0010</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>00:00:23</td>
<td>52.34%</td>
<td>1.4930</td>
<td>0.0010</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>00:00:44</td>
<td>74.22%</td>
<td>1.0148</td>
<td>0.0010</td>
</tr>
<tr>
<td>4</td>
<td>150</td>
<td>00:01:05</td>
<td>78.13%</td>
<td>0.8153</td>
<td>0.0010</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>00:01:26</td>
<td>76.56%</td>
<td>0.6903</td>
<td>0.0010</td>
</tr>
<tr>
<td>6</td>
<td>250</td>
<td>00:01:45</td>
<td>87.50%</td>
<td>0.4891</td>
<td>0.0010</td>
</tr>
<tr>
<td>7</td>
<td>300</td>
<td>00:02:06</td>
<td>87.50%</td>
<td>0.4874</td>
<td>0.0010</td>
</tr>
<tr>
<td>8</td>
<td>350</td>
<td>00:02:30</td>
<td>87.50%</td>
<td>0.4866</td>
<td>0.0010</td>
</tr>
<tr>
<td>9</td>
<td>390</td>
<td>00:02:46</td>
<td>89.06%</td>
<td>0.4821</td>
<td>0.0010</td>
</tr>
<tr>
<td>10</td>
<td>390</td>
<td>00:02:46</td>
<td>89.06%</td>
<td>0.4821</td>
<td>0.0010</td>
</tr>
</tbody>
</table>

Input Arguments

outputSize — Size of output images
vector of two positive integers

Size of output images, specified as a vector of two positive integers. The first element specifies the number of rows in the output images, and the second element specifies the number of columns. This value sets the OutputSize on page 1-0 property of the returned augmented image datastore, auimds.

imds — Image datastore
ImageDatastore object

Image datastore, specified as an ImageDatastore object.

ImageDatastore allows batch reading of JPG or PNG image files using prefetching. If you use a custom function for reading the images, then ImageDatastore does not prefetch.
Tip Use `augmentedImageDatastore` for efficient preprocessing of images for deep learning including image resizing.

Do not use the `readFcn` option of `ImageDatastore` for preprocessing or resizing as this option is usually significantly slower.

X — Images
4-D numeric array

Images, specified as a 4-D numeric array. The first three dimensions are the height, width, and channels, and the last dimension indexes the individual images.

If the array contains NaNs, then they are propagated through the training. However, in most cases, the training fails to converge.

Data Types: `single` | `double` | `uint8` | `int8` | `uint16` | `int16` | `uint32` | `int32`

Y — Responses for classification or regression
array of categorical responses | numeric matrix | 4-D numeric array

Responses for classification or regression, specified as one of the following:

- For a classification problem, Y is a categorical vector containing the image labels.
- For a regression problem, Y can be an:
 - n-by-r numeric matrix. n is the number of observations and r is the number of responses.
 - h-by-w-by-c-by-n numeric array. h-by-w-by-c is the size of a single response and n is the number of observations.

Responses must not contain NaNs.

Data Types: `categorical` | `double`

tbl — Input data
`table`

Input data, specified as a table. tbl must contain the predictors in the first column as either absolute or relative image paths or images. The type and location of the responses depend on the problem:

- For a classification problem, the response must be a categorical variable containing labels for the images. If the name of the response variable is not specified in the call to `augmentedImageSource`, the responses must be in the second column. If the responses are in a different column of tbl, then you must specify the response variable name using the `responseNames` argument.
- For a regression problem, the responses must be numerical values in the column or columns after the first one. The responses can be either in multiple columns as scalars or in a single column as numeric vectors or cell arrays containing numeric 3-D arrays. When you do not specify the name of the response variable or variables, `augmentedImageSource` accepts the remaining columns of `tbl` as the response variables. You can specify the response variable names using the `responseNames` argument.

Responses must not contain NaNs. If there are NaNs in the predictor data, they are propagated through the training, however, in most cases the training fails to converge.
Data Types: table

responseNames — Names of response variables in the input table
character vector | cell array of character vectors | string array

Names of the response variables in the input table, specified as one of the following:

- For classification or regression tasks with a single response, responseNames must be a character vector or string scalar containing the response variable in the input table.

- For regression tasks with multiple responses, responseNames must be string array or cell array of character vectors containing the response variables in the input table.

Data Types: char | cell | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: augmentedImageSource([28,28],myTable,'OutputSizeMode','centercrop') creates an augmented image datastore that sets the OutputSizeMode property to crop images from the center.

ColorPreprocessing — Preprocessing color operations

'none' (default) | 'gray2rgb' | 'rgb2gray'

Preprocessing operations performed on color channels of input images, specified as the comma-separated pair consisting of 'ColorPreprocessing' and 'none', 'gray2rgb', or 'rgb2gray'. This argument sets the ColorPreprocessing on page 1-0 property of the returned augmented image datastore, auimds. The ColorPreprocessing property ensures that all output images from the augmented image datastore have the number of color channels required by inputImageLayer.

DataAugmentation — Preprocessing applied to input images

'none' (default) | imageDataAugmenter object

Preprocessing applied to input images, specified as the comma-separated pair consisting of 'DataAugmentation' and an imageDataAugmenter object or 'none'. This argument sets the DataAugmentation on page 1-0 property of the returned augmented image datastore, auimds. When DataAugmentation is 'none', no preprocessing is applied to input images.

OutputSizeMode — Method used to resize output images

'resize' (default) | 'centercrop' | 'randcrop'

Method used to resize output images, specified as the comma-separated pair consisting of 'OutputSizeMode' and one of the following. This argument sets the OutputSizeMode on page 1-0 property of the returned augmented image datastore, auimds.

- 'resize' — Scale the image to fit the output size. For more information, see imresize.
- 'centercrop' — Take a crop from the center of the training image. The crop has the same size as the output size.
- 'randcrop' — Take a random crop from the training image. The random crop has the same size as the output size.
Data Types: char | string

BackgroundExecution — Perform augmentation in parallel
false (default) | true

Perform augmentation in parallel, specified as the comma-separated pair consisting of 'BackgroundExecution' and false or true. This argument sets the DispatchInBackground property of the returned augmented image datastore, auimds. If 'BackgroundExecution' is true, and you have Parallel Computing Toolbox software installed, then the augmented image datastore auimds performs image augmentation in parallel.

Output Arguments

auimds — Augmented image datastore

augmentedImageDatastore object

Augmented image datastore, returned as an augmentedImageDatastore object.

Compatibility Considerations

augmentedImageSource object is removed

In R2017b, you could create an augmentedImageSource object to preprocess images for training deep learning networks. Starting in R2018a, the augmentedImageSource object has been removed. Use an augmentedImageDatastore object instead.

An augmentedImageDatastore has additional properties and methods to assist with data preprocessing. Unlike augmentedImageSource, which could be used for training only, you can use an augmentedImageDatastore for both training and prediction.

To create an augmentedImageDatastore object, you can use either the augmentedImageDatastore function (recommended) or the augmentedImageSource function.

augmentedImageSource function will be removed

Not recommended starting in R2018a

The augmentedImageSource function will be removed in a future release. Create an augmentedImageDatastore using the augmentedImageDatastore function instead.

To update your code, change instances of the function name augmentedImageSource to augmentedImageDatastore. You do not need to change the input arguments.

See Also

augmentedImageDatastore

Introduced in R2017b
averagePooling2dLayer

Average pooling layer

Description

An average pooling layer performs down-sampling by dividing the input into rectangular pooling regions and computing the average values of each region.

Creation

Syntax

layer = averagePooling2dLayer(poolSize)
layer = averagePooling2dLayer(poolSize,Name,Value)

Description

layer = averagePooling2dLayer(poolSize) creates an average pooling layer and sets the PoolSize property.

layer = averagePooling2dLayer(poolSize,Name,Value) sets the optional Stride and Name properties using name-value pairs. To specify input padding, use the 'Padding' name-value pair argument. For example, averagePooling2dLayer(2,'Stride',2) creates an average pooling layer with pool size [2 2] and stride [2 2]. You can specify multiple name-value pairs. Enclose each property name in single quotes.

Input Arguments

Name-Value Pair Arguments

Use comma-separated name-value pair arguments to specify the size of the zero padding to add along the edges of the layer input or to set the Stride and Name properties. Enclose names in single quotes.

Example: averagePooling2dLayer(2,'Stride',2) creates an average pooling layer with pool size [2 2] and stride [2 2].

Padding — Input edge padding

[0 0 0 0] (default) | vector of nonnegative integers | 'same'

Input edge padding, specified as the comma-separated pair consisting of 'Padding' and one of these values:

* 'same' — Add padding of size calculated by the software at training or prediction time so that the output has the same size as the input when the stride equals 1. If the stride is larger than 1, then the output size is ceil(inputSize/stride), where inputSize is the height or width of the input and stride is the stride in the corresponding dimension. The software adds the same amount of padding to the top and bottom, and to the left and right, if possible. If the padding that must be added vertically has an odd value, then the software adds extra padding to the bottom. If
the padding that must be added horizontally has an odd value, then the software adds extra padding to the right.

- Nonnegative integer \(p \) — Add padding of size \(p \) to all the edges of the input.
- Vector \([a \ b]\) of nonnegative integers — Add padding of size \(a \) to the top and bottom of the input and padding of size \(b \) to the left and right.
- Vector \([t \ b \ l \ r]\) of nonnegative integers — Add padding of size \(t \) to the top, \(b \) to the bottom, \(l \) to the left, and \(r \) to the right of the input.

Example: 'Padding', 1 adds one row of padding to the top and bottom, and one column of padding to the left and right of the input.
Example: 'Padding', 'same' adds padding so that the output has the same size as the input (if the stride equals 1).

Properties

Average Pooling

PoolSize — Dimensions of pooling regions
default value is \([h \ w] \), where \(h \) is the height and \(w \) is the width.

Dimensions of the pooling regions, specified as a vector of two positive integers \([h \ w]\), where \(h \) is the height and \(w \) is the width. When creating the layer, you can specify **PoolSize** as a scalar to use the same value for both dimensions.

If the stride dimensions **Stride** are less than the respective pooling dimensions, then the pooling regions overlap.

The padding dimensions **PaddingSize** must be less than the pooling region dimensions **PoolSize**.
Example: \([2 \ 1]\) specifies pooling regions of height 2 and width 1.

Stride — Step size for traversing input
default value is \([1 \ 1]\)

Step size for traversing the input vertically and horizontally, specified as a vector of two positive integers \([a \ b]\), where \(a \) is the vertical step size and \(b \) is the horizontal step size. When creating the layer, you can specify **Stride** as a scalar to use the same value for both dimensions.

If the stride dimensions **Stride** are less than the respective pooling dimensions, then the pooling regions overlap.

The padding dimensions **PaddingSize** must be less than the pooling region dimensions **PoolSize**.
Example: \([2 \ 3]\) specifies a vertical step size of 2 and a horizontal step size of 3.

PaddingSize — Size of padding
default value is \([0 \ 0 \ 0 \ 0]\)

Size of padding to apply to input borders, specified as a vector \([t \ b \ l \ r]\) of four nonnegative integers, where \(t \) is the padding applied to the top, \(b \) is the padding applied to the bottom, \(l \) is the padding applied to the left, and \(r \) is the padding applied to the right.

When you create a layer, use the 'Padding' name-value pair argument to specify the padding size.
Example: \([1 \ 1 \ 2 \ 2]\) adds one row of padding to the top and bottom, and two columns of padding to the left and right of the input.

PaddingMode — Method to determine padding size

'\textit{manual}' (default) | '\textit{same}'

Method to determine padding size, specified as '\textit{manual}' or '\textit{same}'.

The software automatically sets the value of PaddingMode based on the 'Padding' value you specify when creating a layer:

- If you set the 'Padding' option to a scalar or a vector of nonnegative integers, then the software automatically sets PaddingMode to 'manual'.
- If you set the 'Padding' option to 'same', then the software automatically sets PaddingMode to 'same' and calculates the size of the padding at training time so that the output has the same size as the input when the stride equals 1. If the stride is larger than 1, then the output size is \(\text{ceil}(\text{inputSize}/\text{stride})\), where \(\text{inputSize}\) is the height or width of the input and \(\text{stride}\) is the stride in the corresponding dimension. The software adds the same amount of padding to the top and bottom, and to the left and right, if possible. If the padding that must be added vertically has an odd value, then the software adds extra padding to the bottom. If the padding that must be added horizontally has an odd value, then the software adds extra padding to the right.

PaddingValue — Value used to pad input

\(\theta\) (default) | 'mean'

Value used to pad input, specified as \(\theta\) or 'mean'.

When you use the 'Padding' option to add padding to the input, the value of the padding applied can be one of the following:

- \(\theta\) — Input is padded with zeros at the positions specified by the 'Padding' option. The padded areas are included in the calculation of the average value of the pooling regions along the edges.
- 'mean' — Input is padded with the mean of the pooling region at the positions specified by the 'Padding' option. The padded areas are effectively excluded from the calculation of the average value of each pooling region.

Example: 'PaddingValue','mean'

Padding — Size of padding

\([\theta \ \theta]\) (default) | vector of two nonnegative integers

Note Padding property will be removed in a future release. Use PaddingSize instead. When creating a layer, use the 'Padding' name-value pair argument to specify the padding size.

Size of padding to apply to input borders vertically and horizontally, specified as a vector \([a \ b]\) of two nonnegative integers, where \(a\) is the padding applied to the top and bottom of the input data and \(b\) is the padding applied to the left and right.

Example: \([1 \ 1]\) adds one row of padding to the top and bottom, and one column of padding to the left and right of the input.
Layer

Name — Layer name

'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to '', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

NumInputs — Number of inputs

1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames — Input names

{''in''} (default)

Input names of the layer. This layer accepts a single input only.

Data Types: cell

NumOutputs — Number of outputs

1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames — Output names

{''out''} (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Create Average Pooling Layer

Create an average pooling layer with the name 'avg1'.

layer = averagePooling2dLayer(2,'Name','avg1')

layer =

AveragePooling2DLayer with properties:

 Name: 'avg1'

 Hyperparameters
 PoolSize: [2 2]
 Stride: [1 1]
 PaddingMode: 'manual'
 PaddingSize: [0 0 0 0]
Include an average pooling layer in a `Layer` array.

```plaintext
layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    averagePooling2dLayer(2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer
]
```

Create Average Pooling Layer with Nonoverlapping Pooling Regions

Create an average pooling layer with nonoverlapping pooling regions.

```plaintext
layer = averagePooling2dLayer(2,'Stride',2)
```

Include an average pooling layer with nonoverlapping regions in a `Layer` array.

```plaintext
layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    averagePooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer
]
```
softmaxLayer
classificationLayer]
layers = 7x1 Layer array with layers:
 1 '' Image Input 28x28x1 images with 'zerocenter' normalization
 2 '' Convolution 20 5x5 convolutions with stride [1 1] and padding [0 0 0 0]
 3 '' ReLU ReLU
 4 '' Average Pooling 2x2 average pooling with stride [2 2] and padding [0 0 0 0]
 5 '' Fully Connected 10 fully connected layer
 6 '' Softmax softmax
 7 '' Classification Output crossentropyex

Create Average Pooling Layer with Overlapping Pooling Regions

Create an average pooling layer with overlapping pooling regions.

layer = averagePooling2dLayer([3 2], 'Stride', 2)

layer = AveragePooling2DLayer with properties:

Name: ''

Hyperparameters
 PoolSize: [3 2]
 Stride: [2 2]
 PaddingMode: 'manual'
 PaddingSize: [0 0 0 0]
 PaddingValue: 0

This layer creates pooling regions of size [3 2] and takes the average of the six elements in each region. The pooling regions overlap because Stride includes dimensions that are less than the respective pooling dimensions PoolSize.

Include an average pooling layer with overlapping pooling regions in a Layer array.

layers = [...
 imageInputLayer([28 28 1])
 convolution2dLayer(5, 20)
 reluLayer
 averagePooling2dLayer([3 2], 'Stride', 2)
 fullyConnectedLayer(10)
 softmaxLayer
 classificationLayer]
layers = 7x1 Layer array with layers:
 1 '' Image Input 28x28x1 images with 'zerocenter' normalization
 2 '' Convolution 20 5x5 convolutions with stride [1 1] and padding [0 0 0 0]
 3 '' ReLU ReLU
 4 '' Average Pooling 3x2 average pooling with stride [2 2] and padding [0 0 0 0]
 5 '' Fully Connected 10 fully connected layer

1-119
More About

Average Pooling Layer

An average pooling layer performs down-sampling by dividing the input into rectangular pooling regions and computing the average values of each region.

Pooling layers follow the convolutional layers for down-sampling, hence, reducing the number of connections to the following layers. They do not perform any learning themselves, but reduce the number of parameters to be learned in the following layers. They also help reduce overfitting.

An average pooling layer outputs the average values of rectangular regions of its input. The size of the rectangular regions is determined by the poolSize argument of averagePoolingLayer. For example, if poolSize is [2,3], then the layer returns the average value of regions of height 2 and width 3.

Pooling layers scan through the input horizontally and vertically in step sizes you can specify using the 'Stride' name-value pair argument. If the pool size is smaller than or equal to the stride, then the pooling regions do not overlap.

For nonoverlapping regions (Pool Size and Stride are equal), if the input to the pooling layer is n-by-n, and the pooling region size is h-by-h, then the pooling layer down-samples the regions by h [1]. That is, the output of a max or average pooling layer for one channel of a convolutional layer is n/h-by-n/h. For overlapping regions, the output of a pooling layer is (Input Size - Pool Size + 2*Padding)/Stride + 1.

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also

convolution2dLayer | globalAveragePooling2dLayer | maxPooling2dLayer

Topics

“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2016a
averagePooling3dLayer

3-D average pooling layer

Description

A 3-D average pooling layer performs down-sampling by dividing three-dimensional input into cuboidal pooling regions and computing the average values of each region.

Creation

Syntax

layer = averagePooling3dLayer(poolSize)
layer = averagePooling3dLayer(poolSize,Name,Value)

Description

layer = averagePooling3dLayer(poolSize) creates an average pooling layer and sets the PoolSize property.

layer = averagePooling3dLayer(poolSize,Name,Value) sets the optional Stride and Name properties using name-value pairs. To specify input padding, use the 'Padding' name-value pair argument. For example, averagePooling3dLayer(2,'Stride',2) creates a 3-D average pooling layer with pool size [2 2 2] and stride [2 2 2]. You can specify multiple name-value pairs. Enclose each property name in single quotes.

Input Arguments

Name-Value Pair Arguments

Use comma-separated name-value pair arguments to specify the size of the zero padding to add along the edges of the layer input or to set the Stride and Name properties. Enclose names in single quotes.

Example: averagePooling3dLayer(2,'Stride',2) creates a 3-D average pooling layer with pool size [2 2 2] and stride [2 2 2].

Padding — Input edge padding

0 (default) | array of nonnegative integers | 'same'

Input edge padding, specified as the comma-separated pair consisting of 'Padding' and one of these values:

- 'same' — Add padding of size calculated by the software at training or prediction time so that the output has the same size as the input when the stride equals 1. If the stride is larger than 1, then the output size is ceil(inputSize/stride), where inputSize is the height, width, or depth of the input and stride is the stride in the corresponding dimension. The software adds the same amount of padding to the top and bottom, to the left and right, and to the front and back, if possible. If the padding in a given dimension has an odd value, then the software adds the extra
padding to the input as postpadding. In other words, the software adds extra vertical padding to the bottom, extra horizontal padding to the right, and extra depth padding to the back of the input.

- Nonnegative integer \(p \) — Add padding of size \(p \) to all the edges of the input.
- Three-element vector \([a \ b \ c]\) of nonnegative integers — Add padding of size \(a \) to the top and bottom, padding of size \(b \) to the left and right, and padding of size \(c \) to the front and back of the input.
- 2-by-3 matrix \([t \ l \ f; b \ r \ k]\) of nonnegative integers — Add padding of size \(t \) to the top, \(b \) to the bottom, \(l \) to the left, \(r \) to the right, \(f \) to the front, and \(k \) to the back of the input. In other words, the top row specifies the prepadding and the second row defines the postpadding in the three dimensions.

Example: ‘Padding’,1 adds one row of padding to the top and bottom, one column of padding to the left and right, and one plane of padding to the front and back of the input.

Example: ‘Padding’, ‘same’ adds padding so that the output has the same size as the input (if the stride equals 1).

Properties

Average Pooling

PoolSize — Dimensions of pooling regions

vector of three positive integers

Dimensions of the pooling regions, specified as a vector of three positive integers \([h \ w \ d]\), where \(h \) is the height, \(w \) is the width, and \(d \) is the depth. When creating the layer, you can specify PoolSize as a scalar to use the same value for all three dimensions.

If the stride dimensions Stride are less than the respective pooling dimensions, then the pooling regions overlap.

The padding dimensions PaddingSize must be less than the pooling region dimensions PoolSize.

Example: \([2 \ 1 \ 1]\) specifies pooling regions of height 2, width 1, and depth 1.

Stride — Step size for traversing input

\([1 \ 1 \ 1]\) (default) | vector of three positive integers

Step size for traversing the input in three dimensions, specified as a vector \([a \ b \ c]\) of three positive integers, where \(a \) is the vertical step size, \(b \) is the horizontal step size, and \(c \) is the step size along the depth direction. When creating the layer, you can specify Stride as a scalar to use the same value for step sizes in all three directions.

If the stride dimensions Stride are less than the respective pooling dimensions, then the pooling regions overlap.

The padding dimensions PaddingSize must be less than the pooling region dimensions PoolSize.

Example: \([2 \ 3 \ 1]\) specifies a vertical step size of 2, a horizontal step size of 3, and a step size along the depth of 1.

PaddingSize — Size of padding

\([0 \ 0 \ 0; 0 \ 0 \ 0]\) (default) | 2-by-3 matrix of nonnegative integers
Size of padding to apply to input borders, specified as a 2-by-3 matrix \[\begin{bmatrix} t & l & f; b & r & k \end{bmatrix}\] of nonnegative integers, where \(t\) and \(b\) are the padding applied to the top and bottom in the vertical direction, \(l\) and \(r\) are the padding applied to the left and right in the horizontal direction, and \(f\) and \(k\) are the padding applied to the front and back along the depth. In other words, the top row specifies the prepadding and the second row defines the postpadding in the three dimensions.

When you create a layer, use the 'Padding' name-value pair argument to specify the padding size. Example: \[\begin{bmatrix} 1 & 2 & 4; 1 & 2 & 4 \end{bmatrix}\] adds one row of padding to the top and bottom, two columns of padding to the left and right, and four planes of padding to the front and back of the input.

PaddingMode — Method to determine padding size

manual (default) | *same*

Method to determine padding size, specified as 'manual' or 'same'.

The software automatically sets the value of **PaddingMode** based on the 'Padding' value you specify when creating a layer.

- If you set the 'Padding' option to a scalar or a vector of nonnegative integers, then the software automatically sets **PaddingMode** to 'manual'.
- If you set the 'Padding' option to 'same', then the software automatically sets **PaddingMode** to 'same' and calculates the size of the padding at training time so that the output has the same size as the input when the stride equals 1. If the stride is larger than 1, then the output size is \(\text{ceil}(\text{inputSize}/\text{stride})\), where \(\text{inputSize}\) is the height, width, or depth of the input and \(\text{stride}\) is the stride in the corresponding dimension. The software adds the same amount of padding to the top and bottom, to the left and right, and to the front and back, if possible. If the padding in a given dimension has an odd value, then the software adds the extra padding to the input as postpadding. In other words, the software adds extra vertical padding to the bottom, extra horizontal padding to the right, and extra depth padding to the back of the input.

PaddingValue — Value used to pad input

0 (default) | 'mean'

Value used to pad input, specified as 0 or 'mean'.

When you use the 'Padding' option to add padding to the input, the value of the padding applied can be one of the following:

- 0 — Input is padded with zeros at the positions specified by the 'Padding' option. The padded areas are included in the calculation of the average value of the pooling regions along the edges.
- 'mean' — Input is padded with the mean of the pooling region at the positions specified by the 'Padding' option. The padded areas are effectively excluded from the calculation of the average value of each pooling region.

Example: 'PaddingValue','mean'

Layer

Name — Layer name

'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and **Name** is set to '', then the software automatically assigns a name to the layer at training time.
Data Types: char | string

NumInputs — Number of inputs

1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames — Input names

{
'in'} (default)

Input names of the layer. This layer accepts a single input only.

Data Types: cell

NumOutputs — Number of outputs

1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames — Output names

{
'out'} (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Create 3-D Average Pooling Layer

Create a 3-D average pooling layer with nonoverlapping pooling regions that downsamples by a factor of 2.

```matlab
layer = averagePooling3dLayer(2, 'Stride', 2)
```

```matlab
layer = AveragePooling3DLayer with properties:
    Name: ''
    Hyperparameters
    PoolSize: [2 2 2]
    Stride: [2 2 2]
    PaddingMode: 'manual'
    PaddingSize: [2x3 double]
    PaddingValue: 0
```

Include a 3-D average pooling layer in a Layer array.

```matlab
layers = [
    ...,
    image3dInputLayer([28 28 28 3])
    convolution3dLayer(5,20)
]
reluLayer
averagePooling3dLayer(2,'Stride',2)
fullyConnectedLayer(10)
softmaxLayer
classificationLayer

layers =
7x1 Layer array with layers:
1 '' 3-D Image Input  28x28x28x3 images with 'zerocenter' normalization
2 '' Convolution  20 5x5x5 convolutions with stride [1 1 1] and padding [0 0 0]
3 '' ReLU ReLU
4 '' Average 3D Pooling  2x2x2 average pooling with stride [2 2 2] and padding [0 0 0]
5 '' Fully Connected  10 fully connected layer
6 '' Softmax softmax
7 '' Classification Output crossentropyex

Create 3-D Average Pooling Layer with Overlapping Pooling Regions

Create a 3-D average pooling layer with overlapping pooling regions and padding for the top and bottom of the input.

layer = averagePooling3dLayer([3 2 2], 'Stride', 2, 'Padding', [1 0 0])

layer =
AveragePooling3DLayer with properties:

Name: ''

Hyperparameters
PoolSize: [3 2 2]
Stride: [2 2 2]
PaddingMode: 'manual'
PaddingSize: [2x3 double]
PaddingValue: 0

This layer creates pooling regions of size 3-by-2-by-2 and takes the average of the twelve elements in each region. The stride is 2 in all dimensions. The pooling regions overlap because there are stride dimensions Stride that are less than the respective pooling dimensions PoolSize.

More About

3-D Average Pooling Layer

A 3-D average pooling layer extends the functionality of an average pooling layer to a third dimension, depth. An average pooling layer performs down-sampling by dividing the input into rectangular or cuboidal pooling regions, and computing the average of each region. To learn more, see the definition of average pooling layer on page 1-120 on the averagePooling2dLayer reference page.

See Also
averagePooling2dLayer | convolution3dLayer | maxPooling3dLayer
Topics
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2019a
**avgpool**

Pool data to average values over spatial dimensions

**Syntax**

\[ dlY = \text{avgpool}(dlX, \text{poolsize}) \]
\[ dlY = \text{avgpool}(dlX, \text{poolsize, Name, Value}) \]
\[ dlY = \text{avgpool}(dlX, 'global') \]
\[ dlY = \text{avgpool}(___, 'DataFormat', FMT) \]

**Description**

The average pooling operation performs downsampling by dividing the input into pooling regions and computing the average value of each region.

*Note* This function applies the average pooling operation to `dlarray` data. If you want to apply average pooling within a `layerGraph` object or `Layer` array, use one of the following layers:

- `averagePooling2dLayer`
- `averagePooling3dLayer`
- `globalAveragePooling2dLayer`
- `globalAveragePooling3dLayer`

\[ dlY = \text{avgpool}(dlX, \text{poolsize}) \] performs downsampling by dividing the input `dlX` into rectangular or cuboidal regions defined by `poolsize` and computing the average value of the data in each region. The input `dlX` is a formatted `dlarray` with dimension labels. Pooling acts on spatial dimensions labeled `S`. The output `dlY` is a formatted `dlarray` with the same dimension labels as `dlX`.

\[ dlY = \text{avgpool}(dlX, \text{poolsize, Name, Value}) \] specifies options using one or more name-value pair arguments. For example, `Stride',3` sets the stride of the pooling operation.

\[ dlY = \text{avgpool}(dlX, 'global') \] computes the global average over the spatial dimensions of the input `dlX`. This syntax is equivalent to setting `poolsize` in the previous syntax to the size of the `S` dimensions of `dlX`.

\[ dlY = \text{avgpool}(___, 'DataFormat', FMT) \] specifies the dimension format `FMT` when `dlX` is not a formatted `dlarray`, in addition to the input arguments in previous syntaxes. The output `dlY` is an unformatted `dlarray` with the same dimension order as `dlX`.

**Examples**

**Pool Data to Average Values**

Pool data to average values over two spatial dimensions.
Create the input data as a dlarray. The data contains a single observation of random values with a height and width of six and a single channel.

```matlab
height = 6;
width = 6;
channels = 1;
observations = 1;

X = rand(height,width,channels,observations);
dlX = dlarray(X,'SSCB')
```

```
dlX =
6(S) × 6(S) × 1(C) × 1(B) dlarray
0.1781 0.8819 0.1564 0.4820 0.2518 0.7302
0.1280 0.6692 0.8555 0.1206 0.2904 0.3439
0.9991 0.1904 0.6448 0.5895 0.6171 0.5841
0.1711 0.3689 0.3763 0.2262 0.2653 0.1078
0.0326 0.4607 0.1909 0.3846 0.8244 0.9063
0.5612 0.9816 0.4283 0.5830 0.9827 0.8797
```

Pool the data to average values over pooling regions of size 2 using a stride of 2.

```matlab
dlY = avgpool(dlX,2,'Stride',2)
```

```
dlY =
3(S) × 3(S) × 1(C) × 1(B) dlarray
0.4643 0.4036 0.4041
0.4324 0.4592 0.3936
0.5090 0.3967 0.8983
```

**Pool Data to Global Average Value**

Pool data to its global average value.

Create the input data as an unformatted dlarray. The data contains a single observation of random values with a height of four, a width of six, and a single channel.

```matlab
height = 4;
width = 6;
channels = 1;
observations = 1;

X = rand(height,width,channels,observations);
dlX = dlarray(X)
```

```
dlX =
4×6 dlarray
0.8147 0.6324 0.9575 0.9572 0.4218 0.6557
0.9058 0.0975 0.9649 0.4854 0.9157 0.0357
0.1270 0.2785 0.1576 0.8003 0.7922 0.8491
0.9134 0.5469 0.9706 0.1419 0.9595 0.9340
```

Pool the data to the global average value. Specify the dimension format of the input data.
dlY = avgpool(dlX,'global','DataFormat','SSCB')

dlY =
1x1 dlarray
   0.6381

**Input Arguments**

dlX — Input data
dlarray

Input data, specified as a dlarray with or without dimension labels. When dlX is not a formatted dlarray, you must specify the dimension label format using 'DataFormat',FMT.

Pooling acts on dimensions that you specify as spatial dimensions using the 'S' dimension label. dlX must have at least one 'S' dimension. You can specify up to three dimensions in dlX as 'S' dimensions. The avgpool operation divides the data along each 'S' dimension into regions defined by poolsize. Values within each pooling region are averaged.

Data Types: single | double

poolsize — Size of pooling regions
numeric scalar | numeric vector

Size of the pooling regions, specified as a numeric scalar or numeric vector. If you specify poolsize as a scalar, the pooling regions have the same size along all spatial dimensions. To use rectangular or cuboidal pooling regions that have different sizes along each spatial dimension, specify poolsize as a vector with the same length as the number of spatial dimensions in dlX.

Example: 3
Data Types: single | double

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'Stride',2 specifies the stride of the pooling regions as 2.

DataFormat — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of 'DataFormat' and a character array or string FMT that provides a label for each dimension of the data. Each character in FMT must be one of the following:

- 'S' — Spatial
- 'C' — Channel
- 'B' — Batch (for example, samples and observations)
- 'T' — Time (for example, sequences)
- 'U' — Unspecified
You can specify multiple dimensions labeled ‘S’ or ‘U’. You can use the labels ‘C’, ‘B’, and ‘T’ at most once.

You must specify 'DataFormat' when the input data dlX is not a formatted dlarray.

Example: 'DataFormat','SSCB'

Data Types: char | string

Stride — Step size for traversing input data

1 (default) | numeric scalar | numeric vector

Step size for traversing the input data, specified as the comma-separated pair consisting of 'Stride' and a numeric scalar or numeric vector. If you specify 'Stride' as a scalar, the same value is used for all spatial dimensions. If you specify 'Stride' as a vector of the same size as the number of spatial dimensions of the input data, the vector values are used for the corresponding spatial dimensions.

The default value of 'Stride' is 1. If 'Stride' is less than poolsize in any dimension, then the pooling regions overlap.

The Stride parameter is not supported for global pooling using the 'global' option.

Example: 'Stride',3

Data Types: single | double

Padding — Size of padding applied to edges of data

0 (default) | 'same' | numeric scalar | numeric vector | numeric matrix

Size of padding applied to edges of data, specified as the comma-separated pair consisting of 'Padding' and one of the following:

- 'same' — Padding size is set so that the output size is the same as the input size when the stride is 1. More generally, the output size of each spatial dimension is ceil(inputSize/stride), where inputSize is the size of the input along a spatial dimension.
- Numeric scalar — The same amount of padding is applied to both ends of all spatial dimensions.
- Numeric vector — A different amount of padding is applied along each spatial dimension. Use a vector of size d, where d is the number of spatial dimensions of the input data. The ith element of the vector specifies the size of padding applied to the start and the end along the ith spatial dimension.
- Numeric matrix — A different amount of padding is applied to the start and end of each spatial dimension. Use a matrix of size 2-by-d, where d is the number of spatial dimensions of the input data. The element (1,d) specifies the size of padding applied to the start of spatial dimension d. The element (2,d) specifies the size of padding applied to the end of spatial dimension d. For example, in 2-D, the format is [top, left; bottom, right].

The 'Padding' parameter is not supported for global pooling using the 'global' option.

Example: 'Padding','same'

Data Types: single | double

PaddingValue — Value used to pad input

0 (default) | 'mean'

Value used to pad input, specified as 0 or 'mean'.

Data Types: double
When you use the 'Padding' option to add padding to the input, the value of the padding applied can be one of the following:

- **0** — Input is padded with zeros at the positions specified by the 'Padding' option. The padded areas are included in the calculation of the average value of the pooling regions along the edges.
- **'mean'** — Input is padded with the mean of the pooling region at the positions specified by the 'Padding' option. The padded areas are effectively excluded from the calculation of the average value of each pooling region.

Example: 'PaddingValue','mean'

### Output Arguments

**dlY — Pooled data**

dlarray

Pooled data, returned as a `dlarray`. The output `dlY` has the same underlying data type as the input `dlX`.

If the input data `dlX` is a formatted `dlarray`, `dlY` has the same dimension labels as `dlX`. If the input data is not a formatted `dlarray`, `dlY` is an unformatted `dlarray` with the same dimension order as the input data.

### More About

**Average Pooling**

The `avgpool` function pools the input data to average values over the spatial dimensions. For more information, see the definition of "Average Pooling Layer" on page 1-120 on the `averagePooling2dLayer` reference page.

### Extended Capabilities

**GPU Arrays**

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

- When the input argument `dlX` is a `dlarray` with underlying data of type `gpuArray`, this function runs on the GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

### See Also

dlarray | dlconv | dlfeval | dlgradient | maxpool

**Topics**

“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”

**Introduced in R2019b**
**batchnorm**

Normalize each channel of mini-batch

**Syntax**

```matlab
[dlY, mu, sigmaSq] = batchnorm(dlX, offset, scaleFactor)
dlY = batchnorm(dlX, offset, scaleFactor, mu, sigmaSq)
[dlY, datasetMu, datasetSigmaSq] = batchnorm(dlX, offset, scaleFactor, datasetMu, datasetSigmaSq)
[___] = batchnorm(___, 'DataFormat', FMT)
[___] = batchnorm(___, Name, Value)
```

**Description**

The batch normalization operation normalizes each input channel across a mini-batch. To speed up training of convolutional neural networks and reduce the sensitivity to network initialization, use batch normalization between convolution and nonlinear operations such as **relu**.

**Note** This function applies the batch normalization operation to `dlarray` data. If you want to apply batch normalization within a `layerGraph` object or `Layer` array, use the following layer:

- `batchNormalizationLayer`

The normalized activation is calculated using the following formula:

\[
\hat{x}_i = \frac{x_i - \mu_c}{\sqrt{\sigma_c^2 + \varepsilon}}
\]

where \( x_i \) is the input activation, \( \mu_c \) (mu) and \( \sigma_c^2 \) (sigmaSq) are the per-channel mean and variance, respectively, and \( \varepsilon \) is a small constant. mu and sigmaSq are calculated over all 'S' (spatial), 'B' (batch), 'T' (time), and 'U' (unspecified) dimensions in `dlX` for each channel.

The normalized activation is offset and scaled according to the following formula:

\[
y_i = \gamma \hat{x}_i + \beta.
\]

The offset \( \beta \) and scale factor \( \gamma \) are specified with the `offset` and `scaleFactor` arguments.

The input `dlX` is a formatted `dlarray` with dimension labels. The output `dlY` is a formatted `dlarray` with the same dimension labels as `dlX`.

`dlY = batchnorm(dlX, offset, scaleFactor, mu, sigmaSq)` normalizes each channel of the input `dlX` using the specified `mu` and `sigmaSq` statistics and applies a scale factor and offset.
[dlY, datasetMu, datasetSigmaSq] = batchnorm(dlX, offset, scaleFactor, datasetMu, datasetSigmaSq) normalizes each channel of the input mini-batch dlX using the mean and variance statistics computed from each channel and applies a scale factor and offset. The function also updates the data set statistics datasetMu and datasetSigmaSq using the following formula:

\[ s_n = \phi s_x + (1 - \phi) s_{n-1} \]

where \( s_n \) is the statistic computed over several mini-batches, \( s_x \) is the per-channel statistic of the current mini-batch, and \( \phi \) is the decay value for the statistic.

Use this syntax to iteratively update the mean and variance statistics over several mini-batches of data during training. Use the final value of the mean and variance computed over all training mini-batches to normalize data for prediction and classification.

\[ \begin{array}{l}
[\text{____}] = \text{batchnorm}(\text{____}, \text{'DataFormat'}, \text{FMT}) \text{ also specifies the dimension format FMT when}
\text{dlX is not a formatted dlarray in addition to the input arguments in previous syntaxes. The output}
\text{dlY is an unformatted dlarray with the same dimension order as dlX.}
\end{array} \]

\[ \begin{array}{l}
[\text{____}] = \text{batchnorm}(\text{____}, \text{Name}, \text{Value}) \text{ specifies options using one or more name-value pair}
\text{arguments in addition to the input arguments in previous syntaxes. For example, 'MeanDecay', 3 sets}
\text{the decay rate of the moving average computation.}
\end{array} \]

**Examples**

**Normalize Data and Obtain the Statistics**

Use `batchnorm` to normalize each channel of a mini-batch and obtain the per-channel normalization statistics.

Create the input data as a single observation of random values with a height and width of four and three channels.

```matlab
height = 4;
width = 4;
channels = 3;
observations = 1;
X = rand(height, width, channels, observations);
dlX = dlarray(X, 'SSCB');
```

Create the learnable parameters.

```matlab
offset = zeros(channels, 1);
scaleFactor = ones(channels, 1);
```

Compute the batch normalization and obtain the statistics of each channel of the batch.

```matlab
[dlY, mu, sigmaSq] = batchnorm(dlX, offset, scaleFactor);
mu
sigmaSq
```

\[
\begin{array}{l}
\text{mu = 3x1}
\text{0.6095}
\text{0.6063}
\text{0.4619}
\end{array} \]
**Update Mean and Variance Over Multiple Batches of Data**

Use the `batchnorm` function to normalize several batches of data and update the statistics of the whole data set after each normalization.

Create three batches of data. The data consists of 10-by-10 random arrays with five channels. Each batch contains 20 observations. The second and third batches are scaled by a multiplicative factor of 1.5 and 2.5, respectively, so the mean of the data set increases with each batch.

```matlab
height = 10;\nwidth = 10;\nchannels = 5;\nobservations = 20;\nX1 = rand(height,width,channels,observations);\ndlX1 = dlarray(X1,'SSCB');\nX2 = 1.5*rand(height,width,channels,observations);\ndlX2 = dlarray(X2,'SSCB');\nX3 = 2.5*rand(height,width,channels,observations);\ndlX3 = dlarray(X3,'SSCB');\n```

Create the learnable parameters.
```matlab
offset = zeros(channels,1);\nscale = ones(channels,1);\n```

Normalize the first batch of data, `dlX1`, using `batchnorm`. Obtain the values of the mean and variance of this batch as outputs.
```matlab
[dlY1,mu,sigmaSq] = batchnorm(dlX1,offset,scale);\n```

Normalize the second batch of data, `dlX2`. Use `mu` and `sigmaSq` as inputs to obtain the values of the combined mean and variance of the data in batches `dlX1` and `dlX2`.
```matlab
[dlY2,datasetMu,datasetSigmaSq] = batchnorm(dlX2,offset,scale,mu,sigmaSq);\n```

Normalize the final batch of data, `dlX3`. Update the data set statistics `datasetMu` and `datasetSigmaSq` to obtain the values of the combined mean and variance of all data in batches `dlX1`, `dlX2`, and `dlX3`.
```matlab
[dlY3,datasetMuFull,datasetSigmaSqFull] = batchnorm(dlX3,offset,scale,datasetMu,datasetSigmaSq);\n```

Observe the change in the mean of each channel as each batch is normalized.
```matlab
plot([mu';datasetMu';datasetMuFull'])\nlegend({'Channel 1','Channel 2','Channel 3','Channel 4','Channel 5'},'Location','southeast')\nxticks([1 2 3])\nxlabel('Number of Batches')\nxlim([0.9 3.1])\n```
ylabel('Per-Channel Mean')
title('Data Set Mean')

**Input Arguments**

**dlX — Input data**

dlarray | numeric array

Input data, specified as a dlarray with or without dimension labels or a numeric array. When dlX is not a formatted dlarray, you must specify the dimension label format using 'DataFormat',FMT. If dlX is a numeric array, at least one of offset or scaleFactor must be a dlarray.

dlX must have a ‘C’ channel dimension.

Data Types: single | double

**offset — Channel offset**

dlarray vector | numeric vector

Channel offset β, specified as a dlarray vector with or without dimension labels or a numeric vector.

If offset is a formatted dlarray, it must contain a ‘C’ dimension of the same size as the ‘C’ dimension of the input data.

Data Types: single | double
**scaleFactor — Channel scale factor**

dlarray vector | numeric vector

Channel scale factor $\gamma$, specified as a `dlarray` vector with or without dimension labels or a numeric vector.

If `scaleFactor` is a formatted `dlarray`, it must contain a 'C' dimension of the same size as the 'C' dimension of the input data.

Data Types: `single` | `double`

**mu — Mean statistic for normalization**

numeric vector

Mean statistic for normalization, specified as a numeric vector of the same length as the 'C' dimension of the input data.

$\mu$ is calculated over all 'S' (spatial), 'B' (batch), 'T' (time), and 'U' (unspecified) dimensions in `dlX` for each channel.

Data Types: `single` | `double`

**sigmaSq — Variance statistic for normalization**

numeric vector

Variance statistic for normalization, specified as a numeric vector of the same length as the 'C' dimension of the input data.

$\sigma^2$ is calculated over all 'S' (spatial), 'B' (batch), 'T' (time), and 'U' (unspecified) dimensions in `dlX` for each channel.

Data Types: `single` | `double`

**datasetMu — Mean statistic of several batches of data**

numeric vector

Mean statistic of several batches of data, specified as a numeric vector of the same length as the 'C' dimension of the input data. To iteratively update the dataset mean over several batches of input data, use the `datasetMu` output of a previous call to `batchnorm` as the `datasetMu` input argument.

Data Types: `single` | `double`

**datasetSigmaSq — Variance statistic of several batches of data**

numeric vector

Variance statistic of several batches of data, specified as a numeric vector of the same length as the 'C' dimension of the input data. To iteratively update the dataset variance over several batches of input data, use the `datasetSigmaSq` output of a previous call to `batchnorm` as the `datasetSigmaSq` input argument.

Data Types: `single` | `double`

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`. 
Example: ‘MeanDecay’, 0.3, ‘MeanVariance’, 0.5 sets the decay rate for the moving average computations of the mean and variance of several batches of data to 0.3 and 0.5, respectively.

**DataFormat — Dimension order of unformatted data**

char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of 'DataFormat' and a character array or string FMT that provides a label for each dimension of the data. Each character in FMT must be one of the following:

- 'S' — Spatial
- 'C' — Channel
- 'B' — Batch (for example, samples and observations)
- 'T' — Time (for example, sequences)
- 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at most once.

You must specify 'DataFormat' when the input data dlX is not a formatted dlarray.

Example: 'DataFormat', 'SSCB'

Data Types: char | string

**Epsilon — Variance offset**

numeric scalar

Variance offset for preventing divide-by-zero errors, specified as the comma-separated pair consisting of 'Epsilon' and a numeric scalar. The specified value must be greater than 1e-5. The default value is 1e-5.

Data Types: single | double

**MeanDecay — Mean decay value**

numeric scalar between 0 and 1

Decay value for the moving average computation of the datasetMu output, specified as the comma-separated pair consisting of 'MeanDecay' and a numeric scalar between 0 and 1. The default value is 0.1.

Data Types: single | double

**VarianceDecay — Variance decay value**

numeric scalar between 0 and 1

Decay value for the moving average computation of the datasetSigmaSq output, specified as the comma-separated pair consisting of 'VarianceDecay' and a numeric scalar between 0 and 1. The default value is 0.1.

Data Types: single | double
Output Arguments

**dlY — Normalized data**

*dlarray*

Normalized data, returned as a dlarray. The output dlY has the same underlying data type as the input dlX.

If the input data dlX is a formatted dlarray, dlY has the same dimension labels as dlX. If the input data is not a formatted dlarray, dlY is an unformatted dlarray with the same dimension order as the input data.

**mu — Per-channel mean**

*numeric column vector*

Per-channel mean of the input data, returned as a numeric column vector with length equal to the size of the 'C' dimension of the input data.

**sigmaSq — Per-channel variance**

*numeric column vector*

Per-channel variance of the input data, returned as a numeric column vector with length equal to the size of the 'C' dimension of the input data.

**datasetMu — Updated mean statistic of several batches of data**

*numeric vector*

Updated mean statistic of several batches of data, returned as a numeric vector with length equal to the size of the 'C' dimension of the input data. datasetMu is returned with the same shape as the input datasetMu.

The datasetMu output is the moving average computation of the mean statistic for each channel over several batches of input data. datasetMu is computed from the channel mean of the input data and the input datasetMu using the following formula:

\[
\text{datasetMu} = \text{meanDecay} \times \text{currentMu} + (1 - \text{meanDecay}) \times \text{datasetMu},
\]

where currentMu is the channel mean computed from the input data and the value of meanDecay is specified using the 'MeanDecay' name-value pair argument.

**datasetSigmaSq — Updated variance statistic of several batches of data**

*numeric vector*

Updated variance statistic of several batches of data, returned as a numeric vector with length equal to the size of the 'C' dimension of the input data. datasetSigmaSq is returned with the same shape as the input datasetSigmaSq.

The datasetSigmaSq output is the moving average computation of the variance statistic for each channel over several batches of input data. datasetSigmaSq is computed from the channel variance of the input data and the input datasetSigmaSq using the following formula:

\[
\text{datasetSigmaSq} = \text{varianceDecay} \times \text{currentSigmaSq} + (1 - \text{varianceDecay}) \times \text{datasetSigmaSq},
\]
where currentSigmaSq is the channel variance computed from the input data and the value of varianceDecay is specified using the ’VarianceDecay’ name-value pair.

**More About**

**Batch Normalization**

The batchnorm function normalizes each input channel of a mini-batch of data. For more information, see the definition of “Batch Normalization Layer” on page 1-146 on the batchNormalizationLayer reference page.

**Extended Capabilities**

**GPU Arrays**

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

- When at least one of the following input arguments is a gpuArray or a dlarray with underlying data of type gpuArray, this function runs on the GPU:
  - dlX
  - offset
  - scaleFactor

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

**See Also**

dlarray | dlconv | dlfeval | dlgradient | fullyconnect | groupnorm | relu

**Topics**

“Define Custom Training Loops, Loss Functions, and Networks”
“Update Batch Normalization Statistics Using Model Function”
“Train Network Using Model Function”
“Train Network with Multiple Outputs”

**Introduced in R2019b**
**batchNormalizationLayer**

Batch normalization layer

**Description**

A batch normalization layer normalizes each input channel across a mini-batch. To speed up training of convolutional neural networks and reduce the sensitivity to network initialization, use batch normalization layers between convolutional layers and nonlinearities, such as ReLU layers.

The layer first normalizes the activations of each channel by subtracting the mini-batch mean and dividing by the mini-batch standard deviation. Then, the layer shifts the input by a learnable offset $\beta$ and scales it by a learnable scale factor $\gamma$.

**Creation**

**Syntax**

```matlab
layer = batchNormalizationLayer
layer = batchNormalizationLayer('Name',Value)
```

**Description**

`layer = batchNormalizationLayer` creates a batch normalization layer.

`layer = batchNormalizationLayer('Name',Value)` creates a batch normalization layer and sets the optional “Batch Normalization” on page 1-141, “Parameters and Initialization” on page 1-142, “Learn Rate and Regularization” on page 1-143, and Name properties using name-value pairs. For example, `batchNormalizationLayer('Name','batchnorm')` creates a batch normalization layer with the name 'batchnorm'. You can specify multiple name-value pairs. Enclose each property name in quotes.

**Properties**

**Batch Normalization**

**TrainedMean — Input mean**

numeric array

Input mean of each channel, specified as one of the following:

- For 2-D image input, a numeric array of size 1-by-1-by-NumChannels
- For 3-D image input, a numeric array of size 1-by-1-by-1-by-NumChannels
- For feature or sequence input, a numeric array of size NumChannels-by-1

After network training finishes, the software calculates the input mean over the entire training data set. The layer uses `TrainedMean` (in place of the mini-batch mean) to normalize the input during prediction.
**TrainedVariance — Input variance**
numeric array

Input variance of each channel, specified as one of the following:

- For 2-D image input, a numeric array of size 1-by-1-by-NumChannels
- For 3-D image input, a numeric array of size 1-by-1-by-1-by-NumChannels
- For feature or sequence input, a numeric array of size NumChannels-by-1

After network training finishes, the software calculates the input variance over the entire training data set. The layer uses `TrainedVariance` (in place of the mini-batch variance) to normalize the input during prediction.

**Epsilon — Constant to add to mini-batch variances**
1e-5 (default) | numeric scalar

Constant to add to the mini-batch variances, specified as a numeric scalar equal to or larger than 1e-5.

The layer adds this constant to the mini-batch variances before normalization to ensure numerical stability and avoid division by zero.

**NumChannels — Number of input channels**
'auto' (default) | positive integer

Number of input channels, specified as 'auto' or a positive integer.

This property is always equal to the number of channels of the input to the layer. If `NumChannels` equals 'auto', then the software infers the correct value for the number of channels at training time.

**Parameters and Initialization**

**ScaleInitializer — Function to initialize channel scale factors**
'ones' (default) | 'narrow-normal' | function handle

Function to initialize the channel scale factors, specified as one of the following:

- 'ones' - Initialize the channel scale factors with ones.
- 'zeros' - Initialize the channel scale factors with zeros.
- 'narrow-normal' - Initialize the channel scale factors by independently sampling from a normal distribution with zero mean and standard deviation 0.01.
- Function handle - Initialize the channel scale factors with a custom function. If you specify a function handle, then the function must be of the form `scale = func(sz)`, where `sz` is the size of the scale. For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the channel scale factors when the `Scale` property is empty.

Data Types: char | string | function_handle

**OffsetInitializer — Function to initialize channel offsets**
'zeros' (default) | 'ones' | 'narrow-normal' | function handle

Function to initialize the channel offsets, specified as one of the following:
• 'zeros' – Initialize the channel offsets with zeros.
• 'ones' – Initialize the channel offsets with ones.
• 'narrow-normal' – Initialize the channel offsets by independently sampling from a normal distribution with zero mean and standard deviation 0.01.
• Function handle - Initialize the channel offsets with a custom function. If you specify a function handle, then the function must be of the form offset = func(sz), where sz is the size of the scale. For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the channel offsets when the Offset property is empty.

Data Types: char | string | function_handle

**Scale — Channel scale factors**

[] (default) | numeric array

Channel scale factors \( \gamma \), specified as a numeric array.

The channel scale factors are learnable parameters. When training a network, if Scale is nonempty, then trainNetwork uses the Scale property as the initial value. If Scale is empty, then trainNetwork uses the initializer specified by ScaleInitializer.

At training time, Scale is one of the following:

• For 2-D image input, a numeric array of size 1-by-1-by-NumChannels
• For 3-D image input, a numeric array of size 1-by-1-by-1-by-NumChannels
• For feature or sequence input, a numeric array of size NumChannels-by-1

**Offset — Channel offsets**

[] (default) | numeric array

Channel offsets \( \beta \), specified as a numeric array.

The channel offsets are learnable parameters. When training a network, if Offset is nonempty, then trainNetwork uses the Offset property as the initial value. If Offset is empty, then trainNetwork uses the initializer specified by OffsetInitializer.

At training time, Offset is one of the following:

• For 2-D image input, a numeric array of size 1-by-1-by-NumChannels
• For 3-D image input, a numeric array of size 1-by-1-by-1-by-NumChannels
• For feature or sequence input, a numeric array of size NumChannels-by-1

**Learn Rate and Regularization**

**ScaleLearnRateFactor — Learning rate factor for scale factors**

1 (default) | nonnegative scalar

Learning rate factor for the scale factors, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the scale factors in a layer. For example, if ScaleLearnRateFactor is 2, then the learning rate for the scale factors in the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the trainingOptions function.
**OffsetLearnRateFactor — Learning rate factor for offsets**

1 (default) | nonnegative scalar

Learning rate factor for the offsets, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the offsets in a layer. For example, if `OffsetLearnRateFactor` equals 2, then the learning rate for the offsets in the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the `trainingOptions` function.

**ScaleL2Factor — L\(_2\) regularization factor for scale factors**

1 (default) | nonnegative scalar

L\(_2\) regularization factor for the scale factors, specified as a nonnegative scalar.

The software multiplies this factor by the global L\(_2\) regularization factor to determine the learning rate for the scale factors in a layer. For example, if `ScaleL2Factor` is 2, then the L\(_2\) regularization for the offsets in the layer is twice the global L\(_2\) regularization factor. You can specify the global L\(_2\) regularization factor using the `trainingOptions` function.

**OffsetL2Factor — L\(_2\) regularization factor for offsets**

1 (default) | nonnegative scalar

L\(_2\) regularization factor for the offsets, specified as a nonnegative scalar.

The software multiplies this factor by the global L\(_2\) regularization factor to determine the learning rate for the offsets in a layer. For example, if `OffsetL2Factor` is 2, then the L\(_2\) regularization for the offsets in the layer is twice the global L\(_2\) regularization factor. You can specify the global L\(_2\) regularization factor using the `trainingOptions` function.

**Layer**

**Name — Layer name**

```
'' (default) | character vector | string scalar
```

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and `Name` is set to `'', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

**NumInputs — Number of inputs**

1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

**InputNames — Input names**

```
{'in'} (default)
```

Input names of the layer. This layer accepts a single input only.

Data Types: cell

**NumOutputs — Number of outputs**

1 (default)
Number of outputs of the layer. This layer has a single output only.

Data Types: double

**OutputNames — Output names**

{`'out'`} (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

**Examples**

**Create Batch Normalization Layer**

Create a batch normalization layer with the name ‘BN1’.

```matlab
definition = batchNormalizationLayer('Name','BN1')
definition = BatchNormalizationLayer with properties:
 Name: 'BN1'
 NumChannels: 'auto'
 TrainedMean: []
 TrainedVariance: []

Hyperparameters
 Epsilon: 1.0000e-05

Learnable Parameters
 Offset: []
 Scale: []

Show all properties
```

Include batch normalization layers in a `Layer` array.

```matlab
layers = [
 imageInputLayer([32 32 3])
 convolution2dLayer(3,16,'Padding',1)
 batchNormalizationLayer
 reluLayer
 maxPooling2dLayer(2,'Stride',2)
 convolution2dLayer(3,32,'Padding',1)
 batchNormalizationLayer
 reluLayer
 fullyConnectedLayer(10)
 softmaxLayer
 classificationLayer
]```
layers =
 11x1 Layer array with layers:
 1 Image Input 32x32x3 images with 'zerocenter' normalization
 2 Convolution 16 3x3 convolutions with stride [1 1] and padding [1 1 1 1]
 3 Batch Normalization Batch normalization
 4 ReLU ReLU
 5 Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]
 6 Convolution 32 3x3 convolutions with stride [1 1] and padding [1 1 1 1]
 7 Batch Normalization Batch normalization
 8 ReLU ReLU
 9 Fully Connected 10 fully connected layer
 10 Softmax softmax
 11 Classification Output crossentropyex

More About

Batch Normalization Layer

A batch normalization layer normalizes each input channel across a mini-batch. To speed up training
of convolutional neural networks and reduce the sensitivity to network initialization, use batch
normalization layers between convolutional layers and nonlinearities, such as ReLU layers.

The layer first normalizes the activations of each channel by subtracting the mini-batch mean and
dividing by the mini-batch standard deviation. Then, the layer shifts the input by a learnable offset \(\beta \)
and scales it by a learnable scale factor \(\gamma \). \(\beta \) and \(\gamma \) are themselves learnable parameters that are
updated during network training.

Batch normalization layers normalize the activations and gradients propagating through a neural
network, making network training an easier optimization problem. To take full advantage of this fact,
you can try increasing the learning rate. Since the optimization problem is easier, the parameter
updates can be larger and the network can learn faster. You can also try reducing the L_2 and dropout
regularization. With batch normalization layers, the activations of a specific image during training
depend on which images happen to appear in the same mini-batch. To take full advantage of this
regularizing effect, try shuffling the training data before every training epoch. To specify how often to
shuffle the data during training, use the 'Shuffle' name-value pair argument of
trainingOptions.

Algorithms

A batch normalization normalizes its inputs \(x_i \) by first calculating the mean \(\mu_B \) and variance \(\sigma^2_B \) over a
mini-batch and over each input channel. Then, it calculates the normalized activations as

\[
\hat{x}_i = \frac{x_i - \mu_B}{\sqrt{\sigma^2_B + \epsilon}}.
\]

Here, \(\epsilon \) (the property Epsilon) improves numerical stability when the mini-batch variance is very
small. To allow for the possibility that inputs with zero mean and unit variance are not optimal for the
layer that follows the batch normalization layer, the batch normalization layer further shifts and
scales the activations as

\[
y_i = \gamma \hat{x}_i + \beta.
\]
Here, the offset β and scale factor γ (Offset and Scale properties) are learnable parameters that are updated during network training.

When network training finishes, the batch normalization layer calculates the mean and variance over the full training set and stores them in the `TrainedMean` and `TrainedVariance` properties. When you use a trained network to make predictions on new images, the layer uses the trained mean and variance instead of the mini-batch mean and variance to normalize the activations.

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also

`convolution2dLayer` | `fullyConnectedLayer` | `groupNormalizationLayer` | `reluLayer` | `trainNetwork` | `trainingOptions`

Topics

“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2017b
bilstmLayer

Bidirectional long short-term memory (BiLSTM) layer

Description

A bidirectional LSTM (BiLSTM) layer learns bidirectional long-term dependencies between time steps of time series or sequence data. These dependencies can be useful when you want the network to learn from the complete time series at each time step.

Creation

Syntax

```matlab
layer = bilstmLayer(numHiddenUnits)
layer = bilstmLayer(numHiddenUnits,Name,Value)
```

Description

`layer = bilstmLayer(numHiddenUnits)` creates a bidirectional LSTM layer and sets the `NumHiddenUnits` property.

`layer = bilstmLayer(numHiddenUnits,Name,Value)` sets additional `OutputMode`, “Activations” on page 1-149, “Parameters and Initialization” on page 1-150, “Learn Rate and Regularization” on page 1-152, and `Name` properties using one or more name-value pair arguments. You can specify multiple name-value pair arguments. Enclose each property name in quotes.

Properties

BiLSTM

- **NumHiddenUnits — Number of hidden units**
 - Type: positive integer
 - Value: Number of hidden units (also known as the hidden size), specified as a positive integer.

The number of hidden units corresponds to the amount of information remembered between time steps (the hidden state). The hidden state can contain information from all previous time steps, regardless of the sequence length. If the number of hidden units is too large, then the layer might overfit to the training data. This value can vary from a few dozen to a few thousand.

The hidden state does not limit the number of time steps that are processed in an iteration. To split your sequences into smaller sequences for training, use the `'SequenceLength'` option in `trainingOptions`.

Example: 200

- **OutputMode — Format of output**
 - Values: `'sequence'` (default) | `'last'`

Format of output, specified as one of the following:

- 'sequence' – Output the complete sequence.
- 'last' – Output the last time step of the sequence.

InputSize — Input size

`'auto'` (default) | positive integer

Input size, specified as a positive integer or 'auto'. If InputSize is 'auto', then the software automatically assigns the input size at training time.

Example: 100

Activations

StateActivationFunction — Activation function to update the cell and hidden state

`'tanh'` (default) | 'softsign'

Activation function to update the cell and hidden state, specified as one of the following:

- 'tanh' – Use the hyperbolic tangent function (tanh).
- 'softsign' – Use the softsign function softsign(x) = \(\frac{x}{1 + |x|} \).

The layer uses this option as the function \(\sigma_c \) in the calculations to update the cell and hidden state. For more information on how activation functions are used in an LSTM layer, see “Long Short-Term Memory Layer” on page 1-695.

GateActivationFunction — Activation function to apply to the gates

`'sigmoid'` (default) | 'hard-sigmoid'

Activation function to apply to the gates, specified as one of the following:

- 'sigmoid' – Use the sigmoid function \(\sigma(x) = (1 + e^{-x})^{-1} \).
- 'hard-sigmoid' – Use the hard sigmoid function

\[
\sigma(x) = \begin{cases}
0 & \text{if } x < -2.5 \\
0.2x + 0.5 & \text{if } -2.5 \leq x \leq 2.5 \\
1 & \text{if } x > 2.5
\end{cases}
\]

The layer uses this option as the function \(\sigma_g \) in the calculations for the layer gates.

State

CellState — Initial value of cell state

numeric vector

Initial value of the cell state, specified as a 2*NumHiddenUnits-by-1 numeric vector. This value corresponds to the cell state at time step 0.

After setting this property, calls to the resetState function set the cell state to this value.

HiddenState — Initial value of hidden state

numeric vector
Initial value of the hidden state, specified as a 2*NumHiddenUnits-by-1 numeric vector. This value corresponds to the hidden state at time step 0.

After setting this property, calls to the resetState function set the hidden state to this value.

Parameters and Initialization

InputWeightsInitializer — Function to initialize input weights

'glorot' (default) | 'he' | 'orthogonal' | 'narrow-normal' | 'zeros' | 'ones' | function handle

Function to initialize the input weights, specified as one of the following:

- 'glorot' - Initialize the input weights with the Glorot initializer [1] (also known as Xavier initializer). The Glorot initializer independently samples from a uniform distribution with zero mean and variance $2/(\text{InputSize} + \text{numOut})$, where $\text{numOut} = 8*\text{NumHiddenUnits}$.
- 'he' - Initialize the input weights with the He initializer [2]. The He initializer samples from a normal distribution with zero mean and variance $2/\text{InputSize}$.
- 'orthogonal' - Initialize the input weights with Q, the orthogonal matrix given by the QR decomposition of $Z = QR$ for a random matrix Z sampled from a unit normal distribution. [3]
- 'narrow-normal' - Initialize the input weights by independently sampling from a normal distribution with zero mean and standard deviation 0.01.
- 'zeros' - Initialize the input weights with zeros.
- 'ones' - Initialize the input weights with ones.

Function handle - Initialize the input weights with a custom function. If you specify a function handle, then the function must be of the form `weights = func(sz)`, where `sz` is the size of the input weights.

The layer only initializes the input weights when the `InputWeights` property is empty.

Data Types: char | string | function_handle

RecurrentWeightsInitializer — Function to initialize recurrent weights

'orthogonal' (default) | 'glorot' | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function handle

Function to initialize the recurrent weights, specified as one of the following:

- 'orthogonal' - Initialize the input weights with Q, the orthogonal matrix given by the QR decomposition of $Z = QR$ for a random matrix Z sampled from a unit normal distribution. [3]
- 'glorot' - Initialize the recurrent weights with the Glorot initializer [1] (also known as Xavier initializer). The Glorot initializer independently samples from a uniform distribution with zero mean and variance $2/(\text{numIn} + \text{numOut})$, where $\text{numIn} = \text{NumHiddenUnits}$ and $\text{numOut} = 8*\text{NumHiddenUnits}$.
- 'he' - Initialize the recurrent weights with the He initializer [2]. The He initializer samples from a normal distribution with zero mean and variance $2/\text{NumHiddenUnits}$.
- 'narrow-normal' - Initialize the recurrent weights by independently sampling from a normal distribution with zero mean and standard deviation 0.01.
- 'zeros' - Initialize the recurrent weights with zeros.
- 'ones' - Initialize the recurrent weights with ones.
• Function handle - Initialize the recurrent weights with a custom function. If you specify a function handle, then the function must be of the form weights = func(sz), where sz is the size of the recurrent weights.

The layer only initializes the recurrent weights when the RecurrentWeights property is empty.

Data Types: char | string | function_handle

BiasInitializer — Function to initialize bias

'vent-forget-gate' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:

• 'vent-forget-gate' - Initialize the forget gate bias with ones and the remaining biases with zeros.
• 'narrow-normal' - Initialize the bias by independently sampling from a normal distribution with zero mean and standard deviation 0.01.
• 'ones' - Initialize the bias with ones.
• Function handle - Initialize the bias with a custom function. If you specify a function handle, then the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.

Data Types: char | string | function_handle

InputWeights — Input weights

[] (default) | matrix

Input weights, specified as a matrix.

The input weight matrix is a concatenation of the eight input weight matrices for the components (gates) in the bidirectional LSTM layer. The eight matrices are concatenated vertically in the following order:

1 Input gate (Forward)
2 Forget gate (Forward)
3 Cell candidate (Forward)
4 Output gate (Forward)
5 Input gate (Backward)
6 Forget gate (Backward)
7 Cell candidate (Backward)
8 Output gate (Backward)

The input weights are learnable parameters. When training a network, if InputWeights is nonempty, then trainNetwork uses the InputWeights property as the initial value. If InputWeights is empty, then trainNetwork uses the initializer specified by InputWeightsInitializer.

At training time, InputWeights is an 8*NumHiddenUnits-by-InputSize matrix.

RecurrentWeights — Recurrent weights

[] (default) | matrix
Recurrent weights, specified as a matrix.

The recurrent weight matrix is a concatenation of the eight recurrent weight matrices for the components (gates) in the bidirectional LSTM layer. The eight matrices are concatenated vertically in the following order:

1. Input gate (Forward)
2. Forget gate (Forward)
3. Cell candidate (Forward)
4. Output gate (Forward)
5. Input gate (Backward)
6. Forget gate (Backward)
7. Cell candidate (Backward)
8. Output gate (Backward)

The recurrent weights are learnable parameters. When training a network, if RecurrentWeights is nonempty, then trainNetwork uses the RecurrentWeights property as the initial value. If RecurrentWeights is empty, then trainNetwork uses the initializer specified by RecurrentWeightsInitializer.

At training time, RecurrentWeights is an 8*NumHiddenUnits-by-NumHiddenUnits matrix.

Bias — Layer biases

[] (default) | numeric vector

Layer biases, specified as a numeric vector.

The bias vector is a concatenation of the eight bias vectors for the components (gates) in the bidirectional LSTM layer. The eight vectors are concatenated vertically in the following order:

1. Input gate (Forward)
2. Forget gate (Forward)
3. Cell candidate (Forward)
4. Output gate (Forward)
5. Input gate (Backward)
6. Forget gate (Backward)
7. Cell candidate (Backward)
8. Output gate (Backward)

The layer biases are learnable parameters. When training a network, if Bias is nonempty, then trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork uses the initializer specified by BiasInitializer.

At training time, Bias is an 8*NumHiddenUnits-by-1 numeric vector.

Learn Rate and Regularization

InputWeightsLearnRateFactor — Learning rate factor for input weights

1 (default) | numeric scalar | 1-by-8 numeric vector
Learning rate factor for the input weights, specified as a numeric scalar or a 1-by-8 numeric vector.

The software multiplies this factor by the global learning rate to determine the learning rate factor for the input weights of the layer. For example, if InputWeightsLearnRateFactor is 2, then the learning rate factor for the input weights of the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the trainingOptions function.

To control the value of the learning rate factor for the four individual matrices in InputWeights, assign a 1-by-8 vector, where the entries correspond to the learning rate factor of the following:

1. Input gate (Forward)
2. Forget gate (Forward)
3. Cell candidate (Forward)
4. Output gate (Forward)
5. Input gate (Backward)
6. Forget gate (Backward)
7. Cell candidate (Backward)
8. Output gate (Backward)

To specify the same value for all the matrices, specify a nonnegative scalar.

Example: 0.1

RecurrentWeightsLearnRateFactor — Learning rate factor for recurrent weights
1 (default) | numeric scalar | 1-by-8 numeric vector

Learning rate factor for the recurrent weights, specified as a numeric scalar or a 1-by-8 numeric vector.

The software multiplies this factor by the global learning rate to determine the learning rate for the recurrent weights of the layer. For example, if RecurrentWeightsLearnRateFactor is 2, then the learning rate for the recurrent weights of the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the trainingOptions function.

To control the value of the learn rate for the four individual matrices in RecurrentWeights, assign a 1-by-8 vector, where the entries correspond to the learning rate factor of the following:

1. Input gate (Forward)
2. Forget gate (Forward)
3. Cell candidate (Forward)
4. Output gate (Forward)
5. Input gate (Backward)
6. Forget gate (Backward)
7. Cell candidate (Backward)
8. Output gate (Backward)

To specify the same value for all the matrices, specify a nonnegative scalar.

Example: 0.1
Example: \([1 \ 2 \ 1 \ 1 \ 1 \ 2 \ 1 \ 1]\)

BiasLearnRateFactor — Learning rate factor for biases

1 (default) | nonnegative scalar | 1-by-8 numeric vector

Learning rate factor for the biases, specified as a nonnegative scalar or a 1-by-8 numeric vector.

The software multiplies this factor by the global learning rate to determine the learning rate for the biases in this layer. For example, if `BiasLearnRateFactor` is 2, then the learning rate for the biases in the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the `trainingOptions` function.

To control the value of the learning rate factor for the four individual matrices in `Bias`, assign a 1-by-8 vector, where the entries correspond to the learning rate factor of the following:

1. Input gate (Forward)
2. Forget gate (Forward)
3. Cell candidate (Forward)
4. Output gate (Forward)
5. Input gate (Backward)
6. Forget gate (Backward)
7. Cell candidate (Backward)
8. Output gate (Backward)

To specify the same value for all the matrices, specify a nonnegative scalar.

Example: 2

Example: \([1 \ 2 \ 1 \ 1 \ 1 \ 2 \ 1 \ 1]\)

InputWeightsL2Factor — L2 regularization factor for input weights

1 (default) | numeric scalar | 1-by-8 numeric vector

L2 regularization factor for the input weights, specified as a numeric scalar or a 1-by-8 numeric vector.

The software multiplies this factor by the global L2 regularization factor to determine the L2 regularization factor for the input weights of the layer. For example, if `InputWeightsL2Factor` is 2, then the L2 regularization factor for the input weights of the layer is twice the current global L2 regularization factor. The software determines the L2 regularization factor based on the settings specified with the `trainingOptions` function.

To control the value of the L2 regularization factor for the four individual matrices in `InputWeights`, assign a 1-by-8 vector, where the entries correspond to the L2 regularization factor of the following:

1. Input gate (Forward)
2. Forget gate (Forward)
3. Cell candidate (Forward)
4. Output gate (Forward)
5. Input gate (Backward)
6. Forget gate (Backward)
7 Cell candidate (Backward)
8 Output gate (Backward)

To specify the same value for all the matrices, specify a nonnegative scalar.

Example: 0.1
Example: [1 2 1 1 1 2 1 1]

RecurrentWeightsL2Factor — L2 regularization factor for recurrent weights

L2 regularization factor for the recurrent weights, specified as a numeric scalar or a 1-by-8 numeric vector.

The software multiplies this factor by the global L2 regularization factor to determine the L2 regularization factor for the recurrent weights of the layer. For example, if `RecurrentWeightsL2Factor` is 2, then the L2 regularization factor for the recurrent weights of the layer is twice the current global L2 regularization factor. The software determines the L2 regularization factor based on the settings specified with the `trainingOptions` function.

To control the value of the L2 regularization factor for the four individual matrices in `RecurrentWeights`, assign a 1-by-8 vector, where the entries correspond to the L2 regularization factor of the following:

1 Input gate (Forward)
2 Forget gate (Forward)
3 Cell candidate (Forward)
4 Output gate (Forward)
5 Input gate (Backward)
6 Forget gate (Backward)
7 Cell candidate (Backward)
8 Output gate (Backward)

To specify the same value for all the matrices, specify a nonnegative scalar.

Example: 0.1
Example: [1 2 1 1 1 2 1 1]

BiasL2Factor — L2 regularization factor for biases

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2 regularization for the biases in this layer. For example, if `BiasL2Factor` is 2, then the L2 regularization for the biases in this layer is twice the global L2 regularization factor. You can specify the global L2 regularization factor using the `trainingOptions` function.

To control the value of the L2 regularization factor for the four individual matrices in `Bias`, assign a 1-by-8 vector, where the entries correspond to the L2 regularization factor of the following:
1 Input gate (Forward)
2 Forget gate (Forward)
3 Cell candidate (Forward)
4 Output gate (Forward)
5 Input gate (Backward)
6 Forget gate (Backward)
7 Cell candidate (Backward)
8 Output gate (Backward)

To specify the same value for all the matrices, specify a nonnegative scalar.
Example: 2
Example: [1 2 1 1 1 2 1 1]

Layer

Name — Layer name
’d (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. If Name is set to ’’, then the software automatically assigns a name at training time.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{‘in’} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{‘out’} (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples
Create Bidirectional LSTM Layer

Create a bidirectional LSTM layer with the name 'bilstm1' and 100 hidden units.

```matlab
layer = bilstmLayer(100,'Name','bilstm1')
```

```matlab
layer = 
    BiLSTMLayer with properties:
        Name: 'bilstm1'
        Hyperparameters
            InputSize: 'auto'
            NumHiddenUnits: 100
            OutputMode: 'sequence'
            StateActivationFunction: 'tanh'
            GateActivationFunction: 'sigmoid'
        Learnable Parameters
            InputWeights: []
            RecurrentWeights: []
            Bias: []
        State Parameters
            HiddenState: []
            CellState: []
```

Include a bidirectional LSTM layer in a Layer array.

```matlab
inputSize = 12;
numHiddenUnits = 100;
numClasses = 9;
layers = [
    sequenceInputLayer(inputSize)
    bilstmLayer(numHiddenUnits)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer
];
layers = 
    5x1 Layer array with layers:
    1    ''    Sequence Input    Sequence input with 12 dimensions
    2    ''    BiLSTM    BiLSTM with 100 hidden units
    3    ''    Fully Connected    9 fully connected layer
    4    ''    Softmax    softmax
    5    ''    Classification Output    crossentropyex
```

Compatibility Considerations

Default input weights initialization is Glorot

Behavior changed in R2019a
Starting in R2019a, the software, by default, initializes the layer input weights of this layer using the Glorot initializer. This behavior helps stabilize training and usually reduces the training time of deep networks.

In previous releases, the software, by default, initializes the layer input weights using the by sampling from a normal distribution with zero mean and variance 0.01. To reproduce this behavior, set the 'InputWeightsInitializer' option of the layer to 'narrow-normal'.

Default recurrent weights initialization is orthogonal
Behavior changed in R2019a

Starting in R2019a, the software, by default, initializes the layer recurrent weights of this layer with Q, the orthogonal matrix given by the QR decomposition of $Z = QR$ for a random matrix Z sampled from a unit normal distribution. This behavior helps stabilize training and usually reduces the training time of deep networks.

In previous releases, the software, by default, initializes the layer recurrent weights using the by sampling from a normal distribution with zero mean and variance 0.01. To reproduce this behavior, set the 'RecurrentWeightsInitializer' option of the layer to 'narrow-normal'.

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

- For code generation, the *StateActivationFunction* property must be set to 'tanh'.
- For code generation, the *GateActivationFunction* property must be set to 'sigmoid'.

See Also

Deep Network Designer | classifyAndUpdateState | flattenLayer | gruLayer | lstmLayer | predictAndUpdateState | resetState | sequenceFoldingLayer | sequenceInputLayer | sequenceUnfoldingLayer

Topics

“Sequence Classification Using Deep Learning”
“Classify Videos Using Deep Learning”
“Visualize Activations of LSTM Network”
“Long Short-Term Memory Networks”
“Specify Layers of Convolutional Neural Network”
“Set Up Parameters and Train Convolutional Neural Network”
“Compare Layer Weight Initializers”
“Deep Learning in MATLAB”
“List of Deep Learning Layers”

Introduced in R2018a

calibrate

Simulate and collect ranges of a deep neural network

Syntax

```matlab
calibrationResults = calibrate(quantObj, calData)
calibrationResults = calibrate(quantObj, calData,Name,Value)
```

Description

```matlab
calibrationResults = calibrate(quantObj, calData) exercises the network and collects the dynamic ranges of the weights and biases in the convolution and fully connected layers of the network and the dynamic ranges of the activations in all layers of the network specified by `dlquantizer` object, `quantObj`, using the data specified by `calData`.
```

```matlab
calibrationResults = calibrate(quantObj, calData,Name,Value) exercises the network and collects the dynamic ranges of the weights and biases in the convolution and fully connected layers of the network and the dynamic ranges of the activations in all layers of the network specified by `dlquantizer` object, `quantObj`, using the data specified by `calData`, with additional arguments specified by one or more name-value pair arguments.
```

To learn about the products required to quantize a deep neural network, see “Quantization Workflow Prerequisites”

Examples

Quantize a Neural Network

This example shows how to quantize learnable parameters in the convolution layers of a neural network, and explore the behavior of the quantized network. In this example, you quantize the `squeezenet` neural network after retraining the network to classify new images according to the “Train Deep Learning Network to Classify New Images” example. In this example, the memory required for the network is reduced approximately 75% through quantization while the accuracy of the network is not affected.

Load the pretrained network.

```matlab
net
```

```matlab
DAGNetwork with properties:

Layers: [68x1 nnet.cnn.layer.Layer]
Connections: [75x2 table]
InputNames: {'data'}
OutputNames: {'new_classoutput'}
```

Define calibration and validation data to use for quantization.
The calibration data is used to collect the dynamic ranges of the weights and biases in the convolution and fully connected layers of the network and the dynamic ranges of the activations in all layers of the network. For the best quantization results, the calibration data must be representative of inputs to the network.

The validation data is used to test the network after quantization to understand the effects of the limited range and precision of the quantized convolution layers in the network.

In this example, use the images in the MerchData data set. Define an augmentedImageDatastore object to resize the data for the network. Then, split the data into calibration and validation data sets.

```matlab
unzip('MerchData.zip');
imdss = imageDatastore('MerchData', ... 
   'IncludeSubfolders',true, ... 
   'LabelSource','foldernames');
[calData, valData] = splitEachLabel(imdss, 0.7, 'randomized');
aug_calData = augmentedImageDatastore([227 227], calData);
aug_valData = augmentedImageDatastore([227 227], valData);
```

Create a `dlquantizer` object and specify the network to quantize.

```matlab
quantObj = dlquantizer(net);
```

Define a metric function to use to compare the behavior of the network before and after quantization. Save this function in a local file.

```matlab
function accuracy = hComputeModelAccuracy(predictionScores, net, dataStore)
    % Computes model-level accuracy statistics
    % Load ground truth
    tmp = readall(dataStore);
    groundTruth = tmp.response;
    % Compare with predicted label with actual ground truth
    predictionError = {};
    for idx=1:numel(groundTruth)
        [~, idy] = max(predictionScores(idx,:));
        yActual = net.Layers(end).Classes(idy);
        predictionError{end+1} = (yActual == groundTruth(idx)); end
    % Sum all prediction errors.
    predictionError = [predictionError{:}];
    accuracy = sum(predictionError)/numel(predictionError);
end
```

Specify the metric function in a `dlquantizationOptions` object.

```matlab
quantOpts = dlquantizationOptions('MetricFcn', ... 
   @(x)hComputeModelAccuracy(x, net, aug_valData));
```

Use the `calibrate` function to exercise the network with sample inputs and collect range information. The `calibrate` function exercises the network and collects the dynamic ranges of the weights and biases in the convolution and fully connected layers of the network and the dynamic ranges of the activations in all layers of the network. The function returns a table. Each row of the table contains range information for a learnable parameter of the optimized network.

```matlab
calResults = calibrate(quantObj, aug_calData)
calResults =
   95x5 table
   ____________________________________________________    _________________________    ________________________    __________    ___________
   Optimized Layer Name                      Network Layer Name        Learnables / Activations     MinValue      MaxValue
   ____________________________________________________    _________________________    ________________________    __________    ___________
```
Use the validate function to quantize the learnable parameters in the convolution layers of the network and examine the network. The function uses the metric function defined in the dlquantizationOptions object to compare the results of the network before and after quantization.

valResults = validate(quantObj, aug_valData, quantOpts)

valResults =
struct with fields:
 NumSamples: 20
 MetricResults: [1x1 struct]

Examine the MetricResults.Result field of the validation output to see the performance of the quantized network.

valResults.MetricResults.Result

ans =
2x3 table
 NetworkImplementation MetricOutput LearnableParameterMemory(bytes)
_____________________ ____________ _______________________________
{'Floating-Point'} 1 2.9003e+06
{'Quantized' } 1 7.3393e+05

In this example, the memory required for the network was reduced approximately 75% through quantization. The accuracy of the network is not affected.

The weights, biases, and activations of the convolution layers of the network specified in the dlquantizer object now use scaled 8-bit integer data types.

Quantize a Neural Network for FPGA Execution Environment

This example shows how to quantize learnable parameters in the convolution layers of a neural network, and explore the behavior of the quantized network. In this example, you quantize the LogoNet neural network. Quantization helps reduce the memory requirement of a deep neural network by quantizing weights, biases and activations of network layers to 8-bit scaled integer data types. Use MATLAB® to retrieve the prediction results from the target device.

To run this example, you need the products listed under FPGA in “Quantization Workflow Prerequisites”.

1-162
For additional requirements, see “Quantization Workflow Prerequisites”.

Create a file in your current working directory called `getLogoNetwork.m`. Enter these lines into the file:

```matlab
function net = getLogoNetwork()
    data = getLogoData();
    net = data.convnet;
end

function data = getLogoData()
    if ~isfile('LogoNet.mat')
        url = 'https://www.mathworks.com/supportfiles/gpucoder/cnn_models/logo_detection/LogoNet.mat';
        websave('LogoNet.mat',url);
    end
    data = load('LogoNet.mat');
end
```

Load the pretrained network.

```matlab
snet = getLogoNetwork();
```

Define calibration and validation data to use for quantization.

The calibration data is used to collect the dynamic ranges of the weights and biases in the convolution and fully connected layers of the network and the dynamic ranges of the activations in all layers of the network. For the best quantization results, the calibration data must be representative of inputs to the network.

The validation data is used to test the network after quantization to understand the effects of the limited range and precision of the quantized convolution layers in the network.

This example uses the images in the `logos_dataset` data set. Define an augmented `ImageDatastore` object to resize the data for the network. Then, split the data into calibration and validation data sets.

```matlab
curDir = pwd;
newDir = fullfile(matlabroot,'examples','deeplearning_shared','data','logos_dataset.zip');
copyfile(newDir,curDir);
unzip('logos_dataset.zip');
imageData = imageDatastore(fullfile(curDir,'logos_dataset'),...
    'IncludeSubfolders',true,'FileExtensions','.JPG','LabelSource','foldernames');
[calibrationData, validationData] = splitEachLabel(imageData, 0.5,'randomized');
```

Create a `dlquantizer` object and specify the network to quantize.

```matlab
dlQuantObj = dlquantizer(snet,'ExecutionEnvironment','FPGA');
```

Use the `calibrate` function to exercise the network with sample inputs and collect range information. The `calibrate` function exercises the network and collects the dynamic ranges of the weights and biases in the convolution and fully connected layers of the network and the dynamic ranges of the activations in all layers of the network. The function returns a table. Each row of the table contains range information for a learnable parameter of the optimized network.

```matlab
dlQuantObj.calibrate(calibrationData)
```
ans =

<table>
<thead>
<tr>
<th>Optimized Layer Name</th>
<th>Network Layer Name</th>
<th>Learnables / Activations</th>
<th>MinValue</th>
<th>MaxValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>{'conv_1_Weights'}</td>
<td>{'conv_1'}</td>
<td>"Weights"</td>
<td>-0.048978</td>
<td>0.039352</td>
</tr>
<tr>
<td>{'conv_1_Bias'}</td>
<td>{'conv_1'}</td>
<td>"Bias"</td>
<td>0.99996</td>
<td>1.0028</td>
</tr>
<tr>
<td>{'conv_2_Weights'}</td>
<td>{'conv_2'}</td>
<td>"Weights"</td>
<td>-0.055518</td>
<td>0.061901</td>
</tr>
<tr>
<td>{'conv_2_Bias'}</td>
<td>{'conv_2'}</td>
<td>"Bias"</td>
<td>-0.0001171</td>
<td>0.00227</td>
</tr>
<tr>
<td>{'conv_3_Weights'}</td>
<td>{'conv_3'}</td>
<td>"Weights"</td>
<td>-0.045892</td>
<td>0.046927</td>
</tr>
<tr>
<td>{'conv_3_Bias'}</td>
<td>{'conv_3'}</td>
<td>"Bias"</td>
<td>-0.0013998</td>
<td>0.0015218</td>
</tr>
<tr>
<td>{'conv_4_Weights'}</td>
<td>{'conv_4'}</td>
<td>"Weights"</td>
<td>-0.045697</td>
<td>0.051</td>
</tr>
<tr>
<td>{'conv_4_Bias'}</td>
<td>{'conv_4'}</td>
<td>"Bias"</td>
<td>-0.000164</td>
<td>0.0037892</td>
</tr>
<tr>
<td>{'conv_4_Weights'}</td>
<td>{'conv_4'}</td>
<td>"Weights"</td>
<td>-0.051394</td>
<td>0.054344</td>
</tr>
<tr>
<td>{'conv_4_Bias'}</td>
<td>{'conv_4'}</td>
<td>"Bias"</td>
<td>-0.00052319</td>
<td>0.0008445</td>
</tr>
<tr>
<td>{'fc_1_Weights'}</td>
<td>{'fc_1'}</td>
<td>"Weights"</td>
<td>-0.05016</td>
<td>0.051557</td>
</tr>
<tr>
<td>{'fc_1_Bias'}</td>
<td>{'fc_1'}</td>
<td>"Bias"</td>
<td>-0.0017564</td>
<td>0.0018502</td>
</tr>
<tr>
<td>{'fc_2_Weights'}</td>
<td>{'fc_2'}</td>
<td>"Weights"</td>
<td>-0.050706</td>
<td>0.04678</td>
</tr>
<tr>
<td>{'fc_2_Bias'}</td>
<td>{'fc_2'}</td>
<td>"Bias"</td>
<td>-0.02951</td>
<td>0.024855</td>
</tr>
<tr>
<td>{'fc_3_Weights'}</td>
<td>{'fc_3'}</td>
<td>"Weights"</td>
<td>-0.139.34</td>
<td>198.72</td>
</tr>
<tr>
<td>{'fc_3_Bias'}</td>
<td>{'fc_3'}</td>
<td>"Bias"</td>
<td>0</td>
<td>255</td>
</tr>
<tr>
<td>{'imageinput'</td>
<td>{'imageinput'}</td>
<td>"Activations"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{'imageinput_normalization'}</td>
<td>{'imageinput'}</td>
<td>"Activations"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Create a target object with a custom name for your target device and an interface to connect your target device to the host computer. Interface options are JTAG and Ethernet. To create the target object, enter:

```matlab
hTarget = dlhdl.Target('Intel', 'Interface', 'JTAG');
```

Define a metric function to use to compare the behavior of the network before and after quantization. Save this function in a local file.

```matlab
function accuracy = hComputeAccuracy(predictionScores, net, dataStore)
    % hComputeAccuracy test helper function computes model level accuracy statistics
    % Copyright 2020 The MathWorks, Inc.
    % Load ground truth
    groundTruth = dataStore.Labels;
    % Compare with predicted label with actual ground truth
    predictionError = {};
    for idx=1:numel(groundTruth)
        [~, idy] = max(predictionScores(idx, :));
        yActual = net.Layers(end).Classes(idy);
        predictionError{end+1} = (yActual == groundTruth(idx)); % #ok
    end
    % Sum all prediction errors.
    predictionError = [predictionError{:}];
    accuracy = sum(predictionError)/numel(predictionError);
end
```

Specify the metric function in a `dlquantizationOptions` object.

```matlab
options = dlquantizationOptions('MetricFcn', ...
    @(x)hComputeModelAccuracy(x, snet, validationData), 'Bitstream', 'arria10soc_int8', ...
    'Target', hTarget);
```

To compile and deploy the quantized network, run the `validate` function of the `dlquantizer` object. Use the `validate` function to quantize the learnable parameters in the convolution layers of the network and exercise the network. This function uses the output of the `compile` function to program the FPGA board by using the programming file. It also downloads the network weights and biases. The `deploy` function checks for the Intel Quartus tool and the supported tool version. It then starts programming the FPGA device by using the `.sof` file, displays progress messages, and the time it takes to deploy the network. The `validate` function uses the metric function defined in the `dlquantizationOptions` object to compare the results of the network before and after quantization.

```matlab
prediction = dlQuantObj.validate(validationData, options);
```
Programming FPGA Bitstream using JTAG...
Programming the FPGA bitstream has been completed successfully.
Conv Weights loaded. Current time is 16-Jul-2020 12:45:10
Loading weights to Conv Processor.
FC Weights loaded. Current time is 16-Jul-2020 12:45:26
Finished writing input activations.
Running single input activations.

Deep Learning Processor Profiler Performance Results

<table>
<thead>
<tr>
<th>Layer Type</th>
<th>Latency (cycles)</th>
<th>Latency (seconds)</th>
<th>Frames</th>
<th>Total Latency</th>
<th>Frames/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>13570959</td>
<td>0.09047</td>
<td>30</td>
<td>380609145</td>
<td>11.8</td>
</tr>
<tr>
<td>conv_module</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_1</td>
<td>12667786</td>
<td>0.08445</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_2</td>
<td>2910954</td>
<td>0.01941</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_1</td>
<td>577524</td>
<td>0.00385</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_3</td>
<td>2552707</td>
<td>0.01702</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_3</td>
<td>676542</td>
<td>0.00451</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_4</td>
<td>455434</td>
<td>0.00304</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_4</td>
<td>11251</td>
<td>0.00008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_module</td>
<td>903173</td>
<td>0.00662</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_1</td>
<td>536164</td>
<td>0.00357</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_2</td>
<td>342643</td>
<td>0.00228</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_3</td>
<td>24364</td>
<td>0.00016</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The clock frequency of the DL processor is: 150MHz

Finished writing input activations.
Running single input activations.

Deep Learning Processor Profiler Performance Results

<table>
<thead>
<tr>
<th>Layer Type</th>
<th>Latency (cycles)</th>
<th>Latency (seconds)</th>
<th>Frames</th>
<th>Total Latency</th>
<th>Frames/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>13570364</td>
<td>0.09047</td>
<td>30</td>
<td>380612682</td>
<td>11.8</td>
</tr>
<tr>
<td>conv_module</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_1</td>
<td>12667103</td>
<td>0.08445</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_2</td>
<td>2910747</td>
<td>0.01940</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_1</td>
<td>577654</td>
<td>0.00385</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_3</td>
<td>2551829</td>
<td>0.01701</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_3</td>
<td>676548</td>
<td>0.00451</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_4</td>
<td>455396</td>
<td>0.00304</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_4</td>
<td>11335</td>
<td>0.00008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_module</td>
<td>903261</td>
<td>0.00662</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_1</td>
<td>536206</td>
<td>0.00357</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_2</td>
<td>342688</td>
<td>0.00228</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_3</td>
<td>24364</td>
<td>0.00016</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The clock frequency of the DL processor is: 150MHz

Finished writing input activations.
Running single input activations.

Deep Learning Processor Profiler Performance Results

<table>
<thead>
<tr>
<th>Layer Type</th>
<th>Latency (cycles)</th>
<th>Latency (seconds)</th>
<th>Frames</th>
<th>Total Latency</th>
<th>Frames/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>13571561</td>
<td>0.09048</td>
<td>30</td>
<td>380608338</td>
<td>11.8</td>
</tr>
<tr>
<td>conv_module</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_1</td>
<td>12668340</td>
<td>0.08446</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_2</td>
<td>2911061</td>
<td>0.01941</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_1</td>
<td>577557</td>
<td>0.00385</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_3</td>
<td>2552082</td>
<td>0.01701</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_3</td>
<td>676506</td>
<td>0.00451</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Deep Learning Processor Profiler Performance Results

<table>
<thead>
<tr>
<th>LastLayerLatency(cycles)</th>
<th>LastLayerLatency(seconds)</th>
<th>FramesNum</th>
<th>Total Latency</th>
<th>Frames/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>13569826</td>
<td>0.09047</td>
<td>30</td>
<td>38061327</td>
</tr>
<tr>
<td>conv_module</td>
<td>12666756</td>
<td>0.08445</td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_1</td>
<td>455582</td>
<td>0.00304</td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_1</td>
<td>3939122</td>
<td>0.02626</td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_2</td>
<td>1543267</td>
<td>0.01029</td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_2</td>
<td>2911844</td>
<td>0.01941</td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_3</td>
<td>577275</td>
<td>0.00395</td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_3</td>
<td>2552686</td>
<td>0.01702</td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_4</td>
<td>676438</td>
<td>0.00451</td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_4</td>
<td>455353</td>
<td>0.00304</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_module</td>
<td>903106</td>
<td>0.00602</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_1</td>
<td>536650</td>
<td>0.00357</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_2</td>
<td>342643</td>
<td>0.00228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_3</td>
<td>24409</td>
<td>0.00016</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The clock frequency of the DL processor is: 150MHz

Deep Learning Processor Profiler Performance Results

<table>
<thead>
<tr>
<th>LastLayerLatency(cycles)</th>
<th>LastLayerLatency(seconds)</th>
<th>FramesNum</th>
<th>Total Latency</th>
<th>Frames/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>13570823</td>
<td>0.09047</td>
<td>30</td>
<td>380619836</td>
</tr>
<tr>
<td>conv_module</td>
<td>12667607</td>
<td>0.08445</td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_1</td>
<td>455582</td>
<td>0.00304</td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_1</td>
<td>3939122</td>
<td>0.02626</td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_2</td>
<td>1544519</td>
<td>0.01030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_2</td>
<td>2910636</td>
<td>0.01940</td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_3</td>
<td>577769</td>
<td>0.00385</td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_3</td>
<td>2551800</td>
<td>0.01701</td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_4</td>
<td>676795</td>
<td>0.00451</td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_4</td>
<td>455859</td>
<td>0.00304</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_module</td>
<td>903216</td>
<td>0.00602</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_1</td>
<td>536650</td>
<td>0.00357</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_2</td>
<td>342643</td>
<td>0.00228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_3</td>
<td>24406</td>
<td>0.00016</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The clock frequency of the DL processor is: 150MHz

FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.

Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.

Running single input activations.

Finished writing input activations.

Running single input activations.

Deep Learning Functions

1-166
Examine the MetricResults.Result field of the validation output to see the performance of the quantized network.

validateOut = prediction.MetricResults.Result

ans =

 NetworkImplementation MetricOutput
 ______________________ ____________
 {'Floating-Point'} 0.9875
 {'Quantized' } 0.9875

Examine the QuantizedNetworkFPS field of the validation output to see the frames per second performance of the quantized network.

prediction.QuantizedNetworkFPS

ans = 11.8126

The weights, biases, and activations of the convolution layers of the network specified in the dlquantizer object now use scaled 8-bit integer data types.

Input Arguments

quant0bj — Network to quantize
dlquantizer object

dlquantizer object containing the network to quantize.
calData — Data to use for calibration of quantized network
imageDatastore object | augmentedImageDatastore object | pixelLabelImageDatastore object

Data to use for calibration of quantized network, specified as an imageDatastore object, an augmentedImageDatastore object, or a pixelLabelImageDatastore object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1,...,NameN, ValueN.

Example: `calResults = calibrate(quantObj, calData, 'UseGPU', 'on')`

FPGA Execution Environment Options

UseGPU — Logical flag to use GPU for calibration

`'off'` (default) | `'on'`

This property affects FPGA targeting only.

Logical flag to use a GPU for calibration when the `dlquantizer` object ExecutionEnvironment is set to FPGA.

Example: `'UseGPU', 'on'`

Output Arguments

calibrationResults — Dynamic ranges of network

table

Dynamic ranges of layers of the network, returned as a table. Each row in the table displays the minimum and maximum values of a learnable parameter of a convolution layer of the optimized network. The software uses these minimum and maximum values to determine the scaling for the data type of the quantized parameter.

See Also

Apps

Deep Network Quantizer

Functions

`dlquantizationOptions` | `dlquantizer` | `validate`

Topics

“Quantization of Deep Neural Networks”

Introduced in R2020a
checkLayer

Check validity of custom layer

Syntax

checkLayer(layer,validInputSize)
checkLayer(layer,validInputSize,Name,Value)

Description

checkLayer(layer,validInputSize) checks the validity of a custom layer using generated data of the sizes in validInputSize. For layers with a single input, set validInputSize to a typical size of input data to the layer. For layers with multiple inputs, set validInputSize to a cell array of typical sizes, where each element corresponds to a layer input.

checkLayer(layer,validInputSize,Name,Value) specifies additional options using one or more name-value pairs.

Examples

Check Layer Validity

Check the validity of the example custom layer preluLayer.

Define a custom PReLU layer. To create this layer, save the file preluLayer.m in the current folder.

Create an instance of the layer and check that it is valid using checkLayer. Set the valid input size to the typical size of a single observation input to the layer. For a single input, the layer expects observations of size h-by-w-by-c, where h, w, and c are the height, width, and number of channels of the previous layer output, respectively.

Specify validInputSize as the typical size of an input array.

```matlab
layer = preluLayer(20,'prelu');
validInputSize = [5 5 20];
checkLayer(layer,validInputSize)
```

Skipping multi-observation tests. To enable tests with multiple observations, specify the 'ObservationDimension' option. For 2-D image data, set 'ObservationDimension' to 4. For 3-D image data, set 'ObservationDimension' to 5. For sequence data, set 'ObservationDimension' to 2.

Skipping GPU tests. No compatible GPU device found.

Skipping code generation compatibility tests. To check validity of the layer for code generation,
Test Summary:
 9 Passed, 0 Failed, 0 Incomplete, 12 Skipped.
 Time elapsed: 0.21371 seconds.

The results show the number of passed, failed, and skipped tests. If you do not specify the 'ObservationsDimension' option, or do not have a GPU, then the function skips the corresponding tests.

Check Multiple Observations

For multi-observation input, the layer expects an array of observations of size h-by-w-by-c-by-N, where h, w, and c are the height, width, and number of channels, respectively, and N is the number of observations.

To check the layer validity for multiple observations, specify the typical size of an observation and set 'ObservationDimension' to 4.

```matlab
layer = preluLayer(20, 'prelu');
validInputSize = [5 5 20];
checkLayer(layer, validInputSize, 'ObservationDimension', 4)
```

Skipping GPU tests. No compatible GPU device found.

Skipping code generation compatibility tests. To check validity of the layer for code generation, specify the 'CheckCodegenCompatibility' and 'ObservationDimension' options.

Running nnet.checklayer.TestLayerWithoutBackward

```
.......... ...
```

Done nnet.checklayer.TestLayerWithoutBackward

Test Summary:
 13 Passed, 0 Failed, 0 Incomplete, 8 Skipped.
 Time elapsed: 0.087935 seconds.

In this case, the function does not detect any issues with the layer.

Check Layer for Code Generation Compatibility

Check code generation compatibility of the custom layer codegenPreluLayer.

Define a custom PReLU layer with code generation support. To create this layer, save the file codegenPreluLayer.m in the current folder.

Create an instance of the layer and check its validity using checkLayer. Specify the valid input size to be the size of a single observation of typical input to the layer. The layer expects 4-D array inputs, where the first three dimensions correspond to the height, width, and number of channels of the previous layer output, and the fourth dimension corresponds to the observations.

Specify the typical size of the input of an observation and set the 'ObservationDimension' option to 4. To check for code generation compatibility set the 'CheckCodegenCompatibility' option to true.

```matlab
layer = codegenPreluLayer(20, 'prelu');
validInputSize = [24 24 20];
checkLayer(layer, validInputSize, 'ObservationDimension', 4, 'CheckCodegenCompatibility', true)
```
Skipping GPU tests. No compatible GPU device found.

Running nnet.checklayer.TestLayerWithoutBackward
..............
Done nnet.checklayer.TestLayerWithoutBackward

test Summary:
17 Passed, 0 Failed, 0 Incomplete, 4 Skipped.
Time elapsed: 1.129 seconds.

Here, the function does not detect any issues with the layer.

Input Arguments

- **layer** — Custom layer
 nnet.layer.Layer object | nnet.layer.ClassificationLayer object | nnet.layer.RegressionLayer object

Custom layer, specified as an nnet.layer.Layer object, nnet.layer.ClassificationLayer object, or nnet.layer.RegressionLayer object. For an example showing how to define your own custom layer, see “Define Custom Deep Learning Layer with Learnable Parameters”.

- **validInputSize** — Valid input sizes
 vector of positive integers | cell array of vectors of positive integers

Valid input sizes of the layer, specified as a vector of positive integers or cell array of vectors of positive integers.

- For layers with a single input, specify validInputSize as a vector of integers corresponding to the dimensions of the input data. For example, [5 5 10] corresponds to valid input data of size 5-by-5-by-10.
- For layers with multiple inputs, specify validInputSize as a cell array of vectors, where each vector corresponds to a layer input and the elements of the vectors correspond to the dimensions of the corresponding input data. For example, {{24 24 20}, [24 24 10]} corresponds to the valid input sizes of two inputs, where 24-by-24-by-20 is a valid input size for the first input and 24-by-24-by-10 is a valid input size for the second input.

For more information, see “Layer Input Sizes” on page 1-172.

For large input sizes, the gradient checks take longer to run. To speed up the tests, specify a smaller valid input size.

Example: [5 5 10]
Example: {{24 24 20}, [24 24 10]}

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.
Example: 'ObservationDimension', 4 sets the observation dimension to 4

ObservationDimension — Observation dimension
positive integer

Observation dimension, specified as the comma-separated pair consisting of 'ObservationDimension' and a positive integer.

The observation dimension specifies which dimension of the layer input data corresponds to observations. For example, if the layer expects input data is of size h-by-w-by-c-by-N, where h, w, and c correspond to the height, width, and number of channels of the input data, respectively, and N corresponds to the number of observations, then the observation dimension is 4. For more information, see “Layer Input Sizes” on page 1-172.

If you specify the observation dimension, then the checkLayer function checks that the layer functions are valid using generated data with mini-batches of size 1 and 2. If you do not specify the observation dimension, then the function skips the corresponding tests.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

CheckCodegenCompatibility — Flag to enable code generation tests
false (default) | true

Flag to enable code generation tests, specified as the comma-separated pair consisting of 'CheckCodegenCompatibility' and true or false.

If 'CheckCodegenCompatibility' is true, then you must set the 'ObservationDimension' option.

Data Types: logical

More About

Layer Input Sizes

For each layer, the valid input size and the observation dimension depend on the output of the previous layer.

Intermediate Layers

For intermediate layers (layers of type nnet.layer.Layer), the valid input size and the observation dimension depend on the type of data input to the layer. For layers with a single input, specify validInputSize as a vector of integers corresponding to the dimensions of the input data. For layers with multiple inputs, specify validInputSize as a cell array of vectors, where each vector corresponds to a layer input and the elements of the vectors correspond to the dimensions of the corresponding input data. For large input sizes, the gradient checks take longer to run. To speed up the tests, specify a smaller valid input size.

<table>
<thead>
<tr>
<th>Layer Input</th>
<th>Input Size</th>
<th>Observation Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-D images</td>
<td>h-by-w-by-c-by-N, where h, w, and c correspond to the height, width, and number of channels of the images respectively, and N is the number of observations.</td>
<td>4</td>
</tr>
</tbody>
</table>
Layer Input | Input Size | Observation Dimension
---|---|---
3-D images | h-by-w-by-d-by-c-by-N, where h, w, d, and c correspond to the height, width, depth, and number of channels of the 3-D images respectively, and N is the number of observations. | 5

Vector sequences | c-by-N-by-S, where c is the number of features of the sequences, N is the number of observations, and S is the sequence length. | 2

2-D image sequences | h-by-w-by-c-by-N-by-S, where h, w, and c correspond to the height, width, and number of channels of the images respectively, N is the number of observations, and S is the sequence length. | 4

3-D image sequences | h-by-w-by-d-by-c-by-N-by-S, where h, w, d, and c correspond to the height, width, depth, and number of channels of the 3-D images respectively, N is the number of observations, and S is the sequence length. | 5

For example, for 2-D image classification problems, set `validInputSize` to $[h \ w \ c]$, where h, w, and c correspond to the height, width, and number of channels of the images, respectively, and `ObservationDimension` to 4.

Code generation supports intermediate layers with 2-D image input only.

Output Layers

For output layers (layers of type `nnet.layer.ClassificationLayer` or `nnet.layer.RegressionLayer`), set `validInputSize` to the typical size of a single input observation Y to the layer.

For classification problems, the valid input size and the observation dimension of Y depend on the type of problem:

<table>
<thead>
<tr>
<th>Classification Task</th>
<th>Input Size</th>
<th>Observation Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-D image classification</td>
<td>1-by-K-by-N, where K is the number of classes and N is the number of observations.</td>
<td>4</td>
</tr>
<tr>
<td>3-D image classification</td>
<td>1-by-1-by-1-by-K-by-N, where K is the number of classes and N is the number of observations.</td>
<td>5</td>
</tr>
</tbody>
</table>
Classification Task | Input Size | Observation Dimension
--- | --- | ---
Sequence-to-label classification | K-by-N, where K is the number of classes and N is the number of observations. | 2
Sequence-to-sequence classification | K-by-N-by-S, where K is the number of classes, N is the number of observations, and S is the sequence length. | 2

For example, for 2-D image classification problems, set validInputSize to [1 1 K], where K is the number of classes, and 'ObservationDimension' to 4.

### Regression Task	Input Size	Observation Dimension
2-D image regression | 1-by-1-by-R-by-N, where R is the number of responses and N is the number of observations. | 4
2-D Image-to-image regression | h-by-w-by-c-by-N, where h, w, and c are the height, width, and number of channels of the output respectively, and N is the number of observations. | 4
3-D image regression | 1-by-1-by-1-by-R-by-N, where R is the number of responses and N is the number of observations. | 5
3-D Image-to-image regression | h-by-w-by-d-by-c-by-N, where h, w, d, and c are the height, width, depth, and number of channels of the output respectively, and N is the number of observations. | 5
Sequence-to-one regression | R-by-N, where R is the number of responses and N is the number of observations. | 2
Sequence-to-sequence regression | R-by-N-by-S, where R is the number of responses, N is the number of observations, and S is the sequence length. | 2

For example, for 2-D image regression problems, set validInputSize to [1 1 R], where R is the number of responses, and 'ObservationDimension' to 4.
Algorithms

List of Tests

The checkLayer function checks the validity of a custom layer by performing a series of tests, described in these tables. For more information on the tests used by checkLayer, see “Check Custom Layer Validity”.

Intermediate Layers

The checkLayer function uses these tests to check the validity of custom intermediate layers (layers of type nnet.layer.Layer).

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>functionSyntaxesAreCorrect</td>
<td>The syntaxes of the layer functions are correctly defined.</td>
</tr>
<tr>
<td>predictDoesNotError</td>
<td>predict does not error.</td>
</tr>
<tr>
<td>forwardDoesnotError</td>
<td>When specified, forward does not error.</td>
</tr>
<tr>
<td>forwardPredictAreConsistentInSize</td>
<td>When forward is specified, forward and predict output values of the same size.</td>
</tr>
<tr>
<td>backwardDoesNotError</td>
<td>When specified, backward does not error.</td>
</tr>
<tr>
<td>backwardIsConsistentInSize</td>
<td>When backward is specified, the outputs of backward are consistent in size:</td>
</tr>
<tr>
<td></td>
<td>• The derivatives with respect to each input are the same size as the corresponding input.</td>
</tr>
<tr>
<td></td>
<td>• The derivatives with respect to each learnable parameter are the same size as the corresponding learnable parameter.</td>
</tr>
<tr>
<td>predictIsConsistentInType</td>
<td>The outputs of predict are consistent in type with the inputs.</td>
</tr>
<tr>
<td>forwardIsConsistentInType</td>
<td>When forward is specified, the outputs of forward are consistent in type with the inputs.</td>
</tr>
<tr>
<td>backwardIsConsistentInType</td>
<td>When backward is specified, the outputs of backward are consistent in type with the inputs.</td>
</tr>
<tr>
<td>gradientsAreNumericallyCorrect</td>
<td>When backward is specified, the gradients computed in backward are consistent with the numerical gradients.</td>
</tr>
<tr>
<td>backwardPropagationDoesNotError</td>
<td>When backward is not specified, the derivatives can be computed using automatic differentiation.</td>
</tr>
<tr>
<td>codegenPragmaDefinedInClassDef</td>
<td>The pragma "%#codegen" for code generation is specified in class file.</td>
</tr>
<tr>
<td>checkForSupportedLayerPropertiesForCodeGen</td>
<td>The layer properties support code generation.</td>
</tr>
<tr>
<td>predictIsValidForCodeGeneration</td>
<td>predict is valid for code generation.</td>
</tr>
</tbody>
</table>

The tests predictIsConsistentInType, forwardIsConsistentInType, and backwardIsConsistentInType also check for GPU compatibility. To execute the layer functions on
a GPU, the functions must support inputs and outputs of type `gpuArray` with the underlying data type `single`.

Output Layers

The `checkLayer` function uses these tests to check the validity of custom output layers (layers of type `nnet.layer.ClassificationLayer` or `nnet.layer.RegressionLayer`).

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>forwardLossDoesNotError</code></td>
<td><code>forwardLoss</code> does not error.</td>
</tr>
<tr>
<td><code>backwardLossDoesNotError</code></td>
<td><code>backwardLoss</code> does not error.</td>
</tr>
<tr>
<td><code>forwardLossIsScalar</code></td>
<td>The output of <code>forwardLoss</code> is scalar.</td>
</tr>
<tr>
<td><code>backwardLossIsConsistentInSize</code></td>
<td>When <code>backwardLoss</code> is specified, the output of <code>backwardLoss</code> is consistent in size: <code>dLdY</code> is the same size as the predictions <code>Y</code>.</td>
</tr>
<tr>
<td><code>forwardLossIsConsistentInType</code></td>
<td>The output of <code>forwardLoss</code> is consistent in type: <code>loss</code> is the same type as the predictions <code>Y</code>.</td>
</tr>
<tr>
<td><code>backwardLossIsConsistentInType</code></td>
<td>When <code>backwardLoss</code> is specified, the output of <code>backwardLoss</code> is consistent in type: <code>dLdY</code> must be the same type as the predictions <code>Y</code>.</td>
</tr>
<tr>
<td><code>gradientsAreNumericallyCorrect</code></td>
<td>When <code>backwardLoss</code> is specified, the gradients computed in <code>backwardLoss</code> are numerically correct.</td>
</tr>
<tr>
<td><code>backwardPropagationDoesNotError</code></td>
<td>When <code>backwardLoss</code> is not specified, the derivatives can be computed using automatic differentiation.</td>
</tr>
</tbody>
</table>

The `forwardLossIsConsistentInType` and `backwardLossIsConsistentInType` tests also check for GPU compatibility. To execute the layer functions on a GPU, the functions must support inputs and outputs of type `gpuArray` with the underlying data type `single`.

See Also

analyzeNetwork | trainNetwork | trainingOptions

Topics

“Check Custom Layer Validity”
“Define Custom Deep Learning Layers”
“Define Custom Deep Learning Layer with Learnable Parameters”
“Define Custom Deep Learning Layer with Multiple Inputs”
“Define Custom Classification Output Layer”
“Define Custom Weighted Classification Layer”
“Define Custom Regression Output Layer”
“List of Deep Learning Layers”
“Deep Learning Tips and Tricks”

Introduced in R2018a
classificationLayer

Classification output layer

Syntax

layer = classificationLayer
layer = classificationLayer(Name,Value)

Description

A classification layer computes the cross entropy loss for multi-class classification problems with mutually exclusive classes.

The layer infers the number of classes from the output size of the previous layer. For example, to specify the number of classes K of the network, include a fully connected layer with output size K and a softmax layer before the classification layer.

layer = classificationLayer creates a classification layer.

layer = classificationLayer(Name,Value) sets the optional Name and Classes properties using name-value pairs. For example, classificationLayer('Name','output') creates a classification layer with the name 'output'. Enclose each property name in single quotes.

Examples

Create Classification Layer

Create a classification layer with the name 'output'.

layer = classificationLayer('Name','output')

layer = ClassificationOutputLayer with properties:

Name: 'output'
Classes: 'auto'
OutputSize: 'auto'

Hyperparameters
LossFunction: 'crossentropyex'

Include a classification output layer in a Layer array.

layers = [...
 imageInputLayer([28 28 1])
 convolution2dLayer(5,20)
 reluLayer
 maxPooling2dLayer(2,'Stride',2)
 fullyConnectedLayer(10)
softmaxLayer
classificationLayer]
layers =
7x1 Layer array with layers:
1 '' Image Input 28x28x1 images with 'zerocenter' normalization
2 '' Convolution 20 5x5 convolutions with stride [1 1] and padding [0 0 0 0]
3 '' ReLU ReLU
4 '' Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]
5 '' Fully Connected 10 fully connected layer
6 '' Softmax softmax
7 '' Classification Output crossentropyex

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: classificationLayer('Name','output') creates a classification layer with the name 'output'

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to '', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

Classes — Classes of the output layer
'auto' (default) | categorical vector | string array | cell array of character vectors

Classes of the output layer, specified as a categorical vector, string array, cell array of character vectors, or 'auto'. If Classes is 'auto', then the software automatically sets the classes at training time. If you specify the string array or cell array of character vectors str, then the software sets the classes of the output layer to categorical(str,str). The default value is 'auto'.

Data Types: char | categorical | string | cell

Output Arguments

layer — Classification layer
ClassificationOutputLayer object

Classification layer, returned as a ClassificationOutputLayer object.

For information on concatenating layers to construct convolutional neural network architecture, see Layer.
More About

Classification Layer

A classification layer computes the cross entropy loss for multi-class classification problems with mutually exclusive classes.

For typical classification networks, the classification layer must follow the softmax layer. In the classification layer, `trainNetwork` takes the values from the softmax function and assigns each input to one of the \(K \) mutually exclusive classes using the cross entropy function for a 1-of-\(K \) coding scheme [1]:

\[
\text{loss} = - \sum_{i=1}^{N} \sum_{j=1}^{K} t_{ij} \ln y_{ij},
\]

where \(N \) is the number of samples, \(K \) is the number of classes, \(t_{ij} \) is the indicator that the \(i \)th sample belongs to the \(j \)th class, and \(y_{ij} \) is the output for sample \(i \) for class \(j \), which in this case, is the value from the softmax function. That is, it is the probability that the network associates the \(i \)th input with class \(j \).

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also

ClassificationOutputLayer | regressionLayer | softmaxLayer

Topics

“Deep Learning in MATLAB”
“List of Deep Learning Layers”

Introduced in R2016a
ClassificationOutputLayer

Classification layer

Description

A classification layer computes the cross entropy loss for multi-class classification problems with mutually exclusive classes.

Creation

Create a classification layer using classificationLayer.

Properties

Classification Output

Classes — Classes of the output layer

| 'auto' (default) | categorical vector | string array | cell array of character vectors |

Classes of the output layer, specified as a categorical vector, string array, cell array of character vectors, or 'auto'. If Classes is 'auto', then the software automatically sets the classes at training time. If you specify the string array or cell array of character vectors str, then the software sets the classes of the output layer to categorical(str,str). The default value is 'auto'.

Data Types: char | categorical | string | cell

OutputSize — Size of the output

| 'auto' (default) | positive integer |

This property is read-only.

Size of the output, specified as a positive integer. This value is the number of labels in the data. Before the training, the output size is set to 'auto'.

LossFunction — Loss function for training

| 'crossentropyex' |

This property is read-only.

Loss function for training, specified as 'crossentropyex', which stands for Cross Entropy Function for k Mutually Exclusive Classes.

Layer

Name — Layer name

| '' (default) | character vector | string scalar |
Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to '', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.

Data Types: cell

NumOutputs — Number of outputs
0 (default)

Number of outputs of the layer. The layer has no outputs.

Data Types: double

OutputNames — Output names
{} (default)

Output names of the layer. The layer has no outputs.

Data Types: cell

Examples

Create Classification Layer

Create a classification layer with the name 'output'.

```matlab
layer = classificationLayer('Name','output')
```

```matlab
layer = ClassificationOutputLayer with properties:
    Name: 'output'
    Classes: 'auto'
    OutputSize: 'auto'

    Hyperparameters
    LossFunction: 'crossentropyex'
```

Include a classification output layer in a `Layer` array.

```matlab
layers = [ ...  
    imageInputLayer([28 28 1])  
    convolution2dLayer(5,20)  
]  
```
reluLayer
maxPooling2dLayer(2,'Stride',2)
fullyConnectedLayer(10)
softmaxLayer
classificationLayer]
layers =
7x1 Layer array with layers:
1 '' Image Input 28x28x1 images with 'zerocenter' normalization
2 '' Convolution 20 5x5 convolutions with stride [1 1] and padding [0 0 0 0]
3 '' ReLU ReLU
4 '' Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]
5 '' Fully Connected 10 fully connected layer
6 '' Softmax softmax
7 '' Classification Output crossentropyex

More About

Classification Output Layer

A classification layer computes the cross entropy loss for multi-class classification problems with mutually exclusive classes.

For typical classification networks, the classification layer must follow the softmax layer. In the classification layer, trainNetwork takes the values from the softmax function and assigns each input to one of the K mutually exclusive classes using the cross entropy function for a 1-of-K coding scheme [1]:

$$\text{loss} = - \sum_{i=1}^{N} \sum_{j=1}^{K} t_{ij} \ln y_{ij},$$

where N is the number of samples, K is the number of classes, t_{ij} is the indicator that the ith sample belongs to the jth class, and y_{ij} is the output for sample i for class j, which in this case, is the value from the softmax function. That is, it is the probability that the network associates the ith input with class j.

Compatibility Considerations

ClassNames property will be removed
Not recommended starting in R2018b

ClassNames will be removed. Use Classes instead. To update your code, replace all instances of ClassNames with Classes. There are some differences between the properties that require additional updates to your code.

The ClassNames property of the output layer is a cell array of character vectors. The Classes property is a categorical array. To use the value of Classes with functions that require cell array input, convert the classes using the cellstr function.
References

See Also
regressionLayer | softmaxLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2016a
classify

Classify data using a trained deep learning neural network

Syntax

YPred = classify(net,imds)
YPred = classify(net,ds)
YPred = classify(net,X)
YPred = classify(net,X1,...,XN)
YPred = classify(net,sequences)
YPred = classify(net,tbl)
YPred = classify(___,'Name',Value)
[YPred,scores] = classify(___)

Description

You can make predictions using a trained neural network for deep learning on either a CPU or GPU. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. Specify the hardware requirements using the `ExecutionEnvironment` name-value pair argument.

For networks with multiple outputs, use the `predict` and set the 'ReturnCategorical' option to true.

YPred = classify(net,imds) predicts class labels for the images in the image datastore `imds` using the trained network `net`.

YPred = classify(net,ds) predicts class labels for the data in the datastore `ds`.

YPred = classify(net,X) predicts class labels for the image or feature data specified by the numeric array `X`.

YPred = classify(net,X1,...,XN) predicts class labels for the data in the numeric arrays `X1`, `..., XN` for the mutli-input network `net`. The input `Xi` corresponds to the network input `net.InputNames(i)`.

YPred = classify(net,sequences) predicts class labels for the time series or sequence data in `sequences` for the recurrent network (for example, an LSTM or GRU network) `net`.

YPred = classify(net,tbl) predicts class labels for the data in the table `tbl`.

YPred = classify(___,'Name',Value) predicts class labels with additional options specified by one or more name-value pair arguments using any of the previous syntaxes.

[YPred,scores] = classify(___) also returns the classification scores corresponding to the class labels using any of the previous syntaxes.

Tip When making predictions with sequences of different lengths, the mini-batch size can impact the amount of padding added to the input data which can result in different predicted values. Try using
different values to see which works best with your network. To specify mini-batch size and padding options, use the 'MiniBatchSize' and 'SequenceLength' options, respectively.

Examples

Classify Images Using Trained ConvNet

Load the sample data.

[XTrain,YTrain] = digitTrain4DArrayData;

digitTrain4DArrayData loads the digit training set as 4-D array data. XTrain is a 28-by-28-by-1-by-5000 array, where 28 is the height and 28 is the width of the images. 1 is the number of channels and 5000 is the number of synthetic images of handwritten digits. YTrain is a categorical vector containing the labels for each observation.

Construct the convolutional neural network architecture.

layers = [...
 imageInputLayer([28 28 1])
 convolution2dLayer(5,20)
 reluLayer
 maxPooling2dLayer(2,'Stride',2)
 fullyConnectedLayer(10)
 softmaxLayer
 classificationLayer];

Set the options to default settings for the stochastic gradient descent with momentum.

options = trainingOptions('sgdm');

Train the network.

rng('default')
net = trainNetwork(XTrain,YTrain,layers,options);

Training on single CPU.
Initializing input data normalization.

<table>
<thead>
<tr>
<th>Epoch</th>
<th>Iteration</th>
<th>Time Elapsed (hh:mm:ss)</th>
<th>Mini-batch Accuracy</th>
<th>Mini-batch Loss</th>
<th>Base Learning Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>00:00:00</td>
<td>10.16%</td>
<td>2.3195</td>
<td>0.0100</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>00:00:10</td>
<td>50.78%</td>
<td>1.7102</td>
<td>0.0100</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>00:00:19</td>
<td>63.28%</td>
<td>1.1632</td>
<td>0.0100</td>
</tr>
<tr>
<td>4</td>
<td>150</td>
<td>00:00:33</td>
<td>60.16%</td>
<td>1.0859</td>
<td>0.0100</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>00:00:43</td>
<td>68.75%</td>
<td>0.8997</td>
<td>0.0100</td>
</tr>
<tr>
<td>6</td>
<td>250</td>
<td>00:00:53</td>
<td>76.56%</td>
<td>0.7920</td>
<td>0.0100</td>
</tr>
<tr>
<td>7</td>
<td>300</td>
<td>00:01:03</td>
<td>81.25%</td>
<td>0.8410</td>
<td>0.0100</td>
</tr>
<tr>
<td>8</td>
<td>350</td>
<td>00:01:13</td>
<td>81.25%</td>
<td>0.5512</td>
<td>0.0100</td>
</tr>
<tr>
<td>9</td>
<td>400</td>
<td>00:01:21</td>
<td>90.63%</td>
<td>0.4742</td>
<td>0.0100</td>
</tr>
<tr>
<td>10</td>
<td>450</td>
<td>00:01:35</td>
<td>92.19%</td>
<td>0.3615</td>
<td>0.0100</td>
</tr>
<tr>
<td>11</td>
<td>500</td>
<td>00:01:50</td>
<td>94.53%</td>
<td>0.3160</td>
<td>0.0100</td>
</tr>
<tr>
<td>12</td>
<td>550</td>
<td>00:02:02</td>
<td>96.09%</td>
<td>0.2545</td>
<td>0.0100</td>
</tr>
<tr>
<td>13</td>
<td>600</td>
<td>00:02:15</td>
<td>92.19%</td>
<td>0.2765</td>
<td>0.0100</td>
</tr>
<tr>
<td>14</td>
<td>650</td>
<td>00:02:25</td>
<td>95.31%</td>
<td>0.2461</td>
<td>0.0100</td>
</tr>
</tbody>
</table>
Run the trained network on a test set.

[XTest,YTest] = digitTest4DArrayData;
YPred = classify(net,XTest);

Display the first 10 images in the test data and compare to the classification from classify.

[YTest(1:10,:), YPred(1:10,:)]
ans = 10x2 categorical
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

The results from classify match the true digits for the first ten images.

Calculate the accuracy over all test data.

accuracy = sum(YPred == YTest)/numel(YTest)
accuracy = 0.9820

Classify Sequences Using a Trained LSTM Network

Load pretrained network. JapaneseVowelsNet is a pretrained LSTM network trained on the Japanese Vowels dataset as described in [1] and [2]. It was trained on the sequences sorted by sequence length with a mini-batch size of 27.

load JapaneseVowelsNet

View the network architecture.

net.Layers
ans =
5x1 Layer array with layers:
Load the test data.

\[
[XTest, YTest] = \text{japaneseVowelsTestData};
\]

Classify the test data.

\[
YPred = \text{classify(net, XTest)};
\]

View the labels of the first 10 sequences with their predicted labels.

\[
[YTest(1:10), YPred(1:10)]
\]

\[
\text{ans} = 10\times2 \text{ categorical}
\]

\[
\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
\end{array}
\]

Calculate the classification accuracy of the predictions.

\[
\text{accuracy} = \frac{\text{sum}(YPred == YTest)}{\text{numel}(YTest)}
\]

\[
\text{accuracy} = 0.8595
\]

Classify Feature Data Using Trained Network

Load the pretrained network `TransmissionCasingNet`. This network classifies the gear tooth condition of a transmission system given a mixture of numeric sensor readings, statistics, and categorical inputs.

\[
\text{load} \quad \text{TransmissionCasingNet.mtx}
\]

View the network architecture.

\[
\text{net.Layers}
\]

\[
\text{ans} =
\quad 7\times1 \text{ Layer array with layers:}
\]

\[
\begin{array}{ll}
1 & \text{input} \quad \text{Feature Input} \quad \text{22 features with 'zscore' normalization} \\
2 & \text{fc_1} \quad \text{Fully Connected} \quad \text{50 fully connected layer} \\
3 & \text{batchnorm} \quad \text{Batch Normalization} \quad \text{Batch normalization with 50 channels}
\end{array}
\]
Read the transmission casing data from the CSV file "transmissionCasingData.csv".

```matlab
filename = "transmissionCasingData.csv";
tbl = readtable(filename,'TextType','String');
```

Convert the labels for prediction to categorical using the `convertvars` function.

```matlab
labelName = "GearToothCondition";
tbl = convertvars(tbl,labelName,'categorical');
```

To make predictions using categorical features, you must first convert the categorical features to numeric. First, convert the categorical predictors to categorical using the `convertvars` function by specifying a string array containing the names of all the categorical input variables. In this data set, there are two categorical features with names "SensorCondition" and "ShaftCondition".

```matlab
categoricalInputNames = ["SensorCondition" "ShaftCondition"];
tbl = convertvars(tbl,categoricalInputNames,'categorical');
```

Loop over the categorical input variables. For each variable:

- Convert the categorical values to one-hot encoded vectors using the `onehotencode` function.
- Add the one-hot vectors to the table using the `addvars` function. Specify to insert the vectors after the column containing the corresponding categorical data.
- Remove the corresponding column containing the categorical data.

```matlab
for i = 1:numel(categoricalInputNames)
    name = categoricalInputNames(i);
    oh = onehotencode(tbl(:,name));
    tbl = addvars(tbl,oh,'After',name);
    tbl(:,name) = [];
end
```

Split the vectors into separate columns using the `splitvars` function.

```matlab
tbl = splitvars(tbl);
```

View the first few rows of the table.

```matlab
head(tbl)
```

```
8×23 table

  SigMean  SigMedian  SigRMS  SigVar  SigPeak  SigPeak2Peak  SigSkewness  SigKurtosis  SigCrestFactor  SigShape  SigEntropy  SigLogEnergy  SigLogSpectralSnr  SigLogSpectralEnergy  SigLogSpectralEntropy  SigLogSpectralShape  SigLogSpectralKurtosis  SigLogSpectralCrestFactor  SigLogSpectralShape  SigLogSpectralKurtosis  SigLogSpectralCrestFactor
-0.94876 -0.97228  1.37265  0.98387  0.81571  3.6314      -0.041525    2.26663      2.0514       ...     3.2300e-07       162.133       0       1       1       0       No Tooth Fault
-0.97537 -0.98958  1.39371  0.99104  0.81571  3.6314      -0.023777    2.25981      2.0203       ...     9.1600e-08       226.123       0       1       1       0       No Tooth Fault
1.05022  1.02667  1.44488  0.98491  2.81566  3.6314      -0.041627    2.26581      1.9487       ...     2.8500e-07       162.133       0       1       0       1       No Tooth Fault
1.02271  1.00449  1.42883  0.99997  2.81566  3.6314      -0.016356    2.24831      1.9707       ...     2.4000e-07       162.133       0       1       0       1       No Tooth Fault
1.01231  1.00239  1.42024  0.99233  2.81566  3.6314      -0.014701    2.25421      1.9826       ...     2.2800e-07       230.392       0       1       0       1       No Tooth Fault
1.02752  1.01019  1.43377  0.99033  2.81566  3.6314      -0.026593    2.24391      1.9638       ...     1.6500e-07       230.392       0       1       0       1       No Tooth Fault
1.04641  1.02569  1.44023  0.98047  2.81566  3.6314      -0.035405    2.27571      1.9550       ...     1.3900e-07       230.392       0       1       0       1       No Tooth Fault
1.04591  1.02569  1.44023  0.98047  2.81566  3.6314      -0.035405    2.27571      1.9550       ...     1.3900e-07       230.392       0       1       0       1       No Tooth Fault
```

Predict the labels of the test data using the trained network and calculate the accuracy. Specify the same mini-batch size used for training.

\[
YPred = classify(net, tbl(:, 1:end-1));
\]

Calculate the classification accuracy. The accuracy is the proportion of the labels that the network predicts correctly.

\[
YTest = tbl{:, labelName};
accuracy = sum(YPred == YTest)/numel(YTest)
\]

\[
accuracy = 0.9952
\]

Input Arguments

- **net** — Trained network

 SeriesNetwork object | DAGNetwork object

 Trained network, specified as a SeriesNetwork or a DAGNetwork object. You can get a trained network by importing a pretrained network (for example, by using the googlenet function) or by training your own network using trainNetwork.

- **imds** — Image datastore

 ImageDatastore object

 Image datastore, specified as an ImageDatastore object. ImageDatastore allows batch reading of JPG or PNG image files using prefetching. If you use a custom function for reading the images, then ImageDatastore does not prefetch.

Tip Use augmentedImageDatastore for efficient preprocessing of images for deep learning including image resizing.

Do not use the readFcn option of imageDatastore for preprocessing or resizing as this option is usually significantly slower.

- **ds** — Datastore

 datastore

 Datastore for out-of-memory data and preprocessing. The datastore must return data in a table or a cell array. The format of the datastore output depends on the network architecture.
<table>
<thead>
<tr>
<th>Network Architecture</th>
<th>Datastore Output</th>
<th>Example Output</th>
</tr>
</thead>
</table>
| Single input | Table or cell array, where the first column specifies the predictors. Table elements must be scalars, row vectors, or 1-by-1 cell arrays containing a numeric array. Custom datastores must output tables. | data = read(ds)
data =
4×1 table
Predictors
{224×224×3 double}
{224×224×3 double}
{224×224×3 double}
{224×224×3 double}

data = read(ds)
data =
4×1 cell array

| | | |
| Multiple input | Cell array with at least numInputs columns, where numInputs is the number of network inputs. The first numInputs columns specify the predictors for each input. The order of inputs is given by the InputNames property of the network. | data = read(ds)
data =
4×2 cell array

| | | |

The format of the predictors depend on the type of data.

<table>
<thead>
<tr>
<th>Data</th>
<th>Format of Predictors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-D image</td>
<td>h-by-w-by-c numeric array, where h, w, and c are the height, width, and number of channels of the image, respectively.</td>
</tr>
<tr>
<td>3-D image</td>
<td>h-by-w-by-d-by-c numeric array, where h, w, d, and c are the height, width, depth, and number of channels of the image, respectively.</td>
</tr>
<tr>
<td>Vector sequence</td>
<td>c-by-s matrix, where c is the number of features of the sequence and s is the sequence length.</td>
</tr>
</tbody>
</table>
Data | Format of Predictors
--- | ---
2-D image sequence | h-by-w-by-c-by-s array, where h, w, and c correspond to the height, width, and number of channels of the image, respectively, and s is the sequence length.
Each sequence in the mini-batch must have the same sequence length.

3-D image sequence | h-by-w-by-d-by-c-by-s array, where h, w, d, and c correspond to the height, width, depth, and number of channels of the image, respectively, and s is the sequence length.
Each sequence in the mini-batch must have the same sequence length.

Features | c-by-1 column vector, where c is the number of features.

For more information, see “Datastores for Deep Learning”.

X — Image or feature data

numeric array

Image or feature data, specified as a numeric array. The size of the array depends on the type of input:

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-D images</td>
<td>A h-by-w-by-c-by-N numeric array, where h, w, and c are the height, width, and number of channels of the images, respectively, and N is the number of images.</td>
</tr>
<tr>
<td>3-D images</td>
<td>A h-by-w-by-d-by-c-by-N numeric array, where h, w, d, and c are the height, width, depth, and number of channels of the images, respectively, and N is the number of images.</td>
</tr>
<tr>
<td>Features</td>
<td>A N-by-numFeatures numeric array, where N is the number of observations and numFeatures is the number of features of the input data.</td>
</tr>
</tbody>
</table>

If the array contains NaNs, then they are propagated through the network.

For networks with multiple inputs, you can specify multiple arrays X1, ..., XN, where N is the number of network inputs and the input Xi corresponds to the network input net.InputNames(i).

sequences — Sequence or time series data

cell array of numeric arrays | numeric array | datastore

Sequence or time series data, specified as an N-by-1 cell array of numeric arrays, where N is the number of observations, a numeric array representing a single sequence, or a datastore.

For cell array or numeric array input, the dimensions of the numeric arrays containing the sequences depend on the type of data.
Vector sequences
\[c \times s \] matrices, where \(c \) is the number of features of the sequences and \(s \) is the sequence length.

2-D image sequences
\[h \times w \times c \times s \] arrays, where \(h \), \(w \), and \(c \) correspond to the height, width, and number of channels of the images, respectively, and \(s \) is the sequence length.

3-D image sequences
\[h \times w \times d \times c \times s \], where \(h \), \(w \), \(d \), and \(c \) correspond to the height, width, depth, and number of channels of the 3-D images, respectively, and \(s \) is the sequence length.

For datastore input, the datastore must return data as a cell array of sequences or a table whose first column contains sequences. The dimensions of the sequence data must correspond to the table above.

tbl — Table of image or feature data

Table of image or feature data. Each row in the table corresponds to an observation.

The arrangement of predictors in the table columns depend on the type of input data.

<table>
<thead>
<tr>
<th>Input</th>
<th>Predictors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image data</td>
<td>• Absolute or relative file path to an image, specified as a character</td>
</tr>
<tr>
<td></td>
<td>vector in a single column</td>
</tr>
<tr>
<td></td>
<td>• Image specified as a 3-D numeric array</td>
</tr>
<tr>
<td></td>
<td>Specify predictors in a single column.</td>
</tr>
<tr>
<td>Feature data</td>
<td>Numeric scalar.</td>
</tr>
<tr>
<td></td>
<td>Specify predictors in \text{numFeatures} columns of the table, where</td>
</tr>
<tr>
<td></td>
<td>\text{numFeatures} is the number of features of the input data.</td>
</tr>
</tbody>
</table>

This argument supports networks with a single input only.

Data Types: table

Name-Value Pair Arguments

Specify optional comma-separated pair of \text{Name}, \text{Value} argument. \text{Name} is the argument name and \text{Value} is the corresponding value. \text{Name} must appear inside single quotes (‘ ’).

Example: ‘MiniBatchSize’, ’256’ specifies the mini-batch size as 256.

MiniBatchSize — Size of mini-batches

128 (default) | positive integer

Size of mini-batches to use for prediction, specified as a positive integer. Larger mini-batch sizes require more memory, but can lead to faster predictions.
When making predictions with sequences of different lengths, the mini-batch size can impact the amount of padding added to the input data which can result in different predicted values. Try using different values to see which works best with your network. To specify mini-batch size and padding options, use the 'MiniBatchSize' and 'SequenceLength' options, respectively.

Example: 'MiniBatchSize',256

Acceleration — Performance optimization

'auto' (default) | 'mex' | 'none'

Performance optimization, specified as the comma-separated pair consisting of 'Acceleration' and one of the following:

- 'auto' — Automatically apply a number of optimizations suitable for the input network and hardware resource.
- 'mex' — Compile and execute a MEX function. This option is available when using a GPU only. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If Parallel Computing Toolbox or a suitable GPU is not available, then the software returns an error.
- 'none' — Disable all acceleration.

The default option is 'auto'. If 'auto' is specified, MATLAB will apply a number of compatible optimizations. If you use the 'auto' option, MATLAB does not ever generate a MEX function.

Using the 'Acceleration' options 'auto' and 'mex' can offer performance benefits, but at the expense of an increased initial run time. Subsequent calls with compatible parameters are faster. Use performance optimization when you plan to call the function multiple times using new input data.

The 'mex' option generates and executes a MEX function based on the network and parameters used in the function call. You can have several MEX functions associated with a single network at one time. Clearing the network variable also clears any MEX functions associated with that network.

The 'mex' option is only available when you are using a GPU. You must have a C/C++ compiler installed and the GPU Coder Interface for Deep Learning Libraries support package. Install the support package using the Add-On Explorer in MATLAB. For setup instructions, see “MEX Setup” (GPU Coder). GPU Coder is not required.

The 'mex' option does not support all layers. For a list of supported layers, see “Supported Layers” (GPU Coder). Recurrent neural networks (RNNs) containing a sequenceInputLayer are not supported.

The 'mex' option does not support networks with multiple input layers or multiple output layers.

You cannot use MATLAB Compiler to deploy your network when using the 'mex' option.

Example: 'Acceleration','mex'

ExecutionEnvironment — Hardware resource

'auto' (default) | 'gpu' | 'cpu'

Hardware resource, specified as the comma-separated pair consisting of 'ExecutionEnvironment' and one of the following:

- 'auto' — Use a GPU if one is available; otherwise, use the CPU.
• ‘gpu’ — Use the GPU. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If Parallel Computing Toolbox or a suitable GPU is not available, then the software returns an error.
• ‘cpu’ — Use the CPU.

Example: ‘ExecutionEnvironment’, ‘cpu’

SequenceLength — Option to pad, truncate, or split input sequences

'longest' (default) | 'shortest' | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

• ‘longest’ — Pad sequences in each mini-batch to have the same length as the longest sequence. This option does not discard any data, though padding can introduce noise to the network.
• ‘shortest’ — Truncate sequences in each mini-batch to have the same length as the shortest sequence. This option ensures that no padding is added, at the cost of discarding data.
• Positive integer — For each mini-batch, pad the sequences to the nearest multiple of the specified length that is greater than the longest sequence length in the mini-batch, and then split the sequences into smaller sequences of the specified length. If splitting occurs, then the software creates extra mini-batches. Use this option if the full sequences do not fit in memory. Alternatively, try reducing the number of sequences per mini-batch by setting the ‘MiniBatchSize’ option to a lower value.

To learn more about the effect of padding, truncating, and splitting the input sequences, see “Sequence Padding, Truncation, and Splitting”.

Example: ‘SequenceLength’, ‘shortest’

SequencePaddingDirection — Direction of padding or truncation

'right' (default) | 'left'

Direction of padding or truncation, specified as one of the following:

• ‘right’ — Pad or truncate sequences on the right. The sequences start at the same time step and the software truncates or adds padding to the end of the sequences.
• ‘left’ — Pad or truncate sequences on the left. The software truncates or adds padding to the start of the sequences so that the sequences end at the same time step.

Because LSTM layers process sequence data one time step at a time, when the layer **OutputMode** property is ‘last’, any padding in the final time steps can negatively influence the layer output. To pad or truncate sequence data on the left, set the ‘SequencePaddingDirection’ option to ‘left’.

For sequence-to-sequence networks (when the **OutputMode** property is ‘sequence’ for each LSTM layer), any padding in the first time steps can negatively influence the predictions for the earlier time steps. To pad or truncate sequence data on the right, set the ‘SequencePaddingDirection’ option to ‘right’.

To learn more about the effect of padding, truncating, and splitting the input sequences, see “Sequence Padding, Truncation, and Splitting”.

SequencePaddingValue — Value to pad input sequences

0 (default) | scalar
Value by which to pad input sequences, specified as a scalar. The option is valid only when `SequenceLength` is `'longest'` or a positive integer. Do not pad sequences with `NaN`, because doing so can propagate errors throughout the network.

Example: `'SequencePaddingValue'`, `-1`

Output Arguments

YPred — Predicted class labels

categorical vector | cell array of categorical vectors

Predicted class labels, returned as a categorical vector, or a cell array of categorical vectors. The format of `YPred` depends on the type of task.

The following table describes the format for classification tasks.

<table>
<thead>
<tr>
<th>Task</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image or feature classification</td>
<td>N-by-1 categorical vector of labels, where N is the number of observations.</td>
</tr>
<tr>
<td>Sequence-to-label classification</td>
<td></td>
</tr>
<tr>
<td>Sequence-to-sequence classification</td>
<td>N-by-1 cell array of categorical sequences of labels, where N is the number of observations. Each sequence has the same number of time steps as the corresponding input sequence after applying the <code>SequenceLength</code> option to each mini-batch independently. For sequence-to-sequence classification tasks with one observation, sequences can be a matrix. In this case, <code>YPred</code> is a categorical sequence of labels.</td>
</tr>
</tbody>
</table>

scores — Predicted class scores

matrix | cell array of matrices

Predicted scores or responses, returned as a matrix or a cell array of matrices. The format of `scores` depends on the type of task.

The following table describes the format of `scores`.

<table>
<thead>
<tr>
<th>Task</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image classification</td>
<td>N-by-K matrix, where N is the number of observations, and K is the number of classes</td>
</tr>
<tr>
<td>Sequence-to-label classification</td>
<td></td>
</tr>
<tr>
<td>Feature classification</td>
<td></td>
</tr>
<tr>
<td>Sequence-to-sequence classification</td>
<td>N-by-1 cell array of matrices, where N is the number of observations. The sequences are matrices with K rows, where K is the number of classes. Each sequence has the same number of time steps as the corresponding input sequence after applying the <code>SequenceLength</code> option to each mini-batch independently.</td>
</tr>
</tbody>
</table>
For sequence-to-sequence classification tasks with one observation, sequences can be a matrix. In this case, scores is a matrix of predicted class scores.

For an example exploring classification scores, see “Classify Webcam Images Using Deep Learning”.

Algorithms

All functions for deep learning training, prediction, and validation in Deep Learning Toolbox perform computations using single-precision, floating-point arithmetic. Functions for deep learning include `trainNetwork`, `predict`, `classify`, and `activations`. The software uses single-precision arithmetic when you train networks using both CPUs and GPUs.

Alternatives

For networks with multiple outputs, use the `predict` and set the 'ReturnCategorical' option to true.

You can compute the predicted scores from a trained network using `predict`.

You can also compute the activations from a network layer using `activations`.

For sequence-to-label and sequence-to-sequence classification networks, you can make predictions and update the network state using `classifyAndUpdateState` and `predictAndUpdateState`.

References

Extended Capabilities

GPU Code Generation

Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

- GPU code generation supports the following syntaxes:
 - `[YPred,scores] = classify(net,X)`
 - `[YPred,scores] = classify(net,sequences)`
 - `[YPred,scores] = classify(__,Name,Value)`

- GPU code generation for the `classify` function is not supported for regression networks and networks with multiple outputs.

- The cuDNN library supports vector and 2-D image sequences. The TensorRT library support only vector input sequences. The ARM Compute Library for GPU does not support recurrent networks.

- For vector sequence inputs, the number of features must be a constant during code generation. The sequence length can be variable sized.
• For image sequence inputs, the height, width, and the number of channels must be a constant during code generation.

• Only the 'MiniBatchSize', 'SequenceLength', 'SequencePaddingDirection', and 'SequencePaddingValue' name-value pair arguments are supported for code generation. All name-value pairs must be compile-time constants.

• Only the 'longest' and 'shortest' option of the 'SequenceLength' name-value pair is supported for code generation.

• GPU code generation for the classify function supports inputs that are defined as half-precision floating point data types. For more information, see half.

See Also
activations | classifyAndUpdateState | predict | predictAndUpdateState

Topics
“Classify Image Using GoogLeNet”
“Classify Webcam Images Using Deep Learning”

Introduced in R2016a
classifyAndUpdateState

Classify data using a trained recurrent neural network and update the network state

Syntax

```matlab
[updatedNet,YPred] = classifyAndUpdateState(recNet,sequences)
[updatedNet,YPred] = classifyAndUpdateState(___,Name,Value)
[updatedNet,YPred,scores] = classifyAndUpdateState(___)```

**Description**

You can make predictions using a trained deep learning network on either a CPU or GPU. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. Specify the hardware requirements using the "ExecutionEnvironment" on page 1-0 name-value pair argument.

```matlab
[updatedNet,YPred] = classifyAndUpdateState(recNet,sequences)``` classifies the data in `sequences` using the trained recurrent neural network `recNet` and updates the network state.

This function supports recurrent neural networks only. The input `recNet` must have at least one recurrent layer.

```matlab
[updatedNet,YPred] = classifyAndUpdateState(___,Name,Value)``` uses any of the arguments in the previous syntaxes and additional options specified by one or more `Name,Value` pair arguments. For example, `'MiniBatchSize',27` classifies data using mini-batches of size 27.

“Classify and Update Network State” on page 1-198

```matlab
[updatedNet,YPred,scores] = classifyAndUpdateState(___)``` uses any of the arguments in the previous syntaxes, returns a matrix of classification scores, and updates the network state.

Tip When making predictions with sequences of different lengths, the mini-batch size can impact the amount of padding added to the input data which can result in different predicted values. Try using different values to see which works best with your network. To specify mini-batch size and padding options, use the 'MiniBatchSize' and 'SequenceLength' options, respectively.

Examples

Classify and Update Network State

Classify data using a recurrent neural network and update the network state.

Load `JapaneseVowelsNet`, a pretrained long short-term memory (LSTM) network trained on the Japanese Vowels data set as described in [1] and [2]. This network was trained on the sequences sorted by sequence length with a mini-batch size of 27.

```matlab
load JapaneseVowelsNet```
View the network architecture.

net.Layers

ans =  
5x1 Layer array with layers:

1  'sequenceinput'  Sequence Input  Sequence input with 12 dimensions
2  'lstm'            LSTM            LSTM with 100 hidden units
3  'fc'              Fully Connected  9 fully connected layer
4  'softmax'         Softmax         softmax
5  'classoutput'     Classification Output  crossentropyex with '1' and 8 other classes

Load the test data.

[XTest,YTest] = japaneseVowelsTestData;

Loop over the time steps in a sequence. Classify each time step and update the network state.

X = XTest{94};
umTimeSteps = size(X,2);
for i = 1:numTimeSteps
    v = X(:,i);
    [net,label,score] = classifyAndUpdateState(net,v);
    labels(i) = label;
end

Plot the predicted labels in a stair plot. The plot shows how the predictions change between time steps.

figure
stairs(labels, '-o')
xlim([1 numTimeSteps])
xlabel("Time Step")
ylabel("Predicted Class")
title("Classification Over Time Steps")
Compare the predictions with the true label. Plot a horizontal line showing the true label of the observation.

trueLabel = YTest(94)
trueLabel = categorical

hold on
line([1 numTimeSteps],[trueLabel trueLabel], ...
   'Color','red', ...
   'LineStyle','--')
legend(['Prediction' "True Label"])
Input Arguments

**recNet — Trained recurrent neural network**
SeriesNetwork object | DAGNetwork object

Trained recurrent neural network, specified as a `SeriesNetwork` or a `DAGNetwork` object. You can get a trained network by importing a pretrained network or by training your own network using the `trainNetwork` function.

**sequences — Sequence or time series data**
cell array of numeric arrays | numeric array | datastore

Sequence or time series data, specified as an `N`-by-1 cell array of numeric arrays, where `N` is the number of observations, a numeric array representing a single sequence, or a datastore.

For cell array or numeric array input, the dimensions of the numeric arrays containing the sequences depend on the type of data.
Vector sequences

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector sequences</td>
<td>c-by-s matrices, where c is the number of features of the sequences and s is the sequence length.</td>
</tr>
<tr>
<td>2-D image sequences</td>
<td>h-by-w-by-c-by-s arrays, where h, w, and c correspond to the height, width, and number of channels of the images, respectively, and s is the sequence length.</td>
</tr>
<tr>
<td>3-D image sequences</td>
<td>h-by-w-by-d-by-c-by-s, where h, w, d, and c correspond to the height, width, depth, and number of channels of the 3-D images, respectively, and s is the sequence length.</td>
</tr>
</tbody>
</table>

For datastore input, the datastore must return data as a cell array of sequences or a table whose first column contains sequences. The dimensions of the sequence data must correspond to the table above.

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example:
```
[updatedNet, YPred] = classifyAndUpdateState(recNet,C,'MiniBatchSize',27)
```
classifies data using mini-batches of size 27.

**MiniBatchSize — Size of mini-batches**

Size of mini-batches to use for prediction, specified as a positive integer. Larger mini-batch sizes require more memory, but can lead to faster predictions.

When making predictions with sequences of different lengths, the mini-batch size can impact the amount of padding added to the input data which can result in different predicted values. Try using different values to see which works best with your network. To specify mini-batch size and padding options, use the 'MiniBatchSize' and 'SequenceLength' options, respectively.

Example: 'MiniBatchSize',256

**Acceleration — Performance optimization**

'auto' (default) | 'none'

Performance optimization, specified as the comma-separated pair consisting of 'Acceleration' and one of the following:

- 'auto' — Automatically apply a number of optimizations suitable for the input network and hardware resource.
- 'none' — Disable all acceleration.

The default option is 'auto'.

1-202
Using the 'Acceleration' option 'auto' can offer performance benefits, but at the expense of an increased initial run time. Subsequent calls with compatible parameters are faster. Use performance optimization when you plan to call the function multiple times using new input data.

Example: 'Acceleration','auto'

**ExecutionEnvironment — Hardware resource**

'auto' (default) | 'gpu' | 'cpu'

Hardware resource, specified as the comma-separated pair consisting of 'ExecutionEnvironment' and one of the following:

- 'auto' — Use a GPU if one is available; otherwise, use the CPU.
- 'gpu' — Use the GPU. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If Parallel Computing Toolbox or a suitable GPU is not available, then the software returns an error.
- 'cpu' — Use the CPU.

Example: 'ExecutionEnvironment','cpu'

**SequenceLength — Option to pad, truncate, or split input sequences**

'longest' (default) | 'shortest' | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

- 'longest' — Pad sequences in each mini-batch to have the same length as the longest sequence. This option does not discard any data, though padding can introduce noise to the network.
- 'shortest' — Truncate sequences in each mini-batch to have the same length as the shortest sequence. This option ensures that no padding is added, at the cost of discarding data.
- Positive integer — For each mini-batch, pad the sequences to the nearest multiple of the specified length that is greater than the longest sequence length in the mini-batch, and then split the sequences into smaller sequences of the specified length. If splitting occurs, then the software creates extra mini-batches. Use this option if the full sequences do not fit in memory. Alternatively, try reducing the number of sequences per mini-batch by setting the 'MiniBatchSize' option to a lower value.

To learn more about the effect of padding, truncating, and splitting the input sequences, see “Sequence Padding, Truncation, and Splitting”.

Example: 'SequenceLength','shortest'

**SequencePaddingDirection — Direction of padding or truncation**

'right' (default) | 'left'

Direction of padding or truncation, specified as one of the following:

- 'right' — Pad or truncate sequences on the right. The sequences start at the same time step and the software truncates or adds padding to the end of the sequences.
- 'left' — Pad or truncate sequences on the left. The software truncates or adds padding to the start of the sequences so that the sequences end at the same time step.

Because LSTM layers process sequence data one time step at a time, when the layer OutputMode property is 'last', any padding in the final time steps can negatively influence the layer output. To
pad or truncate sequence data on the left, set the 'SequencePaddingDirection' option to 'left'.

For sequence-to-sequence networks (when the OutputMode property is 'sequence' for each LSTM layer), any padding in the first time steps can negatively influence the predictions for the earlier time steps. To pad or truncate sequence data on the right, set the 'SequencePaddingDirection' option to 'right'.

To learn more about the effect of padding, truncating, and splitting the input sequences, see “Sequence Padding, Truncation, and Splitting”.

**SequencePaddingValue — Value to pad input sequences**

Value by which to pad input sequences, specified as a scalar. The option is valid only when SequenceLength is 'longest' or a positive integer. Do not pad sequences with NaN, because doing so can propagate errors throughout the network.

Example: 'SequencePaddingValue',-1

**Output Arguments**

**updatedNet — Updated network**

*SeriesNetwork object | DAGNetwork object*

Updated network. updatedNet is the same type of network as the input network.

**YPred — Predicted class labels**

categorical vector | cell array of categorical vectors

Predicted class labels, returned as a categorical vector, or a cell array of categorical vectors. The format of YPred depends on the type of problem.

The following table describes the format of YPred.

<table>
<thead>
<tr>
<th>Task</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence-to-label classification</td>
<td>N-by-1 categorical vector of labels, where N is the number of observations.</td>
</tr>
<tr>
<td>Sequence-to-sequence classification</td>
<td>N-by-1 cell array of categorical sequences of labels, where N is the number of observations. Each sequence has the same number of time steps as the corresponding input sequence after applying the SequenceLength option to each mini-batch independently. For sequence-to-sequence classification problems with one observation, sequences can be a matrix. In this case, YPred is a categorical sequence of labels.</td>
</tr>
</tbody>
</table>

**scores — Predicted class scores**

matrix | cell array of matrices
Predicted class scores, returned as a matrix or a cell array of matrices. The format of scores depends on the type of problem.

The following table describes the format of scores.

<table>
<thead>
<tr>
<th>Task</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence-to-label classification</td>
<td>$N$-by-$K$ matrix, where $N$ is the number of observations, and $K$ is the number of classes.</td>
</tr>
<tr>
<td>Sequence-to-sequence classification</td>
<td>$N$-by-1 cell array of matrices, where $N$ is the number of observations. The sequences are matrices with $K$ rows, where $K$ is the number of classes. Each sequence has the same number of time steps as the corresponding input sequence after applying the SequenceLength option to each mini-batch independently.</td>
</tr>
</tbody>
</table>

For sequence-to-sequence classification problems with one observation, sequences can be a matrix. In this case, scores is a matrix of predicted class scores.

**Algorithms**

All functions for deep learning training, prediction, and validation in Deep Learning Toolbox perform computations using single-precision, floating-point arithmetic. Functions for deep learning include `trainNetwork`, `predict`, `classify`, and `activations`. The software uses single-precision arithmetic when you train networks using both CPUs and GPUs.

**References**


**See Also**

`bilstmLayer`, `classify`, `gruLayer`, `lstmLayer`, `predict`, `predictAndUpdateState`, `resetState`, `sequenceInputLayer`

**Topics**

“Sequence Classification Using Deep Learning”
“Visualize Activations of LSTM Network”
“Long Short-Term Memory Networks”
“Specify Layers of Convolutional Neural Network”
“Set Up Parameters and Train Convolutional Neural Network”
“Deep Learning in MATLAB”

**Introduced in R2017b**
clippedReluLayer

Clipped Rectified Linear Unit (ReLU) layer

Description

A clipped ReLU layer performs a threshold operation, where any input value less than zero is set to zero and any value above the clipping ceiling is set to that clipping ceiling.

This operation is equivalent to:

\[
f(x) = \begin{cases} 
0, & x < 0 \\
x, & 0 \leq x < \text{ceiling} \\
\text{ceiling}, & x \geq \text{ceiling} 
\end{cases}
\]

This clipping prevents the output from becoming too large.

Creation

Syntax

```
layer = clippedReluLayer(ceiling)
layer = clippedReluLayer(ceiling,'Name',Name)
```

Description

`layer = clippedReluLayer(ceiling)` returns a clipped ReLU layer with the clipping ceiling equal to `ceiling`.

`layer = clippedReluLayer(ceiling,'Name',Name)` sets the optional `Name` property.

Properties

Clipped ReLU

**Ceiling** — Ceiling for input clipping  
positive scalar

Ceiling for input clipping, specified as a positive scalar.

Example: 10

Layer

**Name** — Layer name  
' ' (default) | character vector | string scalar

1-206
Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to '', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

**NumInputs — Number of inputs**

1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

**InputNames — Input names**

{'in'} (default)

Input names of the layer. This layer accepts a single input only.

Data Types: cell

**NumOutputs — Number of outputs**

1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: double

**OutputNames — Output names**

{'out'} (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

**Examples**

**Create Clipped ReLU Layer**

Create a clipped ReLU layer with the name 'clip1' and the clipping ceiling equal to 10.

```matlab
layer = clippedReluLayer(10,'Name','clip1')
```

```
ClippedReLU with properties:
 Name: 'clip1'
 Hyperparameters
 Ceiling: 10
```

Include a clipped ReLU layer in a Layer array.

```matlab
layers = [...
 imageInputLayer([28 28 1])
 convolution2dLayer(5,20)
 clippedReluLayer(10)
]`
maxPooling2dLayer(2,'Stride',2)
fullyConnectedLayer(10)
softmaxLayer
classificationLayer

layers =
7x1 Layer array with layers:
1 '' Image Input 28x28x1 images with 'zerocenter' normalization
2 '' Convolution 20 5x5 convolutions with stride [1 1] and padding [0 0 0 0]
3 '' Clipped ReLU Clipped ReLU with ceiling 10
4 '' Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]
5 '' Fully Connected 10 fully connected layer
6 '' Softmax softmax
7 '' Classification Output crossentropyex

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
leakyReluLayer | reluLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2017b
concatenationLayer

Concatenation layer

Description

A concatenation layer takes inputs and concatenates them along a specified dimension. The inputs must have the same size in all dimensions except the concatenation dimension.

Specify the number of inputs to the layer when you create it. The inputs have the names 'in1', 'in2', ..., 'inN', where N is the number of inputs. Use the input names when connecting or disconnecting the layer by using connectLayers or disconnectLayers.

Creation

Syntax

layer = concatenationLayer(dim,numInputs)
layer = concatenationLayer(dim,numInputs,'Name',name)

Description

layer = concatenationLayer(dim,numInputs) creates a concatenation layer that concatenates numInputs inputs along the specified dimension, dim. This function also sets the Dim and NumInputs properties.

layer = concatenationLayer(dim,numInputs,'Name',name) also sets the Name property. To create a network containing a concatenation layer, you must specify a layer name.

Properties

Concatenation

Dim — Concatenation dimension

positive integer

Concatenation dimension, specified as a positive integer.

Example: 4

Layer

Name — Layer name

'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include this layer in a layer graph, you must specify a layer name.

Data Types: char | string
NumInputs — Number of inputs
positive integer

Number of inputs to the layer, specified as a positive integer.

The inputs have the names 'in1', 'in2', ..., 'inN', where N equals NumInputs. For example, if NumInputs equals 3, then the inputs have the names 'in1', 'in2', and 'in3'. Use the input names when connecting or disconnecting the layer by using connectLayers or disconnectLayers.

InputNames — Input Names
{'in1', 'in2', ..., 'inN'} (default)

Input names, specified as {'in1', 'in2', ..., 'inN'}, where N is the number of inputs of the layer. Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only. Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only. Data Types: cell

Examples

Create and Connect Concatenation Layer

Create a concatenation layer that concatenates two inputs along the fourth dimension (channels). Name the concatenation layer 'concat'.

concat = concatenationLayer(4, 2, 'Name', 'concat')

Create two ReLU layers and connect them to the concatenation layer. The concatenation layer concatenates the outputs from the ReLU layers.

relu_1 = reluLayer('Name', 'relu_1');
relu_2 = reluLayer('Name', 'relu_2');
lgraph = layerGraph();
lgraph = addLayers(lgraph, relu_1);
lgraph = addLayers(lgraph, relu_2);
lgraph = addLayers(lgraph, concat);

lgraph = connectLayers(lgraph, 'relu_1', 'concat/in1');
lgraph = connectLayers(lgraph, 'relu_2', 'concat/in2');
plot(lgraph)

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
additionLayer | connectLayers | disconnectLayers | layerGraph | trainNetwork

Topics
“3-D Brain Tumor Segmentation Using Deep Learning”
“Pretrained Deep Neural Networks”
“List of Deep Learning Layers”
Introduced in R2019a
confusionchart

Create confusion matrix chart for classification problem

Syntax

confusionchart(trueLabels,predictedLabels)
confusionchart(m)
confusionchart(m,classLabels)
confusionchart(parent,___)
confusionchart(___,Name,Value)

Description

confusionchart(trueLabels,predictedLabels) creates a confusion matrix chart from true labels trueLabels and predicted labels predictedLabels and returns a ConfusionMatrixChart object. The rows of the confusion matrix correspond to the true class and the columns correspond to the predicted class. Diagonal and off-diagonal cells correspond to correctly and incorrectly classified observations, respectively. Use cm to modify the confusion matrix chart after it is created. For a list of properties, see ConfusionMatrixChart Properties.

confusionchart(m) creates a confusion matrix chart from the numeric confusion matrix m. Use this syntax if you already have a numeric confusion matrix in the workspace.

confusionchart(m,classLabels) specifies class labels that appear along the x-axis and y-axis. Use this syntax if you already have a numeric confusion matrix and class labels in the workspace.

confusionchart(parent,___) creates the confusion chart in the figure, panel, or tab specified by parent.

confusionchart(___,Name,Value) specifies additional ConfusionMatrixChart properties using one or more name-value pair arguments. Specify the properties after all other input arguments. For a list of properties, see ConfusionMatrixChart Properties.

cm = confusionchart(___) returns the ConfusionMatrixChart object. Use cm to modify properties of the chart after creating it. For a list of properties, see ConfusionMatrixChart Properties.

Examples

Create Confusion Matrix Chart

Load a sample of predicted and true labels for a classification problem. trueLabels is the true labels for an image classification problem and predictedLabels is the predictions of a convolutional neural network.

load('Cifar10Labels.mat','trueLabels','predictedLabels');

Create a confusion matrix chart.
figure

```matlab
cm = confusionchart(trueLabels,predictedLabels);
```

<table>
<thead>
<tr>
<th>True Class</th>
<th>airplane</th>
<th>automobile</th>
<th>bird</th>
<th>cat</th>
<th>deer</th>
<th>dog</th>
<th>frog</th>
<th>horse</th>
<th>ship</th>
<th>truck</th>
</tr>
</thead>
<tbody>
<tr>
<td>airplane</td>
<td>923</td>
<td>4</td>
<td>21</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>23</td>
<td>6</td>
</tr>
<tr>
<td>automobile</td>
<td>5</td>
<td>972</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>bird</td>
<td>26</td>
<td>2</td>
<td>892</td>
<td>30</td>
<td>13</td>
<td>8</td>
<td>17</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>cat</td>
<td>12</td>
<td>4</td>
<td>32</td>
<td>826</td>
<td>24</td>
<td>48</td>
<td>30</td>
<td>12</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>deer</td>
<td>5</td>
<td>1</td>
<td>28</td>
<td>24</td>
<td>898</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>dog</td>
<td>7</td>
<td>2</td>
<td>28</td>
<td>111</td>
<td>18</td>
<td>801</td>
<td>13</td>
<td>17</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>frog</td>
<td>5</td>
<td>16</td>
<td>27</td>
<td>3</td>
<td>4</td>
<td>943</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>horse</td>
<td>9</td>
<td>1</td>
<td>14</td>
<td>13</td>
<td>22</td>
<td>17</td>
<td>3</td>
<td>915</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>ship</td>
<td>37</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>931</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>truck</td>
<td>20</td>
<td>39</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>923</td>
<td></td>
</tr>
</tbody>
</table>

Modify the appearance and behavior of the confusion matrix chart by changing property values. Add column and row summaries and a title. A column-normalized column summary displays the number of correctly and incorrectly classified observations for each predicted class as percentages of the number of observations of the corresponding predicted class. A row-normalized row summary displays the number of correctly and incorrectly classified observations for each true class as percentages of the number of observations of the corresponding true class.

```matlab
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';
cm.Title = 'CIFAR-10 Confusion Matrix';
```
Create Confusion Matrix Chart from Numeric Confusion Matrix

You can use `confusionchart` to create a confusion matrix chart from a numeric confusion matrix.

Load a sample confusion matrix `m` and the associated class labels `classLabels`.

```matlab
load('Cifar10ConfusionMat.mat','m','classLabels');
m
```

```
923  4  21  8  4  1  5  5  23  6
 5  972  2  0  0  0  0  1  5  15
26  2  892 30 13  8  17  5  4  3
12  4  32 826 24 48  30 12  5  7
 5  1  28  24 898 13  14 14  2  1
 7  2  28 111 18 801 13 17  3  0
 5  0  16  27  3  4 943  1  1  0
 9  1  14  13  22 17  3 915  2  4
37 10  4  4  0  1  2  1 931 10
20 39  3  3  0  0  2  1  9 923
```

classLabels

```
airplane  automobile  bird  cat  deer  dog  frog  horse  ship  truck
```

```
<table>
<thead>
<tr>
<th></th>
<th>airplane</th>
<th>automobile</th>
<th>bird</th>
<th>cat</th>
<th>deer</th>
<th>dog</th>
<th>frog</th>
<th>horse</th>
<th>ship</th>
<th>truck</th>
</tr>
</thead>
<tbody>
<tr>
<td>airplane</td>
<td>923</td>
<td>4</td>
<td>21</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>23</td>
<td>6</td>
</tr>
<tr>
<td>automobile</td>
<td>5</td>
<td>972</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>bird</td>
<td>26</td>
<td>2</td>
<td>892</td>
<td>30</td>
<td>13</td>
<td>8</td>
<td>17</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>cat</td>
<td>12</td>
<td>4</td>
<td>32</td>
<td>826</td>
<td>24</td>
<td>48</td>
<td>30</td>
<td>12</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>deer</td>
<td>5</td>
<td>1</td>
<td>28</td>
<td>24</td>
<td>898</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>dog</td>
<td>7</td>
<td>2</td>
<td>28</td>
<td>111</td>
<td>18</td>
<td>801</td>
<td>13</td>
<td>17</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>frog</td>
<td>5</td>
<td>16</td>
<td>27</td>
<td>3</td>
<td>4</td>
<td>943</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>horse</td>
<td>9</td>
<td>1</td>
<td>14</td>
<td>13</td>
<td>22</td>
<td>17</td>
<td>3</td>
<td>915</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>ship</td>
<td>37</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>931</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>truck</td>
<td>20</td>
<td>39</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>923</td>
</tr>
</tbody>
</table>
```

CIFAR-10 Confusion Matrix

```
88.0%  91.9%  85.3%  79.0%  91.4%  89.7%  91.6%  94.1%  94.8%  95.0%
12.0%  61.0%  14.2%  21.0%  8.6%  10.3%  8.4%  5.9%  5.2%  5.0%
```
Create a confusion matrix chart from the numeric confusion matrix and the class labels.

```matlab
cm = confusionchart(m,classLabels);
```

![Confusion Matrix Chart](image)

Sort Classes by Precision or Recall

Load a sample of predicted and true labels for a classification problem. `trueLabels` are the true labels for an image classification problem and `predictedLabels` are the predictions of a convolutional neural network. Create a confusion matrix chart with column and row summaries.

```matlab
load('Cifar10Labels.mat','trueLabels','predictedLabels');
figure
```
cm = confusionchart(trueLabels,predictedLabels, ...
'ColumnSummary','column-normalized', ...
'RowSummary','row-normalized');

To sort the classes of the confusion matrix by class-wise recall (true positive rate), normalize the cell values across each row, that is, by the number of observations that have the same true class. Sort the classes by the corresponding diagonal cell values and reset the normalization of the cell values. The classes are now sorted such that the percentages in the blue cells in the row summaries to the right are decreasing.

cm.Normalization = 'row-normalized';
sortClasses(cm,'descending-diagonal');
cm.Normalization = 'absolute';

<table>
<thead>
<tr>
<th>True Class</th>
<th>airplane</th>
<th>automobile</th>
<th>bird</th>
<th>cat</th>
<th>deer</th>
<th>dog</th>
<th>frog</th>
<th>horse</th>
<th>ship</th>
<th>truck</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>923</td>
<td>4</td>
<td>21</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>23</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>972</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>2</td>
<td>892</td>
<td>30</td>
<td>13</td>
<td>8</td>
<td>17</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>4</td>
<td>32</td>
<td>825</td>
<td>24</td>
<td>48</td>
<td>30</td>
<td>12</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>28</td>
<td>24</td>
<td>898</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2</td>
<td>28</td>
<td>111</td>
<td>18</td>
<td>801</td>
<td>13</td>
<td>17</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>16</td>
<td>27</td>
<td>3</td>
<td>4</td>
<td>943</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1</td>
<td>14</td>
<td>13</td>
<td>22</td>
<td>17</td>
<td>3</td>
<td>915</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>931</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>39</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>923</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Predicted Class</th>
<th>airplane</th>
<th>automobile</th>
<th>bird</th>
<th>cat</th>
<th>deer</th>
<th>dog</th>
<th>frog</th>
<th>horse</th>
<th>ship</th>
<th>truck</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>98.3%</td>
<td>93.9%</td>
<td>85.8%</td>
<td>70.0%</td>
<td>91.4%</td>
<td>89.7%</td>
<td>91.6%</td>
<td>94.1%</td>
<td>94.8%</td>
<td>95.0%</td>
</tr>
<tr>
<td></td>
<td>12.0%</td>
<td>61.0%</td>
<td>14.2%</td>
<td>21.0%</td>
<td>8.6%</td>
<td>10.3%</td>
<td>8.4%</td>
<td>5.9%</td>
<td>5.2%</td>
<td>5.0%</td>
</tr>
</tbody>
</table>
To sort the classes by class-wise precision (positive predictive value), normalize the cell values across each column, that is, by the number of observations that have the same predicted class. Sort the classes by the corresponding diagonal cell values and reset the normalization of the cell values. The classes are now sorted such that the percentages in the blue cells in the column summaries at the bottom are decreasing.

```matlab
cm.Normalization = 'column-normalized';
sortClasses(cm,'descending-diagonal');
cm.Normalization = 'absolute';
```
Confusion Matrix

<table>
<thead>
<tr>
<th>True Class</th>
<th>923</th>
<th>9</th>
<th>1</th>
<th>39</th>
<th>2</th>
<th>20</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ship</td>
<td>10</td>
<td>931</td>
<td>1</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>37</td>
<td>4</td>
</tr>
<tr>
<td>horse</td>
<td>4</td>
<td>2</td>
<td>915</td>
<td>1</td>
<td>3</td>
<td>22</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>automobile</td>
<td>15</td>
<td>5</td>
<td>1</td>
<td>972</td>
<td></td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>frog</td>
<td>1</td>
<td>1</td>
<td></td>
<td>943</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>deer</td>
<td>1</td>
<td>2</td>
<td>14</td>
<td>14</td>
<td>898</td>
<td>13</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>dog</td>
<td>3</td>
<td></td>
<td>17</td>
<td>2</td>
<td>13</td>
<td>18</td>
<td>801</td>
<td>7</td>
</tr>
<tr>
<td>airplane</td>
<td>6</td>
<td>23</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>923</td>
</tr>
<tr>
<td>bird</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>17</td>
<td>13</td>
<td>8</td>
<td>26</td>
</tr>
<tr>
<td>cat</td>
<td>7</td>
<td>5</td>
<td>12</td>
<td>4</td>
<td>30</td>
<td>24</td>
<td>48</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Confusion Matrix</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Predicted Class</th>
</tr>
</thead>
</table>

Input Arguments

trueLabels — True labels of classification problem
categorical vector | numeric vector | string vector | character array | cell array of character vectors | logical vector

True labels of classification problem, specified as a categorical vector, numeric vector, string vector, character array, cell array of character vectors, or logical vector. If **trueLabels** is a vector, then each element corresponds to one observation. If **trueLabels** is a character array, then it must be two-dimensional with each row corresponding to the label of one observation.

predictedLabels — Predicted labels of classification problem
categorical vector | numeric vector | string vector | character array | cell array of character vectors | logical vector

Predicted labels of classification problem, specified as a categorical vector, numeric vector, string vector, character array, cell array of character vectors, or logical vector. If **predictedLabels** is a vector, then each element corresponds to one observation. If **predictedLabels** is a character array, then it must be two-dimensional with each row corresponding to the label of one observation.

m — Confusion matrix
matrix

Confusion matrix, specified as a matrix. **m** must be square and its elements must be positive integers. The element **m(i, j)** is the number of times an observation of the ith true class was predicted to be
of the jth class. Each colored cell of the confusion matrix chart corresponds to one element of the confusion matrix m.

classLabels — Class labels
categorical vector | numeric vector | string vector | character array | cell array of character vectors | logical vector

Class labels of the confusion matrix chart, specified as a categorical vector, numeric vector, string vector, character array, cell array of character vectors, or logical vector. If `classLabels` is a vector, then it must have the same number of elements as the confusion matrix has rows and columns. If `classLabels` is a character array, then it must be two-dimensional with each row corresponding to the label of one class.

parent — Parent container
Figure object | Panel object | Tab object | TiledChartLayout object | GridLayout object

Parent container, specified as a `Figure`, `Panel`, `Tab`, `TiledChartLayout`, or `GridLayout` object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `cm = confusionchart(trueLabels,predictedLabels,'Title','My Title Text','ColumnSummary','column-normalized')`

Note The properties listed here are only a subset. For a complete list, see `ConfusionMatrixChart Properties`.

Title — Title
```
' ' (default) | character vector | string scalar
```

Title of the confusion matrix chart, specified as a character vector or string scalar.

Example: `cm = confusionchart(__,'Title','My Title Text')`
Example: `cm.Title = 'My Title Text'`

ColumnSummary — Column summary
'off' (default) | 'absolute' | 'column-normalized' | 'total-normalized'

Column summary of the confusion matrix chart, specified as one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'off'</td>
<td>Do not display a column summary.</td>
</tr>
<tr>
<td>'absolute'</td>
<td>Display the total number of correctly and incorrectly classified observations for each predicted class.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>'column-normalized'</td>
<td>Display the number of correctly and incorrectly classified observations for each predicted class as percentages of the number of observations of the corresponding predicted class. The percentages of correctly classified observations can be thought of as class-wise precisions (or positive predictive values).</td>
</tr>
<tr>
<td>'total-normalized'</td>
<td>Display the number of correctly and incorrectly classified observations for each predicted class as percentages of the total number of observations.</td>
</tr>
</tbody>
</table>

Example: cm = confusionchart(__,'ColumnSummary','column-normalized')
Example: cm.ColumnSummary = 'column-normalized'

RowSummary — Row summary

'off' (default) | 'absolute' | 'row-normalized' | 'total-normalized'

Row summary of the confusion matrix chart, specified as one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'off'</td>
<td>Do not display a row summary.</td>
</tr>
<tr>
<td>'absolute'</td>
<td>Display the total number of correctly and incorrectly classified observations for each true class.</td>
</tr>
<tr>
<td>'row-normalized'</td>
<td>Display the number of correctly and incorrectly classified observations for each true class as percentages of the number of observations of the corresponding true class. The percentages of correctly classified observations can be thought of as class-wise recalls (or true positive rates).</td>
</tr>
<tr>
<td>'total-normalized'</td>
<td>Display the number of correctly and incorrectly classified observations for each true class as percentages of the total number of observations.</td>
</tr>
</tbody>
</table>

Example: cm = confusionchart(__,'RowSummary','row-normalized')
Example: cm.RowSummary = 'row-normalized'

Normalization — Normalization of cell values

'absolute' (default) | 'column-normalized' | 'row-normalized' | 'total-normalized'

Normalization of cell values, specified as one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'absolute'</td>
<td>Display the total number of observations in each cell.</td>
</tr>
<tr>
<td>'column-normalized'</td>
<td>Normalize each cell value by the number of observations that has the same predicted class.</td>
</tr>
</tbody>
</table>
Option

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'row-normalized'</td>
<td>Normalize each cell value by the number of observations that has the same true class.</td>
</tr>
<tr>
<td>'total-normalized'</td>
<td>Normalize each cell value by the total number of observations.</td>
</tr>
</tbody>
</table>

Modifying the normalization of cell values also affects the colors of the cells.

Example: `cm = confusionchart(___,'Normalization','total-normalized')`

Example: `cm.Normalization = 'total-normalized'`

Output Arguments

`cm` — Confusion matrix chart object

ConfusionMatrixChart object

`ConfusionMatrixChart` object, which is a standalone visualization on page 1-222. Use `cm` to set properties of the confusion matrix chart after creating it.

Limitations

- MATLAB code generation is not supported for *ConfusionMatrixChart* objects.

More About

Standalone Visualization

A standalone visualization is a chart designed for a special purpose that works independently from other charts. Unlike other charts such as `plot` and `surf`, a standalone visualization has a preconfigured axes object built into it, and some customizations are not available. A standalone visualization also has these characteristics:

- It cannot be combined with other graphics elements, such as lines, patches, or surfaces. Thus, the `hold` command is not supported.
- The `gca` function can return the chart object as the current axes.
- You can pass the chart object to many MATLAB functions that accept an axes object as an input argument. For example, you can pass the chart object to the `title` function.

Tips

- If you have Statistics and Machine Learning Toolbox, you can create a confusion matrix chart for tall arrays. For details, see `confusionchart` and “Confusion Matrix for Classification Using Tall Arrays” (Statistics and Machine Learning Toolbox).

See Also

Functions

deepLearningFunctions
Properties
ConfusionMatrixChart Properties

Topics
“Deep Learning in MATLAB”

Introduced in R2018b
confusionmat

Compute confusion matrix for classification problem

Syntax

C = confusionmat(group,grouphat)
C = confusionmat(group,grouphat,'Order',grouporder)
[C,order] = confusionmat(___)

Description

C = confusionmat(group,grouphat) returns the confusion matrix C determined by the known and predicted groups in group and grouphat, respectively.

C = confusionmat(group,grouphat,'Order',grouporder) uses grouporder to order the rows and columns of C.

[C,order] = confusionmat(____) also returns the order of the rows and columns of C in the variable order using any of the input arguments in previous syntaxes.

Examples

Calculate Confusion Matrix

Load a sample of predicted and true labels for a classification problem. trueLabels are the true labels for an image classification problem and predictedLabels are the predictions of a convolutional neural network.

load('Cifar10Labels.mat','trueLabels','predictedLabels');

Calculate the numeric confusion matrix. order is the order of the classes in the confusion matrix.

[m,order] = confusionmat(trueLabels,predictedLabels)

m = 10x10

923 4 21 8 4 1 5 5 23 6
5 972 2 0 0 0 0 1 5 15
26 2892 30 13 8 17 5 4 3
12 4 32 826 24 48 30 12 5 7
5 1 28 24 898 13 14 14 2 1
7 2 28 111 18 801 13 17 0 3
5 0 16 27 3 4 943 1 1 0
9 1 14 13 22 17 3 915 2 4
37 10 4 4 0 1 2 1 931 10
20 39 3 3 0 0 2 1 9 923

order = 10x1 categorical
airplane
automobile

1-224
You can use `confusionchart` to plot a confusion matrix as a confusion matrix chart.

```matlab
figure
cm = confusionchart(m,order);
```

You do not need to calculate the confusion matrix first and then plot it. Instead, plot a confusion matrix chart directly from the true and predicted labels. You can also add column and row summaries and a title.

```matlab
figure
cm = confusionchart(trueLabels,predictedLabels, ...
    'Title','My Title', ...
    'RowSummary','row-normalized', ...
    'ColumnSummary','column-normalized');
```
The `ConfusionMatrixChart` object stores the numeric confusion matrix in the `NormalizedValues` property and classes in the `ClassLabels` property.

```matlab
cm.NormalizedValues
ans = 10x10
923  4  21   8   4   1   5   5  23   6
 5 972   2   0   0   0   1   5  15   6
26  2 892  30  13   8  17   5   4   3
12  4  32  826  24  48  30  12   5   7
 5  1  23  24  898  13  14  14   2   1
 7  2 28 111  18  801  13  17   3   3
 5  0  16  27   3   4  943   1   1   0
 9  1 14  13  22  17   3  915   2   4
37 10  4   4   0   1   2   1  931  10
20 39   3   3   0   0   2   1   9  923
```

```matlab
cm.ClassLabels
ans = 10x1 categorical
airplane
automobile
bird
cat
deer
dog
```

The `ConfusionMatrixChart` object stores the numeric confusion matrix in the `NormalizedValues` property and classes in the `ClassLabels` property.
Input Arguments

group — Known groups
numeric vector | logical vector | character array | string array | cell array of character vectors | categorical vector

Known groups for categorizing observations, specified as a numeric vector, logical vector, character array, string array, cell array of character vectors, or categorical vector.

group is a grouping variable of the same type as **grouphat**. The **group** argument must have the same number of observations as **grouphat**, as described in “Grouping Variables” (Statistics and Machine Learning Toolbox). The **confusionmat** function treats character arrays and string arrays as cell arrays of character vectors. Additionally, **confusionmat** treats NaN, empty, and 'undefined' values in **group** as missing values and does not count them as distinct groups or categories.

Example: {'Male','Female','Female','Male','Female'}
Data Types: single | double | logical | char | string | cell | categorical

grouphat — Predicted groups
numeric vector | logical vector | character array | string array | cell array of character vectors | categorical vector

Predicted groups for categorizing observations, specified as a numeric vector, logical vector, character array, string array, cell array of character vectors, or categorical vector.

grouphat is a grouping variable of the same type as **group**. The **grouphat** argument must have the same number of observations as **group**, as described in “Grouping Variables” (Statistics and Machine Learning Toolbox). The **confusionmat** function treats character arrays and string arrays as cell arrays of character vectors. Additionally, **confusionmat** treats NaN, empty, and 'undefined' values in **grouphat** as missing values and does not count them as distinct groups or categories.

Example: [1 0 0 1 0]
Data Types: single | double | logical | char | string | cell | categorical

grouporder — Group order
numeric vector | logical vector | character array | string array | cell array of character vectors | categorical vector

Group order, specified as a numeric vector, logical vector, character array, string array, cell array of character vectors, or categorical vector.

grouporder is a grouping variable containing all the distinct elements in **group** and **grouphat**. Specify **grouporder** to define the order of the rows and columns of **C**. If **grouporder** contains elements that are not in **group** or **grouphat**, the corresponding entries in **C** are 0.

By default, the group order depends on the data type of **s = [group;grouphat]**:
For numeric and logical vectors, the order is the sorted order of \(s \).

For categorical vectors, the order is the order returned by `categories(s)`.

For other data types, the order is the order of first appearance in \(s \).

Example: `order`,\{'setosa','versicolor','virginica'\}

Data Types: `single` | `double` | `logical` | `char` | `string` | `cell` | `categorical`

Output Arguments

C — Confusion matrix

matrix

Confusion matrix, returned as a square matrix with size equal to the total number of distinct elements in the `group` and `grouphat` arguments. \(C(i,j) \) is the count of observations known to be in group \(i \) but predicted to be in group \(j \).

The rows and columns of \(C \) have identical ordering of the same group indices. By default, the group order depends on the data type of \(s = [\text{group};\text{grouphat}] \):

- For numeric and logical vectors, the order is the sorted order of \(s \).
- For categorical vectors, the order is the order returned by `categories(s)`.
- For other data types, the order is the order of first appearance in \(s \).

To change the order, specify `grouporder`,

The `confusionmat` function treats `NaN`, empty, and `'undefined'` values in the grouping variables as missing values and does not include them in the rows and columns of \(C \).

order — Order of rows and columns

numeric vector | logical vector | categorical vector | cell array of character vectors

Order of rows and columns in \(C \), returned as a numeric vector, logical vector, categorical vector, or cell array of character vectors. If `group` and `grouphat` are character arrays, string arrays, or cell arrays of character vectors, then the variable `order` is a cell array of character vectors. Otherwise, `order` is of the same type as `group` and `grouphat`.

Alternative Functionality

- Use `confusionchart` to calculate and plot a confusion matrix. Additionally, `confusionchart` displays summary statistics about your data and sorts the classes of the confusion matrix according to the class-wise precision (positive predictive value), class-wise recall (true positive rate), or total number of correctly classified observations.

See Also

categories | classify | confusionchart

Topics

“Deep Learning in MATLAB”
ConfusionMatrixChart Properties

Confusion matrix chart appearance and behavior

Description

ConfusionMatrixChart properties control the appearance and behavior of a ConfusionMatrixChart object. By changing property values, you can modify certain aspects of the confusion matrix chart. For example, you can add a title:

```matlab
cm = confusionchart([1 3 5; 2 4 6; 11 7 3]);
cm.Title = 'My Confusion Matrix Title';
```

Properties

Labels

Title — Title

' ' (default) | character vector | string scalar

Title of the confusion matrix chart, specified as a character vector or string scalar.

Example: `cm = confusionchart(__,'Title','My Title Text')`
Example: `cm.Title = 'My Title Text'

XLabel — Label for x-axis

'Predicted class' (default) | string scalar | character vector

Label for the x-axis, specified as a string scalar or character vector.

Example: `cm = confusionchart(__,'XLabel','My Label')`
Example: `cm.XLabel = 'My Label'

YLabel — Label for y-axis

'True class' (default) | string scalar | character vector

Label for the x-axis, specified as a string scalar or character vector.

Example: `cm = confusionchart(__,'YLabel','My Label')`
Example: `cm.YLabel = 'My Label'

ClassLabels — Class labels
categorical vector | numeric vector | string vector | character array | cell array of character vectors | logical vector

This property is read-only.

Class labels of the confusion matrix chart, stored as a categorical vector, numeric vector, string vector, character array, cell array of character vectors, or logical vector.
Row and Column Summaries

Column Summary

 `'off'` (default) | `'absolute'` | `'column-normalized'` | `'total-normalized'`

Column summary of the confusion matrix chart, specified as one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>'off'</code></td>
<td>Do not display a column summary.</td>
</tr>
<tr>
<td><code>'absolute'</code></td>
<td>Display the total number of correctly and incorrectly classified observations for each predicted class.</td>
</tr>
<tr>
<td><code>'column-normalized'</code></td>
<td>Display the number of correctly and incorrectly classified observations for each predicted class as percentages of the number of observations of the corresponding predicted class. The percentages of correctly classified observations can be thought of as class-wise precisions (or positive predictive values).</td>
</tr>
<tr>
<td><code>'total-normalized'</code></td>
<td>Display the number of correctly and incorrectly classified observations for each predicted class as percentages of the total number of observations.</td>
</tr>
</tbody>
</table>

Example: `cm = confusionchart(__,'ColumnSummary','column-normalized')`
Example: `cm.ColumnSummary = 'column-normalized'`

Row Summary

 `'off'` (default) | `'absolute'` | `'row-normalized'` | `'total-normalized'`

Row summary of the confusion matrix chart, specified as one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>'off'</code></td>
<td>Do not display a row summary.</td>
</tr>
<tr>
<td><code>'absolute'</code></td>
<td>Display the total number of correctly and incorrectly classified observations for each true class.</td>
</tr>
<tr>
<td><code>'row-normalized'</code></td>
<td>Display the number of correctly and incorrectly classified observations for each true class as percentages of the number of observations of the corresponding true class. The percentages of correctly classified observations can be thought of as class-wise recalls (or true positive rates).</td>
</tr>
<tr>
<td><code>'total-normalized'</code></td>
<td>Display the number of correctly and incorrectly classified observations for each true class as percentages of the total number of observations.</td>
</tr>
</tbody>
</table>

Example: `cm = confusionchart(__,'RowSummary','row-normalized')`
Example: `cm.RowSummary = 'row-normalized'`
Data

NormalizedValues — Values of the confusion matrix
numeric matrix

This property is read-only.

Values of the confusion matrix, stored as a numeric matrix. This property equals the values of the confusion matrix normalized using the method of the Normalization property. The software recalculates the normalized values of the confusion matrix each time you modify the Normalization property.

Normalization — Normalization of cell values
'absolute' (default) | 'column-normalized' | 'row-normalized' | 'total-normalized'

Normalization of cell values, specified as one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'absolute'</td>
<td>Display the total number of observations in each cell.</td>
</tr>
<tr>
<td>'column-normalized'</td>
<td>Normalize each cell value by the number of observations that has the same predicted class.</td>
</tr>
<tr>
<td>'row-normalized'</td>
<td>Normalize each cell value by the number of observations that has the same true class.</td>
</tr>
<tr>
<td>'total-normalized'</td>
<td>Normalize each cell value by the total number of observations.</td>
</tr>
</tbody>
</table>

Modifying the normalization of cell values also affects the colors of the cells.

Example: cm = confusionchart(__,'Normalization','total-normalized')
Example: cm.Normalization = 'total-normalized'

Color and Styling

GridVisible — State of grid visibility
'on' (default) | on/off logical value

State of grid visibility, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

- 'on' — Display grid lines between the chart cells.
- 'off' — Do not display grid lines between the chart cells.

Example: cm = confusionchart(__,'GridVisible','off')
Example: cm.GridVisible = 'off'

DiagonalColor — Color for diagonal cells
[0 0.4471 0.7412] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color for diagonal cells, specified as an RGB triplet, a hexadecimal color code, a color name, or a short name. The color of each diagonal cell is proportional to the cell value and the DiagonalColor
property, normalized to the largest cell value of the confusion matrix chart. Cells with positive values are colored with a minimum amount of color, proportional to the DiagonalColor property.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

- An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range \([0,1]\); for example, \([0.4 \ 0.6 \ 0.7]\).

- A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800', '#f80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

<table>
<thead>
<tr>
<th>Color Name</th>
<th>Short Name</th>
<th>RGB Triplet</th>
<th>Hexadecimal Color Code</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>'red'</td>
<td>'r'</td>
<td>[1 0 0]</td>
<td>#FF0000</td>
<td></td>
</tr>
<tr>
<td>'green'</td>
<td>'g'</td>
<td>[0 1 0]</td>
<td>#00FF00</td>
<td></td>
</tr>
<tr>
<td>'blue'</td>
<td>'b'</td>
<td>[0 0 1]</td>
<td>#0000FF</td>
<td></td>
</tr>
<tr>
<td>'cyan'</td>
<td>'c'</td>
<td>[0 1 1]</td>
<td>#00FFFF</td>
<td></td>
</tr>
<tr>
<td>'magenta'</td>
<td>'m'</td>
<td>[1 0 1]</td>
<td>#FF00FF</td>
<td></td>
</tr>
<tr>
<td>'yellow'</td>
<td>'y'</td>
<td>[1 1 0]</td>
<td>#FFFF00</td>
<td></td>
</tr>
<tr>
<td>'black'</td>
<td>'k'</td>
<td>[0 0 0]</td>
<td>#000000</td>
<td></td>
</tr>
<tr>
<td>'white'</td>
<td>'w'</td>
<td>[1 1 1]</td>
<td>#FFFFFF</td>
<td></td>
</tr>
</tbody>
</table>

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.

<table>
<thead>
<tr>
<th>RGB Triplet</th>
<th>Hexadecimal Color Code</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0 0.4470 0.7410]</td>
<td>'#0072BD'</td>
<td></td>
</tr>
<tr>
<td>[0.8500 0.3250 0.0980]</td>
<td>'#D95319'</td>
<td></td>
</tr>
<tr>
<td>[0.9290 0.6940 0.1250]</td>
<td>'#EDB120'</td>
<td></td>
</tr>
<tr>
<td>[0.4940 0.1840 0.5560]</td>
<td>'#7E2F8E'</td>
<td></td>
</tr>
<tr>
<td>[0.4660 0.6740 0.1880]</td>
<td>'#77AC30'</td>
<td></td>
</tr>
<tr>
<td>[0.3010 0.7450 0.9330]</td>
<td>'#4DBEEE'</td>
<td></td>
</tr>
<tr>
<td>[0.6350 0.0780 0.1840]</td>
<td>'#A2142F'</td>
<td></td>
</tr>
</tbody>
</table>

The software chooses an appropriate text color for cell labels automatically, depending on the color of the chart cells.

Example: cm = confusionchart(__,'DiagonalColor','blue')
Example: cm.DiagonalColor = 'blue'

OffDiagonalColor — Color for off-diagonal cells

[0.8510 0.3255 0.0980] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...
Color for off-diagonal cells, specified as an RGB triplet, a hexadecimal color code, a color name, or a short name. The color of each diagonal cell is proportional to the cell value and the `OffDiagonalColor` property, normalized to the largest cell value of the confusion matrix chart. Cells with positive values are colored with a minimum amount of color, proportional to the `OffDiagonalColor` property.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

- An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range \([0,1]\); for example, \([0.4 \ 0.6 \ 0.7]\).

- A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

<table>
<thead>
<tr>
<th>Color Name</th>
<th>Short Name</th>
<th>RGB Triplet</th>
<th>Hexadecimal Color Code</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>'red'</td>
<td>'r'</td>
<td>[1 0 0]</td>
<td>'#FF0000'</td>
<td></td>
</tr>
<tr>
<td>'green'</td>
<td>'g'</td>
<td>[0 1 0]</td>
<td>'#00FF00'</td>
<td></td>
</tr>
<tr>
<td>'blue'</td>
<td>'b'</td>
<td>[0 0 1]</td>
<td>'#0000FF'</td>
<td></td>
</tr>
<tr>
<td>'cyan'</td>
<td>'c'</td>
<td>[0 1 1]</td>
<td>'#00FFFF'</td>
<td></td>
</tr>
<tr>
<td>'magenta'</td>
<td>'m'</td>
<td>[1 0 1]</td>
<td>'#FF00FF'</td>
<td></td>
</tr>
<tr>
<td>'yellow'</td>
<td>'y'</td>
<td>[1 1 0]</td>
<td>'#FFFF00'</td>
<td></td>
</tr>
<tr>
<td>'black'</td>
<td>'k'</td>
<td>[0 0 0]</td>
<td>'#000000'</td>
<td></td>
</tr>
<tr>
<td>'white'</td>
<td>'w'</td>
<td>[1 1 1]</td>
<td>'#FFFFFF'</td>
<td></td>
</tr>
</tbody>
</table>

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.

<table>
<thead>
<tr>
<th>RGB Triplet</th>
<th>Hexadecimal Color Code</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0.4470 0.7410]</td>
<td>'#0072BD'</td>
<td></td>
</tr>
<tr>
<td>[0.8500 0.3250 0.0980]</td>
<td>'#D95319'</td>
<td></td>
</tr>
<tr>
<td>[0.9290 0.6940 0.1250]</td>
<td>'#EDB120'</td>
<td></td>
</tr>
<tr>
<td>[0.4940 0.1840 0.6560]</td>
<td>'#7E2F8E'</td>
<td></td>
</tr>
<tr>
<td>[0.4660 0.6740 0.1880]</td>
<td>'#77AC30'</td>
<td></td>
</tr>
<tr>
<td>[0.3010 0.7450 0.9330]</td>
<td>'#ADBEE'</td>
<td></td>
</tr>
<tr>
<td>[0.6350 0.0780 0.1840]</td>
<td>'#A2142F'</td>
<td></td>
</tr>
</tbody>
</table>

The software chooses an appropriate text color for cell labels automatically, depending on the color of the chart cells.

Example: `cm = confusionchart(__,'OffDiagonalColor','blue')`
Example: `cm.OffDiagonalColor = 'blue'`
FontColor — Text color for title, axis labels, and class labels

[0.1500 0.1500 0.1500] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Text color for title, axis labels, and class labels, specified as an RGB triplet, a hexadecimal color code, a color name, or a short name.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

- An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0, 1]; for example, [0.4 0.6 0.7].
- A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

<table>
<thead>
<tr>
<th>Color Name</th>
<th>Short Name</th>
<th>RGB Triplet</th>
<th>Hexadecimal Color Code</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>'red'</td>
<td>'r'</td>
<td>[1 0 0]</td>
<td>'#FF0000'</td>
<td></td>
</tr>
<tr>
<td>'green'</td>
<td>'g'</td>
<td>[0 1 0]</td>
<td>'#00FF00'</td>
<td></td>
</tr>
<tr>
<td>'blue'</td>
<td>'b'</td>
<td>[0 0 1]</td>
<td>'#0000FF'</td>
<td></td>
</tr>
<tr>
<td>'cyan'</td>
<td>'c'</td>
<td>[0 1 1]</td>
<td>'#00FFFF'</td>
<td></td>
</tr>
<tr>
<td>'magenta'</td>
<td>'m'</td>
<td>[1 0 1]</td>
<td>'#FF00FF'</td>
<td></td>
</tr>
<tr>
<td>'yellow'</td>
<td>'y'</td>
<td>[1 1 0]</td>
<td>'#FFFF00'</td>
<td></td>
</tr>
<tr>
<td>'black'</td>
<td>'k'</td>
<td>[0 0 0]</td>
<td>'#000000'</td>
<td></td>
</tr>
<tr>
<td>'white'</td>
<td>'w'</td>
<td>[1 1 1]</td>
<td>'#FFFFFF'</td>
<td></td>
</tr>
</tbody>
</table>

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.

<table>
<thead>
<tr>
<th>RGB Triplet</th>
<th>Hexadecimal Color Code</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0 0.4470 0.7410]</td>
<td>'#0072BD'</td>
<td></td>
</tr>
<tr>
<td>[0.8500 0.3250 0.0980]</td>
<td>'#D95319'</td>
<td></td>
</tr>
<tr>
<td>[0.9290 0.6940 0.1250]</td>
<td>'#EDB120'</td>
<td></td>
</tr>
<tr>
<td>[0.4940 0.1840 0.5560]</td>
<td>'#7E2F8E'</td>
<td></td>
</tr>
<tr>
<td>[0.4660 0.6740 0.1880]</td>
<td>'#77AC30'</td>
<td></td>
</tr>
<tr>
<td>[0.3010 0.7450 0.9330]</td>
<td>'#4DBEEE'</td>
<td></td>
</tr>
<tr>
<td>[0.6350 0.0780 0.1840]</td>
<td>'#A2142F'</td>
<td></td>
</tr>
</tbody>
</table>

The software chooses an appropriate text color for cell labels automatically, depending on the color of the chart cells.

Example: `cm = confusionchart(__,'FontColor','blue')`
Example: `cm.FontColor = 'blue'`
Font

FontName — Font name

system supported font name

Font name, specified as a system supported font name. The default font depends on the specific operating system and locale.

Example: `cm = confusionchart(__,'FontName','Cambria')`

Example: `cm.FontName = 'Cambria'`

FontSize — Font size

positive scalar

Font size used for the title, axis labels, class labels, and cell labels, specified as a positive scalar. The default font depends on the specific operating system and locale.

The title and axis labels use a slightly larger font size (scaled up by 10%). If there is not enough room to display the cell labels within the cells, then the cell labels use a smaller font size. If the cell labels become too small, then they are hidden.

Example: `cm = confusionchart(__,'FontSize',12)`

Example: `cm.FontSize = 12`

Position

PositionConstraint — Position to hold constant

'outerposition'|'innerposition'

Position property to hold constant when adding, removing, or changing decorations, specified as one of the following values:

- 'outerposition' — The OuterPosition property remains constant when you add, remove, or change decorations such as a title or an axis label. If any positional adjustments are needed, MATLAB adjusts the InnerPosition property.
- 'innerposition' — The InnerPosition property remains constant when you add, remove, or change decorations such as a title or an axis label. If any positional adjustments are needed, MATLAB adjusts the OuterPosition property.

Note Setting this property has no effect when the parent container is a TiledChartLayout.

OuterPosition — Outer size and position

* [0 0 1 1] (default) | four-element vector

Outer size and position within the parent container (a figure, panel, or tab), specified as a four-element vector of the form [left bottom width height]. The outer position includes the title, axis labels, and class labels.

- The left and bottom elements define the distance from the lower left corner of the container to the lower left corner of the chart.
- The width and height elements are the chart dimensions, which include the chart cells, plus a margin for the surrounding text.
The default value of \([0 \ 0 \ 1 \ 1]\) is the whole interior of the container.

By default, the values are normalized to the container. To change the units, set the Units property.

Example: \(cm = \text{confusionchart}(__,'\text{OuterPosition}',[0.1 \ 0.1 \ 0.8 \ 0.8])\)
Example: \(cm.\text{OuterPosition} = [0.1 \ 0.1 \ 0.8 \ 0.8]\)

InnerPosition — Inner size and position

\([0.1300 \ 0.1100 \ 0.7750 \ 0.8150]\) (default) | four-element vector

Inner size and position of the chart within the parent container (a figure, panel, or tab) returned as a four-element vector of the form \([\text{left} \ \text{bottom} \ \text{width} \ \text{height}]\). The inner position does not include the title, axis labels, or class labels.

- The left and bottom elements define the distance from the lower left corner of the container to the lower left corner of the chart.
- The width and height elements are the chart dimensions, which include only the chart cells.

Example: \(cm = \text{confusionchart}(__,'\text{InnerPosition}',[0.1 \ 0.1 \ 0.8 \ 0.8])\)
Example: \(cm.\text{InnerPosition} = [0.1 \ 0.1 \ 0.8 \ 0.8]\)

Position — Inner size and position

four-element vector

Inner size and position of the chart within the parent container (a figure, panel, or tab) returned as a four-element vector of the form \([\text{left} \ \text{bottom} \ \text{width} \ \text{height}]\). This property is equivalent to the InnerPosition property.

Units — Position units

'normalized' (default) | 'inches' | 'centimeters' | 'points' | 'pixels' | 'characters'

Position units, specified as one of these values:

<table>
<thead>
<tr>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'normalized'</td>
<td>Normalized with respect to the container, which is typically the figure or a panel. The lower left corner of the container maps to ((0,0)), and the upper right corner maps to ((1,1)).</td>
</tr>
<tr>
<td>'inches'</td>
<td>Inches.</td>
</tr>
<tr>
<td>'centimeters'</td>
<td>Centimeters.</td>
</tr>
<tr>
<td>'characters'</td>
<td>Based on the default uicontrol font of the graphics root object:</td>
</tr>
<tr>
<td></td>
<td>• Character width = width of letter x.</td>
</tr>
<tr>
<td></td>
<td>• Character height = distance between the baselines of two lines of text.</td>
</tr>
<tr>
<td>'points'</td>
<td>Typography points. One point equals 1/72 inch.</td>
</tr>
<tr>
<td>Units</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| 'pixels' | Pixels. Starting in R2015b, distances in pixels are independent of your system resolution on Windows® and Macintosh systems:
 - On Windows systems, a pixel is 1/96th of an inch.
 - On Macintosh systems, a pixel is 1/72nd of an inch.
 On Linux® systems, the size of a pixel is determined by your system resolution. |

When specifying the units as a name-value pair during object creation, you must set the `Units` property before specifying the properties that you want to use these units for, such as `OuterPosition`.

Layout — Layout options

empty LayoutOptions array (default) | TiledChartLayoutOptions object | GridLayoutOptions object

Layout options, specified as a `TiledChartLayoutOptions` or `GridLayoutOptions` object. This property is useful when the chart is either in a tiled chart layout or a grid layout.

To position the chart within the grid of a tiled chart layout, set the `Tile` and `TileSpan` properties on the `TiledChartLayoutOptions` object. For example, consider a 3-by-3 tiled chart layout. The layout has a grid of tiles in the center, and four tiles along the outer edges. In practice, the grid is invisible and the outer tiles do not take up space until you populate them with axes or charts.

```
This code places the chart c in the third tile of the grid..

c.Layout.Tile = 3;
```
To make the chart span multiple tiles, specify the TileSpan property as a two-element vector. For example, this chart spans 2 rows and 3 columns of tiles.

c.Layout.TileSpan = [2 3];

To place the chart in one of the surrounding tiles, specify the Tile property as 'north', 'south', 'east', or 'west'. For example, setting the value to 'east' places the chart in the tile to the right of the grid.

c.Layout.Tile = 'east';

To place the chart into a layout within an app, specify this property as a GridLayoutOptions object. For more information about working with grid layouts in apps, see uigridlayout.

If the chart is not a child of either a tiled chart layout or a grid layout (for example, if it is a child of a figure or panel) then this property is empty and has no effect.

Visible — State of visibility
' on' (default) | on/off logical value

State of visibility, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

• 'on' — Display the chart.
• 'off' — Hide the chart without deleting it. You still can access the properties of an invisible chart.

Parent/Child

Parent — Parent container
Figure object | Panel object | Tab object | TiledChartLayout object | GridLayout object

Parent container, specified as a Figure, Panel, Tab, TiledChartLayout, or GridLayout object.

HandleVisibility — Visibility of object handle
' on' (default) | 'off' | 'callback'

Visibility of the chart object handle in the Children property of the parent, specified as one of these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing unintended changes to the UI by another function. To temporarily hide the handle during the execution of that function, set the HandleVisibility to 'off'.
• 'callback' — Object handle is visible from within callbacks or functions invoked by callbacks, but not from within functions invoked from the command line. This option blocks access to the object at the command line, but allows callback functions to access it.

If the object is not listed in the Children property of the parent, then functions that obtain object handles by searching the object hierarchy or querying handle properties cannot return it. This includes get, findobj, gca, gcf, gco, newplot, cla, clf, and close.
Hidden object handles are still valid. Set the root `ShowHiddenHandles` property to 'on' to list all object handles, regardless of their `HandleVisibility` property setting.

See Also

Functions
categorical | confusionchart | sortClasses

Topics
“Deep Learning in MATLAB”

Introduced in R2018b
connectLayers

Connect layers in layer graph

Syntax

newlgraph = connectLayers(lgraph,s,d)

Description

newlgraph = connectLayers(lgraph,s,d) connects the source layer s to the destination layer d in the layer graph lgraph. The new layer graph, newlgraph, contains the same layers as lgraph and includes the new connection.

Examples

Create and Connect Addition Layer

Create an addition layer with two inputs and the name 'add_1'.

add = additionLayer(2,'Name','add_1')

add =
AdditionLayer with properties:
 Name: 'add_1'
 NumInputs: 2
 InputNames: {'in1' 'in2'}

Create two ReLU layers and connect them to the addition layer. The addition layer sums the outputs from the ReLU layers.

relu_1 = reluLayer('Name','relu_1');
relu_2 = reluLayer('Name','relu_2');

lgraph = layerGraph;
lgraph = addLayers(lgraph,relu_1);
lgraph = addLayers(lgraph,relu_2);
lgraph = addLayers(lgraph,add);

lgraph = connectLayers(lgraph,'relu_1','add_1/in1');
lgraph = connectLayers(lgraph,'relu_2','add_1/in2');

plot(lgraph)
Create Simple DAG Network

Create a simple directed acyclic graph (DAG) network for deep learning. Train the network to classify images of digits. The simple network in this example consists of:

- A main branch with layers connected sequentially.
- A shortcut connection containing a single 1-by-1 convolutional layer. Shortcut connections enable the parameter gradients to flow more easily from the output layer to the earlier layers of the network.

Create the main branch of the network as a layer array. The addition layer sums multiple inputs element-wise. Specify the number of inputs for the addition layer to sum. All layers must have names and all names must be unique.

```matlab
layers = [imageInputLayer([28 28 1],'Name','input')
    convolution2dLayer(5,16,'Padding','same','Name','conv_1')
    batchNormalizationLayer('Name','BN_1')
    reluLayer('Name','relu_1')
    convolution2dLayer(3,32,'Padding','same','Stride',2,'Name','conv_2')
    batchNormalizationLayer('Name','BN_2')
    reluLayer('Name','relu_2')
    additionLayer('Name','add_1')
]
```
convolution2dLayer(3,32,'Padding','same','Name','conv_3')
batchNormalizationLayer('Name','BN_3')
reluLayer('Name','relu_3')

additionLayer(2,'Name','add')

averagePooling2dLayer(2,'Stride',2,'Name','avpool')
fullyConnectedLayer(10,'Name','fc')
softmaxLayer('Name','softmax')
classificationLayer('Name','classOutput');
Create the shortcut connection from the 'relu_1' layer to the 'add' layer. Because you specified two as the number of inputs to the addition layer when you created it, the layer has two inputs named 'in1' and 'in2'. The 'relu_3' layer is already connected to the 'in1' input. Connect the 'relu_1' layer to the 'skipConv' layer and the 'skipConv' layer to the 'in2' input of the 'add' layer. The addition layer now sums the outputs of the 'relu_3' and 'skipConv' layers. To check that the layers are connected correctly, plot the layer graph.

lgraph = connectLayers(lgraph,'relu_1','skipConv');
lgraph = connectLayers(lgraph,'skipConv','add/in2');
figure
plot(lgraph);
Load the training and validation data, which consists of 28-by-28 grayscale images of digits.

[XTrain,YTrain] = digitTrain4DArrayData;
[XValidation,YValidation] = digitTest4DArrayData;

Specify training options and train the network. trainNetwork validates the network using the validation data every ValidationFrequency iterations.

options = trainingOptions('sgdm', ...
'MaxEpochs',8, ...
'Shuffle','every-epoch', ...
'ValidationData',{XValidation,YValidation}, ...
'ValidationFrequency',30, ...
'Verbose',false, ...
'Plots','training-progress');</n
net = trainNetwork(XTrain,YTrain,graph,options);
Display the properties of the trained network. The network is a DAGNetwork object.

```matlab
net = DAGNetwork with properties:
    Layers: [16×1 nnet.cnn.layer.Layer]
    Connections: [16×2 table]
    InputNames: {'input'}
    OutputNames: {'classOutput'}
```

Classify the validation images and calculate the accuracy. The network is very accurate.

```matlab
YPredicted = classify(net,XValidation);
accuracy = mean(YPredicted == YValidation)
accuracy = 0.9930
```

Input Arguments

- `lgraph` — Layer graph
 LayerGraph object

 Layer graph, specified as a `LayerGraph` object. To create a layer graph, use `layerGraph`.

- `s` — Connection source
 character vector | string scalar

 Connection source, specified as a character vector or a string scalar.
• If the source layer has a single output, then \(s \) is the name of the layer.
• If the source layer has multiple outputs, then \(s \) is the layer name followed by the character / and the name of the layer output: 'layerName/outputName'.

Example: 'conv1'
Example: 'mpool/indices'

\textbf{d — Connection destination}

character vector | string scalar

Connection destination, specified as a character vector or a string scalar.

• If the destination layer has a single input, then \(d \) is the name of the layer.
• If the destination layer has multiple inputs, then \(d \) is the layer name followed by the character / and the name of the layer input: 'layerName/inputName'.

Example: 'fc'
Example: 'addlayer1/in2'

\textbf{Output Arguments}

\textbf{newlgraph — Output layer graph}

LayerGraph object

Output layer graph, returned as a \texttt{LayerGraph} object.

\textbf{See Also}

\texttt{addLayers | assembleNetwork | disconnectLayers | layerGraph | plot | removeLayers | replaceLayer}

\textbf{Topics}

“Train Residual Network for Image Classification”
“Train Deep Learning Network to Classify New Images”

\textbf{Introduced in R2017b}
convolution2dLayer

2-D convolutional layer

Description

A 2-D convolutional layer applies sliding convolutional filters to the input. The layer convolves the input by moving the filters along the input vertically and horizontally and computing the dot product of the weights and the input, and then adding a bias term.

Creation

Syntax

layer = convolution2dLayer(filterSize,numFilters)
layer = convolution2dLayer(filterSize,numFilters,Name,Value)

Description

layer = convolution2dLayer(filterSize,numFilters) creates a 2-D convolutional layer and sets the FilterSize and NumFilters properties.

layer = convolution2dLayer(filterSize,numFilters,Name,Value) sets the optional Stride, DilationFactor, NumChannels, "Parameters and Initialization" on page 1-250, "Learn Rate and Regularization" on page 1-251, and Name properties using name-value pairs. To specify input padding, use the 'Padding' name-value pair argument. For example, convolution2dLayer(11,96,'Stride',4,'Padding',1) creates a 2-D convolutional layer with 96 filters of size [11 11], a stride of [4 4], and zero padding of size 1 along all edges of the layer input. You can specify multiple name-value pairs. Enclose each property name in single quotes.

Input Arguments

Name-Value Pair Arguments

Use comma-separated name-value pair arguments to specify the size of the zero padding to add along the edges of the layer input or to set the Stride, DilationFactor, NumChannels, "Parameters and Initialization" on page 1-250, "Learn Rate and Regularization" on page 1-251, and Name properties. Enclose names in single quotes.

Example: convolution2dLayer(3,16,'Padding','same') creates a 2-D convolutional layer with 16 filters of size [3 3] and 'same' padding. At training time, the software calculates and sets the size of the zero padding so that the layer output has the same size as the input.

Padding — Input edge padding

[0 0 0 0] (default) | vector of nonnegative integers | 'same'

Input edge padding, specified as the comma-separated pair consisting of 'Padding' and one of these values:
• 'same' — Add padding of size calculated by the software at training or prediction time so that the output has the same size as the input when the stride equals 1. If the stride is larger than 1, then the output size is \(\text{ceil(inputSize/stride)} \), where inputSize is the height or width of the input and stride is the stride in the corresponding dimension. The software adds the same amount of padding to the top and bottom, and to the left and right, if possible. If the padding that must be added vertically has an odd value, then the software adds extra padding to the bottom. If the padding that must be added horizontally has an odd value, then the software adds extra padding to the right.

• Nonnegative integer \(p \) — Add padding of size \(p \) to all the edges of the input.

• Vector \([a\ b]\) of nonnegative integers — Add padding of size \(a \) to the top and bottom of the input and padding of size \(b \) to the left and right.

• Vector \([t\ b\ l\ r]\) of nonnegative integers — Add padding of size \(t \) to the top, \(b \) to the bottom, \(l \) to the left, and \(r \) to the right of the input.

Example: ‘Padding’, 1 adds one row of padding to the top and bottom, and one column of padding to the left and right of the input.

Example: ‘Padding’, 'same' adds padding so that the output has the same size as the input (if the stride equals 1).

Properties

Convolution

FilterSize — Height and width of filters

vector of two positive integers

Height and width of the filters, specified as a vector \([h\ w]\) of two positive integers, where \(h \) is the height and \(w \) is the width. FilterSize defines the size of the local regions to which the neurons connect in the input.

When creating the layer, you can specify FilterSize as a scalar to use the same value for the height and width.

Example: \([5\ 5]\) specifies filters with a height of 5 and a width of 5.

NumFilters — Number of filters

positive integer

Number of filters, specified as a positive integer. This number corresponds to the number of neurons in the convolutional layer that connect to the same region in the input. This parameter determines the number of channels (feature maps) in the output of the convolutional layer.

Example: 96

Stride — Step size for traversing input

\([1\ 1]\) (default) | vector of two positive integers

Step size for traversing the input vertically and horizontally, specified as a vector \([a\ b]\) of two positive integers, where \(a \) is the vertical step size and \(b \) is the horizontal step size. When creating the layer, you can specify Stride as a scalar to use the same value for both step sizes.

Example: \([2\ 3]\) specifies a vertical step size of 2 and a horizontal step size of 3.
DilationFactor — Factor for dilated convolution

[1 1] (default) | vector of two positive integers

Factor for dilated convolution (also known as atrous convolution), specified as a vector \([h\ w]\) of two positive integers, where \(h\) is the vertical dilation and \(w\) is the horizontal dilation. When creating the layer, you can specify `DilationFactor` as a scalar to use the same value for both horizontal and vertical dilations.

Use dilated convolutions to increase the receptive field (the area of the input which the layer can see) of the layer without increasing the number of parameters or computation.

The layer expands the filters by inserting zeros between each filter element. The dilation factor determines the step size for sampling the input or equivalently the upsampling factor of the filter. It corresponds to an effective filter size of \((\text{Filter Size} - 1) \times \text{Dilation Factor} + 1\). For example, a 3-by-3 filter with the dilation factor \([2\ 2]\) is equivalent to a 5-by-5 filter with zeros between the elements.

Example: \([2\ 3]\)

PaddingSize — Size of padding

[0 0 0 0] (default) | vector of four nonnegative integers

Size of padding to apply to input borders, specified as a vector \([t\ b\ l\ r]\) of four nonnegative integers, where \(t\) is the padding applied to the top, \(b\) is the padding applied to the bottom, \(l\) is the padding applied to the left, and \(r\) is the padding applied to the right.

When you create a layer, use the `Padding` name-value pair argument to specify the padding size.

Example: \([1\ 1\ 2\ 2]\) adds one row of padding to the top and bottom, and two columns of padding to the left and right of the input.

PaddingMode — Method to determine padding size

'manual' (default) | 'same'

Method to determine padding size, specified as 'manual' or 'same'.

The software automatically sets the value of `PaddingMode` based on the `Padding` value you specify when creating a layer.

- If you set the `Padding` option to a scalar or a vector of nonnegative integers, then the software automatically sets `PaddingMode` to 'manual'.
- If you set the `Padding` option to 'same', then the software automatically sets `PaddingMode` to 'same' and calculates the size of the padding at training time so that the output has the same size as the input when the stride equals 1. If the stride is larger than 1, then the output size is \(\text{ceil}(\text{inputSize}/\text{stride})\), where \(\text{inputSize}\) is the height or width of the input and \(\text{stride}\) is the stride in the corresponding dimension. The software adds the same amount of padding to the top and bottom, and to the left and right, if possible. If the padding that must be added vertically has an odd value, then the software adds extra padding to the bottom. If the padding that must be added horizontally has an odd value, then the software adds extra padding to the right.

Padding — Size of padding

[0 0] (default) | vector of two nonnegative integers

Note Padding property will be removed in a future release. Use `PaddingSize` instead. When creating a layer, use the `Padding` name-value pair argument to specify the padding size.
Size of padding to apply to input borders vertically and horizontally, specified as a vector $[a \ b]$ of two nonnegative integers, where a is the padding applied to the top and bottom of the input data and b is the padding applied to the left and right.

Example: $[1 \ 1]$ adds one row of padding to the top and bottom, and one column of padding to the left and right.

NumChannels — Number of channels for each filter

`'auto'` (default) | positive integer

Number of channels for each filter, specified as `'auto'` or a positive integer.

This parameter is always equal to the number of channels of the input to the convolutional layer. For example, if the input is a color image, then the number of channels for the input is 3. If the number of filters for the convolutional layer prior to the current layer is 16, then the number of channels for the current layer is 16.

If **NumChannels** is `'auto'`, then the software determines the number of channels at training time.

Example: 256

Parameters and Initialization

WeightsInitializer — Function to initialize weights

`'glorot'` (default) | `'he'` | `'narrow-normal'` | `'zeros'` | `'ones'` | function handle

Function to initialize the weights, specified as one of the following:

- `'glorot'` – Initialize the weights with the Glorot initializer [4] (also known as Xavier initializer). The Glorot initializer independently samples from a uniform distribution with zero mean and variance $2/(numIn + numOut)$, where $numIn = FilterSize(1)\times FilterSize(2)\times NumChannels$ and $numOut = FilterSize(1)\times FilterSize(2)\times NumFilters$.
- `'he'` – Initialize the weights with the He initializer [5]. The He initializer samples from a normal distribution with zero mean and variance $2/numIn$, where $numIn = FilterSize(1)\times FilterSize(2)\times NumChannels$.
- `'narrow-normal'` – Initialize the weights by independently sampling from a normal distribution with zero mean and standard deviation 0.01.
- `'zeros'` – Initialize the weights with zeros.
- `'ones'` – Initialize the weights with ones.
- Function handle - Initialize the weights with a custom function. If you specify a function handle, then the function must be of the form `weights = func(sz)`, where `sz` is the size of the weights. For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the weights when the **Weights** property is empty.

Data Types: `char` | `string` | `function_handle`

BiasInitializer — Function to initialize bias

`'zeros'` (default) | `'narrow-normal'` | `'ones'` | function handle

Function to initialize the bias, specified as one of the following:

- `'zeros'` – Initialize the bias with zeros.
• 'ones' - Initialize the bias with ones.
• 'narrow-normal' - Initialize the bias by independently sampling from a normal distribution with zero mean and standard deviation 0.01.
• Function handle - Initialize the bias with a custom function. If you specify a function handle, then the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.

Data Types: char | string | function_handle

Weights — Layer weights
[] (default) | numeric array

Layer weights for the convolutional layer, specified as a numeric array.

The layer weights are learnable parameters. You can specify the initial value for the weights directly using the Weights property of the layer. When training a network, if the Weights property of the layer is nonempty, then trainNetwork uses the Weights property as the initial value. If the Weights property is empty, then trainNetwork uses the initializer specified by the WeightsInitializer property of the layer.

At training time, Weights is a FilterSize(1)-by-FilterSize(2)-by-NumChannels-by-NumFilters array.

Data Types: single | double

Bias — Layer biases
[] (default) | numeric array

Layer biases for the convolutional layer, specified as a numeric array.

The layer biases are learnable parameters. When training a network, if Bias is nonempty, then trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork uses the initializer specified by the BiasInitializer property of the layer.

At training time, Bias is a 1-by-1-by-NumFilters array.

Data Types: single | double

Learn Rate and Regularization

WeightLearnRateFactor — Learning rate factor for weights
1 (default) | nonnegative scalar

Learning rate factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the weights in this layer. For example, if WeightLearnRateFactor is 2, then the learning rate for the weights in this layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the trainingOptions function.

Example: 2

BiasLearnRateFactor — Learning rate factor for biases
1 (default) | nonnegative scalar
Learning rate factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the biases in this layer. For example, if `BiasLearnRateFactor` is 2, then the learning rate for the biases in the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the `trainingOptions` function.

Example: 2

WeightL2Factor — L2 regularization factor for weights

1 (default) | nonnegative scalar

L2 regularization factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2 regularization for the weights in this layer. For example, if `WeightL2Factor` is 2, then the L2 regularization for the weights in this layer is twice the global L2 regularization factor. You can specify the global L2 regularization factor using the `trainingOptions` function.

Example: 2

BiasL2Factor — L2 regularization factor for biases

0 (default) | nonnegative scalar

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2 regularization for the biases in this layer. For example, if `BiasL2Factor` is 2, then the L2 regularization for the biases in this layer is twice the global L2 regularization factor. You can specify the global L2 regularization factor using the `trainingOptions` function.

Example: 2

Layer

Name — Layer name

'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and `Name` is set to '', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

NumInputs — Number of inputs

1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames — Input names

{'in'} (default)

Input names of the layer. This layer accepts a single input only.

Data Types: cell
NumOutputs — Number of outputs

1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames — Output names

{‘out’} (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Create Convolutional Layer

Create a convolutional layer with 96 filters, each with a height and width of 11. Use a stride (step size) of 4 in the horizontal and vertical directions.

```matlab
layer = convolution2dLayer(11,96,'Stride',4)
```

```matlab
layer =  
Convolution2DLayer with properties:
   
   Name: ''

   Hyperparameters
   FilterSize: [11 11]
   NumChannels: 'auto'
   NumFilters: 96
   Stride: [4 4]
   DilationFactor: [1 1]
   PaddingMode: 'manual'
   PaddingSize: [0 0 0 0]

   Learnable Parameters
   Weights: []
   Bias: []
```

Include a convolutional layer in a `Layer` array.

```matlab
layers = [  
    imageInputLayer([28 28 1])  
    convolution2dLayer(5,20)  
    reluLayer  
    maxPooling2dLayer(2,'Stride',2)  
    fullyConnectedLayer(10)  
    softmaxLayer  
    classificationLayer  
]
```

```matlab
layers =  
7x1 Layer array with layers:
Specify Initial Weights and Biases in Convolutional Layer

To specify the weights and bias initializer functions, use the WeightsInitializer and BiasInitializer properties respectively. To specify the weights and biases directly, use the Weights and Bias properties respectively.

Specify Initialization Functions

Create a convolutional layer with 32 filters, each with a height and width of 5 and specify the weights initializer to be the He initializer:

```matlab
filterSize = 5;
numFilters = 32;
layer = convolution2dLayer(filterSize, numFilters, ...
 'WeightsInitializer', 'he')
```

Note that the Weights and Bias properties are empty. At training time, the software initializes these properties using the specified initialization functions.

Specify Custom Initialization Functions

To specify your own initialization function for the weights and biases, set the WeightsInitializer and BiasInitializer properties to a function handle. For these properties, specify function handles that take the size of the weights and biases as input and output the initialized value.
Create a convolutional layer with 32 filters, each with a height and width of 5 and specify initializers that sample the weights and biases from a Gaussian distribution with a standard deviation of 0.0001.

```matlab
filterSize = 5;
numFilters = 32;

layer = convolution2dLayer(filterSize,numFilters, ...
 'WeightsInitializer', @(sz) rand(sz) * 0.0001, ...
 'BiasInitializer', @(sz) rand(sz) * 0.0001)
```

Again, the Weights and Bias properties are empty. At training time, the software initializes these properties using the specified initialization functions.

**Specify Weights and Bias Directly**

Create a fully connected layer with an output size of 10 and set the weights and bias to \(W\) and \(b\) in the MAT file Conv2dWeights.mat respectively.

```matlab
filterSize = 5;
numFilters = 32;
load Conv2dWeights

layer = convolution2dLayer(filterSize,numFilters, ...
 'Weights',W, ...
 'Bias',b)
```
Here, the **Weights** and **Bias** properties contain the specified values. At training time, if these properties are non-empty, then the software uses the specified values as the initial weights and biases. In this case, the software does not use the initializer functions.

### Create Convolutional Layer That Fully Covers Input

Suppose the size of the input is 28-by-28-by-1. Create a convolutional layer with 16 filters, each with a height of 6 and a width of 4. Set the horizontal and vertical stride to 4.

Make sure the convolution covers the input completely. For the convolution to fully cover the input, both the horizontal and vertical output dimensions must be integer numbers. For the horizontal output dimension to be an integer, one row of zero padding is required on the top and bottom of the image: \(\frac{28 - 6 + 2 \times 1}{4} + 1 = 7\). For the vertical output dimension to be an integer, no zero padding is required: \(\frac{28 - 4 + 2 \times 0}{4} + 1 = 7\).

Construct the convolutional layer.

```matlab
layer = convolution2dLayer([6 4], 16, 'Stride', 4, 'Padding', [1 0])
```

```matlab
layer = Convolution2DLayer with properties:
 Name: ''

Hyperparameters
 FilterSize: [6 4]
 NumChannels: 'auto'
 NumFilters: 16
 Stride: [4 4]
 DilationFactor: [1 1]
 PaddingMode: 'manual'
 PaddingSize: [1 1 0 0]

Learnable Parameters
 Weights: []
 Bias: []
```

Show all properties
**More About**

**Convolutional Layer**

A 2-D convolutional layer applies sliding convolutional filters to the input. The layer convolves the input by moving the filters along the input vertically and horizontally, computing the dot product of the weights and the input, and then adding a bias term.

The convolutional layer consists of various components.¹

**Filters and Stride**

A convolutional layer consists of neurons that connect to subregions of the input images or the outputs of the previous layer. The layer learns the features localized by these regions while scanning through an image. When creating a layer using the `convolution2dLayer` function, you can specify the size of these regions using the `filterSize` input argument.

For each region, the `trainNetwork` function computes a dot product of the weights and the input, and then adds a bias term. A set of weights that is applied to a region in the image is called a *filter*. The filter moves along the input image vertically and horizontally, repeating the same computation for each region. In other words, the filter convolves the input.

This image shows a 3-by-3 filter scanning through the input. The lower map represents the input and the upper map represents the output.

![Image of 3-by-3 filter scanning through input](image.png)

The step size with which the filter moves is called a *stride*. You can specify the step size with the `Stride` name-value pair argument. The local regions that the neurons connect to can overlap depending on the `filterSize` and `Stride` values.

This image shows a 3-by-3 filter scanning through the input with a stride of 2. The lower map represents the input and the upper map represents the output.

---

¹ Image credit: Convolution arithmetic (License)
The number of weights in a filter is \( h \times w \times c \), where \( h \) is the height, and \( w \) is the width of the filter, respectively, and \( c \) is the number of channels in the input. For example, if the input is a color image, the number of color channels is 3. The number of filters determines the number of channels in the output of a convolutional layer. Specify the number of filters using the `numFilters` argument with the `convolution2dLayer` function.

**Dilated Convolutions**

A dilated convolution is a convolution in which the filters are expanded by spaces inserted between the elements of the filter. Specify the dilation factor using the `'DilationFactor'` property.

Use dilated convolutions to increase the receptive field (the area of the input which the layer can see) of the layer without increasing the number of parameters or computation.

The layer expands the filters by inserting zeros between each filter element. The dilation factor determines the step size for sampling the input or equivalently the upsampling factor of the filter. It corresponds to an effective filter size of \((\text{Filter Size} - 1) \times \text{Dilation Factor} + 1\). For example, a 3-by-3 filter with the dilation factor \([2 \ 2]\) is equivalent to a 5-by-5 filter with zeros between the elements.

This image shows a 3-by-3 filter dilated by a factor of two scanning through the input. The lower map represents the input and the upper map represents the output.
**Feature Maps**

As a filter moves along the input, it uses the same set of weights and the same bias for the convolution, forming a feature map. Each feature map is the result of a convolution using a different set of weights and a different bias. Hence, the number of feature maps is equal to the number of filters. The total number of parameters in a convolutional layer is \((h \times w \times c + 1) \times \text{Number of Filters}\), where 1 is the bias.

**Zero Padding**

You can also apply zero padding to input image borders vertically and horizontally using the 'Padding' name-value pair argument. Padding is rows or columns of zeros added to the borders of an image input. By adjusting the padding, you can control the output size of the layer.

This image shows a 3-by-3 filter scanning through the input with padding of size 1. The lower map represents the input and the upper map represents the output.
Output Size

The output height and width of a convolutional layer is \((\text{Input Size} - ((\text{Filter Size} - 1) \times \text{Dilation Factor} + 1) + 2 \times \text{Padding}) / \text{Stride} + 1\). This value must be an integer for the whole image to be fully covered. If the combination of these options does not lead the image to be fully covered, the software by default ignores the remaining part of the image along the right and bottom edges in the convolution.

Number of Neurons

The product of the output height and width gives the total number of neurons in a feature map, say \(\text{Map Size}\). The total number of neurons (output size) in a convolutional layer is \(\text{Map Size} \times \text{Number of Filters}\).

For example, suppose that the input image is a 32-by-32-by-3 color image. For a convolutional layer with eight filters and a filter size of 5-by-5, the number of weights per filter is \(5 \times 5 \times 3 = 75\), and the total number of parameters in the layer is \((75 + 1) \times 8 = 608\). If the stride is 2 in each direction and padding of size 2 is specified, then each feature map is 16-by-16. This is because \((32 - 5 + 2 \times 2) / 2 + 1 = 16.5\), and some of the outermost zero padding to the right and bottom of the image is discarded. Finally, the total number of neurons in the layer is \(16 \times 16 \times 8 = 2048\).

Usually, the results from these neurons pass through some form of nonlinearity, such as rectified linear units (ReLU).
Learnable Parameters

You can adjust the learning rates and regularization options for the layer using name-value pair arguments while defining the convolutional layer. If you choose not to specify these options, then trainNetwork uses the global training options defined with the trainingOptions function. For details on global and layer training options, see “Set Up Parameters and Train Convolutional Neural Network”.

Number of Layers

A convolutional neural network can consist of one or multiple convolutional layers. The number of convolutional layers depends on the amount and complexity of the data.

Compatibility Considerations

Default weights initialization is Glorot

Behavior changed in R2019a

Starting in R2019a, the software, by default, initializes the layer weights of this layer using the Glorot initializer. This behavior helps stabilize training and usually reduces the training time of deep networks.

In previous releases, the software, by default, initializes the layer weights by sampling from a normal distribution with zero mean and variance 0.01. To reproduce this behavior, set the ‘WeightsInitializer’ option of the layer to ‘narrow-normal’.

References


Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.
See Also

Deep Network Designer | batchNormalizationLayer | fullyConnectedLayer | groupedConvolution2dLayer | maxPooling2dLayer | reluLayer | trainNetwork

Topics

“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Compare Layer Weight Initializers”
“List of Deep Learning Layers”

Introduced in R2016a
**convolution3dLayer**

3-D convolutional layer

**Description**

A 3-D convolutional layer applies sliding cuboidal convolution filters to three-dimensional input. The layer convolves the input by moving the filters along the input vertically, horizontally, and along the depth, computing the dot product of the weights and the input, and then adding a bias term.

**Creation**

**Syntax**

```matlab
layer = convolution3dLayer(filterSize,numFilters)
layer = convolution3dLayer(filterSize,numFilters,Name,Value)
```

**Description**

`layer = convolution3dLayer(filterSize,numFilters)` creates a 3-D convolutional layer and sets the `FilterSize` and `NumFilters` properties.

`layer = convolution3dLayer(filterSize,numFilters,Name,Value)` sets the optional `Stride`, `DilationFactor`, `NumChannels`, “Parameters and Initialization” on page 1-266, “Learn Rate and Regularization” on page 1-267, and `Name` properties using name-value pairs. To specify input padding, use the `'Padding'` name-value pair argument. For example, `convolution3dLayer([11 11 11],96,'Stride',4,'Padding',1)` creates a 3-D convolutional layer with 96 filters of size `[11 11 11]`, a stride of `[4 4 4]`, and zero padding of size 1 along all edges of the layer input. You can specify multiple name-value pairs. Enclose each property name in single quotes.

**Input Arguments**

**Name-Value Pair Arguments**

Use comma-separated name-value pair arguments to specify the size of the zero padding to add along the edges of the layer input or to set the `Stride`, `DilationFactor`, `NumChannels`, “Parameters and Initialization” on page 1-266, “Learn Rate and Regularization” on page 1-267, and `Name` properties. Enclose names in single quotes.

Example: `convolution3dLayer(3,16,'Padding','same')` creates a 3-D convolutional layer with 16 filters of size `[3 3 3]` and `'same'` padding. At training time, the software calculates and sets the size of the zero padding so that the layer output has the same size as the input.

**Padding — Input edge padding**

`0` (default) | array of nonnegative integers | `'same'`

Input edge padding, specified as the comma-separated pair consisting of `'Padding'` and one of these values:
• 'same' — Add padding of size calculated by the software at training or prediction time so that the output has the same size as the input when the stride equals 1. If the stride is larger than 1, then the output size is $\text{ceil}(\text{inputSize}/\text{stride})$, where inputSize is the height, width, or depth of the input and stride is the stride in the corresponding dimension. The software adds the same amount of padding to the top and bottom, to the left and right, and to the front and back, if possible. If the padding in a given dimension has an odd value, then the software adds the extra padding to the bottom or back of the input as postpadding. In other words, the software adds extra vertical padding to the bottom, extra horizontal padding to the right, and extra depth padding to the back of the input.

• Nonnegative integer $p$ — Add padding of size $p$ to all the edges of the input.

• Three-element vector $[a \ b \ c]$ of nonnegative integers — Add padding of size $a$ to the top and bottom, padding of size $b$ to the left and right, and padding of size $c$ to the front and back of the input.

• 2-by-3 matrix $[t \ l \ f; b \ r \ k]$ of nonnegative integers — Add padding of size $t$ to the top, $b$ to the bottom, $l$ to the left, $r$ to the right, $f$ to the front, and $k$ to the back of the input. In other words, the top row specifies the prepadding and the second row defines the postpadding in the three dimensions.

Example: 'Padding',1 adds one row of padding to the top and bottom, one column of padding to the left and right, and one plane of padding to the front and back of the input.

Example: 'Padding','same' adds padding so that the output has the same size as the input (if the stride equals 1).

Properties

Convolution

FilterSize — Height, width, and depth of filters

vector of three positive integers

Height, width, and depth of the filters, specified as a vector $[h \ w \ d]$ of three positive integers, where $h$ is the height, $w$ is the width, and $d$ is the depth. FilterSize defines the size of the local regions to which the neurons connect in the input.

When creating the layer, you can specify FilterSize as a scalar to use the same value for the height, width, and depth.

Example: [5 5 5] specifies filters with a height, width, and depth of 5.

NumFilters — Number of filters

positive integer

Number of filters, specified as a positive integer. This number corresponds to the number of neurons in the convolutional layer that connect to the same region in the input. This parameter determines the number of channels (feature maps) in the output of the convolutional layer.

Example: 96

Stride — Step size for traversing input

[1 1 1] (default) | vector of three positive integers

Step size for traversing the input in three dimensions, specified as a vector $[a \ b \ c]$ of three positive integers, where $a$ is the vertical step size, $b$ is the horizontal step size, and $c$ is the step size along the
depth. When creating the layer, you can specify Stride as a scalar to use the same value for step sizes in all three directions.

Example: [2 3 1] specifies a vertical step size of 2, a horizontal step size of 3, and a step size along the depth of 1.

**DilationFactor — Factor for dilated convolution**

[1 1 1] (default) | vector of three positive integers

Factor for dilated convolution (also known as atrous convolution), specified as a vector \([h \ w \ d]\) of three positive integers, where \(h\) is the vertical dilation, \(w\) is the horizontal dilation, and \(d\) is the dilation along the depth. When creating the layer, you can specify DilationFactor as a scalar to use the same value for dilation in all three directions.

Use dilated convolutions to increase the receptive field (the area of the input which the layer can see) of the layer without increasing the number of parameters or computation.

The layer expands the filters by inserting zeros between each filter element. The dilation factor determines the step size for sampling the input or equivalently the upsampling factor of the filter. It corresponds to an effective filter size of \((\text{Filter Size} - 1) * \text{Dilation Factor} + 1\). For example, a 3-by-3-by-3 filter with the dilation factor \([2 \ 2 \ 2]\) is equivalent to a 5-by-5-by-5 filter with zeros between the elements.

Example: [2 3 1] dilates the filter vertically by a factor of 2, horizontally by a factor of 3, and along the depth by a factor of 1.

**PaddingSize — Size of padding**

[0 0 0;0 0 0] (default) | 2-by-3 matrix of nonnegative integers

Size of padding to apply to input borders, specified as 2-by-3 matrix \([t \ l \ f; b \ r \ k]\) of nonnegative integers, where \(t\) and \(b\) are the padding applied to the top and bottom in the vertical direction, \(l\) and \(r\) are the padding applied to the left and right in the horizontal direction, and \(f\) and \(k\) are the padding applied to the front and back along the depth. In other words, the top row specifies the prepadding and the second row defines the postpadding in the three dimensions.

When you create a layer, use the 'Padding' name-value pair argument to specify the padding size.

Example: [1 2 4;1 2 4] adds one row of padding to the top and bottom, two columns of padding to the left and right, and four planes of padding to the front and back of the input.

**PaddingMode — Method to determine padding size**

'manual' (default) | 'same'

Method to determine padding size, specified as 'manual' or 'same'.

The software automatically sets the value of PaddingMode based on the 'Padding' value you specify when creating a layer.

- If you set the 'Padding' option to a scalar or a vector of nonnegative integers, then the software automatically sets PaddingMode to 'manual'.
- If you set the 'Padding' option to 'same', then the software automatically sets PaddingMode to 'same' and calculates the size of the padding at training time so that the output has the same size as the input when the stride equals 1. If the stride is larger than 1, then the output size is \(\text{ceil}(\text{inputSize} / \text{stride})\), where inputSize is the height, width, or depth of the input and stride is the stride in the corresponding dimension. The software adds the same amount of
padding to the top and bottom, to the left and right, and to the front and back, if possible. If the
padding in a given dimension has an odd value, then the software adds the extra padding to the
input as postpadding. In other words, the software adds extra vertical padding to the bottom,
extra horizontal padding to the right, and extra depth padding to the back of the input.

**NumChannels** — Number of channels for each filter  
'multi' (default) | positive integer

Number of channels for each filter, specified as 'multi' or a positive integer.

This parameter is always equal to the number of channels of the input to the convolutional layer. For example, if the input is a color image, then the number of channels for the input is 3. If the number of filters for the convolutional layer prior to the current layer is 16, then the number of channels for the current layer is 16.

If NumChannels is 'multi', then the software determines the number of channels at training time.

Example: 256

**Parameters and Initialization**

**WeightsInitializer** — Function to initialize weights
'glorot' (default) | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function_handle

Function to initialize the weights, specified as one of the following:

- 'glorot' - Initialize the weights with the Glorot initializer [1] (also known as Xavier initializer). The Glorot initializer independently samples from a uniform distribution with zero mean and variance $\frac{2}{\text{numIn} + \text{numOut}}$, where $\text{numIn} = \text{FilterSize}(1)*\text{FilterSize}(2)*\text{FilterSize}(3)*\text{NumChannels}$ and $\text{numOut} = \text{FilterSize}(1)*\text{FilterSize}(2)*\text{FilterSize}(3)*\text{NumFilters}$.
- 'he' - Initialize the weights with the He initializer [2]. The He initializer samples from a normal distribution with zero mean and variance $\frac{2}{\text{numIn}}$, where $\text{numIn} = \text{FilterSize}(1)*\text{FilterSize}(2)*\text{FilterSize}(3)*\text{NumChannels}$.
- 'narrow-normal' - Initialize the weights by independently sampling from a normal distribution with zero mean and standard deviation 0.01.
- 'zeros' - Initialize the weights with zeros.
- 'ones' - Initialize the weights with ones.
- Function handle - Initialize the weights with a custom function. If you specify a function handle, then the function must be of the form weights = func(sz), where sz is the size of the weights.

For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the weights when the Weights property is empty.

Data Types: char | string | function_handle

**BiasInitializer** — Function to initialize bias
'zeros' (default) | 'narrow-normal' | 'ones' | function_handle

Function to initialize the bias, specified as one of the following:

- 'zeros' - Initialize the bias with zeros.
- 'ones' - Initialize the bias with ones.
• 'narrow-normal' - Initialize the bias by independently sampling from a normal distribution with zero mean and standard deviation 0.01.
• Function handle - Initialize the bias with a custom function. If you specify a function handle, then the function must be of the form \( \text{bias} = \text{func(sz)} \), where \( \text{sz} \) is the size of the bias.

The layer only initializes the bias when the Bias property is empty.

Data Types: char | string | function_handle

**Weights — Layer weights**

[ ] (default) | numeric array

Layer weights for the convolutional layer, specified as a numeric array.

The layer weights are learnable parameters. You can specify the initial value for the weights directly using the Weights property of the layer. When training a network, if the Weights property of the layer is nonempty, then trainNetwork uses the Weights property as the initial value. If the Weights property is empty, then trainNetwork uses the initializer specified by the WeightsInitializer property of the layer.

At training time, Weights is a FilterSize(1)-by-FilterSize(2)-by-FilterSize(3)-by-NumChannels-by-NumFilters array.

Data Types: single | double

**Bias — Layer biases**

[ ] (default) | numeric array

Layer biases for the convolutional layer, specified as a numeric array.

The layer biases are learnable parameters. When training a network, if Bias is nonempty, then trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork uses the initializer specified by BiasInitializer.

At training time, Bias is a 1-by-1-by-1-by-NumFilters array.

Data Types: single | double

**Learn Rate and Regularization**

**WeightLearnRateFactor — Learning rate factor for weights**

1 (default) | nonnegative scalar

Learning rate factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the weights in this layer. For example, if WeightLearnRateFactor is 2, then the learning rate for the weights in this layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the trainingOptions function.

Example: 2

**BiasLearnRateFactor — Learning rate factor for biases**

1 (default) | nonnegative scalar

Learning rate factor for the biases, specified as a nonnegative scalar.
The software multiplies this factor by the global learning rate to determine the learning rate for the biases in this layer. For example, if \texttt{BiasLearnRateFactor} is 2, then the learning rate for the biases in the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the \texttt{trainingOptions} function.

Example: 2

\textbf{WeightL2Factor — L2 regularization factor for weights}

1 (default) | nonnegative scalar

L2 regularization factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2 regularization for the weights in this layer. For example, if \texttt{WeightL2Factor} is 2, then the L2 regularization for the weights in this layer is twice the global L2 regularization factor. You can specify the global L2 regularization factor using the \texttt{trainingOptions} function.

Example: 2

\textbf{BiasL2Factor — L2 regularization factor for biases}

0 (default) | nonnegative scalar

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2 regularization for the biases in this layer. For example, if \texttt{BiasL2Factor} is 2, then the L2 regularization for the biases in this layer is twice the global L2 regularization factor. You can specify the global L2 regularization factor using the \texttt{trainingOptions} function.

Example: 2

\textbf{Layer}

\textbf{Name — Layer name}

'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and \texttt{Name} is set to '', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

\textbf{NumInputs — Number of inputs}

1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

\textbf{InputNames — Input names}

{'in'} (default)

Input names of the layer. This layer accepts a single input only.

Data Types: cell

\textbf{NumOutputs — Number of outputs}

1 (default)
Number of outputs of the layer. This layer has a single output only.

Data Types: double

**OutputNames — Output names**

`{'out'}` (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

**Examples**

**Create 3-D Convolution Layer**

Create a 3-D convolution layer with 16 filters, each with a height, width, and depth of 5. Use a stride (step size) of 4 in all three directions.

```matlab
layer = convolution3dLayer(5,16,'Stride',4)
```

```
layer =
Convolution3DLayer with properties:
 Name: ''

 Hyperparameters
 FilterSize: [5 5 5]
 NumChannels: 'auto'
 NumFilters: 16
 Stride: [4 4 4]
 DilationFactor: [1 1 1]
 PaddingMode: 'manual'
 PaddingSize: [2x3 double]

 Learnable Parameters
 Weights: []
 Bias: []

Show all properties
```

Include a 3-D convolution layer in a Layer array.

```matlab
layers = [...
 image3dInputLayer([28 28 28 3])
 convolution3dLayer(5,16,'Stride',4)
 reluLayer
 maxPooling3dLayer(2,'Stride',4)
 fullyConnectedLayer(10)
 softmaxLayer
 classificationLayer]
```

```matlab
layers =
7x1 Layer array with layers:
1 '' 3-D Image Input 28x28x28x3 images with 'zerocenter' normalization
2 '' Convolution 16 5x5x5 convolutions with stride [4 4 4] and padding [0
Specify Initial Weights and Biases in 3-D Convolutional Layer

To specify the weights and bias initializer functions, use the \texttt{WeightsInitializer} and \texttt{BiasInitializer} properties respectively. To specify the weights and biases directly, use the \texttt{Weights} and \texttt{Bias} properties respectively.

Specify Initialization Functions

Create a 3-D convolutional layer with 32 filters, each with a height, width, and depth of 5. Specify the weights initializer to be the He initializer.

\begin{verbatim}
filterSize = 5;
numFilters = 32;
layer = convolution3dLayer(filterSize,numFilters, ...
 'WeightsInitializer','he')
\end{verbatim}

Note that the \texttt{Weights} and \texttt{Bias} properties are empty. At training time, the software initializes these properties using the specified initialization functions.

Specify Custom Initialization Functions

To specify your own initialization function for the weights and biases, set the \texttt{WeightsInitializer} and \texttt{BiasInitializer} properties to a function handle. For these properties, specify function handles that take the size of the weights and biases as input and output the initialized value.

Create a convolutional layer with 32 filters, each with a height, width, and depth of 5. Specify initializers that sample the weights and biases from a Gaussian distribution with a standard deviation of 0.0001.
filterSize = 5;
umFilters = 32;

layer = convolution3dLayer(filterSize,numFilters, ...
 'WeightsInitializer', @(sz) rand(sz) * 0.0001, ...
 'BiasInitializer', @(sz) rand(sz) * 0.0001)

layer =
 Convolution3DLayer with properties:

 Name: ''

 Hyperparameters
 FilterSize: [5 5 5]
 NumChannels: 'auto'
 NumFilters: 32
 Stride: [1 1 1]
 DilationFactor: [1 1 1]
 PaddingMode: 'manual'
 PaddingSize: [2x3 double]

 Learnable Parameters
 Weights: []
 Bias: []

 Show all properties

Again, the Weights and Bias properties are empty. At training time, the software initializes these properties using the specified initialization functions.

Specify Weights and Bias Directly

Create a 3-D convolutional layer compatible with color images. Set the weights and bias to \(W \) and \(b \) in the MAT file Conv3dWeights.mat respectively.

```
filterSize = 5;
numFilters = 32;
load Conv3dWeights

layer = convolution3dLayer(filterSize,numFilters, ... 
   'Weights',W, ... 
   'Bias',b)

layer = 
   Convolution3DLayer with properties:

   Name: ''

   Hyperparameters
   FilterSize: [5 5 5]
   NumChannels: 3
   NumFilters: 32
   Stride: [1 1 1]
   DilationFactor: [1 1 1]
   PaddingMode: 'manual'
   PaddingSize: [2x3 double]
```
Learnable Parameters

Weights: [5-D double]
Bias: [1x1x1x32 double]

Show all properties

Here, the \textit{Weights} and \textit{Bias} properties contain the specified values. At training time, if these properties are non-empty, then the software uses the specified values as the initial weights and biases. In this case, the software does not use the initializer functions.

Create Convolutional Layer That Fully Covers 3-D Input

Suppose the size of the input is 28-by-28-by-28-by-1. Create a 3-D convolutional layer with 16 filters, each with a height of 6, a width of 4, and a depth of 5. Set the stride in all dimensions to 4.

Make sure the convolution covers the input completely. For the convolution to fully cover the input, the output dimensions must be integer numbers. When there is no dilation, the \(i\)-th output dimension is calculated as \((\text{imageSize}(i) - \text{filterSize}(i) + \text{padding}(i)) / \text{stride}(i) + 1\).

- For the horizontal output dimension to be an integer, two rows of zero padding are required: \((28 - 6 + 2)/4 + 1 = 7\). Distribute the padding symmetrically by adding one row of padding at the top and bottom of the image.
- For the vertical output dimension to be an integer, no zero padding is required: \((28 - 4 + 0)/4 + 1 = 7\).
- For the depth output dimension to be an integer, one plane of zero padding is required: \((28 - 5 + 1)/4 + 1 = 7\). You must distribute the padding asymmetrically across the front and back of the image. This example adds one plane of zero padding to the back of the image.

Construct the convolutional layer. Specify 'Padding' as a 2-by-3 matrix. The first row specifies prepadding and the second row specifies postpadding in the three dimensions.

\begin{verbatim}
layer = convolution3dLayer([6 4 5],16,'Stride',4,'Padding',[1 0 0;1 0 1])
\end{verbatim}

\begin{verbatim}
layer = \text{Convolution3DLayer with properties:}
\end{verbatim}

Name: ''

Hyperparameters
- FilterSize: [6 4 5]
- NumChannels: 'auto'
- NumFilters: 16
- Stride: [4 4 4]
- DilationFactor: [1 1 1]
- PaddingMode: 'manual'
- PaddingSize: [2x3 double]

Learnable Parameters
- Weights: []
- Bias: []

Show all properties
More About

3-D Convolutional Layer

A convolutional layer applies sliding convolutional filters to the input. A 3-D convolutional layer extends the functionality of a 2-D convolutional layer to a third dimension, depth. The layer convolves the input by moving the filters along the input vertically, horizontally, and along the depth, computing the dot product of the weights and the input, and then adding a bias term. To learn more, see the definition of convolutional layer on page 1-257 on the convolution2dLayer reference page.

References

See Also

convolution2dLayer | globalAveragePooling3dLayer | image3dInputLayer | maxPooling3dLayer

Topics

“3-D Brain Tumor Segmentation Using Deep Learning”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Compare Layer Weight Initializers”
“List of Deep Learning Layers”

Introduced in R2019a
crop2dLayer

2-D crop layer

Description

A 2-D crop layer applies 2-D cropping to the input.

There are two inputs to this layer:

- `'in'` — The feature map that will be cropped
- `'ref'` — A reference layer used to determine the size, `[height width]`, of the cropped output

Once you create this layer, you can add it to a `layerGraph` to make serial connections between layers. To connect the crop layer to other layers, call `connectLayers` and specify the input names. The `connectLayers` function returns a connected `LayerGraph` object ready to train a network.

Create array of layers

```matlab
layers = [imageInputLayer(...,'Name','image')
         convolution2dLayer(...,'Name','conv')
         :
         transposedConv2dLayer(...,'Name','tconv')
         crop2dLayer(cropType,'Name','crop')
         pixelClassificationLayer('Name','pixlabels')]
```

Create collection of connected layers

```matlab
lgraph = layerGraph(layers)
```

Connect second input of crop layer

```matlab
lgraph = connectLayers(lgraph,'image/out','crop/ref')
```

Train Network

```matlab
net = trainNetwork(data,lgraph,opts)
```
Creation

Syntax

layer = crop2dLayer(Mode)
layer = crop2dLayer(Location)
layer = crop2dLayer(____,'Name',Name)

Description

layer = crop2dLayer(Mode) returns a layer that crops an input feature map, and sets the Mode property.

layer = crop2dLayer(Location) returns a layer that crops an input feature map using a rectangular window, and sets the Location property that indicates the position of the window.

layer = crop2dLayer(____,'Name',Name) creates a layer for cropping and sets the optional Name property.

Properties

Mode — Cropping mode

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'centercrop'</td>
<td>The location of the cropping window is the center of the input feature map.</td>
</tr>
<tr>
<td>'custom'</td>
<td>The location of the cropping window is based on the Location property. This value is automatically set when the Location property is specified as a 2-element row vector.</td>
</tr>
</tbody>
</table>

Data Types: char

Location — Cropping window location

<table>
<thead>
<tr>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-element row vector in the format [x y]</td>
<td>The upper-left corner of the cropping window is at the location [x y] of the input feature map. x indicates the location in the horizontal direction and y is the vertical direction.</td>
</tr>
<tr>
<td>'auto'</td>
<td>The cropping window is located at the center of the input feature map. This value is automatically set when the Mode property is specified as 'centercrop'.</td>
</tr>
</tbody>
</table>

Name — Layer name

' ' (default) | character vector | string scalar
Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to '' , then the software automatically assigns a name to the layer at training time.

Data Types: char | string

NumInputs — Number of inputs
2 (default)

Number of inputs of the layer. This layer has two inputs.

Data Types: double

InputNames — Input names
{'in' 'ref'} (default)

Input names of the layer. This layer has two inputs, named 'in' and 'ref'.

Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Create 2-D Crop Layer

Create a 2-D crop layer and connect both of the inputs using a `layerGraph` object.

Create the layers.

```matlab
layers = [  
    imageInputLayer([32 32 3], 'Name', 'image')  
    crop2dLayer('centercrop', 'Name', 'crop')
];
```

Create a `layerGraph`. The first input of `crop2dLayer` is automatically connected to the first output of the image input layer.

```matlab
lgraph = layerGraph(layers)
```
lgraph =
 LayerGraph with properties:
 Layers: [2x1 nnet.cnn.layer.Layer]
 Connections: [1x2 table]
 InputNames: {'image'}
 OutputNames: {1x0 cell}

Connect the image input layer to the "ref" input of the 2-D crop layer.

lgraph = connectLayers(lgraph,'image','crop/ref')

lgraph =
 LayerGraph with properties:
 Layers: [2x1 nnet.cnn.layer.Layer]
 Connections: [2x2 table]
 InputNames: {'image'}
 OutputNames: {1x0 cell}

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
deeplabv3plusLayers | fcnLayers | layerGraph | pixelClassificationLayer |
segnetLayers | semanticseg | trainNetwork | unetLayers

Topics
"Getting Started with Semantic Segmentation Using Deep Learning" (Computer Vision Toolbox)
"Deep Learning in MATLAB"

Introduced in R2017b
crop3dLayer

3-D crop layer

Description

A 3-D crop layer crops a 3-D volume to the size of the input feature map.

Specify the number of inputs to the layer when you create it. The inputs to the layer have the names 'in' and 'ref'. Use the input names when connecting or disconnecting the layer by using connectLayers or disconnectLayers. All inputs to a 3-D crop layer must have the same number of dimensions.

Creation

Syntax

layer = crop3dLayer
layer = crop3dLayer([X Y Z])
layer = crop3dLayer(__,'Name',Name)

Description

layer = crop3dLayer creates a 3-D crop layer that crops an input feature map from the center of the feature map. The size of the cropped region is equal to the size of a second reference input feature map.

layer = crop3dLayer([X Y Z]) also sets the cropLocation property with the (X,Y,Z) coordinate of the crop window. X is the coordinate in the horizontal direction, Y is the coordinate in the vertical direction, and Z is the coordinate in the depth direction.

layer = crop3dLayer(__,'Name',Name) also sets the Name property. To create a network containing a 3-D crop layer, you must specify a layer name.

Properties

Crop

cropLocation — Crop location

'centercrop' (default) | three-element numeric vector

Crop location, specified as 'centercrop' or a three-element numeric vector representing the (x,y,z) coordinate of the crop window.

Layer

Name — Layer name

'' (default) | character vector | string scalar
Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to '', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

NumInputs — Number of inputs
2 (default)

Number of inputs of the layer. This layer accepts two inputs.

Data Types: double

InputNames — Input names
{'in','ref'} (default)

Input names of the layer, specified as {'in','ref'}. This layer accepts two inputs.

Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Create and Connect 3-D Crop Layer

Create a 3-D crop layer and connect both of its inputs using a layerGraph object.

```matlab
layers = [  
    image3dInputLayer([32 32 32 3],'Name','image')  
    convolution3dLayer(3,16,'Padding','same','Name','conv')  
    crop3dLayer('Name','crop')  
    concatenationLayer(4,2,'Name','concat')  
]
```

Create a layerGraph. The first input of the 3-D crop layer is automatically connected to the output of the 3-D convolutional layer.
lgraph = layerGraph(layers);

Add a max pooling layer to the layer graph.

maxPool = maxPooling3dLayer(2,'stride',2,'Name','pool');
lgraph = addLayers(lgraph,maxPool);
lgraph = connectLayers(lgraph,'image','pool');

Connect the second input of the crop layer to the output of the max pooling layer.

lgraph = connectLayers(lgraph,'pool', 'crop/ref');

Concatenate the crop layer output and the max pooling layer output.

lgraph = connectLayers(lgraph,'pool', 'concat/in2');

Display the layer graph.

plot(lgraph)
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2019b
crossChannelNormalizationLayer
Channel-wise local response normalization layer

Description
A channel-wise local response (cross-channel) normalization layer carries out channel-wise normalization.

Creation

Syntax
layer = crossChannelNormalizationLayer(windowChannelSize)
layer = crossChannelNormalizationLayer(windowChannelSize,Name,Value)

Description
layer = crossChannelNormalizationLayer(windowChannelSize) creates a channel-wise
local response normalization layer and sets the WindowChannelSize property.

layer = crossChannelNormalizationLayer(windowChannelSize,Name,Value) sets the
optional properties WindowChannelSize, Alpha, Beta, K, and Name using name-value pairs. For
example, crossChannelNormalizationLayer(5,'K',1) creates a local response normalization
layer for channel-wise normalization with a window size of 5 and K hyperparameter 1. You can specify
multiple name-value pairs. Enclose each property name in single quotes.

Properties

Cross-Channel Normalization

WindowChannelSize — Size of the channel window
positive integer

Size of the channel window, which controls the number of channels that are used for the
normalization of each element, specified as a positive integer.

If WindowChannelSize is even, then the window is asymmetric. The software looks at the previous
floor((w-1)/2) channels and the following floor(w/2) channels. For example, if
WindowChannelSize is 4, then the layer normalizes each element by its neighbor in the previous
channel and by its neighbors in the next two channels.

Example: 5

Alpha — α hyperparameter in normalization
0.0001 (default) | numeric scalar

α hyperparameter in the normalization (the multiplier term), specified as a numeric scalar.

Example: 0.0002
Beta — β hyperparameter in normalization
0.75 (default) | numeric scalar

β hyperparameter in the normalization, specified as a numeric scalar. The value of Beta must be greater than or equal to 0.01.
Example: 0.8

K — K hyperparameter in the normalization
2 (default) | numeric scalar

K hyperparameter in the normalization, specified as a numeric scalar. The value of K must be greater than or equal to 10^{-5}.
Example: 2.5

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to '', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.

Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

Examples
Create Local Response Normalization Layer

Create a local response normalization layer for channel-wise normalization, where a window of five channels normalizes each element, and the additive constant for the normalizer K is 1.

```matlab
layer = crossChannelNormalizationLayer(5,'K',1)
```

Layer properties:
- **Name**: ''
- **Hyperparameters**:
 - **WindowChannelSize**: 5
 - **Alpha**: 1.0000e-04
 - **Beta**: 0.7500
 - **K**: 1

Include a local response normalization layer in a `Layer` array.

```matlab
layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    crossChannelNormalizationLayer(3)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]
```

Limitations

- This layer does not support 3-D image inputs or vector sequence inputs.

More About

Local Response Normalization

A channel-wise local response (cross-channel) normalization layer carries out channel-wise normalization.

This layer performs a channel-wise local response normalization. It usually follows the ReLU activation layer. This layer replaces each element with a normalized value it obtains using the elements from a certain number of neighboring channels (elements in the normalization window). That is, for each element x in the input, `trainNetwork` computes a normalized value x' using
\[x' = \frac{x}{\left(K + \frac{\alpha \cdot ss}{\text{windowChannelSize}} \right)^\beta} \]

where \(K \), \(\alpha \), and \(\beta \) are the hyperparameters in the normalization, and \(ss \) is the sum of squares of the elements in the normalization window [1]. You must specify the size of the normalization window using the \text{windowChannelSize} argument of the \text{crossChannelNormalizationLayer} function. You can also specify the hyperparameters using the \text{Alpha}, \text{Beta}, and \text{K} name-value pair arguments.

The previous normalization formula is slightly different than what is presented in [1]. You can obtain the equivalent formula by multiplying the \text{alpha} value by the \text{windowChannelSize}.

References

Extended Capabilities

\textbf{C/C++ Code Generation}
Generate C and C++ code using MATLAB® Coder™.

\textbf{GPU Code Generation}
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also

\texttt{averagePooling2dLayer} | \texttt{convolution2dLayer} | \texttt{maxPooling2dLayer}

Topics

“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2016a
crosschannelnorm

Cross channel square-normalize using local responses

Syntax

dlY = crosschannelnorm(dlX,windowSize)
dlY = crosschannelnorm(dlX,windowSize,'DataFormat',FMT)
dlY = crosschannelnorm(___,Name,Value)

Description

The cross-channel normalization operation uses local responses in different channels to normalize each activation. Cross-channel normalization typically follows a relu operation. Cross-channel normalization is also known as local response normalization.

Note This function applies the cross-channel normalization operation to dlarray data. If you want to apply cross-channel normalization within a layerGraph object or Layer array, use the following layer:

- crossChannelNormalizationLayer

dlY = crosschannelnorm(dlX,windowSize) normalizes each element of dlX with respect to local values in the same position in nearby channels. The normalized elements in dlY are calculated from the elements in dlX using the following formula.

\[y = \frac{x}{\left(K + \frac{\alpha \cdot ss}{\text{windowSize}}\right)^{\beta}} \]

where y is an element of dlY, x is the corresponding element of dlX, ss is the sum of the squares of the elements in the channel region defined by windowSize, and \(\alpha, \beta, \) and \(K \) are hyperparameters in the normalization.

dlY = crosschannelnorm(dlX,windowSize,'DataFormat',FMT) also specifies the dimension format FMT when dlX is an unformatted dlarray, in addition to the input arguments the previous syntax. The output dlY is an unformatted dlarray with the same dimension order as dlX.

dlY = crosschannelnorm(____,Name,Value) specifies options using one or more name-value pair arguments in addition to the input arguments in previous syntaxes. For example, 'Beta',0.8 sets the value of the \(\beta \) contrast constant to 0.8.

Examples

Normalize Data Using Values of Adjacent Channels

Use crosschannelnorm to normalize each observation of a mini-batch using values from adjacent channels.
Create the input data as ten observations of random values with a height and width of eight and six channels.

```matlab
height = 8;
width = 8;
channels = 6;
observations = 10;

X = rand(height,width,channels,observations);
dlX = dlarray(X,'SSCB');
```

Compute the cross-channel normalization using a channel window size of three.

```matlab
dlY = crosschannelnorm(dlX,3);
```

Each value in each observation of `dlX` is normalized using the element in the previous channel and the element in the next channel.

Compare Normalized and Original Data

Values at the edges of an array are normalized using contributions from fewer channels, depending on the size of the channel window.

Create the input data as an array of ones with a height and width of two and three channels.

```matlab
height = 2;
width = 2;
channels = 3;

X = ones(height,width,channels);
dlX = dlarray(X);
```

Normalize the data using a channel-window size of 3, an \(\alpha \) of 1, a \(\beta \) of 1, and a \(K \) of 1e-5. Specify a data format of 'SSC'.

```matlab
dlY = crosschannelnorm(dlX,3,'Alpha',1,'Beta',1,'K',1e-5,'DataFormat','SSC');
```

Compare the values in the original and the normalized data by reshaping the three-channel arrays into 2-D matrices.

```matlab
dlX = reshape(dlX,2,6)
dlX =
2x6 dlarray
   1     1     1     1     1     1
   1     1     1     1     1     1

dlY = reshape(dlY,2,6)
dlY =
2x6 dlarray
1.5000    1.5000    1.0000    1.0000    1.5000    1.5000
1.5000    1.5000    1.0000    1.0000    1.5000    1.5000
```
For the first and last channels, the sum of squares is calculated using only two values. For the middle channel, the sum of squares contains the values of all three channels.

Use Cross-Channel Normalization in a Model Function

Typically, the cross-channel normalization operation follows a ReLU operation. For example, the GoogLeNet architecture contains convolutional operations followed by ReLU and cross-channel normalization operations.

The function `modelFunction` defined at the end of this example shows how you can use cross-channel normalization in a model. Use `modelFunction` to find the grouped convolution and ReLU activation of some input data and then normalize the result using cross-channel normalization with a window size of 5.

Create the input data as a single observation of random values with a height and width of ten and four channels.

```matlab
height = 10;
width = 10;
channels = 4;
observations = 1;

X = rand(height,width,channels,observations);
dlX = dlarray(X,'SSCB');
```

Create the parameters for the grouped convolution operation. For the weights, use a filter height and width of three, two channels per group, three filters per group, and two groups. Use a value of zero for the bias.

```matlab
filterSize = [3 3];
numChannelsPerGroup = 2;
numFiltersPerGroup = 3;
numGroups = 2;

params = struct;
params.conv.weights = rand(filterSize(1),filterSize(2),numChannelsPerGroup,numFiltersPerGroup,numGroups);
params.conv.bias = 0;
```

Apply the `modelFunction` to the data `dlX`.

```matlab
function dlY = modelFunction(dlX,params);

dlY = modelFunction(dlX,params)

dlY = dlconv(dlX,params.conv.weights,params.conv.bias);
dlY = relu(dlY);
dlY = crosschannelnorm(dlY,5);
end
```
Input Arguments

dlX — Input data

dlarray

Input data, specified as a `dlarray` with or without data format. When `dlX` is an unformatted `dlarray`, you must specify the data format using the `DataFormat` name-value pair.

You can specify up to two dimensions in `dlX` as `'S'` dimensions.

windowSize — Size of channel window

scalar integer

Size of the channel window, which controls the number of channels that are used for the normalization of each element, specified as a positive integer.

If `windowSize` is even, then the window is asymmetric. The software looks at the previous \(\text{floor}\left(\frac{(\text{windowSize}-1)}{2}\right) \) channels and the following \(\text{floor}\left(\frac{\text{windowSize}}{2}\right) \) channels. For example, if `windowSize` is 4, then the function normalizes each element by its neighbor in the previous channel and by its neighbors in the next two channels.

Example: 3

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `'Alpha',2e-4,'Beta',0.8` sets the multiplicative normalization constant to 0.0002 and the contrast constant exponent to 0.8.

DataFormat — Dimension order of unformatted data

char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of `DataFormat` and a character array or string `FMT` that provides a label for each dimension of the data. Each character in `FMT` must be one of the following:

- `'S'` — Spatial
- `'C'` — Channel
- `'B'` — Batch (for example, samples and observations)
- `'T'` — Time (for example, sequences)
- `'U'` — Unspecified

You can specify multiple dimensions labeled `'S'` or `'U'`. You can use the labels `'C'`, `'B'`, and `'T'` at most once.

You must specify `DataFormat` when the input data `dlX` is not a formatted `dlarray`.

Example: `'DataFormat','SSCB'"
Data Types: char | string

Alpha — Normalization constant (α)
1e-4 (default) | numeric scalar

Normalization constant (α) that multiplies the sum of the squared values, specified as the comma-separated pair consisting of 'Alpha' and a numeric scalar. The default value is 1e-4.

Example: 'Alpha',2e-4

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32

Beta — Contrast constant (β)
0.75 (default) | numeric scalar greater than or equal to 0.01

Contrast constant (β), specified as the comma-separated pair consisting of 'Beta' and a numeric scalar greater than or equal to 0.01. The default value is 0.75.

Example: 'Beta',0.8

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32

K — Normalization hyperparameter (K)
2 (default) | numeric scalar greater than or equal to 1e-5

Normalization hyperparameter (K) used to avoid singularities in the normalization, specified as the comma-separated pair consisting of 'K' and a numeric scalar greater than or equal to 1e-5. The default value is 2.

Example: 'K',2.5

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32

Output Arguments

dlY — Normalized data

dlarray

Normalized data, returned as a dlarray. The output dlY has the same underlying data type as the input dlX.

If the input data dlX is a formatted dlarray, dlY has the same dimension labels as dlX. If the input data is an unformatted dlarray, dlY is an unformatted dlarray with the same dimension order as the input data.

More About

Cross-Channel Normalization

The crosschannelnorm function normalizes each activation response based on the local responses in a specified channel window. For more information, see the definition of “Local Response Normalization” on page 1-284 on the crossChannelNormalizationLayer reference page.
Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

- When the input argument dlX is a dlarray with underlying data of type gpuArray, this function runs on the GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
avgpool | dlarray | dlconv | dlfeval | dlgradient | maxpool

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”

Introduced in R2020a
crossentropy

Cross-entropy loss for classification tasks

Syntax

\[
dlY = \text{crossentropy}(dlX, targets) \\
dlY = \text{crossentropy}(dlX, targets, 'DataFormat', FMT) \\
dlY = \text{crossentropy}([], Name, Value)
\]

Description

The cross-entropy operation computes the cross-entropy loss between network predictions and target values for single-label and multi-label classification tasks.

Note This function computes the cross-entropy loss between predictions and targets stored as `dlarray` data. If you want to calculate the cross-entropy loss within a `layerGraph` object or `Layer` array for use with `trainNetwork`, use the following layer:

- `classificationLayer`

Examples

Find Cross-Entropy Loss Between Predicted and Target Labels

The cross-entropy loss evaluates how well the network predictions correspond to the target classification.

Create the input classification data as a matrix of random variables. The data contains 12 observations that can be in any of 10 categories.

```matlab
numCategories = 10; 
observations = 12;
```


\[
X = \text{rand(numCategories,observations)}; \\
dlX = \text{dlarray}(X, 'CB');
\]

Convert the category values in the data to probability scores for each category.

\[
dlX = \text{softmax}(dlX);
\]

Create the target data, which holds the correct category for each observation in \(dlX \).

\[
\text{targetsIdx} = \text{randi}(10,1,12); \\
\text{targets} = \text{zeros}(10,12); \\
\text{for} \ i = 1:\text{numel(targetsIdx)} \\
 \text{targets}(\text{targetsIdx}(i),i) = 1;
\]

Compute the cross-entropy loss between the predictions and the targets.

\[
dlY = \text{crossentropy}(dlX,\text{targets})
\]

\[
dlY = \\
1x1 \text{ dlarray} \\
2.3343
\]

Input Arguments

- **dlX — Predictions**
 - dlarray | numeric array

 Predictions, specified as a dlarray with or without dimension labels or a numeric array. When \(dlX \) is not a formatted dlarray, you must specify the dimension format using 'DataFormat',FMT. If \(dlX \) is a numeric array, \(\text{targets} \) must be a dlarray.

 Data Types: single | double

- **targets — Target classification labels**
 - dlarray | numeric array

 Target classification labels, specified as a formatted or unformatted dlarray or a numeric array.

 If \(\text{targets} \) is a formatted dlarray, its dimension format must be the same as the format of \(X \), or the same as 'DataFormat' if \(X \) is unformatted.

 If \(\text{targets} \) is an unformatted dlarray or a numeric array, the size of \(\text{targets} \) must exactly match the size of \(X \). The format of \(X \) or the value of 'DataFormat' is implicitly applied to \(\text{targets} \).

 Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: ‘TargetCategories’, ‘independent’, ‘DataFormat’, ‘CB’ evaluates the cross-entropy loss for multi-label classification tasks and specifies the dimension order of the input data as ‘CB’

TargetCategories — Type of classification task

‘exclusive’ (default) | ‘independent’

Type of classification task, specified as the comma-separated pair consisting of ‘TargetCategories’ and one of the following:

- ‘exclusive’ — Single-label classification. Each observation in the predictions dlX is exclusively assigned to one category. The function computes the loss between the target value for the single category specified by targets and the corresponding prediction in dlX, averaged over the number of observations.
- ‘independent’ — Multi-label classification. Each observation in the predictions dlX can be assigned to one or more independent categories. The function computes the sum of the loss between each category specified by targets and the predictions in dlx for those categories, averaged over the number of observations. Cross-entropy loss for this type of classification task is also known as binary cross-entropy loss.

The default value is ‘exclusive’.

For single-label classification, the loss is calculated using the following formula:

\[
 \text{loss} = -\frac{1}{N} \sum_{i=1}^{M} T_i \log(X_i)
\]

where \(X_i\) is the network response, \(T_i\) is the target value, \(M\) is the total number of responses in \(X\) (across all observations and categories), and \(N\) is the total number of observations in \(X\).

For multi-label classification, the loss is calculated using the following formula:

\[
 \text{loss} = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{C} \left(T_{i,j} \log(X_{i,j}) + (1 - T_{i,j}) \log(1 - X_{i,j}) \right)
\]

where here \(X_{i,j}\) is the network response for a given category, \(T_{i,j}\) is the target value of that category, and \(C\) is the total number of categories. In this case, the cross-entropy loss is calculated as the probability of a given observation being assigned to a given category, summed over all categories and observations and normalized by the number of observations.

Example: ‘TargetCategories’, ‘independent’

DataFormat — Dimension order of unformatted data

cchar | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of ‘DataFormat’ and a character array or string FMT that provides a label for each dimension of the data. Each character in FMT must be one of the following:

- ‘S’ — Spatial
- ‘C’ — Channel
- ‘B’ — Batch (for example, samples and observations)
- 'T' — Time (for example, sequences)
- 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at most once.

You must specify 'DataFormat' when the input data dlX is not a formatted dlarray.

Example: 'DataFormat','SSCB'

Data Types: char | string

Output Arguments

dlY — Cross-entropy loss
dlarray scalar

Cross-entropy loss, returned as a dlarray scalar without dimension labels. The output dlY has the same underlying data type as the input dlX.

The cross-entropy loss dlY is the average logarithmic loss across the 'B' batch dimension of dlX.

More About

Cross-Entropy Loss

The crossentropy function computes the cross-entropy loss for classification problems. For more information, see the definition of “Classification Output Layer” on page 1-182 on the ClassificationOutputLayer reference page.

Extended Capabilities

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

- When at least one of the following input arguments is a gpuArray or a dlarray with underlying data of type gpuArray, this function runs on the GPU:
 - dlX
 - targets

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also

dlarray | dlfeval | dlgradient | mse | softmax

Topics

“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Custom Training Loop”
“Train Network Using Model Function”
“Train Network with Multiple Outputs”
Introduced in R2019b
DAGNetwork

Directed acyclic graph (DAG) network for deep learning

Description

A DAG network is a neural network for deep learning with layers arranged as a directed acyclic graph. A DAG network can have a more complex architecture in which layers have inputs from multiple layers and outputs to multiple layers.

Creation

There are several ways to create a DAGNetwork object:

- Load a pretrained network such as squeezenet, googlenet, resnet50, resnet101, or inceptionv3. For an example, see “Load SqueezeNet Network” on page 1-947. For more information about pretrained networks, see “Pretrained Deep Neural Networks”.
- Train or fine-tune a network using trainNetwork. For an example, see “Train Deep Learning Network to Classify New Images”.
- Import a pretrained network from TensorFlow™-Keras, Caffe, or the ONNX (Open Neural Network Exchange) model format.
- For a Keras model, use importKerasNetwork. For an example, see “Import and Plot Keras Network” on page 1-606.
- For a Caffe model, use importCaffeNetwork. For an example, see “Import Caffe Network” on page 1-586.
- For an ONNX model, use importONNXNetwork. For an example, see “Import ONNX Network” on page 1-639.

Note To learn about other pretrained networks, see “Pretrained Deep Neural Networks”.

Properties

Layers — Network layers

Layer array

Network layers, specified as a Layer array.

Connections — Layer connections

Table

Layer connections, specified as a table with two columns.

Each table row represents a connection in the layer graph. The first column, Source, specifies the source of each connection. The second column, Destination, specifies the destination of each connection. The connection sources and destinations are either layer names or have the form 'layerName/IOName', where 'IOName' is the name of the layer input or output.
Data Types: `table`

InputNames — Network input layer names
cell array

Network input layer names, specified as a cell array of character vectors.

Data Types: `cell`

OutputNames — Network output layer names
cell array

Network output layer names, specified as a cell array of character vectors.

Data Types: `cell`

Object Functions

- `activations` Compute deep learning network layer activations
- `classify` Classify data using a trained deep learning neural network
- `predict` Predict responses using a trained deep learning neural network
- `plot` Plot neural network layer graph

Examples

Create Simple DAG Network

Create a simple directed acyclic graph (DAG) network for deep learning. Train the network to classify images of digits. The simple network in this example consists of:

- A main branch with layers connected sequentially.
- A *shortcut connection* containing a single 1-by-1 convolutional layer. Shortcut connections enable the parameter gradients to flow more easily from the output layer to the earlier layers of the network.

Create the main branch of the network as a layer array. The addition layer sums multiple inputs element-wise. Specify the number of inputs for the addition layer to sum. All layers must have names and all names must be unique.

```matlab
layers = [
    imageInputLayer([28 28 1], 'Name', 'input')
    convolution2dLayer(5, 16, 'Padding', 'same', 'Name', 'conv_1')
    batchNormalizationLayer('Name', 'BN_1')
    reluLayer('Name', 'relu_1')
    convolution2dLayer(3, 32, 'Padding', 'same', 'Stride', 2, 'Name', 'conv_2')
    batchNormalizationLayer('Name', 'BN_2')
    reluLayer('Name', 'relu_2')
    convolution2dLayer(3, 32, 'Padding', 'same', 'Name', 'conv_3')
    batchNormalizationLayer('Name', 'BN_3')
    reluLayer('Name', 'relu_3')
    additionLayer(2, 'Name', 'add')
];
```
averagePooling2dLayer(2,'Stride',2,'Name','avpool')
fullyConnectedLayer(10,'Name','fc')
softmaxLayer('Name','softmax')
classificationLayer('Name','classOutput'));

Create a layer graph from the layer array. layerGraph connects all the layers in layers sequentially. Plot the layer graph.

lgraph = layerGraph(layers);
figure
plot(lgraph)

Create the 1-by-1 convolutional layer and add it to the layer graph. Specify the number of convolutional filters and the stride so that the activation size matches the activation size of the 'relu_3' layer. This arrangement enables the addition layer to add the outputs of the 'skipConv' and 'relu_3' layers. To check that the layer is in the graph, plot the layer graph.

skipConv = convolution2dLayer(1,32,'Stride',2,'Name','skipConv');
lgraph = addLayers(lgraph,skipConv);
figure
plot(lgraph)
Create the shortcut connection from the 'relu_1' layer to the 'add' layer. Because you specified two as the number of inputs to the addition layer when you created it, the layer has two inputs named 'in1' and 'in2'. The 'relu_3' layer is already connected to the 'in1' input. Connect the 'relu_1' layer to the 'skipConv' layer and the 'skipConv' layer to the 'in2' input of the 'add' layer. The addition layer now sums the outputs of the 'relu_3' and 'skipConv' layers. To check that the layers are connected correctly, plot the layer graph.

```matlab
lgraph = connectLayers(lgraph,'relu_1','skipConv');
lgraph = connectLayers(lgraph,'skipConv','add/in2');
figure
plot(lgraph);
```
Load the training and validation data, which consists of 28-by-28 grayscale images of digits.

```matlab
[XTrain,YTrain] = digitTrain4DArrayData;
[XValidation,YValidation] = digitTest4DArrayData;
```

Specify training options and train the network. `trainNetwork` validates the network using the validation data every `ValidationFrequency` iterations.

```matlab
options = trainingOptions('sgdm', ...
    'MaxEpochs',8, ...;
    'Shuffle','every-epoch', ...;
    'ValidationData',{XValidation,YValidation}, ...;
    'ValidationFrequency',30, ...;
    'Verbose',false, ...;
    'Plots','training-progress');
net = trainNetwork(XTrain,YTrain,lgraph,options);
```
Display the properties of the trained network. The network is a DAGNetwork object.

```matlab
net = DAGNetwork with properties:
    Layers: [16x1 nnet.cnn.layer.Layer]
    Connections: [16x2 table]
    InputNames: {'input'}
    OutputNames: {'classOutput'}
```

Classify the validation images and calculate the accuracy. The network is very accurate.

```matlab
YPredicted = classify(net, XValidation);
accuracy = mean(YPredicted == YValidation)
```

```
accuracy = 0.9930
```

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- Only the activations and `predict` object functions are supported.
- To create a DAGNetwork object for code generation, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

- Only the activations, predict, and classify methods are supported.
- To create a DAGNetwork object for code generation, see “Load Pretrained Networks for Code Generation” (GPU Coder).

See Also
SeriesNetwork | analyzeNetwork | assembleNetwork | classify | googlenet | importKerasNetwork | inceptionresnetv2 | inceptionv3 | layerGraph | plot | predict | resnet101 | resnet18 | resnet50 | squeezenet | trainNetwork | trainingOptions

Topics
“Deep Learning in MATLAB”
“Classify Image Using GoogLeNet”
“Train Residual Network for Image Classification”
“Train Deep Learning Network to Classify New Images”
“Pretrained Deep Neural Networks”

Introduced in R2017b
darknet19

DarkNet-19 convolutional neural network

Syntax

net = darknet19
net = darknet19('Weights','imagenet')
layers = darknet19('Weights','none')

Description

DarkNet-19 is a convolutional neural network that is 19 layers deep. You can load a pretrained version of the network trained on more than a million images from the ImageNet database [1]. The pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many animals. As a result, the network has learned rich feature representations for a wide range of images. The network has an image input size of 256-by-256. For more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the DarkNet-19 model. Follow the steps of “Classify Image Using GoogLeNet” and replace GoogLeNet with DarkNet-19.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network to Classify New Images” and load DarkNet-19 instead of GoogLeNet.

DarkNet-19 is often used as the foundation for object detection problems and YOLO workflows [2]. For an example of how to train a you only look once (YOLO) v2 object detector, see “Object Detection Using YOLO v2 Deep Learning”. This example uses ResNet-50 for feature extraction. You can also use other pretrained networks such as DarkNet-19, DarkNet-53, MobileNet-v2, or ResNet-18 depending on application requirements.

This function requires the Deep Learning Toolbox Model for DarkNet-19 Network support package. If this support package is not installed, then the function provides a download link.

net = darknet19('Weights','imagenet') returns a DarkNet-19 network trained on the ImageNet data set. This syntax is equivalent to net = darknet19.

layers = darknet19('Weights','none') returns the untrained DarkNet-19 network architecture. The untrained model does not require the support package.

Examples

Download DarkNet-19 Support Package

Type darknet19 at the command line.
darknet19

If the Deep Learning Toolbox Model for DarkNet-19 Network support package is not installed, then the function provides a link to the required support package in the Add-On Explorer. To install the support package, click the link, and then click Install. Check that the installation is successful by typing darknet19 at the command line. If the required support package is installed, then the function returns a SeriesNetwork object.

darknet19
ans =

SeriesNetwork with properties:

 Layers: [64×1 nnet.cnn.layer.Layer]
 InputNames: {'input'}
 OutputNames: {'output'}

Transfer Learning with DarkNet-19

You can use transfer learning to retrain the network to classify a new set of images.

Open the example “Train Deep Learning Network to Classify New Images”. The original example uses the GoogLeNet pretrained network. To perform transfer learning using a different network, load your desired pretrained network and follow the steps in the example.

Load the DarkNet-19 network instead of GoogLeNet.

net = darknet19

Follow the remaining steps in the example to retrain your network. You must replace the last learnable layer and the classification layer in your network with new layers for training. The example shows you how to find which layers to replace.

Output Arguments

net — Pretrained DarkNet-19 convolutional network

SeriesNetwork

Pretrained DarkNet-19 convolutional neural network, returned as a SeriesNetwork object.

layers — Untrained DarkNet-19 convolutional neural network architecture

Layer array

Untrained DarkNet-19 convolutional neural network architecture, returned as a Layer array.

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax `net = darknet19` or by passing the `darknet19` function to `coder.loadDeepLearningNetwork`. For example: `net = coder.loadDeepLearningNetwork('darknet19')`.

The syntax `darknet19('Weights','none')` is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:
- For code generation, you can load the network by using the syntax `net = darknet19` or by passing the `darknet19` function to `coder.loadDeepLearningNetwork`. For example: `net = coder.loadDeepLearningNetwork('darknet19')`.
- For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
- The syntax `darknet19('Weights','none')` is not supported for GPU code generation.

See Also
SeriesNetwork | darknet53 | densenet201 | googlenet | inceptionresnetv2 | layerGraph | nasnetlarge | nasnetmobile | plot | resnet101 | resnet50 | squeezenet | trainNetwork | vgg16 | vgg19

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

Introduced in R2020a
darknet53

DarkNet-53 convolutional neural network

Syntax

```matlab
net = darknet53
net = darknet53('Weights','imagenet')
lgraph = darknet53('Weights','none')
```

Description

DarkNet-53 is a convolutional neural network that is 53 layers deep. You can load a pretrained version of the network trained on more than a million images from the ImageNet database [1]. The pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many animals. As a result, the network has learned rich feature representations for a wide range of images. The network has an image input size of 256-by-256. For more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

You can use `classify` to classify new images using the DarkNet-53 model. Follow the steps of “Classify Image Using GoogLeNet” and replace GoogLeNet with DarkNet-53.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network to Classify New Images” and load DarkNet-53 instead of GoogLeNet.

DarkNet-53 is often used as the foundation for object detection problems and YOLO workflows [2]. For an example of how to train a you only look once (YOLO) v2 object detector, see “Object Detection Using YOLO v2 Deep Learning”. This example uses ResNet-50 for feature extraction. You can also use other pretrained networks such as DarkNet-19, DarkNet-53, MobileNet-v2, or ResNet-18 depending on application requirements.

This function requires the Deep Learning Toolbox Model for DarkNet-53 Network support package. If this support package is not installed, then the function provides a download link.

`net = darknet53('Weights','imagenet')` returns a DarkNet-53 network trained on the ImageNet data set. This syntax is equivalent to `net = darknet53`.

`lgraph = darknet53('Weights','none')` returns the untrained DarkNet-53 network architecture. The untrained model does not require the support package.

Examples

Download DarkNet-53 Support Package

Download and install the Deep Learning Toolbox Model for DarkNet-53 Network support package. Type `darknet53` at the command line.
darknet53

If the Deep Learning Toolbox Model for DarkNet-53 Network support package is not installed, then the function provides a link to the required support package in the Add-On Explorer. To install the support package, click the link, and then click Install. Check that the installation is successful by typing darknet53 at the command line. If the required support package is installed, then the function returns a DAGNetwork object.

darknet53
ans =

DAGNetwork with properties:
 Layers: [184×1 nnet.cnn.layer.Layer]
 Connections: [206×2 table]
 InputNames: {'input'}
 OutputNames: {'output'}

Transfer Learning with DarkNet-53

You can use transfer learning to retrain the network to classify a new set of images.

Open the example “Train Deep Learning Network to Classify New Images”. The original example uses the GoogLeNet pretrained network. To perform transfer learning using a different network, load your desired pretrained network and follow the steps in the example.

Load the DarkNet-53 network instead of GoogLeNet.

net = darknet53

Follow the remaining steps in the example to retrain your network. You must replace the last learnable layer and the classification layer in your network with new layers for training. The example shows you how to find which layers to replace.

Output Arguments

net — Pretrained DarkNet-53 convolutional network
DAGNetwork

Pretrained DarkNet-53 convolutional neural network, returned as a DAGNetwork object.

lgraph — Untrained DarkNet-53 convolutional neural network architecture
LayerGraph object

Untrained DarkNet-53 convolutional neural network architecture, returned as a LayerGraph object.

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

For code generation, you can load the network by using the syntax `net = darknet53` or by passing the `darknet53` function to `coder.loadDeepLearningNetwork`. For example: `net = coder.loadDeepLearningNetwork('darknet53')`.

The syntax `darknet53('Weights','none')` is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

- For code generation, you can load the network by using the syntax `net = darknet53` or by passing the `darknet53` function to `coder.loadDeepLearningNetwork`. For example: `net = coder.loadDeepLearningNetwork('darknet53')`.

 For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
- The syntax `darknet53('Weights','none')` is not supported for GPU code generation.

See Also
DAGNetwork | darknet19 | densenet201 | googlenet | inceptionresnetv2 | layerGraph | nasnetlarge | nasnetmobile | plot | resnet101 | resnet50 | squeezenet | trainNetwork | vgg16 | vgg19

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

Introduced in R2020a
deepDreamImage

Visualize network features using deep dream

Syntax

```matlab
I = deepDreamImage(net,layer,channels)
I = deepDreamImage(net,layer,channels,Name,Value)
```

Description

`I = deepDreamImage(net,layer,channels)` returns an array of images that strongly activate the channels `channels` within the network `net` of the layer with numeric index or name given by `layer`. These images highlight the features learned by a network.

`I = deepDreamImage(net,layer,channels,Name,Value)` returns an image with additional options specified by one or more `Name,Value` pair arguments.

Examples

Visualize Convolutional Neural Network Features

Load a pretrained AlexNet network.

```matlab
net = alexnet;
```

Visualize the first 25 features learned by the first convolutional layer ('conv1') using `deepDreamImage`. Set 'PyramidLevels' to 1 so that the images are not scaled.

```matlab
layer = 'conv1';
channels = 1:25;
I = deepDreamImage(net,layer,channels, ... 
    'PyramidLevels',1, ... 
    'Verbose',0);
```  
```matlab
figure
for i = 1:25
    subplot(5,5,i)
    imshow(I(:,:,:,i))
end
```
Input Arguments

net — Trained network

SeriesNetwork object | *DAGNetwork* object

Trained network, specified as a *SeriesNetwork* object or a *DAGNetwork* object. You can get a trained network by importing a pretrained network or by training your own network using the *trainNetwork* function. For more information about pretrained networks, see “Pretrained Deep Neural Networks”.

deepDreamImage only supports networks with an image input layer.

layer — Layer index or name

positive integer | character vector | string scalar

Layer to visualize, specified as a positive integer, a character vector, or a string scalar. If *net* is a *DAGNetwork* object, specify *layer* as a character vector or string scalar only. Specify *layer* as the index or the name of the layer you want to visualize the activations of. To visualize classification layer features, select the last fully connected layer before the classification layer.

Tip Selecting ReLU or dropout layers for visualization may not produce useful images because of the effect that these layers have on the network gradients.
channels — Channel index

numeric index | vector of numeric indices

Queried channels, specified as scalar or vector of channel indices. If `channels` is a vector, the layer activations for each channel are optimized independently. The possible choices for `channels` depend on the selected layer. For convolutional layers, the `NumFilters` property specifies the number of output channels. For fully connected layers, the `OutputSize` property specifies the number of output channels.

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example:
```
deeprDreamImage(net,layer,channels,'NumItetations',100,'ExecutionEnvironment','gpu')
```
genertates images using 100 iterations per pyramid level and uses the GPU.

InitialImage — Image to initialize Deep Dream

array

Image to initialize Deep Dream. Use this syntax to see how an image is modified to maximize network layer activations. The minimum height and width of the initial image depend on all the layers up to and including the selected layer:

- For layers towards the end of the network, the initial image must be at least the same height and width as the image input layer.
- For layers towards the beginning of the network, the height and width of the initial image can be smaller than the image input layer. However, it must be large enough to produce a scalar output at the selected layer.
- The number of channels of the initial image must match the number of channels in the image input layer of the network.

If you do not specify an initial image, the software uses a random image with pixels drawn from a standard normal distribution. See also `'PyramidLevels'` on page 1-0.

PyramidLevels — Number of pyramid levels

3 (default) | positive integer

Number of multi-resolution image pyramid levels to use to generate the output image, specified as a positive integer. Increase the number of pyramid levels to produce larger output images at the expense of additional computation. To produce an image of the same size as the initial image, set the number of levels to 1.

Example: `'PyramidLevels',3`

PyramidScale — Scale between pyramid levels

1.4 (default) | scalar with value > 1

Scale between each pyramid level, specified as a scalar with value > 1. Reduce the pyramid scale to incorporate fine grain details into the output image. Adjusting the pyramid scale can help generate more informative images for layers at the beginning of the network.

Example: `'PyramidScale',1.4`
NumIterations — Number of iterations per pyramid level
10 (default) | positive integer

Number of iterations per pyramid level, specified as a positive integer. Increase the number of iterations to produce more detailed images at the expense of additional computation.

Example: 'NumIterations', 10

OutputScaling — Type of scaling to apply to output
'linear' (default) | 'none'

Type of scaling to apply to output image, specified as the comma-separated pair consisting of 'OutputScaling' and one of the following:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'linear'</td>
<td>Scale output pixel values in the interval [0, 1]. The output image corresponding to each layer channel, (I(:, :, :, \text{channel})), is scaled independently.</td>
</tr>
<tr>
<td>'none'</td>
<td>Disable output scaling.</td>
</tr>
</tbody>
</table>

Scaling the pixel values can cause the network to misclassify the output image. If you want to classify the output image, set the 'OutputScaling' value to 'none'.

Example: 'OutputScaling', 'linear'

Verbose — Indicator to display progress information
1 (default) | 0

Indicator to display progress information in the command window, specified as the comma-separated pair consisting of 'Verbose' and either 1 (true) or 0 (false). The displayed information includes the pyramid level, iteration, and the activation strength.

Example: 'Verbose', 0

Data Types: logical

ExecutionEnvironment — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource, specified as the comma-separated pair consisting of 'ExecutionEnvironment' and one of the following:

- 'auto' — Use a GPU if one is available; otherwise, use the CPU.
- 'gpu' — Use the GPU. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If Parallel Computing Toolbox or a suitable GPU is not available, then the software returns an error.
- 'cpu' — Use the CPU.

Example: 'ExecutionEnvironment', 'cpu'

Output Arguments

I — Output image
array
Output image, specified by a sequence of grayscale or truecolor (RGB) images stored in a 4-D array. Images are concatenated along the fourth dimension of I such that the image that maximizes the output of channels(k) is I(:, :, :, k). You can display the output image using imshow.

Algorithms

This function implements a version of deep dream that uses a multi-resolution image pyramid and Laplacian Pyramid Gradient Normalization to generate high-resolution images. For more information on Laplacian Pyramid Gradient Normalization, see this blog post: DeepDreaming with TensorFlow.

All functions for deep learning training, prediction, and validation in Deep Learning Toolbox perform computations using single-precision, floating-point arithmetic. Functions for deep learning include trainNetwork, predict, classify, and activations. The software uses single-precision arithmetic when you train networks using both CPUs and GPUs.

References

See Also

activations | alexnet | googlenet | squeezenet | vgg16 | vgg19

Topics

“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Deep Dream Images Using GoogLeNet”
“Visualize Features of a Convolutional Neural Network”
“Visualize Activations of a Convolutional Neural Network”
“Visualize Activations of LSTM Network”

Introduced in R2017a
densenet201

DenseNet-201 convolutional neural network

Syntax

net = densenet201
net = densenet201('Weights','imagenet')
lgraph = densenet201('Weights','none')

Description

DenseNet-201 is a convolutional neural network that is 201 layers deep. You can load a pretrained version of the network trained on more than a million images from the ImageNet database [1]. The pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many animals. As a result, the network has learned rich feature representations for a wide range of images. The network has an image input size of 224-by-224. For more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the DenseNet-201 model. Follow the steps of “Classify Image Using GoogLeNet” and replace GoogLeNet with DenseNet-201.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network to Classify New Images” and load DenseNet-201 instead of GoogLeNet.

net = densenet201 returns a DenseNet-201 network trained on the ImageNet data set.

This function requires the Deep Learning Toolbox Model for DenseNet-201 Network support package. If this support package is not installed, then the function provides a download link.

net = densenet201('Weights','imagenet') returns a DenseNet-201 network trained on the ImageNet data set. This syntax is equivalent to net = densenet201.

lgraph = densenet201('Weights','none') returns the untrained DenseNet-201 network architecture. The untrained model does not require the support package.

Examples

Download DenseNet-201 Support Package

Download and install the Deep Learning Toolbox Model for DenseNet-201 Network support package. Type densenet201 at the command line.

densenet201

If the Deep Learning Toolbox Model for DenseNet-201 Network support package is not installed, then the function provides a link to the required support package in the Add-On Explorer. To install the support package, click the link, and then click Install. Check that the installation is successful by
typing `densenet201` at the command line. If the required support package is installed, then the function returns a `DAGNetwork` object.

densenet201
ans =

 DAGNetwork with properties:

 Layers: [709×1 nnet.cnn.layer.Layer]
 Connections: [806×2 table]

Output Arguments

- **net** — Pretrained DenseNet-201 convolutional neural network

 DAGNetwork object

 Pretrained DenseNet-201 convolutional neural network, returned as a `DAGNetwork` object.

- **lgraph** — Untrained DenseNet-201 convolutional neural network architecture

 LayerGraph object

 Untrained DenseNet-201 convolutional neural network architecture, returned as a `LayerGraph` object.

References

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax `net = densenet201` or by passing the `densenet201` function to `coder.loadDeepLearningNetwork`. For example: `net = coder.loadDeepLearningNetwork('densenet201')`

For more information, see "Load Pretrained Networks for Code Generation" (MATLAB Coder).

The syntax `densenet201('Weights','none')` is not supported for code generation.

GPU Code Generation

Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

- For code generation, you can load the network by using the syntax `net = densenet201` or by passing the `densenet201` function to `coder.loadDeepLearningNetwork`. For example: `net = coder.loadDeepLearningNetwork('densenet201').`
For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).

- The syntax `densenet201('Weights','none')` is not supported for GPU code generation.

See Also

DAGNetwork | googlenet | inceptionresnetv2 | inceptionv3 | layerGraph | plot |
resnet101 | resnet18 | resnet50 | squeezenet | trainNetwork | vgg16 | vgg19

Topics

“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

Introduced in R2018a
depthConcatenationLayer

Depth concatenation layer

Description

A depth concatenation layer takes inputs that have the same height and width and concatenates them along the third dimension (the channel dimension).

Specify the number of inputs to the layer when you create it. The inputs have the names ‘in1’, ‘in2’,..., ‘inN’, where N is the number of inputs. Use the input names when connecting or disconnecting the layer by using connectLayers or disconnectLayers.

Creation

Syntax

layer = depthConcatenationLayer(numInputs)
layer = depthConcatenationLayer(numInputs,'Name',name)

Description

layer = depthConcatenationLayer(numInputs) creates a depth concatenation layer that concatenates numInputs inputs along the third (channel) dimension. This function also sets the NumInputs property.

layer = depthConcatenationLayer(numInputs,'Name',name) also sets the Name property. To create a network containing a depth concatenation layer, you must specify a layer name.

Properties

NumInputs — Number of inputs

positive integer

Number of inputs to the layer, specified as a positive integer.

The inputs have the names 'in1', 'in2',..., 'inN', where N equals NumInputs. For example, if NumInputs equals 3, then the inputs have the names 'in1', 'in2', and 'in3'. Use the input names when connecting or disconnecting the layer by using connectLayers or disconnectLayers.

Name — Layer name

' ' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include this layer in a layer graph, you must specify a layer name.

Data Types: char | string
InputNames — Input Names
{"in1","in2",...,"inN"} (default)

Input names, specified as{"in1","in2",...,"inN"}, where N is the number of inputs of the layer.

Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames — Output names
{"out"} (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Create and Connect Depth Concatenation Layer

Create a depth concatenation layer with two inputs and the name 'concat_1'.

```matlab
concat = depthConcatenationLayer(2,'Name','concat_1')
```

```matlab
concat =
DepthConcatenationLayer with properties:

    Name: 'concat_1'
    NumInputs: 2
    InputNames: {'in1'  'in2'}
```

Create two ReLU layers and connect them to the depth concatenation layer. The depth concatenation layer concatenates the outputs from the ReLU layers.

```matlab
relu_1 = reluLayer('Name','relu_1');
relu_2 = reluLayer('Name','relu_2');
```

```matlab
lgraph = layerGraph;
lgraph = addLayers(lgraph,relu_1);
lgraph = addLayers(lgraph,relu_2);
lgraph = addLayers(lgraph,concat);
```

```matlab
lgraph = connectLayers(lgraph,'relu_1','concat_1/in1');
lgraph = connectLayers(lgraph,'relu_2','concat_1/in2');
```

```matlab
plot(lgraph)
```
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
additionLayer | connectLayers | disconnectLayers | layerGraph | trainNetwork

Topics
“Create Simple Deep Learning Network for Classification”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Set Up Parameters and Train Convolutional Neural Network”
“Specify Layers of Convolutional Neural Network”
“Train Residual Network for Image Classification”
“List of Deep Learning Layers”

Introduced in R2017b
dims

Dimension labels of `dlarray`

Syntax

```plaintext
d = dims(dlX)
```

Description

`d = dims(dlX)` returns the labels of `dlX` as a character array.

Examples

Obtain Dimension Labels

Obtain the dimension labels of a `dlarray`.

```plaintext
dlX = dlarray(randn(3,4),'TS');
d = dims(dlX)
```

```plaintext
d = 'ST'
```

Obtain the labels of an unlabeled `dlarray`.

```plaintext
y = stripdims(dlX);
d = dims(y)
```

```plaintext
d = 0x0 empty char array
```

Input Arguments

- **dlX** — Input `dlarray`
 `dlarray` object

 Input `dlarray`, specified as a `dlarray` object.

 Example: `dlX = dlarray(randn(3,4),'ST')`

Output Arguments

- **d** — Dimension labels
 character vector

 Dimension labels, returned as a character vector. If the input `dlX` is unlabeled, `d` is empty.
See Also
dlarray | finddim | stripdims

Introduced in R2019b
dlarray

Deep learning array for custom training loops

Description

A deep learning array stores data with optional data format labels for custom training loops, and enables functions to compute and use derivatives through automatic differentiation.

Tip For most deep learning tasks, you can use a pretrained network and adapt it to your own data. For an example showing how to use transfer learning to retrain a convolutional neural network to classify a new set of images, see “Train Deep Learning Network to Classify New Images”. Alternatively, you can create and train networks from scratch using layerGraph objects with the trainNetwork and trainingOptions functions.

If the trainingOptions function does not provide the training options that you need for your task, then you can create a custom training loop using automatic differentiation. To learn more, see “Define Deep Learning Network for Custom Training Loops”.

Creation

Syntax

dlX = dlarray(X)
dlX = dlarray(X,fmt)
dlX = dlarray(v,dim)

Description

dlX = dlarray(X) returns a dlarray object representing X. If X is a dlarray, dlX is a copy of X.

dlX = dlarray(X,fmt) labels the data in dlX according to the data format in fmt. Labels help in passing deep learning data between functions. See “Usage” on page 1-325. If X is a labeled dlarray, then fmt replaces the existing labels.

dlX = dlarray(v,dim) accepts a vector v and a single character format dim, and returns a column vector dlarray. The first dimension of dlX has the label dim, and the second (singleton) dimension has the label ‘U’.

Input Arguments

X — Data array
numeric array of data type double or single | logical array | gpuArray object | dlarray object

Data array, specified as a numeric array of data type double or single, logical array, gpuArray object, or dlarray object. X must be full, not sparse, and must be real, not complex.

Example: rand(31*23,23)
fmt — Data format
character vector | string scalar

Data format, specified as a character vector or string scalar. Each character in `fmt` must be one of these labels:

- S — Spatial
- C — Channel
- B — Batch observations
- T — Time or sequence
- U — Unspecified

You can specify any number of S and U labels. You can specify at most one of each of the C, B, and T labels.

Each element of `fmt` labels the matching dimension of `dlX`. If `fmt` is not in the listed order (‘S’ followed by ‘C’ and so on), then `dlarray` implicitly permutes both `fmt` and the data to match the order, but without changing the storage of the data.

`fmt` must have at least the same number of labels as the number of dimensions of `dlX`. If you specify more than that number of labels, `dlarray` creates empty (singleton) dimensions for the additional labels.

For information on `fmt`, see “Usage” on page 1-325.

Example: "SSB"
Example: 'CBUSS', which `dlarray` reorders to 'SSCBU'

v — Data vector
numeric vector of data type double or single | logical vector | `dlarray` vector object

Data vector, specified as a numeric vector of data type double or single, logical vector, `gpuArray` vector object, or `dlarray` vector object. Here, “vector” means any array with exactly one nonsingleton dimension.

Example: `rand(100,1)`

dim — Dimension label
single character

Dimension label, specified as a single character of the type allowed for `fmt`.

Example: "S"
Example: 'S'

Output Arguments

dlX — Deep learning array
`dlarray` object

Deep learning array, returned as a `dlarray` object. `dlX` enables automatic differentiation using `dlgradient` and `dlfeval`. If you supply the `fmt` argument, `dlX` has labels.
- If X is a numeric or logical array, dlX contains its data, possibly reordered because of labels in fmt.
- If X is a gpuArray, the data in dlX is also on the GPU. Subsequent calculations using dlX are performed on the GPU.

Usage

dlarray labels enable you to use the functions in this table to execute with assurance that the data has the appropriate format.

<table>
<thead>
<tr>
<th>Function</th>
<th>Operation</th>
<th>Validates Input Dimension</th>
<th>Affects Size of Input Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>avgpool</td>
<td>Compute the average of the input data over moving rectangular (or cuboidal) spatial ('S') regions defined by a pool size parameter.</td>
<td>'S'</td>
<td>'S'</td>
</tr>
<tr>
<td>batchnorm</td>
<td>Normalize the values contained in each channel ('C') of the input data.</td>
<td>'C'</td>
<td></td>
</tr>
<tr>
<td>crossentropy</td>
<td>Compute the cross-entropy between estimates and target values, averaged by the size of the batch ('B') dimension.</td>
<td>'S', 'C', 'B', 'T', 'U' (Estimates and target arrays must have the same sizes.)</td>
<td>'S', 'C', 'B', 'T', 'U' (The output is an unlabeled scalar.)</td>
</tr>
<tr>
<td>dlconv</td>
<td>Compute the deep learning convolution of the input data using an array of filters, matching the number of spatial ('S') and (a function of the) channel ('C') dimensions of the input, and adding a constant bias.</td>
<td>'S', 'C'</td>
<td>'S', 'C'</td>
</tr>
<tr>
<td>dltranspconv</td>
<td>Compute the deep learning transposed convolution of the input data using an array of filters, matching the number of spatial ('S') and (a function of the) channel ('C') dimensions of the input, and adding a constant bias.</td>
<td>'S', 'C'</td>
<td>'S', 'C'</td>
</tr>
<tr>
<td>fullyconnect</td>
<td>Compute a weighted sum of the input data and apply a bias for each batch ('B') and time ('T') dimension.</td>
<td>'S', 'C', 'U'</td>
<td>'S', 'C', 'B', 'T', 'U' (The output always has labels 'CB', 'CT', or 'CTB'.)</td>
</tr>
<tr>
<td>gru</td>
<td>Apply a gated recurrent unit calculation to the input data.</td>
<td>'S', 'C', 'T'</td>
<td>'C'</td>
</tr>
<tr>
<td>Function</td>
<td>Operation</td>
<td>Validates Input Dimension</td>
<td>Affects Size of Input Dimension</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>---------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>lstm</td>
<td>Apply a long short-term memory calculation to the input data.</td>
<td>'S', 'C', 'T'</td>
<td>'C'</td>
</tr>
<tr>
<td>maxpool</td>
<td>Compute the maximum of the input data over moving rectangular spatial ('S') regions defined by a pool size parameter.</td>
<td>'S'</td>
<td>'S'</td>
</tr>
<tr>
<td>maxunpool</td>
<td>Compute the unpooling operation over the spatial ('S') dimensions.</td>
<td>'S'</td>
<td>'S'</td>
</tr>
<tr>
<td>mse</td>
<td>Compute the half mean squared error between estimates and target values, averaged by the size of the batch ('B') dimension.</td>
<td>'S', 'C', 'B', 'T', 'U' (Estimates and target arrays must have the same sizes.)</td>
<td>'S', 'C', 'B', 'T', 'U' (The output is an unlabeled scalar.)</td>
</tr>
<tr>
<td>softmax</td>
<td>Apply the softmax activation to each channel ('C') of the input data.</td>
<td>'C'</td>
<td></td>
</tr>
</tbody>
</table>

These functions require each dimension to have a label, specified either as the labels of their first `dlarray` input, or as the 'DataFormat' name-value pair argument containing dimension labels.

`dlarray` enforces the order of labels 'SCBTU'. This enforcement eliminates ambiguous semantics in operations, which implicitly match labels between inputs. `dlarray` also enforces that the labels 'C', 'B', and 'T' can each appear at most once. The functions that use these labels accept at most one dimension for each label.

`dlarray` provides functions for removing labels (stripdims), obtaining the dimensions associated with labels (finddim), and listing the labels associated with a `dlarray` (dims).

For more information on how a `dlarray` behaves with labels, see "Notable dlarray Behaviors".

Object Functions
- avgpool: Pool data to average values over spatial dimensions
- batchnorm: Normalize each channel of mini-batch
- crossentropy: Cross-entropy loss for classification tasks
- dims: Dimension labels of `dlarray`
- dconv: Deep learning convolution
- dlgradient: Compute gradients for custom training loops using automatic differentiation
- dltranspconv: Deep learning transposed convolution
- extractdata: Extract data from `dlarray`
- finddim: Find dimensions with specified label
- fullyconnect: Sum all weighted input data and apply a bias
- gru: Gated recurrent unit
- leakyrelu: Apply leaky rectified linear unit activation
- lstm: Long short-term memory
maxpool Pool data to maximum value
maxunpool Unpool the output of a maximum pooling operation
mse Half mean squared error
relu Apply rectified linear unit activation
sigmoid Apply sigmoid activation
softmax Apply softmax activation to channel dimension
stripdims Remove dlarray labels

A dlarray also allows functions for numeric, matrix, and other operations. See the full list in “List of Functions with dlarray Support”.

Examples

Create Unlabeled dlarray

Create an unlabeled dlarray from a matrix.

```matlab
rng default % For reproducibility
X = randn(3,5);
dlX = dlarray(X)
```

```
dlX =
  3x5 dlarray
     0.5377   0.8622  -0.4336   2.7694   0.7254
     1.8339   0.3188   0.3426  -1.3499  -0.0631
    -2.2588  -1.3077   3.5784   3.0349   0.7147
```

Create Labeled dlarray

Create a dlarray that has a data format with the labels 'S' and 'C'.

```matlab
rng default % For reproducibility
X = randn(3,5);
dlX = dlarray(X,'SC')
```

```
dlX =
  3(S) x 5(C) dlarray
     0.5377   1.8339  -2.2588
     0.8622   0.3188   3.5784
    -0.4336   0.3426   3.0349
     2.7694  -1.3499   0.7147
     0.7254  -0.0631
```

If you specify the labels in the opposite order, dlarray implicitly reorders the underlying data.

```matlab
dlX = dlarray(X,'CS')
```

```
dlX =
  5(S) x 3(C) dlarray
     0.5377   1.8339  -2.2588
```
Create Labeled dlarray Vector

Create a dlarray vector with the first label 'T'. The second label, which dlarray creates automatically, is 'U'.

rng default % For reproducibility
X = randn(6,1);
dlX = dlarray(X,'T')

dlX =
6(T) x 1(U) dlarray
0.5377
1.8339
-2.2588
0.8622
0.3188
-1.3077

If you specify a row vector for X, dlarray implicitly reorders the result to be a column vector.

X = X';
dlX = dlarray(X,'T')

dlX =
6(T) x 1(U) dlarray
0.5377
1.8339
-2.2588
0.8622
0.3188
-1.3077

Tips

- A dlgradient call must be inside a function. To obtain a numeric value of a gradient, you must evaluate the function using dlfeval, and the argument to the function must be a dlarray. See “Use Automatic Differentiation In Deep Learning Toolbox”.
- To enable the correct evaluation of gradients, dlfeval must call functions that use only supported functions for dlarray. See “List of Functions with dlarray Support”.

See Also

dims | dlfeval | dlgradient | dlnetwork | finddim | stripdims
Topics
"Train Generative Adversarial Network (GAN)"
"Grad-CAM Reveals the Why Behind Deep Learning Decisions”
"Define Custom Training Loops, Loss Functions, and Networks“
"Automatic Differentiation Background”
"Use Automatic Differentiation In Deep Learning Toolbox”
"List of Functions with dlarray Support“

Introduced in R2019b
dlconv

Deep learning convolution

Syntax

\[
\text{dlY} = \text{dlconv(} \text{dlX,weights,bias)} \\
\text{dlY} = \text{dlconv(} \text{dlX,weights,bias,'DataFormat',FMT)} \\
\text{dlY} = \text{dlconv(} ____ \text{Name,Value)}
\]

Description

The convolution operation applies sliding filters to the input data. Use 1-D and 2-D filters with ungrouped or grouped convolutions and 3-D filters with ungrouped convolutions.

Use grouped convolution for channel-wise separable (also known as depth-wise separable) convolution. For each group, the operation convolves the input by moving filters along spatial dimensions of the input data, computing the dot product of the weights and the data and adding a bias. If the number of groups is equal to the number of channels, then this function performs channel-wise convolution. If the number of groups is equal to 1, this function performs ungrouped convolution.

Note This function applies the deep learning convolution operation to `dlarray` data. If you want to apply convolution within a `layerGraph` object or `Layer` array, use one of the following layers:

- `convolution2dLayer`
- `groupedConvolution2dLayer`
- `convolution3dLayer`

\[
\text{dlY} = \text{dlconv(} \text{dlX,weights,bias)} \text{ computes the deep learning convolution of the input } \text{dlX} \text{ using sliding convolutional filters defined by } \text{weights} \text{, and adds a constant } \text{bias}. \text{The input } \text{dlX} \text{ is a formatted } \text{dlarray} \text{ with dimension labels. Convolution acts on dimensions that you specify as 'S' dimensions. The output } \text{dlY} \text{ is a formatted } \text{dlarray} \text{ with the same dimension labels as } \text{dlX}.
\]

\[
\text{dlY} = \text{dlconv(} \text{dlX,weights,bias,'DataFormat',FMT)} \text{ also specifies dimension format } \text{FMT} \text{ when } \text{dlX} \text{ is not a formatted } \text{dlarray}. \text{The output } \text{dlY} \text{ is an unformatted } \text{dlarray} \text{ with the same dimension order as } \text{dlX}.
\]

\[
\text{dlY} = \text{dlconv(} ____ \text{Name,Value)} \text{ specifies options using one or more name-value pair arguments in addition to the input arguments in previous syntaxes. For example, 'Stride',3 sets the stride of the convolution operation.}
\]

Examples

Perform Ungrouped Convolution

Convolve all channels of an image input using a single filter.
Import the image data and convert it to a dlarray.

```matlab
X = imread('sherlock.jpg');
dlX = dlarray(single(X),'SSC');
```

Display the image.

```matlab
imshow(X,'DisplayRange',[])
```

Initialize the convolutional filters. Specify an ungrouped convolution that applies a single filter to all three channels of the input data.

```matlab
filterHeight = 10;
filterWidth = 10;
numChannelsPerGroup = 3;
numFiltersPerGroup = 1;
numGroups = 1;

weights = rand(filterHeight,filterWidth,numChannelsPerGroup,numFiltersPerGroup,numGroups);

Initialize the bias term.

```matlab
bias = rand(numFiltersPerGroup*numGroups,1);
```

Perform the convolution. Use a 'Stride' value of 2 and a 'DilationFactor' value of 2.

```matlab
dlY = dlconv(dlX,weights,bias,'Stride',2,'DilationFactor',2);
```
Display the convolved image.

\[
Y = \text{extractdata}(\text{dlY}); \\
\text{imshow}(Y, 'DisplayRange', []);
\]

Perform Grouped Convolution

Convolve the input data in three groups of two channels each. Apply four filters per group.

Create the input data as 10 observations of size 100-by-100 with six channels.

\[
\text{height} = 100; \\
\text{width} = 100; \\
\text{channels} = 6; \\
\text{numObservations} = 10;
\]

\[
X = \text{rand(height, width, channels, numObservations)}; \\
\text{dlX} = \text{dlarray}(X, 'SSCB');
\]

Initialize the convolutional filters. Specify three groups of convolutions that each apply four convolution filters to two channels of the input data.

\[
\text{filterHeight} = 8; \\
\text{filterWidth} = 8; \\
\text{numChannelsPerGroup} = 2; \\
\text{numFiltersPerGroup} = 4;
\]
numGroups = 3;
weights = rand(filterHeight,filterWidth,numChannelsPerGroup,numFiltersPerGroup,numGroups);
Initialize the bias term.

bias = rand(numFiltersPerGroup*numGroups,1);

Perform the convolution.

dlY = dlconv(dlX,weights,bias);

size(dlY)
ans = 1x4
   93  93   12   10

dims(dlY)
ans =
'SSCB'

The 12 channels of the convolution output represent the three groups of convolutions with four filters per group.

Perform Channel-Wise Separable Convolution

Separate the input data into channels and perform convolution on each channel separately.

Create the input data as a single observation with a size of 64-by-64 and 10 channels. Create the data as an unformatted dlarray.

height = 64;
width = 64;
channels = 10;

X = rand(height,width,channels);
dlX = dlarray(X);

Initialize the convolutional filters. Specify an ungrouped convolution that applies a single convolution to all three channels of the input data.

filterHeight = 8;
filterWidth = 8;
numChannelsPerGroup = 1;
numFiltersPerGroup = 1;
umGroups = channels;

weights = rand(filterHeight,filterWidth,numChannelsPerGroup,numFiltersPerGroup,numGroups);
Initialize the bias term.

bias = rand(numFiltersPerGroup*numGroups,1);
Perform the convolution. Specify the dimension labels of the input data using the 'DataFormat' option.

dLY = dlconv(dlX,weights,bias,'DataFormat','SSC');
size(dLY)
ans = 1x3
     57    57    10

Each channel is convolved separately, so there are 10 channels in the output.

Input Arguments

dlX — Input data
dlarray | numeric array

Input data, specified as a dlarray with or without dimension labels or a numeric array. When dlX is not a formatted dlarray, you must specify the dimension label format using 'DataFormat',FMT. If dlX is a numeric array, at least one of weights or bias must be a dlarray.

Convolution acts on dimensions that you specify as spatial dimensions using the 'S' dimension label. You can specify up to three dimensions in dlX as 'S' dimensions.

Data Types: single | double

weights — Convolutional filters
dlarray | numeric array

Convolutional filters, specified as a dlarray with or without labels or a numeric array. The weights argument specifies the size and values of the filters, as well as the number of filters and the number of groups for grouped convolutions.


- **filterSize** — Size of the convolutional filters. filterSize can have up to three dimensions, depending on the number of spatial dimensions in the input data.

<table>
<thead>
<tr>
<th>Input Data 'S' Dimensions</th>
<th>filterSize</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-D</td>
<td>$h$, where $h$ corresponds to the height of the filter</td>
</tr>
<tr>
<td>2-D</td>
<td>$h$-by-$w$, where $h$ and $w$ correspond to the height and width of the filter, respectively</td>
</tr>
<tr>
<td>3-D</td>
<td>$h$-by-$w$-by-$d$, where $h$, $w$, and $d$ correspond to the height, width, and depth of the filter, respectively</td>
</tr>
</tbody>
</table>

- **numChannelsPerGroup** — Number of channels to convolve within each group. numChannelsPerGroup must equal the number of channels in the input data divided by numGroups, the number of groups. For ungrouped convolutions, where numGroups = 1, numChannelsPerGroup must equal the number of channels in the input data.
• **numFiltersPerGroup** — Number of filters to apply within each group.
• **numGroups** — Number of groups (optional). When **numGroups** > 1, the function performs grouped convolutions. Grouped convolutions are not supported for input data with more than two 'S' dimensions. When **numGroups** = 1, the function performs ungrouped convolutions; in this case, this dimension is singleton and can be omitted.

If `weights` is a formatted `dlarray`, it can have multiple spatial dimensions labeled 'S', one channel dimension labeled 'C', and up to two other dimensions labeled 'U'. The number of 'S' dimensions must match the number of 'S' dimensions of the input data. The labeled dimensions correspond to the filter specifications as follows.

<table>
<thead>
<tr>
<th>Filter Specification</th>
<th>Dimension Labels</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>filterSize</code></td>
<td>Up to three 'S' dimensions</td>
</tr>
<tr>
<td><code>numChannelsPerGroup</code></td>
<td>'C' dimension</td>
</tr>
<tr>
<td><code>numFiltersPerGroup</code></td>
<td>First 'U' dimension</td>
</tr>
<tr>
<td><code>numGroups</code> (optional)</td>
<td>Second 'U' dimension</td>
</tr>
</tbody>
</table>

Data Types: `single` | `double`

**bias** — Bias constant
dlarray vector | dlarray scalar | numeric vector | numeric scalar | 0

Bias constant, specified as a `dlarray` vector or `dlarray` scalar with or without labels, a numeric vector, or a numeric scalar.

- If `bias` is a scalar or has only singleton dimensions, the same bias is applied to each output.
- If `bias` has a nonsingleton dimension, each element of `bias` is the bias applied to the corresponding convolutional filter specified by `weights`. The number of elements of `bias` must match the number of filters specified by `weights`.
- If `bias` is a scalar numeric array with value 0, the bias term is disabled and no bias is added during the convolution operation.

If `bias` is a formatted `dlarray`, the nonsingleton dimension must be a channel dimension labeled 'C'.

Data Types: `single` | `double`

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `'DilationFactor',2` sets the dilation factor for each convolutional filter to 2.

**DataFormat** — Dimension order of unformatted data
dchar array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of 'DataFormat' and a character array or string `FMT` that provides a label for each dimension of the data. Each character in `FMT` must be one of the following:
• 'S' — Spatial
• 'C' — Channel
• 'B' — Batch (for example, samples and observations)
• 'T' — Time (for example, sequences)
• 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at most once.

You must specify 'DataFormat' when the input data dlX is not a formatted dlarray.

Example: 'DataFormat', 'SSCB'

Data Types: char | string

**Stride** — Step size for traversing input data

1 (default) | numeric scalar | numeric vector

Step size for traversing the input data, specified as the comma-separated pair consisting of 'Stride' and a numeric scalar or numeric vector. If you specify 'Stride' as a scalar, the same value is used for all spatial dimensions. If you specify 'Stride' as a vector of the same size as the number of spatial dimensions of the input data, the vector values are used for the corresponding spatial dimensions.

The default value of 'Stride' is 1.

Example: 'Stride', 3

Data Types: single | double

**DilationFactor** — Filter dilation factor

1 (default) | numeric scalar | numeric vector

Filter dilation factor, specified as the comma-separated pair consisting of 'DilationFactor' and one of the following:

- Numeric scalar — The same dilation factor value is applied for all spatial dimensions.
- Numeric vector — A different dilation factor value is applied along each spatial dimension. Use a vector of size d, where d is the number of spatial dimensions of the input data. The ith element of the vector specifies the dilation factor applied to the ith spatial dimension.

Use the dilation factor to increase the receptive field of the filter (the area of the input that the filter can see) on the input data. Using a dilation factor corresponds to an effective filter size of \( \text{filterSize} + (\text{filterSize}-1)*\text{(dilationFactor}-1) \).

Example: 'DilationFactor', 2

Data Types: single | double

**Padding** — Size of padding applied to edges of data

0 (default) | 'same' | numeric scalar | numeric vector | numeric matrix

Size of padding applied to edges of data, specified as the comma-separated pair consisting of 'Padding' and one of the following:
• ‘same’ — Padding size is set so that the output size is the same as the input size when the stride is 1. More generally, the output size of each spatial dimension is \( \text{ceil}(\text{inputSize}/\text{stride}) \), where \( \text{inputSize} \) is the size of the input along a spatial dimension.

• Numeric scalar — The same amount of padding is applied to both ends of all spatial dimensions.

• Numeric vector — A different amount of padding is applied along each spatial dimension. Use a vector of size \( d \), where \( d \) is the number of spatial dimensions of the input data. The \( i \)th element of the vector specifies the size of padding applied to the start and the end along the \( i \)th spatial dimension.

• Numeric matrix — A different amount of padding is applied to the start and end of each spatial dimension. Use a matrix of size 2-by-\( d \), where \( d \) is the number of spatial dimensions of the input data. The element \( (1,d) \) specifies the size of padding applied to the start of spatial dimension \( d \). The element \( (2,d) \) specifies the size of padding applied to the end of spatial dimension \( d \). For example, in 2-D, the format is \([\text{top, left}; \text{bottom, right}]\).

In each case, the input data is padded with zeros.

Example: ‘Padding’, 'same'

Data Types: single | double

**Output Arguments**

\( \text{dlY} \) — Convolved feature map
\text{dlarray}

Convolved feature map, returned as a \text{dlarray}. The output \text{dlY} has the same underlying data type as the input \text{dlX}.

If the input data \text{dlX} is a formatted \text{dlarray}, \text{dlY} has the same dimension labels as \text{dlX}. If the input data is not a formatted \text{dlarray}, \text{dlY} is an unformatted \text{dlarray} with the same dimension order as the input data.

The size of the ‘C’ channel dimension of \text{dlY} depends on the size of the \text{weights} input. The size of the ‘C’ dimension of output \( Y \) is the product of the size of the dimensions \text{numFiltersPerGroup} and \text{numGroups} in the \text{weights} argument. If \text{weights} is a formatted \text{dlarray}, this product is the same as the product of the size of the ‘U’ dimensions.

**More About**

**Deep Learning Convolution**

The \text{dlconv} function applies sliding convolution filters to the spatial dimensions of the input data. The \text{dlconv} function supports convolution in one, two, or three spatial dimensions. For more information, see the definition of convolutional layer on page 1-257 on the \text{convolution2dLayer} reference page.

**Extended Capabilities**

**GPU Arrays**

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
• When at least one of the following input arguments is a gpuArray or a dlarray with underlying data of type gpuArray, this function runs on the GPU.
  • dlX
  • weights
  • bias

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
batchnorm | dlarray | dlfeval | dlgradient | fullyconnect | maxpool | relu

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”

Introduced in R2019b
**dlfeval**

Evaluate deep learning model for custom training loops

**Syntax**

\[ y_1, \ldots, y_k = \text{dlfeval}(\text{fun}, x_1, \ldots, x_n) \]

**Description**

Use `dlfeval` to evaluate custom deep learning models for custom training loops.

**Tip** For most deep learning tasks, you can use a pretrained network and adapt it to your own data. For an example showing how to use transfer learning to retrain a convolutional neural network to classify a new set of images, see “Train Deep Learning Network to Classify New Images”. Alternatively, you can create and train networks from scratch using `layerGraph` objects with the `trainNetwork` and `trainingOptions` functions.

If the `trainingOptions` function does not provide the training options that you need for your task, then you can create a custom training loop using automatic differentiation. To learn more, see “Define Deep Learning Network for Custom Training Loops”.

\[ y_1, \ldots, y_k = \text{dlfeval}(\text{fun}, x_1, \ldots, x_n) \] evaluates the deep learning array function `fun` at the input arguments `x_1, \ldots, x_n`. Functions passed to `dlfeval` can contain calls to `dlgradient`, which compute gradients from the inputs `x` by using automatic differentiation.

**Examples**

**Compute Gradient Using Automatic Differentiation**

Rosenbrock's function is a standard test function for optimization. The `rosenbrock.m` helper function computes the function value and uses automatic differentiation to compute its gradient.

```matlab
type rosenbrock.m
function [y,dydx] = rosenbrock(x)
y = 100*(x(2) - x(1).^2).^2 + (1 - x(1)).^2;
dydx = dlgradient(y,x);
end
```

To evaluate Rosenbrock's function and its gradient at the point \([-1,2]\), create a `dlarray` of the point and then call `dlfeval` on the function handle `@rosenbrock`.

```matlab
x0 = dlarray([-1,2]);
[fval,gradval] = dlfeval(@rosenbrock,x0)
fval =
 1x1 dlarray
```

1-339
gradval =
1x2 dlarray

396 200

Alternatively, define Rosenbrock’s function as a function of two inputs, x1 and x2.

type rosenbrock2.m

function [y,dydx1,dydx2] = rosenbrock2(x1,x2)
y = 100*(x2 - x1.^2).^2 + (1 - x1).^2;
[dydx1,dydx2] = dlgradient(y,x1,x2);
end

Call dlfeval to evaluate rosenbrock2 on two dlarray arguments representing the inputs —1 and 2.

x1 = dlarray(-1);
x2 = dlarray(2);
[fval,dydx1,dydx2] = dlfeval(@rosenbrock2,x1,x2)
fval =
1x1 dlarray

104

dydx1 =
1x1 dlarray

396

dydx2 =
1x1 dlarray

200

Plot the gradient of Rosenbrock’s function for several points in the unit square. First, initialize the arrays representing the evaluation points and the output of the function.

[X1 X2] = meshgrid(linspace(0,1,10));
X1 = dlarray(X1(:));
X2 = dlarray(X2(:));
Y = dlarray(zeros(size(X1)));
DYDX1 = Y;
DYDX2 = Y;

Evaluate the function in a loop. Plot the result using quiver.

for i = 1:length(X1)
    [Y(i),DYDX1(i),DYDX2(i)] = dlfeval(@rosenbrock2,X1(i),X2(i));
end
quiver(extractdata(X1),extractdata(X2),extractdata(DYDX1),extractdata(DYDX2))
xlabel('x1')
ylabel('x2')

**Input Arguments**

**fun — Function to evaluate**
function handle

Function to evaluate, specified as a function handle. If `fun` includes a `dlgradient` call, then `dlfeval` evaluates the gradient by using automatic differentiation. In this gradient evaluation, each argument of the `dlgradient` call must be a `dlarray` or a cell array, structure, or table containing a `dlarray`. The number of input arguments to `dlfeval` must be the same as the number of input arguments to `fun`.

Example: `@rosenbrock`

Data Types: `function_handle`

**x — Function argument**
any MATLAB data type

Function argument, specified as any MATLAB data type.
An input argument \( x_j \) that is a variable of differentiation in a \texttt{dlgradient} call must be a traced \texttt{dlarray} or a cell array, structure, or table containing a traced \texttt{dlarray}. An extra variable such as a hyperparameter or constant data array does not have to be a \texttt{dlarray}.

Example: \texttt{dlarray([1 2;3 4])}

Data Types: \texttt{single} | \texttt{double} | \texttt{int8} | \texttt{int16} | \texttt{int32} | \texttt{int64} | \texttt{uint8} | \texttt{uint16} | \texttt{uint32} | \texttt{uint64} | \texttt{logical} | \texttt{char} | \texttt{string} | \texttt{struct} | \texttt{table} | \texttt{cell} | \texttt{function_handle} | \texttt{categorical} | \texttt{datetime} | \texttt{duration} | \texttt{calendarDuration} | \texttt{fi}

### Output Arguments

**y — Function output**

any data type | \texttt{dlarray}

Function output, returned as any data type. If the output results from a \texttt{dlgradient} call, the output is a \texttt{dlarray}.

### Tips

- A \texttt{dlgradient} call must be inside a function. To obtain a numeric value of a gradient, you must evaluate the function using \texttt{dlfeval}, and the argument to the function must be a \texttt{dlarray}. See “Use Automatic Differentiation In Deep Learning Toolbox”.
- \texttt{dlgradient} does not support higher order derivatives. In other words, you cannot pass the output of a \texttt{dlgradient} call into another \texttt{dlgradient} call.
- To enable the correct evaluation of gradients, the function \texttt{fun} must use only supported functions for \texttt{dlarray}. See “List of Functions with dlarray Support”.

### See Also

\texttt{dlarray} | \texttt{dlgradient}

### Topics

“Automatic Differentiation Background”
“Use Automatic Differentiation In Deep Learning Toolbox”
“List of Functions with dlarray Support”
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Generative Adversarial Network (GAN)”
“Grad-CAM Reveals the Why Behind Deep Learning Decisions”

### Introduced in R2019b
dlgradient

Compute gradients for custom training loops using automatic differentiation

Syntax

\[
[dydx_1, \ldots, dydx_k] = \text{dlgradient}(y, x_1, \ldots, x_k)
\]

\[
[dydx_1, \ldots, dydx_k] = \text{dlgradient}(y, x_1, \ldots, x_k, 'RetainData', true)
\]

Description

Use `dlgradient` to compute derivatives using automatic differentiation for custom training loops.

**Tip** For most deep learning tasks, you can use a pretrained network and adapt it to your own data. For an example showing how to use transfer learning to retrain a convolutional neural network to classify a new set of images, see “Train Deep Learning Network to Classify New Images”. Alternatively, you can create and train networks from scratch using `layerGraph` objects with the `trainNetwork` and `trainingOptions` functions.

If the `trainingOptions` function does not provide the training options that you need for your task, then you can create a custom training loop using automatic differentiation. To learn more, see “Define Deep Learning Network for Custom Training Loops”.

\[
[dydx_1, \ldots, dydx_k] = \text{dlgradient}(y, x_1, \ldots, x_k)
\] returns the gradients of \(y\) with respect to the variables \(x_1\) through \(x_k\).

Call `dlgradient` from inside a function passed to `dlfeval`. See “Compute Gradient Using Automatic Differentiation” on page 1-343 and “Use Automatic Differentiation In Deep Learning Toolbox”.

\[
[dydx_1, \ldots, dydx_k] = \text{dlgradient}(y, x_1, \ldots, x_k, 'RetainData', true)
\] causes the gradient to retain intermediate values for reuse in subsequent `dlgradient` calls. This syntax can save time, but uses more memory. See “Tips” on page 1-346.

Examples

**Compute Gradient Using Automatic Differentiation**

Rosenbrock's function is a standard test function for optimization. The `rosenbrock.m` helper function computes the function value and uses automatic differentiation to compute its gradient.

```matlab
type rosenbrock.m

function [y,dydx] = rosenbrock(x)

y = 100*(x(2) - x(1).^2).^2 + (1 - x(1)).^2;

dydx = dlgradient(y,x);
end
```
To evaluate Rosenbrock's function and its gradient at the point \([-1, 2]\), create a \texttt{dlarray} of the point and then call \texttt{dlfeval} on the function handle \texttt{@rosenbrock}.

\[
x0 = \texttt{dlarray}([-1, 2]);
\]
\[
[fval, gradval] = \texttt{dlfeval}(@rosenbrock, x0)
\]
\[
fval =
\begin{array}{l}
1x1 \texttt{dlarray} \\
104
\end{array}
\]
\[
gradval =
\begin{array}{l}
1x2 \texttt{dlarray} \\
396 \quad 200
\end{array}
\]

Alternatively, define Rosenbrock's function as a function of two inputs, \(x1\) and \(x2\).

\begin{verbatim}
type rosenbrock2.m
function [y,dydx1,dydx2] = rosenbrock2(x1,x2)
y = 100*(x2 - x1.^2).^2 + (1 - x1).^2;
[dydx1,dydx2] = \texttt{dlgradient}(y,x1,x2);
end
\end{verbatim}

Call \texttt{dlfeval} to evaluate \texttt{rosenbrock2} on two \texttt{dlarray} arguments representing the inputs \(-1\) and \(2\).

\[
x1 = \texttt{dlarray}(-1);
x2 = \texttt{dlarray}(2);
[fval, dydx1, dydx2] = \texttt{dlfeval}(@rosenbrock2, x1, x2)
\]
\[
fval =
\begin{array}{l}
1x1 \texttt{dlarray} \\
104
\end{array}
\]
\[
dydx1 =
\begin{array}{l}
1x1 \texttt{dlarray} \\
396
\end{array}
\]
\[
dydx2 =
\begin{array}{l}
1x1 \texttt{dlarray} \\
200
\end{array}
\]

Plot the gradient of Rosenbrock's function for several points in the unit square. First, initialize the arrays representing the evaluation points and the output of the function.

\[
[X1 X2] = \texttt{meshgrid}(\texttt{linspace}(0, 1, 10));
X1 = \texttt{dlarray}(X1(:));
\]
X2 = dlarray(X2(:));
Y = dlarray(zeros(size(X1)));  
DYDX1 = Y;  
DYDX2 = Y;

Evaluate the function in a loop. Plot the result using quiver.

for i = 1:length(X1)  
    [Y(i),DYDX1(i),DYDX2(i)] = dlfeval(@rosenbrock2,X1(i),X2(i));  
end  
quiver(extractdata(X1),extractdata(X2),extractdata(DYDX1),extractdata(DYDX2))  
xlabel('x1')  
ylabel('x2')

---

**Input Arguments**

- **y** — Variable to differentiate  
  scalar dlarray object

  Variable to differentiate, specified as a scalar dlarray object. For differentiation, y must be a traced function of dlarray inputs (see “Traced dlarray” on page 1-346) and must consist of supported functions for dlarray (see “List of Functions with dlarray Support”).

  Example: `100*(x(2) - x(1).^2).^2 + (1 - x(1)).^2`

  Example: `relu(X)`
**x1,...,xk — Variable in function**

dlarray object | cell array containing dlarray objects | structure containing dlarray objects | table containing dlarray objects

Variable in the function, specified as a dlarray object, a cell array, structure, or table containing dlarray objects, or any combination of such arguments recursively. For example, an argument can be a cell array containing a cell array that contains a structure containing dlarray objects.

If you specify x1,...,xk as a table, the table must contain the following variables:

- **Layer** — Layer name, specified as a string scalar.
- **Parameter** — Parameter name, specified as a string scalar.
- **Value** — Value of parameter, specified as a cell array containing a dlarray.

Example: dlarray([1 2;3 4])

Data Types: dlarray([1 2;3 4])

**'RetainData' — Indicator for retaining trace data during function call**

false (default) | true

Indicator for retaining trace data during the function call, specified as false or true. When this argument is false, a dlarray discards the derivative trace immediately after computing a derivative. When this argument is true, a dlarray retains the derivative trace until the end of the dlfeval function call that evaluates the dlgradient. The true setting is useful only when the dlfeval call contains more than one dlgradient call. The true setting causes the software to use more memory, but can save time when multiple dlgradient calls use at least part of the same trace.

Example: dydx = dlgradient(y,x,'RetainData',true)

Data Types: logical

**Output Arguments**

**dydx1,...,dydxk — Gradient**

dlarray object | cell array containing dlarray objects | structure containing dlarray objects | table containing dlarray objects

Gradient, returned as a dlarray object, or a cell array, structure, or table containing dlarray objects, or any combination of such arguments recursively. The size and data type of dydx1,...,dydxk are the same as those of the associated input variable x1,...,xk.

**More About**

**Traced dlarray**

During the computation of a function, a dlarray internally records the steps taken in a trace, enabling reverse mode automatic differentiation. The trace occurs within a dlfeval call. See “Automatic Differentiation Background”.

**Tips**

- dlgradient does not support higher order derivatives. In other words, you cannot pass the output of a dlgradient call into another dlgradient call.
• A `dlgradient` call must be inside a function. To obtain a numeric value of a gradient, you must evaluate the function using `dlfeval`, and the argument to the function must be a `dlarray`. See “Use Automatic Differentiation In Deep Learning Toolbox”.

• To enable the correct evaluation of gradients, the y argument must use only supported functions for `dlarray`. See “List of Functions with dlarray Support”.

• If you set the 'RetainData' name-value pair argument to true, the software preserves tracing for the duration of the `dlfeval` function call instead of erasing the trace immediately after the derivative computation. This preservation can cause a subsequent `dlgradient` call within the same `dlfeval` call to be executed faster, but uses more memory. For example, in training an adversarial network, the 'RetainData' setting is useful because the two networks share data and functions during training. See “Train Generative Adversarial Network (GAN)”.

See Also
`dlarray` | `dlfeval`

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Automatic Differentiation Background”
“Use Automatic Differentiation In Deep Learning Toolbox”
“List of Functions with dlarray Support”
“Train Generative Adversarial Network (GAN)”
“Grad-CAM Reveals the Why Behind Deep Learning Decisions”

Introduced in R2019b
dlmtimes

(Not recommended) Batch matrix multiplication for deep learning

**Note** dlmtimes is not recommended. Use pagemtimes instead. For more information, see “Compatibility Considerations”

**Syntax**

\[
dlC = \text{dlmtimes}(dlA,dlB)
\]

**Description**

\[
dlC = \text{dlmtimes}(dlA,dlB)
\]

computes matrix multiplication for each page of \( dlA \) and \( dlB \). For 3-D inputs \( dlA \) and \( dlB \), \( dlC \) is calculated as

\[
dlC(:,:,i) = dlA(:,:,i) \times dlB(:,:,i)
\]

Similarly, for \( n \)-dimensional inputs \( dlA \) and \( dlB \), \( dlC \) is calculated as

\[
dlC(:,:,i1,...,in) = dlA(:,:,i1,...,in) \times dlB(:,:,i1,...,in)
\]

If one of \( dlA \) or \( dlB \) is a two-dimensional matrix, this matrix multiplies each page of the other input.

**Examples**

**Multiply Two 4-D Arrays**

Create two 4-D arrays.

\[
\begin{align*}
A &= \text{rand}(3,4,8,2); \\
B &= \text{rand}(4,5,8,2);
\end{align*}
\]

\[
\begin{align*}
dlA &= \text{dlarray}(A); \\
dlB &= \text{dlarray}(B);
\end{align*}
\]

Calculate the batch matrix multiplication of \( dlA \) and \( dlB \).

\[
\begin{align*}
dlC &= \text{dlmtimes}(dlA,dlB); \\
\text{size}(dlC)
\end{align*}
\]

\[
\begin{align*}
\text{ans} &= 1\times4 \\
&\quad \quad 3 5 8 2
\end{align*}
\]

**Multiply Two Inputs Using Scalar Expansion**

If one of the inputs is a 2-D matrix, the function uses scalar expansion to expand this matrix to the same size as the other input in the third and higher dimensions. The function then performs batch matrix multiplication to the expanded matrix and the input array.
Create a random array of size 15-by-20-by-3-by-128. Convert to dlarray.

A = rand(15,20,3,128);
dlA = dlarray(A);

Create a random matrix of size 20-by-15.

B = rand(20,15);

Multiply dlA and B using dlmtimes.

dlC = dlmtimes(dlA,B);
size(dlC)
ans = 1×4
      15    15     3   128

Input Arguments

dlA,dlB — Operands
scalars | vectors | matrices | arrays

Operands, specified as scalars, vectors, matrices, or N-D arrays. At least one of dlA or dlB must be a dlarray. The inputs dlA or dlB must not be formatted unless one of dlA or dlB is an unformatted scalar.

The number of columns of dlA must match the number of rows of dlB. If one of dlA or dlB is a two-dimensional matrix, this matrix multiplies each page of the other input. Otherwise, the size of dlA and dlB for each dimension greater than two must match.

Output Arguments

dlC — Product
    scalar | vector | matrix | array

Product, returned as a scalar, vector, matrix, or an N-D array.

Array dlC has the same number of rows as input dlA and the same number of columns as input dlB, unless one of dlA or dlB is a scalar. The size of the other dimensions of dlC match the size of the dimensions greater than two of both dlA and dlB. If dlA or dlB is a matrix, the size of the other dimensions matches the size of the other (non-matrix) input. If one of dlA or dlB is a scalar, dlC has the same size as the non-scalar input.

Compatibility Considerations

dlmtimes is not recommended
Not recommended starting in R2020b

dlmtimes is not recommended. Use pagetimes instead. The two-input syntax of pagetimes performs the same functionality as dlmtimes. For information on how to use pagetimes with dlarray inputs, see the pagetimes entry in “List of Functions with dlarray Support”

See Also
dlarray | mtimes | pagefun | pagetimes
Topics
“Sequence-to-Sequence Translation Using Attention”
“Automatic Differentiation Background”
“Use Automatic Differentiation In Deep Learning Toolbox”
“List of Functions with dlarray Support”

Introduced in R2020a
**dlnetwork**

Deep learning network for custom training loops

**Description**

A `dlnetwork` object enables support for custom training loops using automatic differentiation.

**Tip** For most deep learning tasks, you can use a pretrained network and adapt it to your own data. For an example showing how to use transfer learning to retrain a convolutional neural network to classify a new set of images, see “Train Deep Learning Network to Classify New Images”. Alternatively, you can create and train networks from scratch using `layerGraph` objects with the `trainNetwork` and `trainingOptions` functions.

If the `trainingOptions` function does not provide the training options that you need for your task, then you can create a custom training loop using automatic differentiation. To learn more, see “Define Deep Learning Network for Custom Training Loops”.

**Creation**

**Syntax**

```matlab
dlnet = dlnetwork(lgraph)
```

**Description**

`dlnet = dlnetwork(lgraph)` converts a layer graph to a `dlnetwork` object representing a deep neural network for custom training loops.

**Input Arguments**

- **lgraph** — Network architecture
  - `layerGraph` object

  Network architecture, specified as a layer graph.

  The layer graph must not contain output layers. When training the network, calculate the loss separately.

  For a list of layers supported by `dlnetwork`, see “Supported Layers” on page 1-360.

**Properties**

- **Layers** — Network layers
  - `Layer` array

  Network layers, specified as a `Layer` array.
Connections — Layer connections
table
Layer connections, specified as a table with two columns.

Each table row represents a connection in the layer graph. The first column, Source, specifies the source of each connection. The second column, Destination, specifies the destination of each connection. The connection sources and destinations are either layer names or have the form 'layerName/IOName', where 'IOName' is the name of the layer input or output.

Data Types: table

Learnables — Network learnable parameters
table
Network learnable parameters, specified as a table with three columns:

- **Layer** — Layer name, specified as a string scalar.
- **Parameter** — Parameter name, specified as a string scalar.
- **Value** — Value of parameter, specified as a dlarray.

The network learnable parameters contain the features learned by the network. For example, the weights of convolution and fully connected layers.

Data Types: table

State — Network state
table
Network state, specified as a table.

The network state is a table with three columns:

- **Layer** — Layer name, specified as a string scalar.
- **Parameter** — Parameter name, specified as a string scalar.
- **Value** — Value of parameter, specified as a numeric array object.

The network state contains information remembered by the network between iterations. For example, the state of LSTM and batch normalization layers.

During training or inference, you can update the network state using the output of the forward and predict functions.

Data Types: table

InputNames — Network input layer names
cell array
Network input layer names, specified as a cell array of character vectors.

Data Types: cell

OutputNames — Network output layer names
cell array
Network output layer names, specified as a cell array of character vectors. This property includes all layers with disconnected outputs. If a layer has multiple outputs, then the disconnected outputs are specified as 'layerName/outputName'.

Data Types: cell

Object Functions

forward: Compute deep learning network output for training
predict: Compute deep learning network output for inference
layerGraph: Graph of network layers for deep learning
setL2Factor: Set L2 regularization factor of layer learnable parameter
setLearnRateFactor: Set learn rate factor of layer learnable parameter
getLearnRateFactor: Get learn rate factor of layer learnable parameter
getL2Factor: Get L2 regularization factor of layer learnable parameter

Examples

Convert Pretrained Network to dlnetwork Object

To implement a custom training loop for your network, first convert it to a dlnetwork object. Do not include output layers in a dlnetwork object. Instead, you must specify the loss function in the custom training loop.

Load a pretrained GoogLeNet model using the googlenet function. This function requires the Deep Learning Toolbox™ Model for GoogLeNet Network support package. If this support package is not installed, then the function provides a download link.

net = googlenet;

Convert the network to a layer graph and remove the layers used for classification using removeLayers.

lgraph = layerGraph(net);
lgraph = removeLayers(lgraph,['prob' 'output']);

Convert the network to a dlnetwork object.

dlnet = dlnetwork(lgraph)

dlnet =
dlnetwork with properties:
                  Layers: [142x1 nnet.cnn.layer.Layer]
                  Connections: [168x2 table]
                Learnables: [116x3 table]
                   State: [0x3 table]
              InputNames: {'data'}
            OutputNames: {'loss3-classifier'}
Train Network Using Custom Training Loop

This example shows how to train a network that classifies handwritten digits with a custom learning rate schedule.

If `trainingOptions` does not provide the options you need (for example, a custom learning rate schedule), then you can define your own custom training loop using automatic differentiation.

This example trains a network to classify handwritten digits with the *time-based decay* learning rate schedule: for each iteration, the solver uses the learning rate given by:

\[ \rho_t = \frac{\rho_0}{1 + k t} \]

where \( t \) is the iteration number, \( \rho_0 \) is the initial learning rate, and \( k \) is the decay.

Load Training Data

Load the digits data as an image datastore using the `imageDatastore` function and specify the folder containing the image data.

```matlab
dataFolder = fullfile(toolboxdir('nnet'),'nndemos','nndatasets','DigitDataset');
imds = imageDatastore(dataFolder, ...
 'IncludeSubfolders',true, ...
 'LabelSource','foldernames');
```

Partition the data into training and validation sets. Set aside 10% of the data for validation using the `splitEachLabel` function.

```matlab
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.9,'randomize');
```

The network used in this example requires input images of size 28-by-28-by-1. To automatically resize the training images, use an augmented image datastore. Specify additional augmentation operations to perform on the training images: randomly translate the images up to 5 pixels in the horizontal and vertical axes. Data augmentation helps prevent the network from overfitting and memorizing the exact details of the training images.

```matlab
inputSize = [28 28 1];
pixelRange = [-5 5];
imageAugmenter = imageDataAugmenter(...
 'RandXTranslation',pixelRange, ...
 'RandYTranslation',pixelRange);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain,'DataAugmentation',imageAugmenter);
```

To automatically resize the validation images without performing further data augmentation, use an augmented image datastore without specifying any additional preprocessing operations.

```matlab
augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);
```

Determine the number of classes in the training data.

```matlab
classes = categories(imdsTrain.Labels);
numClasses = numel(classes);
```

Define Network

Define the network for image classification.

```matlab
layers = [
 imageInputLayer(inputSize,'Normalization','none','Name','input')
```
convolution2dLayer(5,20,'Name','conv1')
batchNormalizationLayer('Name','bn1')
reluLayer('Name','relu1')
convolution2dLayer(3,20,'Padding','same','Name','conv2')
batchNormalizationLayer('Name','bn2')
reluLayer('Name','relu2')
convolution2dLayer(3,20,'Padding','same','Name','conv3')
batchNormalizationLayer('Name','bn3')
reluLayer('Name','relu3')
fullyConnectedLayer(numClasses,'Name','fc')
softmaxLayer('Name','softmax')

lgraph = layerGraph(layers);

Create a dlnetwork object from the layer graph.

dlnet = dlnetwork(lgraph)

dlnet =
dlnetwork with properties:

Layers: [12×1 nnet.cnn.layer.Layer]
Connections: [11×2 table]
Learnables: [14×3 table]
State: [6×3 table]
InputNames: {'input'}
OutputNames: {'softmax'}

Define Model Gradients Function

Create the function modelGradients, listed at the end of the example, that takes a dlnetwork object, a mini-batch of input data with corresponding labels and returns the gradients of the loss with respect to the learnable parameters in the network and the corresponding loss.

Specify Training Options

Train for ten epochs with a mini-batch size of 128.

numEpochs = 10;
miniBatchSize = 128;

Specify the options for SGDM optimization. Specify an initial learn rate of 0.01 with a decay of 0.01, and momentum 0.9.

initialLearnRate = 0.01;
decay = 0.01;
momentum = 0.9;

Train Model

Create a minibatchqueue object that processes and manages mini-batches of images during training. For each mini-batch:

• Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of this example) to convert the labels to one-hot encoded variables.
• Format the image data with the dimension labels ‘SSCB’ (spatial, spatial, channel, batch). By default, the minibatchqueue object converts the data to dlarray objects with underlying type single. Do not add a format to the class labels.
Train on a GPU if one is available. By default, the minibatchqueue object converts each output to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA® enabled NVIDIA® GPU with compute capability 3.0 or higher.

\[
\text{mbq} = \text{minibatchqueue(augimdsTrain,...}
\text{'MiniBatchSize',miniBatchSize,...}
\text{'MiniBatchFcn',@preprocessMiniBatch,...}
\text{'MiniBatchFormat',({'SSCB',''}));}
\]

Initialize the training progress plot.

\[
\text{figure}
\text{lineLossTrain = animatedline('Color',[0.85 0.325 0.098]);}
\text{ylim([0 inf])}
\text{xlabel("Iteration")}
\text{ylabel("Loss")}
\text{grid on}
\]

Initialize the velocity parameter for the SGDM solver.

\[
\text{velocity} = [];\]

Train the network using a custom training loop. For each epoch, shuffle the data and loop over mini-batches of data. For each mini-batch:

- Evaluate the model gradients, state, and loss using the \text{dlfeval} and \text{modelGradients} functions and update the network state.
- Determine the learning rate for the time-based decay learning rate schedule.
- Update the network parameters using the \text{sgdmupdate} function.
- Display the training progress.

\[
\text{iteration} = 0;
\text{start} = \text{tic};
\]

\[
\text{for} \text{ epoch} = 1: \text{numEpochs}
\text{ % Shuffle data.}
\text{shuffle(mbq));}
\]

\[
\text{while hasdata(mbq)}
\text{ iteration} = \text{iteration} + 1;
\]

\[
\text{ % Read mini-batch of data.}
\text{[dlX, dlY] = next(mbq);}
\]

\[
\text{ % Evaluate the model gradients, state, and loss using dlfeval and the modelGradients function and update the network state.}
\text{[gradients,state,loss] = dlfeval(@modelGradients,dlnet,dlX,dlY);}
\text{dlnet.State = state;}
\]

\[
\text{ % Determine learning rate for time-based decay learning rate schedule.}
\text{learnRate = initialLearnRate/(1 + decay*iteration);}
\]

\[
\text{ % Update the network parameters using the SGDM optimizer.}
\text{[dlnet,velocity] = sgdmupdate(dlnet,gradients,velocity,learnRate,momentum);}
\]
Test Model

Test the classification accuracy of the model by comparing the predictions on the validation set with the true labels.

After training, making predictions on new data does not require the labels. Create `minibatchqueue` object containing only the predictors of the test data:

- To ignore the labels for testing, set the number of outputs of the mini-batch queue to 1.
- Specify the same mini-batch size used for training.
- Preprocess the predictors using the `preprocessMiniBatchPredictors` function, listed at the end of the example.
- For the single output of the datastore, specify the mini-batch format 'SSCB' (spatial, spatial, channel, batch).

```matlab
numOutputs = 1; mbqTest = minibatchqueue(augimdsValidation,numOutputs, ... 'MiniBatchSize',miniBatchSize, ...)
```
Loop over the mini-batches and classify the images using `modelPredictions` function, listed at the end of the example.

```plaintext
predictions = modelPredictions(dlnet, mbqTest, classes);
```

Evaluate the classification accuracy.

```plaintext
YTest = imdsValidation.Labels;
accuracy = mean(predictions == YTest)
```

```plaintext
accuracy = 0.9530
```

**Model Gradients Function**

The `modelGradients` function takes a `dlnetwork` object `dlnet`, a mini-batch of input data `dlX` with corresponding labels `Y` and returns the gradients of the loss with respect to the learnable parameters in `dlnet`, the network state, and the loss. To compute the gradients automatically, use the `dlgradient` function.

```plaintext
function [gradients, state, loss] = modelGradients(dlnet, dlX, Y)
 [dlYPred, state] = forward(dlnet, dlX);
 loss = crossentropy(dlYPred, Y);
 gradients = dlgradient(loss, dlnet.Learnables);
 loss = double(gather(extractdata(loss)));
end
```

**Model Predictions Function**

The `modelPredictions` function takes a `dlnetwork` object `dlnet`, a `minibatchqueue` of input data `mbq`, and the network classes, and computes the model predictions by iterating over all data in the `minibatchqueue` object. The function uses the `onehotdecode` function to find the predicted class with the highest score.

```plaintext
function predictions = modelPredictions(dlnet, mbq, classes)
predictions = [];
while hasdata(mbq)
 dlXTest = next(mbq);
 dlYPred = predict(dlnet, dlXTest);
 YPred = onehotdecode(dlYPred, classes, 1);
 predictions = [predictions; YPred];
end
end
```
Mini Batch Preprocessing Function

The `preprocessMiniBatch` function preprocesses a mini-batch of predictors and labels using the following steps:

1. Preprocess the images using the `preprocessMiniBatchPredictors` function.
2. Extract the label data from the incoming cell array and concatenate into a categorical array along the second dimension.
3. One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension produces an encoded array that matches the shape of the network output.

```matlab
function [X,Y] = preprocessMiniBatch(XCell,YCell)

% Preprocess predictors.
X = preprocessMiniBatchPredictors(XCell);

% Extract label data from cell and concatenate.
Y = cat(2,YCell{1:end});

% One-hot encode labels.
Y = onehotencode(Y,1);
end
```

Mini-Batch Predictors Preprocessing Function

The `preprocessMiniBatchPredictors` function preprocesses a mini-batch of predictors by extracting the image data from the input cell array and concatenate into a numeric array. For grayscale input, concatenating over the fourth dimension adds a third dimension to each image, to use as a singleton channel dimension.

```matlab
function X = preprocessMiniBatchPredictors(XCell)

% Concatenate.
X = cat(4,XCell{1:end});
end
```

Freeze Learnable Parameters of `dlnetwork` Object

Load a pretrained network.

```matlab
net = squeezenet;
```

Convert the network to a layer graph, remove the output layer, and convert it to a `dlnetwork` object.

```matlab
lgraph = layerGraph(net);
lgraph = removeLayers(lgraph,'ClassificationLayer_predictions');
dlnet = dlnetwork(lgraph);
```

The `Learnables` property of the `dlnetwork` object is a table that contains the learnable parameters of the network. The table includes parameters of nested layers in separate rows. View the first few rows of the learnables table.
learnables = dlnet.Learnables;
head(learnables)

ans=8×3 table
Layer              Parameter     Value
__________________    _________    ___________________
“conv1”            “Weights”    {3x3x64  dlarray}
“conv1”            “Bias”       {1x1x64    dlarray}
“fire2-squeeze1x1” “Weights”    {1x1x64x16 dlarray}
“fire2-squeeze1x1” “Bias”       {1x1x16    dlarray}
“fire2-expand1x1”  “Weights”    {1x1x64x64 dlarray}
“fire2-expand1x1”  “Bias”       {1x1x64    dlarray}
“fire2-expand3x3”  “Weights”    {3x3x16x64 dlarray}
“fire2-expand3x3”  “Bias”       {1x1x64    dlarray}

To freeze the learnable parameters of the network, loop over the learnable parameters and set the
learn rate to 0 using the setLearnRateFactor function.

factor = 0;
numLearnables = size(learnables,1);
for i = 1:numLearnables
    layerName = learnables.Layer(i);
    parameterName = learnables.Parameter(i);
    dlnet = setLearnRateFactor(dlnet,layerName,parameterName,factor);
end

To use the updated learn rate factors when training, you must pass the dlnetwork object to the
update function in the custom training loop. For example, use the command

[dlnet,velocity] = sgdmupdate(dlnet,gradients,velocity);

More About

Supported Layers

The dlnetwork function supports the layers listed below and custom layers without forward
functions returning a nonempty memory value.

Input Layers

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>imageInputLayer</td>
<td>An image input layer inputs 2-D images to a network and applies data normalization.</td>
</tr>
<tr>
<td>image3dInputLayer</td>
<td>A 3-D image input layer inputs 3-D images or volumes to a network and applies data normalization.</td>
</tr>
<tr>
<td>sequenceInputLayer</td>
<td>A sequence input layer inputs sequence data to a network.</td>
</tr>
<tr>
<td>Layer</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>featureInputLayer</td>
<td>A feature input layer inputs feature data into a network and applies data normalization. Use this layer when you have a data set of numeric scalars representing features (data without spatial or time dimensions).</td>
</tr>
</tbody>
</table>

Convolution and Fully Connected Layers

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>convolution2dLayer</td>
<td>A 2-D convolutional layer applies sliding convolutional filters to the input.</td>
</tr>
<tr>
<td>convolution3dLayer</td>
<td>A 3-D convolutional layer applies sliding cuboidal convolution filters to three-dimensional input.</td>
</tr>
<tr>
<td>groupedConvolution2dLayer</td>
<td>A 2-D grouped convolutional layer separates the input channels into groups and applies sliding convolutional filters. Use grouped convolutional layers for channel-wise separable (also known as depth-wise separable) convolution.</td>
</tr>
<tr>
<td>transposedConv2dLayer</td>
<td>A transposed 2-D convolution layer upsamples feature maps.</td>
</tr>
<tr>
<td>transposedConv3dLayer</td>
<td>A transposed 3-D convolution layer upsamples three-dimensional feature maps.</td>
</tr>
<tr>
<td>fullyConnectedLayer</td>
<td>A fully connected layer multiplies the input by a weight matrix and then adds a bias vector.</td>
</tr>
</tbody>
</table>

Sequence Layers

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequenceInputLayer</td>
<td>A sequence input layer inputs sequence data to a network.</td>
</tr>
<tr>
<td>lstmLayer</td>
<td>An LSTM layer learns long-term dependencies between time steps in time series and sequence data.</td>
</tr>
<tr>
<td>bilstmLayer</td>
<td>A bidirectional LSTM (BiLSTM) layer learns bidirectional long-term dependencies between time steps of time series or sequence data. These dependencies can be useful when you want the network to learn from the complete time series at each time step.</td>
</tr>
<tr>
<td>gruLayer</td>
<td>A GRU layer learns dependencies between time steps in time series and sequence data.</td>
</tr>
</tbody>
</table>

For lstmLayer, bilstmLayer, and gruLayer objects, dlnetwork objects support layers with the default values for the StateActivationFunction and GateActivationFunction properties.
### Activation Layers

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>reluLayer</td>
<td>A ReLU layer performs a threshold operation to each element of the input, where any value less than zero is set to zero.</td>
</tr>
<tr>
<td>leakyReluLayer</td>
<td>A leaky ReLU layer performs a threshold operation, where any input value less than zero is multiplied by a fixed scalar.</td>
</tr>
<tr>
<td>clippedReluLayer</td>
<td>A clipped ReLU layer performs a threshold operation, where any input value less than zero is set to zero and any value above the clipping ceiling is set to that clipping ceiling.</td>
</tr>
<tr>
<td>eluLayer</td>
<td>An ELU activation layer performs the identity operation on positive inputs and an exponential nonlinearity on negative inputs.</td>
</tr>
<tr>
<td>tanhLayer</td>
<td>A hyperbolic tangent (tanh) activation layer applies the tanh function on the layer inputs.</td>
</tr>
<tr>
<td>softmaxLayer</td>
<td>A softmax layer applies a softmax function to the input.</td>
</tr>
</tbody>
</table>

### Normalization, Dropout, and Cropping Layers

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>batchNormalizationLayer</td>
<td>A batch normalization layer normalizes each input channel across a mini-batch. To speed up training of convolutional neural networks and reduce the sensitivity to network initialization, use batch normalization layers between convolutional layers and nonlinearities, such as ReLU layers.</td>
</tr>
<tr>
<td>groupNormalizationLayer</td>
<td>A group normalization layer divides the channels of the input data into groups and normalizes the activations across each group. To speed up training of convolutional neural networks and reduce the sensitivity to network initialization, use group normalization layers between convolutional layers and nonlinearities, such as ReLU layers. You can perform instance normalization and layer normalization by setting the appropriate number of groups.</td>
</tr>
<tr>
<td>crossChannelNormalizationLayer</td>
<td>A channel-wise local response (cross-channel) normalization layer carries out channel-wise normalization.</td>
</tr>
<tr>
<td>dropoutLayer</td>
<td>A dropout layer randomly sets input elements to zero with a given probability.</td>
</tr>
</tbody>
</table>
### Layer Description

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>crop2dLayer</td>
<td>A 2-D crop layer applies 2-D cropping to the input.</td>
</tr>
</tbody>
</table>

### Pooling and Unpooling Layers

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>averagePooling2dLayer</td>
<td>An average pooling layer performs down-sampling by dividing the input into rectangular pooling regions and computing the average values of each region.</td>
</tr>
<tr>
<td>averagePooling3dLayer</td>
<td>A 3-D average pooling layer performs down-sampling by dividing three-dimensional input into cuboidal pooling regions and computing the average values of each region.</td>
</tr>
<tr>
<td>globalAveragePooling2dLayer</td>
<td>A global average pooling layer performs down-sampling by computing the mean of the height and width dimensions of the input.</td>
</tr>
<tr>
<td>globalAveragePooling3dLayer</td>
<td>A 3-D global average pooling layer performs down-sampling by computing the mean of the height, width, and depth dimensions of the input.</td>
</tr>
<tr>
<td>maxPooling2dLayer</td>
<td>A max pooling layer performs down-sampling by dividing the input into rectangular pooling regions, and computing the maximum of each region.</td>
</tr>
<tr>
<td>maxPooling3dLayer</td>
<td>A 3-D max pooling layer performs down-sampling by dividing three-dimensional input into cuboidal pooling regions, and computing the maximum of each region.</td>
</tr>
<tr>
<td>globalMaxPooling2dLayer</td>
<td>A global max pooling layer performs down-sampling by computing the maximum of the height and width dimensions of the input.</td>
</tr>
<tr>
<td>globalMaxPooling3dLayer</td>
<td>A 3-D global max pooling layer performs down-sampling by computing the maximum of the height, width, and depth dimensions of the input.</td>
</tr>
<tr>
<td>maxUnpooling2dLayer</td>
<td>A max unpooling layer un pools the output of a max pooling layer.</td>
</tr>
</tbody>
</table>

### Combination Layers

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>additionLayer</td>
<td>An addition layer adds inputs from multiple neural network layers element-wise.</td>
</tr>
<tr>
<td>multiplicationLayer</td>
<td>A multiplication layer multiplies inputs from multiple neural network layers element-wise.</td>
</tr>
<tr>
<td>Layer</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>depthConcatenationLayer</td>
<td>A depth concatenation layer takes inputs that have the same height and width and concatenates them along the third dimension (the channel dimension).</td>
</tr>
<tr>
<td>concatenationLayer</td>
<td>A concatenation layer takes inputs and concatenates them along a specified dimension. The inputs must have the same size in all dimensions except the concatenation dimension.</td>
</tr>
</tbody>
</table>

**See Also**
dlarray | dlfeval | dlgradient | forward | layerGraph | predict

**Topics**
“Train Generative Adversarial Network (GAN)”
“Automatic Differentiation Background”
“Define Custom Training Loops, Loss Functions, and Networks”

**Introduced in R2019b**
predict

Compute deep learning network output for inference

Syntax

dlY = predict(dlnet,dlX)
dlY = predict(dlnet,dlX1,...,dlXM)
[dlY1,...,dlYN] = predict(__)
[dlY1,...,dlYK] = predict(__,'Outputs',layerNames)
[___,state] = predict(__)

Description

Some deep learning layers behave differently during training and inference (prediction). For example, during training, dropout layers randomly set input elements to zero to help prevent overfitting, but during inference, dropout layers do not change the input.

To compute network outputs for inference, use the predict function. To compute network outputs for training, use the forward function. For prediction with SeriesNetwork and DAGNetwork objects, see predict.

dlY = predict(dlnet,dlX) returns the network output dlY during inference given the input data dlX and the network dlnet with a single input and a single output.

dlY = predict(dlnet,dlX1,...,dlXM) returns the network output dlY during inference given the M inputs dlX1, ...,dlXM and the network dlnet that has M inputs and a single output.

[dlY1,...,dlYN] = predict(__) returns the N outputs dlY1, ..., dlYN during inference for networks that have N outputs using any of the previous syntaxes.

[dlY1,...,dlYK] = predict(__,'Outputs',layerNames) returns the outputs dlY1, ..., dlYK during inference for the specified layers using any of the previous syntaxes.

[___,state] = predict(__) also returns the updated network state using any of the previous syntaxes.

Tip For prediction with SeriesNetwork and DAGNetwork objects, see predict.

Examples

Make Predictions Using dlnetwork Object

This example shows how to make predictions using a dlnetwork object by splitting data into mini-batches.

For large data sets, or when predicting on hardware with limited memory, make predictions by splitting the data into mini-batches. When making predictions with SeriesNetwork or DAGNetwork
objects, the `predict` function automatically splits the input data into mini-batches. For `dlnetwork` objects, you must split the data into mini-batches manually.

**Load dlnetwork Object**

Load a trained `dlnetwork` object and the corresponding classes.

```matlab
s = load("digitsCustom.mat");
dlnet = s.dlnet;
classes = s.classes;
```

**Load Data for Prediction**

Load the digits data for prediction.

```matlab
digitDatasetPath = fullfile(matlabroot,'toolbox','nnet','nndemos', ...
 'nndatasets','DigitDataset');
imds = imageDatastore(digitDatasetPath, ...
 'IncludeSubfolders',true);
```

**Make Predictions**

Loop over the mini-batches of the test data and make predictions using a custom prediction loop.

Use `minibatchqueue` to process and manage the mini-batches of images. Specify a mini-batch size of 128. Set the read size property of the image datastore to the mini-batch size.

For each mini-batch:
- Use the custom mini-batch preprocessing function `preprocessMiniBatch` (defined at the end of this example) to concatenate the data into a batch and normalize the images.
- Format the images with the dimensions 'SSCB' (spatial, spatial, channel, batch). By default, the `minibatchqueue` object converts the data to `dlarray` objects with underlying type `single`.
- Make predictions on a GPU if one is available. By default, the `minibatchqueue` object converts the output to a `gpuArray` if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA® enabled NVIDIA® GPU with compute capability 3.0 or higher.

```matlab
miniBatchSize = 128;
imds.ReadSize = miniBatchSize;
mbq = minibatchqueue(imds,...
 "MiniBatchSize",miniBatchSize,...
 "MiniBatchFcn", @preprocessMiniBatch,...
 "MiniBatchFormat","SSCB");
```

Loop over the minibatches of data and make predictions using the `predict` function. Use the `onehotdecode` function to determine the class labels. Store the predicted class labels.

```matlab
numObservations = numel(imds.Files);
YPred = strings(1,numObservations);
predictions = [];

% Loop over mini-batches.
while hasdata(mbq)
 % Read mini-batch of data.
```
dlX = next(mbq);

% Make predictions using the predict function.
dlYPred = predict(dlnet,dlX);

% Determine corresponding classes.
predBatch = onehotdecode(dlYPred,classes,1);
predictions = [predictions predBatch];

end

Visualize some of the predictions.

idx = randperm(numObservations,9);

figure
for i = 1:9
    subplot(3,3,i)
    I = imread(imds.Files{idx(i)});
    label = predictions(idx(i));
    imshow(I)
    title("Label: " + string(label))
end

Mini-Batch Preprocessing Function

The preprocessMiniBatch function preprocesses the data using the following steps:
Extract the data from the incoming cell array and concatenate into a numeric array. Concatenating over the fourth dimension adds a third dimension to each image, to be used as a singleton channel dimension.

Normalize the pixel values between 0 and 1.

```matlab
function X = preprocessMiniBatch(data)
 % Extract image data from cell and concatenate
 X = cat(4,data{:});
 % Normalize the images.
 X = X/255;
end
```

**Input Arguments**

dlnet — Network for custom training loops
dlnetwork object

Network for custom training loops, specified as a dlnetwork object.

dlX — Input data
formatted dlarray

Input data, specified as a formatted dlarray. For more information about dlarray formats, see the fmt input argument of dlarray.

layerNames — Layers to extract outputs from
string array | cell array of character vectors

Layers to extract outputs from, specified as a string array or a cell array of character vectors containing the layer names.

- If layerNames(i) corresponds to a layer with a single output, then layerNames(i) is the name of the layer.
- If layerNames(i) corresponds to a layer with multiple outputs, then layerNames(i) is the layer name followed by the character "/" and the name of the layer output: 'layerName/outputName'.

**Output Arguments**

dlY — Output data
formatted dlarray

Output data, returned as a formatted dlarray. For more information about dlarray formats, see the fmt input argument of dlarray.

state — Updated network state
table

Updated network state, returned as a table.

The network state is a table with three columns:
• **Layer** - Layer name, specified as a string scalar.
• **Parameter** - Parameter name, specified as a string scalar.
• **Value** - Value of parameter, specified as a numeric array object.

The network state contains information remembered by the network between iterations. For example, the state of LSTM and batch normalization layers.

Update the state of a `dlnetwork` using the `State` property.

**Extended Capabilities**

**GPU Arrays**
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
• This function runs on the GPU if either or both of the following conditions are met:
  • Any of the values of the network learnable parameters inside `dlnet.Learnables.Value` are `dlarray` objects with underlying data of type `gpuArray`
  • The input argument `dlX` is a `dlarray` with underlying data of type `gpuArray`

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

**See Also**
`dlarray` | `dlfeval` | `dlgradient` | `dlnetwork` | `forward`

**Topics**
“Train Generative Adversarial Network (GAN)”
“Automatic Differentiation Background”
“Define Custom Training Loops, Loss Functions, and Networks”

**Introduced in R2019b**
dlquantizationOptions

Options for quantizing a trained deep neural network

Description

The `dlquantizationOptions` object provides options for quantizing a trained deep neural network to scaled 8-bit integer data types. Use the `dlquantizationOptions` object to define the metric function to use that compares the accuracy of the network before and after quantization.

To learn about the products required to quantize a deep neural network, see “Quantization Workflow Prerequisites”.

Creation

Syntax

```matlab
quantOpts = dlquantizationOptions
quantOpts = dlquantizationOptions(Name, Value)
```

Description

```matlab
quantOpts = dlquantizationOptions
```

creates a `dlquantizationOptions` object with default property values.

```matlab
quantOpts = dlquantizationOptions(Name, Value)
```

creates a `dlquantizationOptions` object with additional properties specified as `Name`, `Value` pair arguments.

Properties

**MetricFcn — Function to use for calculating validation metrics**

Cell array of function handles

Cell array of function handles specifying the functions for calculating validation metrics of quantized network.

Example: `options = dlquantizationOptions('MetricFcn', @(x)hComputeModelAccuracy(x, net, groundTruth));`

Data Types: `cell`

**FPGA Execution Environment Options**

**Bitstream — Bitstream name**

- ‘zcu102_int8’ | ‘zc706_int8’ | ‘arria10soc_int8’

This property affects FPGA targeting only.

Name of the FPGA bitstream specified as a character vector.
Example: 'Bitstream', 'zcu102_int8'

**Target — Name of the dlhdl.Target object**

Example: 'Target', hT

*This property affects FPGA targeting only.*

Name of the dlhdl.Target object that has the board name and board interface information.

Example: 'Target', hT

### Examples

#### Quantize a Neural Network

This example shows how to quantize learnable parameters in the convolution layers of a neural network, and explore the behavior of the quantized network. In this example, you quantize the squeezenet neural network after retraining the network to classify new images according to the “Train Deep Learning Network to Classify New Images” example. In this example, the memory required for the network is reduced approximately 75% through quantization while the accuracy of the network is not affected.

Load the pretrained network.

```matlab
net =
```

Define calibration and validation data to use for quantization.

The calibration data is used to collect the dynamic ranges of the weights and biases in the convolution and fully connected layers of the network and the dynamic ranges of the activations in all layers of the network. For the best quantization results, the calibration data must be representative of inputs to the network.

The validation data is used to test the network after quantization to understand the effects of the limited range and precision of the quantized convolution layers in the network.

In this example, use the images in the MerchData data set. Define an augmentedImageDatastore object to resize the data for the network. Then, split the data into calibration and validation data sets.

```matlab
unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
 'IncludeSubfolders',true, ...
 'LabelSource','foldernames');
[calData, valData] = splitEachLabel(imds, 0.7, 'randomized');
aug_calData = augmentedImageDatastore([227 227], calData);
aug_valData = augmentedImageDatastore([227 227], valData);
```
Create a `dlquantizer` object and specify the network to quantize.

```matlab
quantObj = dlquantizer(net);
```

Define a metric function to use to compare the behavior of the network before and after quantization. Save this function in a local file.

```matlab
function accuracy = hComputeModelAccuracy(predictionScores, net, dataStore)
 % Computes model-level accuracy statistics
 % Load ground truth
 tmp = readall(dataStore);
 groundTruth = tmp.response;
 % Compare with predicted label with actual ground truth
 predictionError = {};
 for idx=1:numel(groundTruth)
 [~, idy] = max(predictionScores(idx,:));
 yActual = net.Layers(end).Classes(idy);
 predictionError{end+1} = (yActual == groundTruth(idx)); %#ok
 end
 % Sum all prediction errors.
 predictionError = [predictionError{:}];
 accuracy = sum(predictionError)/numel(predictionError);
end
```

Specify the metric function in a `dlquantizationOptions` object.

```matlab
quantOpts = dlquantizationOptions('MetricFcn', ...
 @(x)hComputeModelAccuracy(x, net, aug_valData));
```

Use the `calibrate` function to exercise the network with sample inputs and collect range information. The `calibrate` function exercises the network and collects the dynamic ranges of the weights and biases in the convolution and fully connected layers of the network and the dynamic ranges of the activations in all layers of the network. The function returns a table. Each row of the table contains range information for a learnable parameter of the optimized network.

```matlab
calResults = calibrate(quantObj, aug_calData)
calResults =
 95x5 table
```

Use the `validate` function to quantize the learnable parameters in the convolution layers of the network and exercise the network. The function uses the metric function defined in the `dlquantizationOptions` object to compare the results of the network before and after quantization.

```matlab
valResults = validate(quantObj, aug_valData, quantOpts)
```
valResults =
    struct with fields:
        NumSamples: 20
        MetricResults: [1x1 struct]

Examine the MetricResults.Result field of the validation output to see the performance of the quantized network.

valResults.MetricResults.Result
ans =
    2x3 table
        NetworkImplementation    MetricOutput    LearnableParameterMemory(bytes)
                      _______________________    ____________    _______________________________
    {'Floating-Point'}           1                    2.9003e+06
    {'Quantized'     }           1                    7.3393e+05

In this example, the memory required for the network was reduced approximately 75% through quantization. The accuracy of the network is not affected.

The weights, biases, and activations of the convolution layers of the network specified in the dlquantizer object now use scaled 8-bit integer data types.

Quantize a Neural Network for FPGA Execution Environment

This example shows how to quantize learnable parameters in the convolution layers of a neural network, and explore the behavior of the quantized network. In this example, you quantize the LogoNet neural network. Quantization helps reduce the memory requirement of a deep neural network by quantizing weights, biases and activations of network layers to 8-bit scaled integer data types. Use MATLAB® to retrieve the prediction results from the target device.

To run this example, you need the products listed under FPGA in “Quantization Workflow Prerequisites”.

For additional requirements, see “Quantization Workflow Prerequisites”.

Create a file in your current working directory called getLogoNetwork.m. Enter these lines into the file:

```matlab
function net = getLogoNetwork()
 data = getLogoData();
 net = data.convnet;
end

function data = getLogoData()
 if ~isfile('LogoNet.mat')
 url = 'https://www.mathworks.com/supportfiles/gpucoder/cnn_models/logo_detection/LogoNet.mat';
 websave('LogoNet.mat',url);
 end
 data = load('LogoNet.mat');
end
```

Load the pretrained network.

```matlab
snet = getLogoNetwork();
```
Define calibration and validation data to use for quantization.

The calibration data is used to collect the dynamic ranges of the weights and biases in the convolution and fully connected layers of the network and the dynamic ranges of the activations in all layers of the network. For the best quantization results, the calibration data must be representative of inputs to the network.

The validation data is used to test the network after quantization to understand the effects of the limited range and precision of the quantized convolution layers in the network.

This example uses the images in the logos_dataset data set. Define an augmentedImageDatastore object to resize the data for the network. Then, split the data into calibration and validation data sets.

curDir = pwd;  
newDir = fullfile(matlabroot,'examples','deeplearning_shared','data','logos_dataset.zip');  
copyfile(newDir,curDir);  
unzip('logos_dataset.zip');  
imageData = imageDatastore(fullfile(curDir,'logos_dataset'),...  'IncludeSubfolders',true,'FileExtensions','.JPG','LabelSource','foldernames');  
[calibrationData, validationData] = splitEachLabel(imageData, 0.5,'randomized');

Create a dlquantizer object and specify the network to quantize.

dlQuantObj = dlquantizer(snet,'ExecutionEnvironment','FPGA');

Use the calibrate function to exercise the network with sample inputs and collect range information. The calibrate function exercises the network and collects the dynamic ranges of the weights and biases in the convolution and fully connected layers of the network and the dynamic ranges of the activations in all layers of the network. The function returns a table. Each row of the table contains range information for a learnable parameter of the optimized network.

dlQuantObj.calibrate(calibrationData)

Create a target object with a custom name for your target device and an interface to connect your target device to the host computer. Interface options are JTAG and Ethernet. To create the target object, enter:

Create a target object with a custom name for your target device and an interface to connect your target device to the host computer. Interface options are JTAG and Ethernet. To create the target object, enter:
Define a metric function to use to compare the behavior of the network before and after quantization. Save this function in a local file.

```matlab
function accuracy = hComputeAccuracy(predictionScores, net, dataStore)
 % Copyright 2020 The MathWorks, Inc.
 groundTruth = dataStore.Labels;
 predictionError = {};
 for idx=1:numel(groundTruth)
 [~, idy] = max(predictionScores(idx, :));
 yActual = net.Layers(end).Classes(idy);
 predictionError{end+1} = (yActual == groundTruth(idx)) ;
 end
 predictionError = [predictionError{:}];
 accuracy = sum(predictionError)/numel(predictionError);
end
```

Specify the metric function in a `dlquantizationOptions` object.

```matlab
options = dlquantizationOptions('MetricFcn', ...
 @(x)hComputeModelAccuracy(x, snet, validationData),'Bitstream','arria10soc_int8',...
 'Target',hTarget);
```

To compile and deploy the quantized network, run the `validate` function of the `dlquantizer` object. Use the `validate` function to quantize the learnable parameters in the convolution layers of the network and exercise the network. This function uses the output of the compile function to program the FPGA board by using the programming file. It also downloads the network weights and biases. The deploy function checks for the Intel Quartus tool and the supported tool version. It then starts programming the FPGA device by using the sof file, displays progress messages, and the time it takes to deploy the network. The function uses the metric function defined in the `dlquantizationOptions` object to compare the results of the network before and after quantization.

```matlab
prediction = dlQuantObj.validate(validationData,options);
```
### Deep Learning Processor Profiler Performance Results

<table>
<thead>
<tr>
<th>LastLayerLatency(cycles)</th>
<th>LastLayerLatency(seconds)</th>
<th>FramesNum</th>
<th>Total Latency</th>
<th>Frames/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>13570364</td>
<td>0.09047</td>
<td>30</td>
<td>380612682</td>
</tr>
<tr>
<td>conv_module</td>
<td>12667103</td>
<td>0.08445</td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_1</td>
<td>3939296</td>
<td>0.02626</td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_1</td>
<td>1544371</td>
<td>0.01030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_2</td>
<td>2910954</td>
<td>0.01941</td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_2</td>
<td>577524</td>
<td>0.00385</td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_3</td>
<td>2552707</td>
<td>0.01702</td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_3</td>
<td>676542</td>
<td>0.00451</td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_4</td>
<td>455434</td>
<td>0.00304</td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_4</td>
<td>11251</td>
<td>0.00008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_module</td>
<td>903173</td>
<td>0.00602</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_1</td>
<td>536164</td>
<td>0.00357</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_2</td>
<td>342643</td>
<td>0.00228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_3</td>
<td>24364</td>
<td>0.00016</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The clock frequency of the DL processor is: 150MHz

### Finished writing input activations.
### Running single input activations.
The clock frequency of the DL processor is: 150MHz

Deep Learning Processor Profiler Performance Results

<table>
<thead>
<tr>
<th>Network</th>
<th>LastLayerLatency(cycles)</th>
<th>LastLayerLatency(seconds)</th>
<th>FramesNum</th>
<th>Total Latency</th>
<th>Frames/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>conv_module</td>
<td>12667607</td>
<td>0.08445</td>
<td>30</td>
<td>127265075</td>
<td>11.8</td>
</tr>
<tr>
<td>conv_1</td>
<td>3939074</td>
<td>0.02626</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_1</td>
<td>1544519</td>
<td>0.01030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_2</td>
<td>2910636</td>
<td>0.01940</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_2</td>
<td>577759</td>
<td>0.00385</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_3</td>
<td>2551800</td>
<td>0.01701</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_3</td>
<td>676795</td>
<td>0.00451</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_4</td>
<td>455859</td>
<td>0.00304</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_4</td>
<td>11248</td>
<td>0.00007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_module</td>
<td>903216</td>
<td>0.00602</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_1</td>
<td>536165</td>
<td>0.00357</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_2</td>
<td>342643</td>
<td>0.00228</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_3</td>
<td>24406</td>
<td>0.00016</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.
Finished writing input activations.
Running single input activations.

Deep Learning Processor Profiler Performance Results

<table>
<thead>
<tr>
<th>Network</th>
<th>LastLayerLatency(cycles)</th>
<th>LastLayerLatency(seconds)</th>
<th>FramesNum</th>
<th>Total Latency</th>
<th>Frames/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>conv_module</td>
<td>12669136</td>
<td>0.08446</td>
<td>30</td>
<td>127265075</td>
<td>11.8</td>
</tr>
<tr>
<td>conv_1</td>
<td>3939559</td>
<td>0.02627</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_1</td>
<td>1545378</td>
<td>0.01030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_2</td>
<td>2911243</td>
<td>0.01941</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_2</td>
<td>577422</td>
<td>0.00385</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_3</td>
<td>2552064</td>
<td>0.01701</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_3</td>
<td>676795</td>
<td>0.00451</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_4</td>
<td>455657</td>
<td>0.00304</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_4</td>
<td>11227</td>
<td>0.00007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_module</td>
<td>903194</td>
<td>0.00602</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_1</td>
<td>536165</td>
<td>0.00357</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_2</td>
<td>342643</td>
<td>0.00228</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_3</td>
<td>24406</td>
<td>0.00016</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.
Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.
Finished writing input activations.
Running single input activations.

Deep Learning Processor Profiler Performance Results

<table>
<thead>
<tr>
<th>Network</th>
<th>LastLayerLatency(cycles)</th>
<th>LastLayerLatency(seconds)</th>
<th>FramesNum</th>
<th>Total Latency</th>
<th>Frames/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>conv_module</td>
<td>12669266</td>
<td>0.08446</td>
<td>30</td>
<td>127266427</td>
<td>11.8</td>
</tr>
<tr>
<td>conv_1</td>
<td>3939776</td>
<td>0.02627</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td>Output Size</td>
<td>Latency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_1</td>
<td>1545632</td>
<td>0.0103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_2</td>
<td>2911169</td>
<td>0.0194</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_2</td>
<td>577592</td>
<td>0.0085</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_3</td>
<td>2551613</td>
<td>0.0170</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_3</td>
<td>676811</td>
<td>0.0045</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_4</td>
<td>455418</td>
<td>0.0030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_4</td>
<td>11348</td>
<td>0.0008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_module</td>
<td>903261</td>
<td>0.0066</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_1</td>
<td>536205</td>
<td>0.0035</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_2</td>
<td>342689</td>
<td>0.0022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_3</td>
<td>24365</td>
<td>0.00016</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The clock frequency of the DL processor is: 150MHz

Examine the `MetricResults.Result` field of the validation output to see the performance of the quantized network.

```matlab
validateOut = prediction.MetricResults.Result
```

```
ans =

<table>
<thead>
<tr>
<th>NetworkImplementation</th>
<th>MetricOutput</th>
</tr>
</thead>
<tbody>
<tr>
<td>{'Floating-Point'}</td>
<td>0.9875</td>
</tr>
<tr>
<td>{'Quantized'}</td>
<td>0.9875</td>
</tr>
</tbody>
</table>
```

Examine the `QuantizedNetworkFPS` field of the validation output to see the frames per second performance of the quantized network.

```matlab
prediction.QuantizedNetworkFPS
```

```
ans = 11.8126
```

The weights, biases, and activations of the convolution layers of the network specified in the `dlquantizer` object now use scaled 8-bit integer data types.

**See Also**

**Apps**
- Deep Network Quantizer

**Functions**
- `calibrate` | `dlquantizer` | `validate`

**Topics**
- “Quantization of Deep Neural Networks”

**Introduced in R2020a**
dlquantizer
Quantize a deep neural network to 8-bit scaled integer data types

Description
Use the dlquantizer object to reduce the memory requirement of a deep neural network by quantizing weights, biases, and activations to 8-bit scaled integer data types.

Creation

Syntax
quantObj = dlquantizer(net)
quantObj = dlquantizer(net,Name,Value)

Description
quantObj = dlquantizer(net) creates a dlquantizer object for the specified network.
quantObj = dlquantizer(net,Name,Value) creates a dlquantizer object for the specified network, with additional options specified by one or more name-value pair arguments.

Use dlquantizer to create an quantized network for FPGA or GPU deployment. To learn about the products required to quantize and deploy the deep learning network to an FPGA or GPU environment, see “Quantization Workflow Prerequisites”.

Input Arguments

net — Pretrained neural network
DAGNetwork object | SeriesNetwork object | yolov2ObjectDetector object | ssdObjectDetector object

Pretrained neural network, specified as a DAGNetwork, SeriesNetwork, yolov2ObjectDetector, or a ssdObjectDetector object.

Quantization of ssdObjectDetector networks requires the ExecutionEnvironment property to be set to 'FPGA'.

Properties

NetworkObject — Pretrained neural network
DAGNetwork object | SeriesNetwork object | yolov2ObjectDetector object | ssdObjectDetector object

Pretrained neural network, specified as a DAGNetwork, SeriesNetwork, yolov2ObjectDetector, or a ssdObjectDetector object.
Quantization of ssdObjectDetector networks requires the ExecutionEnvironment property to be set to 'FPGA'.

**ExecutionEnvironment — Execution environment**

> 'GPU' (default) | 'FPGA'

Specify the execution environment for the quantized network. When this parameter is not specified the default execution environment is GPU. To learn about the products required to quantize and deploy the deep learning network to an FPGA or GPU environment, see “Quantization Workflow Prerequisites”.

Example: 'ExecutionEnvironment','FPGA'

**Object Functions**

- calibrate Simulate and collect ranges of a deep neural network
- validate Quantize and validate a deep neural network

**Examples**

**Specify FPGA Execution Environment**

- This example shows how to specify an FPGA execution environment.

```matlab
net = vgg19;
quantobj = dlquantizer(net,'ExecutionEnvironment','FPGA');
```

**Quantize a Neural Network**

This example shows how to quantize learnable parameters in the convolution layers of a neural network, and explore the behavior of the quantized network. In this example, you quantize the squeezenet neural network after retraining the network to classify new images according to the “Train Deep Learning Network to Classify New Images” example. In this example, the memory required for the network is reduced approximately 75% through quantization while the accuracy of the network is not affected.

Load the pretrained network.

```matlab
net = load('squeezenet1_1.mat');
```

Define calibration and validation data to use for quantization.

The calibration data is used to collect the dynamic ranges of the weights and biases in the convolution and fully connected layers of the network and the dynamic ranges of the activations in all
layers of the network. For the best quantization results, the calibration data must be representative of inputs to the network.

The validation data is used to test the network after quantization to understand the effects of the limited range and precision of the quantized convolution layers in the network.

In this example, use the images in the `MerchData` data set. Define an `augmentedImageDatastore` object to resize the data for the network. Then, split the data into calibration and validation data sets.

```matlab
unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
 'IncludeSubfolders',true, ...
 'LabelSource','foldernames');
[calData, valData] = splitEachLabel(imds, 0.7, 'randomized');
aug_calData = augmentedImageDatastore([227 227], calData);
aug_valData = augmentedImageDatastore([227 227], valData);
```

Create a `dlquantizer` object and specify the network to quantize.

```matlab
quantObj = dlquantizer(net);
```

Define a metric function to use to compare the behavior of the network before and after quantization. Save this function in a local file.

```matlab
function accuracy = hComputeModelAccuracy(predictionScores, net, dataStore)
 %% Computes model-level accuracy statistics
 % Load ground truth
 tmp = readall(dataStore);
 groundTruth = tmp.response;
 % Compare with predicted label with actual ground truth
 predictionError = {};
 for idx=1:numel(groundTruth)
 [~, idy] = max(predictionScores(idx,:));
 yActual = net.Layers(end).Classes(idy);
 predictionError{end+1} = (yActual == groundTruth(idx)); %#ok
 end
 % Sum all prediction errors.
 predictionError = [predictionError{:}];
 accuracy = sum(predictionError)/numel(predictionError);
end
```

Specify the metric function in a `dlquantizationOptions` object.

```matlab
quantOpts = dlquantizationOptions('MetricFcn', ...
 @(x)hComputeModelAccuracy(x, net, aug_valData));
```

Use the `calibrate` function to exercise the network with sample inputs and collect range information. The `calibrate` function exercises the network and collects the dynamic ranges of the weights and biases in the convolution and fully connected layers of the network and the dynamic ranges of the activations in all layers of the network. The function returns a table. Each row of the table contains range information for a learnable parameter of the optimized network.

```matlab
calResults = calibrate(quantObj, aug_calData)
calResults =
 95x5 table
 ___________________________ _________________________ ________________________ __________ ___________
 Optimized Layer Name Network Layer Name Learnables / Activations MinValue MaxValue
 ___ _________________________ ________________________ __________ ___________
 {'conv1_relu_conv1_Weights' } {'relu_conv1' } "Weights" -0.91985 0.88489
 {'conv1_relu_conv1_Bias' } {'relu_conv1' } "Bias" -0.07925 0.26343
```

1-381
Use the `validate` function to quantize the learnable parameters in the convolution layers of the network and exercise the network. The function uses the metric function defined in the `dlquantizationOptions` object to compare the results of the network before and after quantization.

```matlab
valResults = validate(quantObj, aug_valData, quantOpts)
```

```matlab
defstruct('NumSamples', 20, 'MetricResults', [1x1 struct])
```

Examine the `MetricResults.Result` field of the validation output to see the performance of the quantized network.

```matlab
valResults.MetricResults.Result
```

```matlab
ans =
 2x3 table
 NetworkImplementation MetricOutput LearnableParameterMemory(bytes)
 _________________ _________________ _______________________________
 {'Floating-Point'} 1 2.9003e+06
 {'Quantized' } 1 7.3393e+05
```

In this example, the memory required for the network was reduced approximately 75% through quantization. The accuracy of the network is not affected.

The weights, biases, and activations of the convolution layers of the network specified in the `dlquantizer` object now use scaled 8-bit integer data types.

### Quantize a Neural Network for FPGA Execution Environment

This example shows how to quantize learnable parameters in the convolution layers of a neural network, and explore the behavior of the quantized network. In this example, you quantize the LogoNet neural network. Quantization helps reduce the memory requirement of a deep neural network by quantizing weights, biases and activations of network layers to 8-bit scaled integer data types. Use MATLAB® to retrieve the prediction results from the target device.

To run this example, you need the products listed under FPGA in “Quantization Workflow Prerequisites”.

For additional requirements, see “Quantization Workflow Prerequisites”.

---

1 Deep Learning Functions
Create a file in your current working directory called `getLogoNetwork.m`. Enter these lines into the file:

```matlab
function net = getLogoNetwork()
 data = getLogoData();
 net = data.convnet;
end
function data = getLogoData()
 if ~isfile('LogoNet.mat')
 url = 'https://www.mathworks.com/supportfiles/gpucoder/cnn_models/logo_detection/LogoNet.mat';
 websave('LogoNet.mat',url);
 end
 data = load('LogoNet.mat');
end
```

Load the pretrained network.

```matlab
snet = getLogoNetwork();
```

Define calibration and validation data to use for quantization.

The calibration data is used to collect the dynamic ranges of the weights and biases in the convolution and fully connected layers of the network and the dynamic ranges of the activations in all layers of the network. For the best quantization results, the calibration data must be representative of inputs to the network.

The validation data is used to test the network after quantization to understand the effects of the limited range and precision of the quantized convolution layers in the network.

This example uses the images in the `logos_dataset` data set. Define an `augmentedImageDatastore` object to resize the data for the network. Then, split the data into calibration and validation data sets.

```matlab
curDir = pwd;
newDir = fullfile(matlabroot,'examples','deeplearning_shared','data','logos_dataset.zip');
copyfile(newDir,curDir);
unzip('logos_dataset.zip');
imageData = imageDatastore(fullfile(curDir,'logos_dataset'),...
 'IncludeSubfolders',true,'FileExtensions','.JPG','LabelSource','foldernames');
[calibrationData, validationData] = splitEachLabel(imageData, 0.5,'randomized');
```

Create a `dlquantizer` object and specify the network to quantize.

```matlab
dlQuantObj = dlquantizer(snet,'ExecutionEnvironment','FPGA');
```

Use the `calibrate` function to exercise the network with sample inputs and collect range information. The `calibrate` function exercises the network and collects the dynamic ranges of the weights and biases in the convolution and fully connected layers of the network and the dynamic ranges of the activations in all layers of the network. The function returns a table. Each row of the table contains range information for a learnable parameter of the optimized network.

```matlab
dlQuantObj.calibrate(calibrationData)
an5 = dlquantizer
Create a target object with a custom name for your target device and an interface to connect your target device to the host computer. Interface options are JTAG and Ethernet. To create the target object, enter:

```matlab
hTarget = dlhdl.Target('Intel', 'Interface', 'JTAG');
```

Define a metric function to use to compare the behavior of the network before and after quantization. Save this function in a local file.

```matlab
function accuracy = hComputeAccuracy(predictionScores, net, dataStore)
    % hComputeAccuracy test helper function computes model level accuracy statistics
    % Copyright 2020 The MathWorks, Inc.
    % Load ground truth
    groundTruth = dataStore.Labels;
    % Compare with predicted label with actual ground truth
    predictionError = {}; for idx=1:numel(groundTruth)
        [~, idy] = max(predictionScores(idx, :));
        yActual = net.Layers(end).Classes(idy);
        predictionError{end+1} = (yActual == groundTruth(idx)); %#ok
    end
    % Sum all prediction errors.
    predictionError = [predictionError{:}];
    accuracy = sum(predictionError)/numel(predictionError);
end
```

Specify the metric function in a `dlquantizationOptions` object.

```matlab
options = dlquantizationOptions('MetricFcn', ...
    @(x)hComputeModelAccuracy(x, snet, validationData), 'Bitstream', 'arria10soc_int8', ...
    'Target', hTarget);
```

To compile and deploy the quantized network, run the `validate` function of the `dlquantizer` object. Use the `validate` function to quantize the learnable parameters in the convolution layers of the network and exercise the network. This function uses the output of the compile function to program the FPGA board by using the programming file. It also downloads the network weights and biases. The deploy function checks for the Intel Quartus tool and the supported tool version. It then starts programming the FPGA device by using the sof file, displays progress messages, and the time it takes to deploy the network. The function uses the metric function defined in the `dlquantizationOptions` object to compare the results of the network before and after quantization.

```matlab
prediction = dlQuantObj.validate(validationData, options);
```

<table>
<thead>
<tr>
<th>offset_name</th>
<th>offset_address</th>
<th>allocated_space</th>
</tr>
</thead>
<tbody>
<tr>
<td>InputDataOffset</td>
<td>0x00000000</td>
<td>48.0 MB</td>
</tr>
</tbody>
</table>
Programming FPGA Bitstream using JTAG...
Programming the FPGA bitstream has been completed successfully.
Loading weights to Conv Processor.
Conv Weights loaded. Current time is 16-Jul-2020 12:45:10
Loading weights to FC Processor.
FC Weights loaded. Current time is 16-Jul-2020 12:45:26
Finished writing input activations.
Running single input activations.

<table>
<thead>
<tr>
<th>Deep Learning Processor Profiler Performance Results</th>
<th>FramesNum</th>
<th>Total Latency</th>
<th>Frames/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>FramesNum</td>
<td>Total Latency</td>
<td>Frames/s</td>
</tr>
<tr>
<td>Network</td>
<td>30</td>
<td>380609145</td>
<td>11.8</td>
</tr>
<tr>
<td>conv_module</td>
<td>113570959</td>
<td>0.09047</td>
<td></td>
</tr>
<tr>
<td>conv_1</td>
<td>3938907</td>
<td>0.02626</td>
<td></td>
</tr>
<tr>
<td>maxpool_1</td>
<td>1544554</td>
<td>0.01030</td>
<td></td>
</tr>
<tr>
<td>conv_2</td>
<td>2910954</td>
<td>0.01941</td>
<td></td>
</tr>
<tr>
<td>maxpool_2</td>
<td>577524</td>
<td>0.00385</td>
<td></td>
</tr>
<tr>
<td>conv_3</td>
<td>2552707</td>
<td>0.01702</td>
<td></td>
</tr>
<tr>
<td>maxpool_3</td>
<td>676542</td>
<td>0.00451</td>
<td></td>
</tr>
<tr>
<td>conv_4</td>
<td>455343</td>
<td>0.00304</td>
<td></td>
</tr>
<tr>
<td>maxpool_4</td>
<td>11251</td>
<td>0.00008</td>
<td></td>
</tr>
<tr>
<td>fc_module</td>
<td>903173</td>
<td>0.00602</td>
<td></td>
</tr>
<tr>
<td>fc_1</td>
<td>536164</td>
<td>0.00357</td>
<td></td>
</tr>
<tr>
<td>fc_2</td>
<td>342643</td>
<td>0.00228</td>
<td></td>
</tr>
<tr>
<td>fc_3</td>
<td>24364</td>
<td>0.00016</td>
<td></td>
</tr>
<tr>
<td>* The clock frequency of the DL processor is: 150MHz</td>
<td>11.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Finished writing input activations.
Running single input activations.

<table>
<thead>
<tr>
<th>Deep Learning Processor Profiler Performance Results</th>
<th>FramesNum</th>
<th>Total Latency</th>
<th>Frames/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>FramesNum</td>
<td>Total Latency</td>
<td>Frames/s</td>
</tr>
<tr>
<td>Network</td>
<td>30</td>
<td>380612682</td>
<td>11.8</td>
</tr>
<tr>
<td>conv_module</td>
<td>12667103</td>
<td>0.08445</td>
<td></td>
</tr>
<tr>
<td>conv_1</td>
<td>3939296</td>
<td>0.02626</td>
<td></td>
</tr>
<tr>
<td>maxpool_1</td>
<td>1544371</td>
<td>0.01030</td>
<td></td>
</tr>
<tr>
<td>conv_2</td>
<td>2910747</td>
<td>0.01940</td>
<td></td>
</tr>
<tr>
<td>maxpool_2</td>
<td>577654</td>
<td>0.00385</td>
<td></td>
</tr>
<tr>
<td>conv_3</td>
<td>2551829</td>
<td>0.01701</td>
<td></td>
</tr>
<tr>
<td>maxpool_3</td>
<td>676548</td>
<td>0.00451</td>
<td></td>
</tr>
<tr>
<td>conv_4</td>
<td>455396</td>
<td>0.00304</td>
<td></td>
</tr>
<tr>
<td>maxpool_4</td>
<td>11355</td>
<td>0.00008</td>
<td></td>
</tr>
<tr>
<td>fc_module</td>
<td>903261</td>
<td>0.00602</td>
<td></td>
</tr>
<tr>
<td>fc_1</td>
<td>536206</td>
<td>0.00357</td>
<td></td>
</tr>
<tr>
<td>fc_2</td>
<td>342688</td>
<td>0.00228</td>
<td></td>
</tr>
<tr>
<td>fc_3</td>
<td>24365</td>
<td>0.00016</td>
<td></td>
</tr>
<tr>
<td>* The clock frequency of the DL processor is: 150MHz</td>
<td>11.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Finished writing input activations.
Running single input activations.

<table>
<thead>
<tr>
<th>Deep Learning Processor Profiler Performance Results</th>
<th>FramesNum</th>
<th>Total Latency</th>
<th>Frames/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>FramesNum</td>
<td>Total Latency</td>
<td>Frames/s</td>
</tr>
<tr>
<td>Network</td>
<td>30</td>
<td>380608338</td>
<td>11.8</td>
</tr>
<tr>
<td>conv_module</td>
<td>12668340</td>
<td>0.08446</td>
<td></td>
</tr>
<tr>
<td>conv_1</td>
<td>3939070</td>
<td>0.02626</td>
<td></td>
</tr>
<tr>
<td>maxpool_1</td>
<td>1545327</td>
<td>0.01030</td>
<td></td>
</tr>
<tr>
<td>conv_2</td>
<td>2911861</td>
<td>0.01941</td>
<td></td>
</tr>
<tr>
<td>maxpool_2</td>
<td>577557</td>
<td>0.00385</td>
<td></td>
</tr>
<tr>
<td>conv_3</td>
<td>2552802</td>
<td>0.01701</td>
<td></td>
</tr>
<tr>
<td>maxpool_3</td>
<td>676506</td>
<td>0.00451</td>
<td></td>
</tr>
<tr>
<td>conv_4</td>
<td>455582</td>
<td>0.00304</td>
<td></td>
</tr>
<tr>
<td>maxpool_4</td>
<td>11248</td>
<td>0.00007</td>
<td></td>
</tr>
<tr>
<td>* The clock frequency of the DL processor is: 150MHz</td>
<td>11.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Deep Learning Processor Profiler Performance Results

<table>
<thead>
<tr>
<th>Network</th>
<th>LastLayerLatency(cycles)</th>
<th>LastLayerLatency(seconds)</th>
<th>FramesNum</th>
<th>Total Latency</th>
<th>Frames/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>13570823</td>
<td>0.09047</td>
<td>30</td>
<td>380619836</td>
<td>11.8</td>
</tr>
<tr>
<td>conv_module</td>
<td>12667607</td>
<td>0.08445</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_1</td>
<td>3939074</td>
<td>0.02626</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_1</td>
<td>1544519</td>
<td>0.01030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_2</td>
<td>2910636</td>
<td>0.01940</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_2</td>
<td>577790</td>
<td>0.00385</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_3</td>
<td>2531809</td>
<td>0.01703</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_3</td>
<td>676795</td>
<td>0.00451</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_4</td>
<td>455059</td>
<td>0.00304</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_4</td>
<td>11248</td>
<td>0.00007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_module</td>
<td>903216</td>
<td>0.00602</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_1</td>
<td>536050</td>
<td>0.00357</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_2</td>
<td>342645</td>
<td>0.00228</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_3</td>
<td>24409</td>
<td>0.00016</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The clock frequency of the DL processor is: 150MHz

FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.

Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.

Finished writing input activations.

Running single input activations.

Deep Learning Processor Profiler Performance Results

<table>
<thead>
<tr>
<th>Network</th>
<th>LastLayerLatency(cycles)</th>
<th>LastLayerLatency(seconds)</th>
<th>FramesNum</th>
<th>Total Latency</th>
<th>Frames/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>11372329</td>
<td>0.09047</td>
<td>10</td>
<td>127265075</td>
<td>11.8</td>
</tr>
<tr>
<td>conv_module</td>
<td>12669135</td>
<td>0.08446</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_1</td>
<td>3939559</td>
<td>0.02626</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Deep Learning Processor Profiler Performance Results

<table>
<thead>
<tr>
<th>Network</th>
<th>LastLayerLatency(cycles)</th>
<th>LastLayerLatency(seconds)</th>
<th>FramesNum</th>
<th>Total Latency</th>
<th>Frames/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>13572527</td>
<td>0.09048</td>
<td>10</td>
<td>127266427</td>
<td>11.8</td>
</tr>
<tr>
<td>conv_module</td>
<td>12669266</td>
<td>0.08446</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_1</td>
<td>3939776</td>
<td>0.02627</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_1</td>
<td>1545632</td>
<td>0.01030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_2</td>
<td>2911169</td>
<td>0.01941</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_2</td>
<td>577592</td>
<td>0.00385</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_3</td>
<td>2551613</td>
<td>0.01701</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_3</td>
<td>676811</td>
<td>0.00451</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_4</td>
<td>455418</td>
<td>0.00304</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_4</td>
<td>11348</td>
<td>0.00008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_module</td>
<td>903261</td>
<td>0.00602</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_1</td>
<td>536205</td>
<td>0.00357</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_2</td>
<td>342689</td>
<td>0.00228</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_3</td>
<td>24365</td>
<td>0.00016</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The clock frequency of the DL processor is: 150MHz

Finished writing input activations.
Running single input activations.

Examine the **MetricResults.Result** field of the validation output to see the performance of the quantized network.

```matlab
validateOut = prediction.MetricResults.Result
```

```matlab
ans =
    NetworkImplementation    MetricOutput
    _______________________    ____________
    'Floating-Point'            0.9875
    'Quantized'                 0.9875
```

Examine the **QuantizedNetworkFPS** field of the validation output to see the frames per second performance of the quantized network.

```matlab
prediction.QuantizedNetworkFPS
```

```matlab
ans = 11.8126
```

The weights, biases, and activations of the convolution layers of the network specified in the **dlquantizer** object now use scaled 8-bit integer data types.

See Also

- **Apps**
 - Deep Network Quantizer

- **Functions**
 - `calibrate`
 - `dlquantizationOptions`
 - `validate`
Topics
“Quantization of Deep Neural Networks”

Introduced in R2020a
dlupdate

Update parameters using custom function

Syntax

dlnet = dlupdate(fun,dlnet)
params = dlupdate(fun,params)
[___] = dlupdate(fun,___A1,...,An)
[___,X1,...,Xm] = dlupdate(fun,___)

Description

dlnet = dlupdate(fun,dlnet) updates the learnable parameters of the dlnetwork object
dlnet by evaluating the function fun with each learnable parameter as an input. fun is a function
handle to a function that takes one parameter array as an input argument and returns an updated
parameter array.

params = dlupdate(fun,params) updates the learnable parameters in params by evaluating the
function fun with each learnable parameter as an input.

[___] = dlupdate(fun,___A1,...,An) also specifies additional input arguments, in addition
to the input arguments in previous syntaxes, when fun is a function handle to a function that
requires n+1 input values.

[___,X1,...,Xm] = dlupdate(fun,___) returns multiple outputs X1,...,Xm when fun is a
function handle to a function that returns m+1 output values.

Examples

L1 Regularization with dlupdate

Perform L1 regularization on a structure of parameter gradients.

Create the sample input data.

dlX = dlarray(rand(100,100,3),'SSC');

Initialize the learnable parameters for the convolution operation.

params.Weights = dlarray(rand(10,10,3,50));
params.Bias = dlarray(rand(50,1));

Calculate the gradients for the convolution operation using the helper function convGradients,
defined at the end of this example.

gradients = dlfeval(@convGradients,dlX,params);

Define the regularization factor.

L1Factor = 0.001;
Create an anonymous function that regularizes the gradients. By using an anonymous function to pass a scalar constant to the function, you can avoid having to expand the constant value to the same size and structure as the parameter variable.

\[
L1Regularizer = @(grad, param) \text{grad} + L1Factor.*\text{sign}(\text{param});
\]

Use `dlupdate` to apply the regularization function to each of the gradients.

\[
gradients = \text{dlupdate}(L1Regularizer, gradients, params);
\]

The gradients in `grads` are now regularized according to the function `L1Regularizer`.

convGradients Function

The `convGradients` helper function takes the learnable parameters of the convolution operation and a mini-batch of input data `dlX`, and returns the gradients with respect to the learnable parameters.

```matlab
function gradients = convGradients(dlX, params)
dlY = dlconv(dlX, params.Weights, params.Bias);
dlY = sum(dlY, 'all');
gradients = dlgradient(dlY, params);
end
```

Use `dlupdate` to Train Network Using Custom Update Function

Use `dlupdate` to train a network using a custom update function that implements the stochastic gradient descent algorithm (without momentum).

Load Training Data

Load the digits training data.

```matlab
[XTrain, YTrain] = digitTrain4DArrayData;
classes = categories(YTrain);
umClasses = numel(classes);
```

Define the Network

Define the network architecture and specify the average image value using the `'Mean'` option in the image input layer.

```matlab
layers = [
    imageInputLayer([28 28 1], 'Name', 'input', 'Mean', mean(XTrain, 4))
    convolution2dLayer(5, 20, 'Name', 'conv1')
    reluLayer('Name', 'relu1')
    convolution2dLayer(3, 20, 'Padding', 1, 'Name', 'conv2')
    reluLayer('Name', 'relu2')
    convolution2dLayer(3, 20, 'Padding', 1, 'Name', 'conv3')
    reluLayer('Name', 'relu3')
    fullyConnectedLayer(numClasses, 'Name', 'fc')
    softmaxLayer('Name', 'softmax')
];
lgraph = layerGraph(layers);
dlnet = dlnetwork(lgraph);
```
Define Model Gradients Function

Create the helper function `modelGradients`, listed at the end of this example. The function takes a `dlnetwork` object `dlnet` and a mini-batch of input data `dlX` with corresponding labels `Y`, and returns the loss and the gradients of the loss with respect to the learnable parameters in `dlnet`.

Define Stochastic Gradient Descent Function

Create the helper function `sgdFunction`, listed at the end of this example. The function takes `param` and `paramGradient`, a learnable parameter and the gradient of the loss with respect to that parameter, respectively, and returns the updated parameter using the stochastic gradient descent algorithm, expressed as

$$ \theta_{l+1} = \theta - \alpha \nabla E(\theta) $$

where l is the iteration number; $\alpha > 0$ is the learning rate, θ is the parameter vector, and $E(\theta)$ is the loss function.

Specify Training Options

Specify the options to use during training.

```matlab
miniBatchSize = 128;
numEpochs = 30;
numObservations = numel(YTrain);
numIterationsPerEpoch = floor(numObservations./miniBatchSize);
learnRate = 0.01;
```

Train on a GPU, if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA® enabled NVIDIA® GPU with compute capability 3.0 or higher.

```matlab
executionEnvironment = "auto";
```

Visualize the training progress in a plot.

```matlab
plots = "training-progress";
```

Train Network

Train the model using a custom training loop. For each epoch, shuffle the data and loop over mini-batches of data. Update the network parameters by calling `dlupdate` with the function `sgdFunction` defined at the end of this example. At the end of each epoch, display the training progress.

Initialize the training progress plot.

```matlab
if plots == "training-progress"
    figure
    lineLossTrain = animatedline('Color',[0.85 0.325 0.098]);
    ylim([0 inf])
    xlabel("Iteration")
    ylabel("Loss")
    grid on
end
```
Train the network.

iteration = 0;
start = tic;

for epoch = 1:numEpochs
 % Shuffle data.
 idx = randperm(numel(YTrain));
 XTrain = XTrain(:, :, :, idx);
 YTrain = YTrain(idx);

 for i = 1:numIterationsPerEpoch
 iteration = iteration + 1;
 % Read mini-batch of data and convert the labels to dummy variables.
 idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
 X = XTrain(:, :, :, idx);
 Y = zeros(numClasses, miniBatchSize, 'single');
 for c = 1:numClasses
 Y(c,YTrain(idx)==classes(c)) = 1;
 end

 % Convert mini-batch of data to dlarray.
 dlX = dlarray(single(X), 'SSCB');

 % If training on a GPU, then convert data to a gpuArray.
 if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
 dlX = gpuArray(dlX);
 end

 % Evaluate the model gradients and loss using dlfeval and the modelGradients helper function.
 [gradients,loss] = dlfeval(@modelGradients,dlnet,dlX,Y);

 % Update the network parameters using the SGD algorithm defined in the sgdFunction helper function.
 updateFcn = @(dlnet,gradients) sgdFunction(dlnet,gradients,learnRate);
 dlnet = dlupdate(updateFcn,dlnet,gradients);

 % Display the training progress.
 if plots == "training-progress"
 D = duration(0,0,toc(start),'Format','hh:mm:ss');
 addpoints(lineLossTrain,iteration,double(gather(extractdata(loss))))
 title("Epoch: " + epoch + ", Elapsed: " + string(D))
 drawnow
 end
 end
end
Test Network

Test the classification accuracy of the model by comparing the predictions on a test set with the true labels.

\[
[X_{\text{Test}}, \ Y_{\text{Test}}] = \text{digitTest4DArrayData};
\]

Convert the data to a \texttt{dlarray} with the dimension format 'SSCB'. For GPU prediction, also convert the data to a \texttt{gpuArray}.

\[
dlX_{\text{Test}} = \text{dlarray} (X_{\text{Test}}, 'SSCB');
\]

\[
\text{if} \ (\text{executionEnvironment} == \ "auto" \ & \ & \text{canUseGPU}) \ || \ \text{executionEnvironment} == \ "gpu"
\]
\[
dlX_{\text{Test}} = \text{gpuArray}(dlX_{\text{Test}});
\]

end

To classify images using a \texttt{dlnetwork} object, use the \texttt{predict} function and find the classes with the highest scores.

\[
dlY_{\text{Pred}} = \text{predict}(dl\text{net},dlX_{\text{Test}});
\]

\[
[\cdot, \idx] = \max(\text{extractdata}(dlY_{\text{Pred}}),[],1);
\]

\[
Y_{\text{Pred}} = \text{classes}(\idx);
\]

Evaluate the classification accuracy.

\[
\text{accuracy} = \text{mean}(Y_{\text{Pred}} == Y_{\text{Test}})
\]

\[
\text{accuracy} = 0.9386
\]
Model Gradients Function

The helper function `modelGradients` takes a `dlnetwork` object `dlnet` and a mini-batch of input data `dlX` with corresponding labels `Y`, and returns the loss and the gradients of the loss with respect to the learnable parameters in `dlnet`. To compute the gradients automatically, use the `dlgradient` function.

```matlab
function [gradients,loss] = modelGradients(dlnet,dlX,Y)
dlYPred = forward(dlnet,dlX);
loss = crossentropy(dlYPred,Y);
gradients = dlgradient(loss,dlnet.Learnables);
end
```

Stochastic Gradient Descent Function

The helper function `sgdFunction` takes the learnable parameter `parameter`, the gradients of that parameter with respect to the loss `gradient`, and the learning rate `learnRate`, and returns the updated parameter using the stochastic gradient descent algorithm, expressed as

\[
\theta_{l+1} = \theta - \alpha \nabla E(\theta)
\]

where \(l\) is the iteration number, \(\alpha > 0\) is the learning rate, \(\theta\) is the parameter vector, and \(E(\theta)\) is the loss function.

```matlab
function parameter = sgdFunction(parameter,gradient,learnRate)
parameter = parameter - learnRate .* gradient;
end
```

Input Arguments

- **fun** — Function to apply
doUpdate evaluates `fun` with each network learnable parameter as an input. `fun` is evaluated as many times as there are arrays of learnable parameters in `dlnet` or `params`.

- **dlnet** — Network
doNetwork object

The function updates the `dlnet.Learnables` property of the `dlnetwork` object. `dlnet.Learnables` is a table with three variables:
 - **Layer** — Layer name, specified as a string scalar.
 - **Parameter** — Parameter name, specified as a string scalar.
• Value — Value of parameter, specified as a cell array containing a dlarray.

params — Network learnable parameters

dlarray | numeric array | cell array | structure | table

Network learnable parameters, specified as a dlarray, a numeric array, a cell array, a structure, or a table.

If you specify params as a table, it must contain the following three variables.

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Value of parameter, specified as a cell array containing a dlarray.

You can specify params as a container of learnable parameters for your network using a cell array, structure, or table, or nested cell arrays or structures. The learnable parameters inside the cell array, structure, or table must be dlarray or numeric values of data type double or single.

The input argument grad must be provided with exactly the same data type, ordering, and fields (for structures) or variables (for tables) as params.

Data Types: single | double | struct | table | cell

A1,...,An — Additional input arguments

dlarray | numeric array | cell array | structure | table

Additional input arguments to fun, specified as dlarray objects, numeric arrays, cell arrays, structures, or tables with a Value variable.

The exact form of A1,...,An depends on the input network or learnable parameters. The following table shows the required format for A1,...,An for possible inputs to dlupdate.

<table>
<thead>
<tr>
<th>Input</th>
<th>Learnable Parameters</th>
<th>A1,...,An</th>
</tr>
</thead>
<tbody>
<tr>
<td>dlnet</td>
<td>Table dlnet.Learnables containing Layer, Parameter, and Value variables. The Value variable consists of cell arrays that contain each learnable parameter as a dlarray.</td>
<td>Table with the same data type, variables, and ordering as dlnet.Learnables. A1,...,An must have a Value variable consisting of cell arrays that contain the additional input arguments for the function fun to apply to each learnable parameter.</td>
</tr>
<tr>
<td>params</td>
<td>dlarray</td>
<td>dlarray with the same data type and ordering as params</td>
</tr>
<tr>
<td></td>
<td>Numeric array</td>
<td>Numeric array with the same data type and ordering as params</td>
</tr>
<tr>
<td></td>
<td>Cell array</td>
<td>Cell array with the same data types, structure, and ordering as params</td>
</tr>
<tr>
<td>Input</td>
<td>Learnable Parameters</td>
<td>A1, ..., An</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>Structure with the same data types, fields, and ordering as params</td>
</tr>
<tr>
<td></td>
<td>Table with Layer, Parameter, and Value variables. The Value variable must consist of cell arrays that contain each learnable parameter as a dlarray.</td>
<td>Table with the same data types, variables and ordering as params. A1,...,An must have a Value variable consisting of cell arrays that contain the additional input argument for the function fun to apply to each learnable parameter.</td>
</tr>
</tbody>
</table>

Output Arguments

dlnet — Updated network

dlnetwork object

Network, returned as a dlnetwork object.

The function updates the dlnet.Learnables property of the dlnetwork object.

params — Updated network learnable parameters

dlarray | numeric array | cell array | structure | table

Updated network learnable parameters, returned as a dlarray, a numeric array, a cell array, a structure, or a table with a Value variable containing the updated learnable parameters of the network.

X1, ..., Xm — Additional output arguments

dlarray | numeric array | cell array | structure | table

Additional output arguments from the function fun, where fun is a function handle to a function that returns multiple outputs, returned as dlarray objects, numeric arrays, cell arrays, structures, or tables with a Value variable.

The exact form of X1,...,Xm depends on the input network or learnable parameters. The following table shows the returned format of X1,...,Xm for possible inputs to dlupdate.

<table>
<thead>
<tr>
<th>Input</th>
<th>Learnable parameters</th>
<th>X1,...,Xm</th>
</tr>
</thead>
<tbody>
<tr>
<td>dlnet</td>
<td>Table dlnet.Learnables containing Layer, Parameter, and Value variables. The Value variable consists of cell arrays that contain each learnable parameter as a dlarray.</td>
<td>Table with the same data type, variables, and ordering as dlnet.Learnables. X1,...,Xm has a Value variable consisting of cell arrays that contain the additional output arguments of the function fun applied to each learnable parameter.</td>
</tr>
<tr>
<td>Input</td>
<td>Learnable parameters</td>
<td>X₁,...,Xₘ</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>params</td>
<td>dlarray</td>
<td>dlarray with the same data type and ordering as params</td>
</tr>
<tr>
<td>Numeric array</td>
<td>Numeric array with the same data type and ordering as params</td>
<td></td>
</tr>
<tr>
<td>Cell array</td>
<td>Cell array with the same data types, structure, and ordering as params</td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td>Structure with the same data types, fields, and ordering as params</td>
<td></td>
</tr>
<tr>
<td>Table with Layer, Parameter, and Value variables.</td>
<td>Table with the same data types, variables, and ordering as params. X₁,...,Xₘ has a Value variable consisting of cell arrays that contain the additional output argument of the function fun applied to each learnable parameter.</td>
<td></td>
</tr>
</tbody>
</table>

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

- When at least one of the following input arguments is a gpuArray or a dlarray with underlying data of type gpuArray, this function runs on the GPU.
 - params
 - A₁,...,Aₙ

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
adamupdate | dlarray | dleval | dlgradient | dlnetwork | rmspropupdate | sgdupdate

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Specify Training Options in Custom Training Loop”
“Train Network Using Custom Training Loop”
“Sequence-to-Sequence Translation Using Attention”
“Sequence-to-Sequence Classification Using 1-D Convolutions”

Introduced in R2019b
dltranspconv

Deep learning transposed convolution

Syntax

\[
dlY = \text{dltranspconv}(dlX,\text{weights},\text{bias})
\]

\[
dlY = \text{dltranspconv}(dlX,\text{weights},\text{bias},'\text{DataFormat}',\text{FMT})
\]

\[
dlY = \text{dltranspconv}(\text{___Name},\text{Value})
\]

Description

The transposed convolution operation upsamples feature maps.

Note This function applies the deep learning transposed convolution operation to dlarray data. If you want to apply transposed convolution within a layerGraph object or Layer array, use one of the following layers:

- transposedConv2dLayer
- transposedConv3dLayer

\[
dlY = \text{dltranspconv}(dlX,\text{weights},\text{bias})
\]

computes the deep learning transposed convolution of the input dlX using the filters defined by weights, and adds a constant bias. The input dlX is a formatted dlarray with dimension labels. Transposed convolution acts on dimensions that you specify as 'S' and 'C' dimensions. The output dlY is a formatted dlarray with the same dimension labels as dlX.

\[
dlY = \text{dltranspconv}(dlX,\text{weights},\text{bias},'\text{DataFormat}',\text{FMT})
\]

also specifies the dimension format FMT when dlX is not a formatted dlarray. The output dlY is an unformatted dlarray with the same dimension order as dlX.

\[
dlY = \text{dltranspconv}(\text{___Name},\text{Value})
\]

specifies options using one or more name-value pair arguments in addition to the input arguments in previous syntaxes. For example, 'Stride',3 sets the stride of the convolution operation.

Examples

Upsample Image Using Transposed Convolution

Convolve an image and then use transposed convolution to resize the convolved image to the same size as the original image.

Import the image data and convert it to a dlarray.

\[
X = \text{imread}('\text{sherlock.jpg}')
\]

\[
dlX = \text{dlarray}(\text{single}(X),'\text{SSC}')
\]

Display the image.
Initialize the convolutional filters and bias term. Specify an ungrouped convolution that applies a single filter to all three channels of the input data.

```matlab
filterHeight = 10;
filterWidth = 10;
numChannelsPerGroup = 3;
numFiltersPerGroup = 1;
numGroups = 1;
weights = rand(filterHeight,filterWidth,numChannelsPerGroup,numFiltersPerGroup,numGroups);
bias = rand(numFiltersPerGroup*numGroups,1);
```

Perform the convolution. Use a 'Stride' value of 2 and a 'DilationFactor' value of 2.

```matlab
dlY = dlconv(dlX,weights,bias,'Stride',2,'DilationFactor',3);
```

Display the convolved image.

```matlab
Y = extractdata(dlY);
imshow(rescale(Y))
```
Initialize the transposed convolutional filters and bias. Specify an ungrouped transposed convolution that applies three filters to the input. Use the same filter height and filter width as for the convolution operation.

\[
\text{numChannelsPerGroupTC} = 1; \\
\text{numFiltersPerGroupTC} = 3;
\]

\[
\text{weightsTC} = \text{rand(filterHeight,filterWidth,numFiltersPerGroupTC,numChannelsPerGroupTC,numGroups)}; \\
\text{biasTC} = \text{rand(numFiltersPerGroupTC*numGroups,1)};
\]

Perform the transposed convolution. Use the same stride and dilation factor as for the convolution operation.

\[
\text{dlZ} = \text{dltranspconv(dlY,weightsTC,biasTC,'Stride',2,'DilationFactor',3)};
\]

Display the image after the transposed convolution.

\[
\text{Z} = \text{extractdata(dlZ)}; \\
\text{imshow(rescale(Z))}
\]
Compare the size of the original image, the convolved image, and the image after the transposed convolution.

```matlab
sizeX = size(X)
sizeX = 1x3
     640   960     3

sizeY = size(Y)
sizeY = 1x2
     307   467

sizeZ = size(Z)
sizeZ = 1x3
     640   960     3
```

The transposed convolution upsamples the convolved data to the size of the original input data.
Perform Grouped Transposed Convolution

Apply transposed convolution to the input data in three groups of two channels each. Apply four filters per group.

Create the input data as ten observations of size 100-by-100 with six channels.

```matlab
height = 100;
width = 100;
channels = 6;
numObservations = 10;

X = rand(height,width,channels,numObservations);
dlX = dlarray(X,'SSCB');
```

Initialize the filters for the transposed convolution operation. Specify three groups of transposed convolutions that each apply four filters to two channels of the input data.

```matlab
filterHeight = 8;
filterWidth = 8;
umChannelsPerGroup = 2;
umFiltersPerGroup = 4;
numGroups = 3;

weights = rand(filterHeight,filterWidth,numFiltersPerGroup,numChannelsPerGroup,numGroups);
```

Initialize the bias term.

```matlab
bias = rand(numFiltersPerGroup*numGroups,1);
```

Perform the transposed convolution.

```matlab
dlY = dltranspconv(dlX,weights,bias);
size(dlY)
ans = 1×4
    107   107    12    10

dims(dlY)
ans =
    'SSCB'
```

The 12 channels of the convolution output represent the three groups of transposed convolutions with four filters per group.

Input Arguments

- **dlX** — Input data
dlarray | numeric array
Input data, specified as a `dlarray` with or without dimension labels or a numeric array. When `dlX` is not a formatted `dlarray`, you must specify the dimension label format using `DataFormat`, `FMT`. If `dlX` is a numeric array, at least one of `weights` or `bias` must be a `dlarray`.

Convolution acts on dimensions that you specify as spatial dimensions using the `'S'` dimension label. You can specify up to three dimensions in `dlX` as `'S'` dimensions.

Data Types: `single` | `double`

weights — Filters
`dlarray` | numeric array

Filters, specified as a `dlarray` with or without labels or a numeric array. The `weights` argument specifies the size and values of the filters, as well as the number of filters and the number of groups for grouped transposed convolutions.

- **filterSize** — Size of the convolutional filters. `filterSize` can have up to three dimensions, depending on the number of spatial dimensions in the input data.

<table>
<thead>
<tr>
<th>Input Data <code>'S'</code> Dimensions</th>
<th>filterSize</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-D</td>
<td><code>h</code>, where <code>h</code> corresponds to the height of the filter</td>
</tr>
<tr>
<td>2-D</td>
<td><code>h</code>-by-<code>w</code>, where <code>h</code> and <code>w</code> correspond to the height and width of the filter, respectively</td>
</tr>
<tr>
<td>3-D</td>
<td><code>h</code>-by-<code>w</code>-by-<code>d</code>, where <code>h</code>, <code>w</code>, and <code>d</code> correspond to the height, width, and depth of the filter, respectively</td>
</tr>
</tbody>
</table>

- **numFiltersPerGroup** — Number of filters to apply within each group.
- **numChannelsPerGroup** — Number of channels within each group for grouped transposed convolutions. `numChannelsPerGroup` must equal the number of channels in the input data divided by `numGroups`, the number of groups. For ungrouped convolutions, where `numGroups = 1`, `numChannelsPerGroup` must equal the number of channels in the input data.
- **numGroups** — Number of groups (optional). When `numGroups > 1`, the function performs grouped transposed convolutions. When `numGroups = 1`, the function performs ungrouped transposed convolutions; in this case, this dimension is singleton and can be omitted.

If `weights` is a formatted `dlarray`, it can have multiple spatial dimensions labeled `'S'`, one channel dimension labeled `'C'`, and up to two other dimensions labeled `'U'`. The number of `'S'` dimensions must match the number of `'S'` dimensions of the input data. The labeled dimensions correspond to the filter specifications as follows.

<table>
<thead>
<tr>
<th>Filter Specification</th>
<th>Dimension Labels</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>filterSize</code></td>
<td>Up to three <code>'S'</code> dimensions</td>
</tr>
<tr>
<td><code>numFiltersPerGroup</code></td>
<td><code>'C'</code> dimension</td>
</tr>
<tr>
<td><code>numChannelsPerGroup</code></td>
<td>First <code>'U'</code> dimension</td>
</tr>
<tr>
<td><code>numGroups</code> (optional)</td>
<td>Second <code>'U'</code> dimension</td>
</tr>
</tbody>
</table>

Data Types: `single` | `double`
bias — Bias constant
dlarray vector | dlarray scalar | numeric vector | numeric scalar

Bias constant, specified as a dlarray vector or dlarray scalar with or without labels, a numeric vector, or a numeric scalar.

- If `bias` is a scalar or has only singleton dimensions, the same bias is applied to each entry of the output.
- If `bias` has a nonsingleton dimension, each element of `bias` is the bias applied to the corresponding convolutional filter specified by `weights`. The number of elements of `bias` must match the number of filters specified by `weights`.

If `bias` is a formatted dlarray, the nonsingleton dimension must be a channel dimension labeled 'C'.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `'Stride'`, 2 sets the stride of each filter to 2.

DataFormat — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of 'DataFormat' and a character array or string `FMT` that provides a label for each dimension of the data. Each character in `FMT` must be one of the following:

- 'S' — Spatial
- 'C' — Channel
- 'B' — Batch (for example, samples and observations)
- 'T' — Time (for example, sequences)
- 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at most once.

You must specify 'DataFormat' when the input data `dlX` is not a formatted dlarray.

Example: `DataFormat`, 'SSCB'

Data Types: char | string

Stride — Step size for traversing input data
1 (default) | numeric scalar | numeric vector

Step size for traversing the input data, specified as the comma-separated pair consisting of 'Stride' and a numeric scalar or numeric vector. If you specify 'Stride' as a scalar, the same value is used for all spatial dimensions. If you specify 'Stride' as a vector of the same size as the number of spatial dimensions of the input data, the vector values are used for the corresponding spatial dimensions.
The default value of 'Stride' is 1.

Example: 'Stride',3
Data Types: single | double

DilationFactor — Filter dilation factor

1 (default) | numeric scalar | numeric vector

Filter dilation factor, specified as the comma-separated pair consisting of 'DilationFactor' and one of the following.

- Numeric scalar — The same dilation factor value is applied for all spatial dimensions.
- Numeric vector — A different dilation factor value is applied along each spatial dimension. Use a vector of size \(d\), where \(d\) is the number of spatial dimensions of the input data. The \(i\)th element of the vector specifies the dilation factor applied to the \(i\)th spatial dimension.

Use the dilation factor to increase the receptive field of the filter (the area of the input that the filter can see) on the input data. Using a dilation factor corresponds to an effective filter size of

\[
\text{filterSize} + (\text{filterSize}-1) \times (\text{dilationFactor}-1)
\]

Example: 'DilationFactor',2
Data Types: single | double

Cropping — Cropping applied to edges of data

0 (default) | 'same' | numeric scalar | numeric vector | numeric matrix

Cropping applied to edges of data, specified as the comma-separated pair consisting of 'Cropping' and one of the following.

- 'same' — Cropping is set so that the output size is the same as the input size when the stride is 1. More generally, the output size of each spatial dimension is \(\text{inputSize} \times \text{stride}\), where \(\text{inputSize}\) is the size of the input along a spatial dimension.
- Numeric scalar — The same cropping value is applied to both ends of all spatial dimensions.
- Numeric vector — A different cropping value is applied along each spatial dimension. Use a vector of size \(d\), where \(d\) is the number of spatial dimensions of the input data. The \(i\)th element of the vector specifies the cropping applied to the start and the end along the \(i\)th spatial dimension.
- Numeric matrix — A different cropping value is applied to the start and end of each spatial dimension. Use a matrix of size 2-by-\(d\), where \(d\) is the number of spatial dimensions of the input data. The element \((1,d)\) specifies the cropping applied to the start of spatial dimension \(d\). The element \((2,d)\) specifies the cropping applied to the end of spatial dimension \(d\). For example, in 2-D the format is [top, left; bottom, right].

Example: 'Cropping', 'same'
Data Types: single | double

Output Arguments

dlY — Feature map

dlarray

Feature map, returned as a dlarray. The output dlY has the same underlying data type as the input dlX.
If the input data \(\text{dlX} \) is a formatted \(\text{dlarray} \), \(\text{dlY} \) has the same dimension labels as \(\text{dlX} \). If the input data is not a formatted \(\text{dlarray} \), \(\text{dlY} \) is an unformatted \(\text{dlarray} \) or numeric array with the same dimension order as the input data.

The size of the ‘C’ channel dimension of \(\text{dlY} \) depends on the size of the weights input. The size of the ‘C’ dimension of output \(Y \) is the product of the size of the dimensions \(\text{numFiltersPerGroup} \) and \(\text{numGroups} \) in the weights argument. If \(\text{weights} \) is a formatted \(\text{dlarray} \), this product is the same as the product of the size of the ‘C’ dimension and the second ‘U’ dimension.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
- When at least one of the following input arguments is a \(\text{gpuArray} \) or a \(\text{dlarray} \) with underlying data of type \(\text{gpuArray} \), this function runs on the GPU.
 - \(\text{dlX} \)
 - \(\text{weights} \)
 - \(\text{bias} \)

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
\(\text{avgpool} \) | \(\text{dlarray} \) | \(\text{dlconv} \) | \(\text{dlfeval} \) | \(\text{dlgradient} \) | \(\text{maxpool} \) | \(\text{maxunpool} \)

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”

Introduced in R2019b
disconnectLayers

Disconnect layers in layer graph

Syntax

newlgraph = disconnectLayers(lgraph,s,d)

Description

newlgraph = disconnectLayers(lgraph,s,d) disconnects the source layer s from the destination layer d in the layer graph lgraph. The new layer graph, newlgraph, contains the same layers as lgraph, but excludes the connection between s and d.

Examples

Disconnect Layers in Layer Graph

Create a layer graph from an array of layers.

```matlab
layers = [imageInputLayer([28 28 1],'Name','input')
          convolution2dLayer(3,16,'Padding','same','Name','conv_1')
          batchNormalizationLayer('Name','BN_1')
          reluLayer('Name','relu_1')];

lgraph = layerGraph(layers);
figure
plot(lgraph)
```
Disconnect the 'conv_1' layer from the 'BN_1' layer.

\[
\text{lgraph} = \text{disconnectLayers(lgraph, 'conv_1', 'BN_1');}
\]
\[
\text{figure}
\]
\[
\text{plot(lgraph)}
\]
Input Arguments

lgraph — Layer graph
LayerGraph object

Layer graph, specified as a LayerGraph object. To create a layer graph, use layerGraph.

s — Connection source
character vector | string scalar

Connection source, specified as a character vector or a string scalar:

- If the source layer has a single output, then s is the name of the layer.
- If the source layer has multiple outputs, then s is the layer name followed by the character / and the name of the layer output: 'layerName/outputName'.

Example: 'conv1'
Example: 'mpool/indices'

d — Connection destination
character vector | string scalar

Connection destination, specified as a character vector or a string scalar.
If the destination layer has a single input, then \(d \) is the name of the layer.

If the destination layer has multiple inputs, then \(d \) is the layer name followed by the character / and the name of the layer input: 'layerName/inputName'.

Example: 'fc'
Example: 'addlayer1/in2'

Output Arguments

newlgraph — Output layer graph
LayerGraph object

Output layer graph, returned as a `LayerGraph` object.

See Also

`addLayers` | `assembleNetwork` | `connectLayers` | `layerGraph` | `plot` | `removeLayers` | `replaceLayer`

Topics

“Train Residual Network for Image Classification”
“Train Deep Learning Network to Classify New Images”

Introduced in R2017b
dropoutLayer

Dropout layer

Description

A dropout layer randomly sets input elements to zero with a given probability.

Creation

Syntax

layer = dropoutLayer
layer = dropoutLayer(probability)
layer = dropoutLayer(___,'Name',Name)

Description

layer = dropoutLayer creates a dropout layer.

layer = dropoutLayer(probability) creates a dropout layer and sets the Probability property.

layer = dropoutLayer(___,'Name',Name) sets the optional Name property using a name-value pair and any of the arguments in the previous syntaxes. For example, dropoutLayer(0.4,'Name','drop1') creates a dropout layer with dropout probability 0.4 and name 'drop1'. Enclose the property name in single quotes.

Properties

Dropout

Probability — Probability to drop out input elements

0.5 (default) | numeric scalar in the range 0 to 1

Probability for dropping out input elements, specified as a numeric scalar in the range 0–1.

At training time, the layer randomly sets input elements to zero given by the dropout mask rand(size(X))<Probability, where X is the layer input and then scales the remaining elements by 1/(1-Probability). This operation effectively changes the underlying network architecture between iterations and helps prevent the network from overfitting [1], [2]. A higher number results in more elements being dropped during training. At prediction time, the output of the layer is equal to its input.

For image input, the layer applies a different mask for each channel of each image. For sequence input, the layer applies a different dropout mask for each time step of each sequence.

Example: 0.4
Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to '', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.

Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Create Dropout Layer

Create a dropout layer with name 'drop1'.

layer = dropoutLayer('Name','drop1')

layer =
 DropoutLayer with properties:
 Name: 'drop1'
 Hyperparameters
 Probability: 0.5000

Include a dropout layer in a Layer array.
layers = [...
 imageInputLayer([28 28 1])
 convolution2dLayer(5,20)
 reluLayer
 dropoutLayer
 fullyConnectedLayer(10)
 softmaxLayer
 classificationLayer]

layers =
 7x1 Layer array with layers:
 1 '' Image Input 28x28x1 images with 'zerocenter' normalization
 2 '' Convolution 20 5x5 convolutions with stride [1 1] and padding [0 0 0 0]
 3 '' ReLU ReLU
 4 '' Dropout 50% dropout
 5 '' Fully Connected 10 fully connected layer
 6 '' Softmax softmax
 7 '' Classification Output crossentropyex

More About

Dropout Layer

A dropout layer randomly sets input elements to zero with a given probability.

At training time, the layer randomly sets input elements to zero given by the dropout mask
rand(size(X))<Probability, where X is the layer input and then scales the remaining elements
by 1/(1-Probability). This operation effectively changes the underlying network architecture
between iterations and helps prevent the network from overfitting [1], [2]. A higher number results in
more elements being dropped during training. At prediction time, the output of the layer is equal to
its input.

Similar to max or average pooling layers, no learning takes place in this layer.

For image input, the layer applies a different mask for each channel of each image. For sequence
input, the layer applies a different dropout mask for each time step of each sequence.

References

Prevent Neural Networks from Overfitting." Journal of Machine Learning Research. Vol. 15,

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.
See Also
imageInputLayer | reluLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2016a
efficientnetb0

EfficientNet-b0 convolutional neural network

Syntax

net = efficientnetb0
net = efficientnetb0('Weights','imagenet')
lgraph = efficientnetb0('Weights','none')

Description

EfficientNet-b0 is a convolutional neural network that is trained on more than a million images from the ImageNet database [1]. The network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many animals. As a result, the network has learned rich feature representations for a wide range of images. The network has an image input size of 224-by-224. For more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the EfficientNet-b0 model. Follow the steps of “Classify Image Using GoogLeNet” and replace GoogLeNet with EfficientNet-b0.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network to Classify New Images” and load EfficientNet-b0 instead of GoogLeNet.

net = efficientnetb0 returns an EfficientNet-b0 model network trained on the ImageNet data set.

This function requires the Deep Learning Toolbox Model for EfficientNet-b0 Network support package. If this support package is not installed, then the function provides a download link.

net = efficientnetb0('Weights','imagenet') returns a EfficientNet-b0 model network trained on the ImageNet data set. This syntax is equivalent to net = efficientnetb0.

lgraph = efficientnetb0('Weights','none') returns the untrained EfficientNet-b0 model network architecture. The untrained model does not require the support package.

Examples

Download EfficientNet-b0 Support Package

Download and install the Deep Learning Toolbox Model for EfficientNet-b0 Network support package.

Type efficientnetb0 at the command line.

efficientnetb0

If the Deep Learning Toolbox Model for EfficientNet-b0 Network support package is not installed, then the function provides a link to the required support package in the Add-On Explorer. To install the support package, click the link, and then click Install. Check that the installation is successful by
typing `efficientnetb0` at the command line. If the required support package is installed, then the function returns a `DAGNetwork` object.

```matlab
efficientnetb0
ans =
    DAGNetwork with properties:
        Layers: [290×1 nnet.cnn.layer.Layer]
        Connections: [363×2 table]
        InputNames: {'ImageInput'}
        OutputNames: {'classification'}
```

Output Arguments

- **net** — **Pretrained EfficientNet-b0 convolutional neural network**
 DAGNetwork object

 Pretrained EfficientNet-b0 convolutional neural network, returned as a `DAGNetwork` object.

- **lgraph** — **Untrained EfficientNet-b0 convolutional neural network architecture**
 LayerGraph object

 Untrained EfficientNet-b0 convolutional neural network architecture, returned as a `LayerGraph` object.

References

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax `net = efficientnetb0` or by passing the `efficientnetb0` function to `coder.loadDeepLearningNetwork`. For example:

```matlab
net = coder.loadDeepLearningNetwork('efficientnetb0')
```

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax `efficientnetb0('Weights','none')` is not supported for code generation.

GPU Code Generation

Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:
For code generation, you can load the network by using the syntax `net = efficientnetb0` or by passing the `efficientnetb0` function to `coder.loadDeepLearningNetwork`. For example:

```matlab
net = coder.loadDeepLearningNetwork('efficientnetb0')
```

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).

- The syntax `efficientnetb0('Weights','none')` is not supported for GPU code generation.

See Also

DAGNetwork | densenet201 | googlenet | inceptionresnetv2 | inceptionv3 | layerGraph | plot | resnet18 | resnet50 | squeezenet | trainNetwork | vgg16 | vgg19

Topics

“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

Introduced in R2020b
eluLayer

Exponential linear unit (ELU) layer

Description

An ELU activation layer performs the identity operation on positive inputs and an exponential nonlinearity on negative inputs.

The layer performs the following operation:

\[
f(x) = \begin{cases}
 x, & x \geq 0 \\
 \alpha(\exp(x) - 1), & x < 0
\end{cases}
\]

The default value of \(\alpha \) is 1. Specify a value of \(\alpha \) for the layer by setting the Alpha property.

Creation

Syntax

layer = eluLayer
layer = eluLayer(alpha)
layer = eluLayer(___ , 'Name', Name)

Description

layer = eluLayer creates an ELU layer.

layer = eluLayer(alpha) creates an ELU layer and specifies the Alpha property.

layer = eluLayer(___ , 'Name', Name) additionally sets the optional Name property using any of the previous syntaxes. For example, eluLayer('Name','elu1') creates an ELU layer with the name 'elu1'.

Properties

ELU

Alpha — Nonlinearity parameter

1 (default) | numeric scalar

Nonlinearity parameter \(\alpha \), specified as a numeric scalar. The minimum value of the output of the ELU layer equals \(-\alpha\) and the slope at negative inputs approaching 0 is \(\alpha \).

Layer

Name — Layer name

' ' (default) | character vector | string scalar
Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to '', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.

Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Create ELU Layer

Create an exponential linear unit (ELU) layer with the name 'elu1' and a default value of 1 for the nonlinearity parameter Alpha.

```matlab
layer = eluLayer('Name','elu1')
```

```matlab
layer = 
    ELULayer with properties:

    Name: 'elu1'
    Alpha: 1

Show all properties
```

Include an ELU layer in a Layer array.

```matlab
layers = [ 
    imageInputLayer([28 28 1])
    convolution2dLayer(3,16)
  ]
```
```
batchNormalizationLayer
eluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,32)
batchNormalizationLayer
eluLayer
fullyConnectedLayer(10)
softmaxLayer
classificationLayer]
```

```
layers =
11x1 Layer array with layers:
1   '   Image Input             28x28x1 images with 'zerocenter' normalization
2   '   Convolution             16 3x3 convolutions with stride [1 1] and padding [0 0 0 0]
3   '   Batch Normalization     Batch normalization
4   '   ELU                     ELU with Alpha 1
5   '   Max Pooling             2x2 max pooling with stride [2 2] and padding [0 0 0 0]
6   '   Convolution             32 3x3 convolutions with stride [1 1] and padding [0 0 0 0]
7   '   Batch Normalization     Batch normalization
8   '   ELU                     ELU with Alpha 1
9   '   Fully Connected         10 fully connected layer
10  '   Softmax                 softmax
11  '   Classification Output   crossentropyex
```

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
batchNormalizationLayer | clippedReluLayer | leakyReluLayer | reluLayer | trainNetwork

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2019a
embed

Embed discrete data

Syntax

\[
\text{dlY} = \text{embed}(\text{dlX}, \text{weights}) \\
\text{dlY} = \text{embed}(\text{dlX}, \text{weights}, \text{DataFormat'}, \text{FMT})
\]

Description

The `embed` operation converts numeric indices to numeric vectors, where the indices correspond to discrete data. Use embeddings to map discrete data such as categorical values or words to numeric vectors.

Note This function applies the `embed` operation to `dlarray` data. If you want to apply the `embed` operation within a `layerGraph` object or `Layer` array, use a `wordEmbeddingLayer` object.

\[
\text{dlY} = \text{embed}(\text{dlX}, \text{weights}) \text{ returns the embedding vectors in weights corresponding to the numeric indices in the formatted dlarray object dlX.}
\]

\[
\text{dlY} = \text{embed}(\text{dlX}, \text{weights}, \text{DataFormat'}, \text{FMT}) \text{ also specifies dimension format FMT when dlX is not a formatted dlarray object. The output dlY is an unformatted dlarray with the same dimension order as dlX.}
\]

Examples

Embed Categorical Data

Embed a mini-batch of categorical features.

Create an array of categorical features containing 5 observations with values "Male" or "Female".

\[
X = \text{categorical}(["Male" \ "Female" \ "Male" \ "Female" \ "Female"]');
\]

Initialize the embedding weights. Specify an embedding dimension of 10, and a vocabulary corresponding to the number of categories of the input data plus one.

\[
\text{embeddingDimension} = 10; \\
\text{vocabularySize} = \text{numel(categories(X))}; \\
\text{weights} = \text{rand(embeddingDimension, vocabularySize+1)};
\]

To embed the categorical data, first convert it to mini-batch of numeric indices.

\[
X = \text{double}(X)
\]

\[
X = 5 \times 1
\]

2
1
For formatted `dlarray` input, the `embed` function expands into a singleton 'C' (channel) dimension with size 1. Create a formatted `dlarray` object containing the data. To specify that the rows correspond to observations, specify the format 'BC' (batch, channel).

```matlab
dlX = dlarray(X,'BC')
dlX = 1(C) x 5(B) dlarray
     2     1     2     1     1
```

Embed the numeric indices using the `embed` function. The `embed` function expands into the 'C' dimension.

```matlab
dlY = embed(dlX,weights)
dlY = 10(C) x 5(B) dlarray
     0.1576    0.8147    0.1576    0.8147    0.8147
     0.9706    0.9058    0.9706    0.9058    0.9058
     0.9572    0.1270    0.9572    0.1270    0.1270
     0.4854    0.9134    0.4854    0.9134    0.9134
     0.8003    0.6324    0.8003    0.6324    0.6324
     0.1419    0.0975    0.1419    0.0975    0.0975
     0.4218    0.2785    0.4218    0.2785    0.2785
     0.9157    0.5469    0.9157    0.5469    0.5469
     0.7922    0.9575    0.7922    0.9575    0.9575
     0.9595    0.9649    0.9595    0.9649    0.9649
```

In this case, the output is an embeddingDimension-by-N matrix with format 'CB' (channel, batch), where N is the number of observations. Each column contains the embedding vectors.

Embed Text Data

Embed a mini-batch of text data.

```matlab
textData = ['Items are occasionally getting stuck in the scanner spools."
            'Loud rattling and banging sounds are coming from assembler pistons.'];
```

Create an array of tokenized documents.

```matlab
documents = tokenizedDocument(textData);
```

To encode text data as sequences of numeric indices, create a `wordEncoding` object.

```matlab
enc = wordEncoding(documents);
```
Initialize the embedding weights. Specify an embedding dimension of 100, and a vocabulary size to be consistent with the vocabulary size corresponding to the number of words in the word encoding plus one.

```matlab
embeddingDimension = 100;
vocabularySize = enc.NumWords;
weights = rand(embeddingDimension,vocabularySize+1);
```

Convert the tokenized documents to sequences of word vectors using the `doc2sequence` function. The `doc2sequence` function, by default, discards out-of-vocabulary tokens in the input data. To map out-of-vocabulary tokens to the last vector of embedding weights, set the `'UnknownWord'` option to `'nan'`. The `doc2sequence` function, by default, left-pads the input sequences with zeros to have the same length.

```matlab
sequences = doc2sequence(enc,documents,'UnknownWord','nan')
```

The output is a cell array, where each element corresponds to an observation. Each element is a row vector with elements representing the individual tokens in the corresponding observation including the padding values.

Convert the cell array to a numeric array by vertically concatenating the rows.

```matlab
X = cat(1,sequences{:})
```

Convert the numeric indices to `dlarray`. Because the rows and columns of `X` correspond to observations and time steps, respectively, specify the format `'BT'`.

```matlab
dlX = dlarray(X,'BT')
dlX = dlarray(2x11 double)
```

Embed the numeric indices using the `embed` function. The `embed` function maps the padding tokens (tokens with index 0) and any other out-of-vocabulary tokens to the same out-of-vocabulary embedding vector.

```matlab
dlY = embed(dlX,weights);
dlY = dlarray(2x11x10 double)
```

In this case, the output is an `embeddingDimension`-by-`N`-by-`S` matrix with format `'CBT'`, where `N` and `S` are the number of observations and the number of time steps, respectively. The vector `dlY(:,n,t)` corresponds to the embedding vector of time-step `t` of observation `n`.

1-423
Input Arguments

dlX — Input data
dlarray object | numeric array

Input data, specified as a dlarray object with or without dimension labels, or a numeric array. The elements of dlX must be nonnegative integers or NaN.

The function returns the embedding vectors in weights corresponding to the numeric indices in dlX. If any values in dlX are zero, NaN, or greater than the vocabulary size, then the function returns the out-of-vocabulary vector for that element.

When dlX is not a formatted dlarray object, you must specify the dimension label format using the 'DataFormat' option. Also, if dlX is a numeric array, then weights must be a dlarray object.

The embed operation expands into a singleton channel dimension of the input data specified by the 'C' dimension label. If the data has no specified channel dimension, then the function assumes an unspecified singleton channel dimension.

weights — Embedding weights
dlarray object | numeric array

Embedding weights, specified as a dlarray object with or without dimension labels or a numeric array.

The matrix weights specifies the dimension of the embedding, the vocabulary size, and the embedding vectors.

The embedding dimension is the number of components K of the embedding. That is, the embedding maps numeric indices to vectors of length K. The vocabulary size is the number of discrete elements V in the embedding. That is, the number of discrete elements of the underlying data that the embedding supports. The embedding maps out-of-vocabulary indices to the same out-of-vocabulary embedding vector.

If weights is a formatted dlarray object, then it must have format 'CU' or 'UC'. The dimensions corresponding to the labels 'C' and 'U' must have size K and V+1, respectively, where K and V represent the embedding dimension and the vocabulary size, respectively. The extra vector corresponds to the out-of-vocabulary embedding vector.

If weights is not a formatted dlarray object, then weights must be a K-by-(V+1) matrix, where K and V represent the embedding dimension and vocabulary size, respectively.

The function returns the embedding vectors in weights corresponding to the numeric indices in dlX. If any values in dlX are zero, NaN, or greater than the vocabulary size, then the function returns the out-of-vocabulary vector for that element.

FMT — Dimension order of unformatted data
cchar array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of 'DataFormat' and a character array or string FMT that provides a label for each dimension of the data. Each character in FMT must be one of the following:

- 'S' — Spatial
• ‘C’ — Channel
• ‘B’ — Batch (for example, samples and observations)
• ‘T’ — Time (for example, sequences)
• ‘U’ — Unspecified

You can specify multiple dimensions labeled ‘S’ or ‘U’. You can use the labels ‘C’, ‘B’, and ‘T’ at most once.

You must specify ‘DataFormat’, FMT when the input data dlX is not a formatted dlarray.

Example: ‘DataFormat’, ‘SSCB’

Data Types: char | string

Output Arguments

dlY — Embedding vectors
dlarray

Embedding vectors, returned as a dlarray object. The output dlY has the same underlying data type as the input dlX.

The function returns the embedding vectors in weights corresponding to the numeric indices in dlX. If any values in dlX are zero, NaN, or greater than the vocabulary size, then the function returns the out-of-vocabulary vector for that element.

The embedding vectors have K elements, where K is the embedding dimension. The size of dimensions dlY depend on the input data:

• If dlX is a formatted dlarray with a ‘C’ dimension label, then the embed operation expands into that dimension. That is, the output has the same dimension labels as the input, the ‘C’ dimension has size K, the other dimensions have the same size as the corresponding dimensions of the input.

• If dlX is a formatted dlarray without a ‘C’ dimension. Then the operation assumes a singleton channel dimension. The output has a ‘C’ dimension and all other dimensions have the same size and labels. That is, the output has the same dimension labels as the input and also a ‘C’ dimension, the ‘C’ dimension has size K, the other dimensions have the same size as the corresponding dimensions of the input.

• If dlX is not a formatted dlarray object and ‘DataFormat’ contains a ‘C’ dimension, then the embed operation expands into that dimension. That is, the output has the number of dimensions as the input, the dimension corresponding to the ‘C’ dimension has size K, the other dimensions have the same size as the corresponding dimensions of the input.

• If dlX is not a formatted dlarray object and ‘DataFormat’ does not contain a ‘C’ dimension, then the embed operation inserts a new dimension at the beginning. That is, the output has one more dimension as the input, the first dimension corresponding to the ‘C’ dimension has size K, the other dimensions have the same size as the corresponding dimensions of the input.

Extended Capabilities

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
• When at least one of the following input arguments is a `gpuArray` or a `dlarray` with underlying data of type `gpuArray`, this function runs on the GPU.

 • `dlX`
 • `weights`

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray|dlfeval|dlgradient|lstm

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”
“Sequence-to-Sequence Translation Using Attention”

Introduced in R2020b
exportONNXNetwork

Export network to ONNX model format

Syntax

```matlab
exportONNXNetwork(net,filename)
```

```matlab
exportONNXNetwork(net,filename,Name,Value)
```

Description

`exportONNXNetwork(net,filename)` exports the deep learning network `net` with weights to the ONNX format file `filename`. If `filename` exists, then `exportONNXNetwork` overwrites the file.

This function requires the Deep Learning Toolbox Converter for ONNX Model Format support package. If this support package is not installed, then the function provides a download link.

`exportONNXNetwork(net,filename,Name,Value)` exports a network using additional options specified by one or more name-value pair arguments.

Examples

Export Network in ONNX Format

Load a pretrained SqueezeNet convolutional neural network.

```matlab
net = squeezenet
```

DAGNetwork with properties:

- Layers: [68×1 nnet.cnn.layer.Layer]
- Connections: [75×2 table]
- InputNames: {'data'}
- OutputNames: {'ClassificationLayer_predictions'}

Export the network as an ONNX format file in the current folder called `squeezenet.onnx`. If the Deep Learning Toolbox Converter for ONNX Model Format support package is not installed, then the function provides a link to the required support package in the Add-On Explorer. To install the support package, click the link, and then click **Install**.

```matlab
filename = 'squeezenet.onnx';
exportONNXNetwork(net,filename)
```

Now, you can import the `squeezenet.onnx` file into any deep learning framework that supports ONNX import.

Input Arguments

- **net** — Trained network or graph of network layers
 - `SeriesNetwork object` | `DAGNetwork object` | `dlnetwork object` | `layerGraph object`
Trained network or graph of network layers, specified as a `SeriesNetwork`, `DAGNetwork`, `dlnetwork`, or `layerGraph` object.

You can get a trained network (`SeriesNetwork`, `DAGNetwork`, or `dlnetwork`) in these ways:

- Import a pretrained network. For example, use the `googlenet` function.
- Train your own network. Use `trainNetwork` to train a `SeriesNetwork` or `DAGNetwork`. Use a custom training loop to train a `dlnetwork`.

A `layerGraph` object is a graph of network layers. Some of the layer parameters of this graph might be empty (for example, the weights and bias of convolution layers, and the mean and variance of batch normalization layers). Before using `layerGraph` as an input argument to `exportONNXNetwork`, initialize the empty parameters by assigning random values. Alternatively, you can do one of the following before exporting:

- Convert `layerGraph` to a `dlnetwork` by using `layerGraph` as an input argument to `dlnetwork`. The empty parameters are automatically initialized.
- Convert `layerGraph` to a trained `DAGNetwork` by using `trainNetwork`. Use `layerGraph` as the `layers` input argument to `trainNetwork`.

You can detect errors and issues in a trained network or graph of network layers before exporting to an ONNX network by using `analyzeNetwork`. `exportONNXNetwork` requires `SeriesNetwork`, `DAGNetwork`, and `dlnetwork` to be error free. `exportONNXNetwork` permits exporting a `layerGraph` with a missing or unconnected output layer.

filename — Name of file

character vector | string scalar

Name of file, specified as a character vector or string scalar.

Example: `'network.onnx'`

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: `exportONNXNetwork(net,filename,'NetworkName','my_net')` exports a network and specifies `'my_net'` as the network name in the saved ONNX network.

NetworkName — Name of ONNX network

'Network' (default) | character vector | string scalar

Name of ONNX network to store in the saved file, specified as a character vector or a string scalar.

Example: `'my_squeezenet'`

OpsetVersion — Version of ONNX operator set

8 (default) | 6 | 7 | 9

Version of ONNX operator set to use in the exported model. If the default operator set does not support the network you are trying to export, then try using a later version. If you import the exported network to another framework and you used an operator set during export that the importer does not support, then the import can fail.
To ensure that you use the appropriate operator set version, consult the ONNX operator documentation [3]. For example, 'OpsetVersion',9 exports the maxUnpooling2dLayer to the MaxUnpool-9 ONNX operator.

Example:

Limitations

- Because of architectural differences between MATLAB and ONNX, an exported network can have a different structure compared to the original network.

Note If you import an exported network, layers of the reimported network might differ from the original network and might not be supported.

Tips

- You can export a trained MATLAB deep learning network that includes multiple inputs and multiple outputs to the ONNX model format. To learn about a multiple-input and multiple-output deep learning network, see "Multiple-Input and Multiple-Output Networks".
- `exportONNXNetwork` does not export settings or properties related to network training such as training options, learning rate factors, or regularization factors.
- If you export a network that contains a layer that the ONNX format does not support, then `exportONNXNetwork` saves a placeholder ONNX operator in place of the unsupported layer and returns a warning. You cannot import an ONNX network with a placeholder operator into other deep learning frameworks.
- `exportONNXNetwork` can export the following:
 - Networks that have both convolutional and LSTM layers, for example, for video classification applications.
 - All custom layers (except `nnet.onnx.layer.Flatten3dLayer`) that are created when importing networks from ONNX or TensorFlow-Keras using Deep Learning Toolbox Converter for ONNX Model Format or Deep Learning Toolbox Importer for TensorFlow-Keras Models as in the below table.
 - The following layers:

<table>
<thead>
<tr>
<th>ONNX Exporter Supported Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep Learning Toolbox Layers</td>
</tr>
<tr>
<td>additionLayer</td>
</tr>
<tr>
<td>averagePooling2dLayer</td>
</tr>
<tr>
<td>averagePooling3dLayer</td>
</tr>
<tr>
<td>batchNormalizationLayer</td>
</tr>
<tr>
<td>bilstmLayer</td>
</tr>
<tr>
<td>ClassificationOutputLayer</td>
</tr>
<tr>
<td>clippedReluLayer</td>
</tr>
<tr>
<td>concatenationLayer</td>
</tr>
</tbody>
</table>
ONNX Exporter Supported Layers

<table>
<thead>
<tr>
<th>Layer Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>convolution2dLayer</td>
</tr>
<tr>
<td>convolution3dLayer</td>
</tr>
<tr>
<td>crop2dLayer</td>
</tr>
<tr>
<td>CrossChannelNormalizationLayer</td>
</tr>
<tr>
<td>depthConcatenationLayer</td>
</tr>
<tr>
<td>dropoutLayer</td>
</tr>
<tr>
<td>eluLayer</td>
</tr>
<tr>
<td>fullyConnectedLayer</td>
</tr>
<tr>
<td>flattenLayer</td>
</tr>
<tr>
<td>globalAveragePooling2dLayer</td>
</tr>
<tr>
<td>globalMaxPooling2dLayer</td>
</tr>
<tr>
<td>groupedConvolution2dLayer</td>
</tr>
<tr>
<td>groupNormalizationLayer</td>
</tr>
<tr>
<td>gruLayer</td>
</tr>
<tr>
<td>imageInputLayer</td>
</tr>
<tr>
<td>image3dInputLayer</td>
</tr>
<tr>
<td>leakyReluLayer</td>
</tr>
<tr>
<td>lstmLayer</td>
</tr>
<tr>
<td>maxPooling2dLayer</td>
</tr>
<tr>
<td>maxPooling3dLayer</td>
</tr>
<tr>
<td>maxUnpooling2dLayer</td>
</tr>
<tr>
<td>multiplicationLayer</td>
</tr>
<tr>
<td>RegressionOutputLayer</td>
</tr>
<tr>
<td>reluLayer</td>
</tr>
<tr>
<td>sequenceInputLayer</td>
</tr>
<tr>
<td>sigmoidLayer</td>
</tr>
<tr>
<td>softmaxLayer</td>
</tr>
<tr>
<td>tanhLayer</td>
</tr>
<tr>
<td>transposedConv2dLayer</td>
</tr>
<tr>
<td>transposedConv3dLayer</td>
</tr>
</tbody>
</table>

ONNX Importer Custom Layers

<table>
<thead>
<tr>
<th>Layer Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>nnet.onnx.layer.ClipLayer</td>
</tr>
<tr>
<td>nnet.onnx.layer.ElementwiseAffineLayer</td>
</tr>
<tr>
<td>nnet.onnx.layer.FlattenLayer</td>
</tr>
<tr>
<td>nnet.onnx.layer.GlobalAveragePooling2dLayer</td>
</tr>
</tbody>
</table>
ONNX Exporter Supported Layers

nnet.onnx.layer.IdentityLayer
nnet.onnx.layer.PReluLayer
nnet.onnx.layer.TanhLayer

Keras Importer Custom Layers

nnet.keras.layer.FlattenCStyleLayer
nnet.keras.layer.GlobalAveragePooling2dLayer
nnet.keras.layer.TanhLayer
nnet.keras.layer.ZeroPadding2dLayer

Caffe Importer Custom Layers

nnet.caffe.layer.TanhLayer

Computer Vision Toolbox™ Layers

pixelClassificationLayer
rcnnBoxRegressionLayer
roiInputLayer
roiMaxPooling2dLayer
spaceToDepthLayer

Image Processing Toolbox™ Layers

resize2dLayer
resize3dLayer

Text Analytics Toolbox™ Layers

wordEmbeddingLayer

- For the groupNormalizationLayer, specify numGroups as "channel-wise" to map the exported layer to the ONNX InstanceNormalization operator. GroupNormalization is not a standard ONNX operator [3].

References

See Also

importCaffeLayers | importCaffeNetwork | importKerasLayers | importKerasNetwork | importONNXLayers | importONNXNetwork
Topics
“Pretrained Deep Neural Networks”
“Deep Learning in MATLAB”

Introduced in R2018a
extractdata

Extract data from `dlarray`

Syntax

```matlab
y = extractdata(dlX)
```

Description

`y = extractdata(dlX)` returns the data in the `dlarray` `dlX`. The output `y` has the same data type as the data in `dlX` and is unlabeled.

Examples

Extract Data from `dlarray`

Create a logical `dlarray` labeled `'SS'`.

```matlab
rng default % For reproducibility
dlX = dlarray(rand(4,3) > 0.5,'SS')
dlX = 4(S) x 3(S) logical dlarray
     1 1 1
     1 0 1
     0 0 0
     1 1 1
```

Extract the data from `dlX`.

```matlab
y = extractdata(dlX)
y = 4x3 logical array
     1 1 1
     1 0 1
     0 0 0
     1 1 1
```

Input Arguments

- **`dlX` — Input `dlarray`**
 - `dlarray` object

 Input `dlarray`, specified as a `dlarray` object.

 Example: `dlX = dlarray(randn(50,3),'SC')`
Output Arguments

y — Data array
single array | double array | logical array | gpuArray

Data array, returned as a single, double, or logical array, or as a gpuArray of one of these array types. The output y has the same data type as the underlying data type in dlX. The output y is unlabeled.

Tips

• If dlX contains an implicit permutation because of labeling, y has that permutation explicitly.
• The output y has no tracing for the computation of derivatives. See “Derivative Trace”.

See Also
dlarray | gather

Introduced in R2019b
featureInputLayer

Feature input layer

Description

A feature input layer inputs feature data into a network and applies data normalization. Use this layer when you have a data set of numeric scalars representing features (data without spatial or time dimensions).

For image input, use imageInputLayer.

Creation

Syntax

layer = featureInputLayer(numFeatures)
layer = featureInputLayer(numFeatures,Name,Value)

Description

layer = featureInputLayer(numFeatures) returns a feature input layer and sets the InputSize property to the specified number of features.

layer = featureInputLayer(numFeatures,Name,Value) sets the optional properties using name-value pairs. You can specify multiple name-value pairs. Enclose each property name in single quotes.

Properties

Feature Input

InputSize — Number of features

positive integer

Number of features for each observation in the data, specified as a positive integer.

For image input, use imageInputLayer.

Example: 10

Normalization — Data normalization

'none' (default) | 'zscore' | 'rescale-symmetric' | 'rescale-zero-one' | 'none' | function handle

Data normalization to apply every time data is forward propagated through the input layer, specified as one of the following:

- 'zerocenter' — Subtract the mean specified by Mean.
• 'zscore' — Subtract the mean specified by Mean and divide by StandardDeviation.
• 'rescale-symmetric' — Rescale the input to be in the range [-1, 1] using the minimum and maximum values specified by Min and Max, respectively.
• 'rescale-zero-one' — Rescale the input to be in the range [0, 1] using the minimum and maximum values specified by Min and Max, respectively.
• 'none' — Do not normalize the input data.
• function handle — Normalize the data using the specified function. The function must be of the form \(Y = \text{func}(X) \), where \(X \) is the input data, and the output \(Y \) is the normalized data.

Tip The software, by default, automatically calculates the normalization statistics at training time. To save time when training, specify the required statistics for normalization and set the 'ResetInputNormalization' option in trainingOptions to false.

NormalizationDimension — Normalization dimension

`auto' (default) | 'channel' | 'all'

Normalization dimension, specified as one of the following:
• 'auto' — If the training option is false and you specify any of the normalization statistics (Mean, StandardDeviation, Min, or Max), then normalize over the dimensions matching the statistics. Otherwise, recalculate the statistics at training time and apply channel-wise normalization.
• 'channel' — Channel-wise normalization.
• 'all' — Normalize all values using scalar statistics.

Mean — Mean for zero-center and z-score normalization

[] (default) | column vector | numeric scalar

Mean for zero-center and z-score normalization, specified as a numFeatures-by-1 vector of means per feature, a numeric scalar, or [].

If you specify the Mean property, then Normalization must be 'zerocenter' or 'zscore'. If Mean is [], then the software calculates the mean at training time.

You can set this property when creating networks without training (for example, when assembling networks using assembleNetwork).

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

StandardDeviation — Standard deviation for z-score normalization

[] (default) | column vector | numeric scalar

Standard deviation for z-score normalization, specified as a numFeatures-by-1 vector of means per feature, a numeric scalar, or [].

If you specify the StandardDeviation property, then Normalization must be 'zscore'. If StandardDeviation is [], then the software calculates the standard deviation at training time.

You can set this property when creating networks without training (for example, when assembling networks using assembleNetwork).

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Min — Minimum value for rescaling

\[\text{[] (default) | column vector | numeric scalar} \]

Minimum value for rescaling, specified as a `numFeatures`-by-1 vector of minima per feature, a numeric scalar, or \[].

If you specify the `Min` property, then `Normalization` must be 'rescale-symmetric' or 'rescale-zero-one'. If `Min` is \[], then the software calculates the minimum at training time.

You can set this property when creating networks without training (for example, when assembling networks using `assembleNetwork`).

Data Types: `single` | `double` | `int8` | `int16` | `int32` | `int64` | `uint8` | `uint16` | `uint32` | `uint64`

Max — Maximum value for rescaling

\[\text{[] (default) | column vector | numeric scalar} \]

Maximum value for rescaling, specified as a `numFeatures`-by-1 vector of maxima per feature, a numeric scalar, or \[].

If you specify the `Max` property, then `Normalization` must be 'rescale-symmetric' or 'rescale-zero-one'. If `Max` is \[], then the software calculates the maximum at training time.

You can set this property when creating networks without training (for example, when assembling networks using `assembleNetwork`).

Data Types: `single` | `double` | `int8` | `int16` | `int32` | `int64` | `uint8` | `uint16` | `uint32` | `uint64`

Layer

Name — Layer name

\[' ' (default) | character vector | string scalar \]

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and `Name` is set to ' ', then the software automatically assigns a name to the layer at training time.

Data Types: `char` | `string`

NumInputs — Number of inputs

0 (default)

Number of inputs of the layer. The layer has no inputs.

Data Types: `double`

InputNames — Input names

\[\text{[]} (default) \]

Input names of the layer. The layer has no inputs.

Data Types: `cell`

NumOutputs — Number of outputs

1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names

`'out'` (default)

Output names of the layer. This layer has a single output only.

Data Types: `cell`

Examples

Create Feature Input Layer

Create a feature input layer with name `'input'` for observations consisting of 21 features.

```matlab
layer = featureInputLayer(21,'Name','input')
```

```
FeatureInputLayer with properties:
  Name: 'input'
  InputSize: 21

Hyperparameters
  Normalization: 'none'
  NormalizationDimension: 'auto'
```

Include a feature input layer in a `Layer` array.

```matlab
numFeatures = 21;
numClasses = 3;

layers = [featureInputLayer(numFeatures,'Name','input')
          fullyConnectedLayer(numClasses, 'Name','fc')
          softmaxLayer('Name','sm')
          classificationLayer('Name','classification')]
```

```
4x1 Layer array with layers:
  1   'input'            Feature Input           21 features
  2   'fc'               Fully Connected         3 fully connected layer
  3   'sm'               Softmax                 softmax
  4   'classification'   Classification Output   crossentropyex
```

Combine Image and Feature Input Layers

To train a network containing both an image input layer and a feature input layer, you must use a `dlnetwork` object in a custom training loop.

Define the size of the input image, the number of features of each observation, the number of classes, and the size and number of filters of the convolution layer.
imageInputSize = [28 28 1];
umFeatures = 1;
numClasses = 10;
filterSize = 5;
numFilters = 16;

To create a network with two input layers, you must define the network in two parts and join them, for example, by using a concatenation layer.

Define the first part of the network. Define the image classification layers and include a concatenation layer before the last fully connected layer.

layers = [
 imageInputLayer(imageInputSize,'Normalization','none','Name','images')
 convolution2dLayer(filterSize,numFilters,'Name','conv')
 reluLayer('Name','relu')
 fullyConnectedLayer(50,'Name','fc1')
 concatenationLayer(1,2,'Name','concat')
 fullyConnectedLayer(numClasses,'Name','fc2')
 softmaxLayer('Name','softmax')
];

Convert the layers to a layer graph.

lgraph = layerGraph(layers);

For the second part of the network, add a feature input layer and connect it to the second input of the concatenation layer.

featInput = featureInputLayer(numFeatures,'Name','features');
lgraph = addLayers(lgraph, featInput);
lgraph = connectLayers(lgraph, 'features', 'concat/in2');

Visualize the network.

plot(lgraph)
Create a `dlnetwork` object.

dlnet = dlnetwork(lgraph)

dlnet =
 dlnetwork with properties:
 Layers: [8x1 nnet.cnn.layer.Layer]
 Connections: [7x2 table]
 Learnables: [6x3 table]
 State: [0x3 table]
 InputNames: {'images' 'features'}
 OutputNames: {'softmax'}

See Also
Deep Network Designer | dlnetwork | fullyConnectedLayer | image3dInputLayer | imageInputLayer | sequenceInputLayer | trainNetwork

Topics
“Train Network with Numeric Features”
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2020b
finddim

Find dimensions with specified label

Syntax

dim = finddim(dlX,label)

Description

dim = finddim(dlX,label) returns the dimensions in dlX that have the label label. If no dimension matches label, dim is empty.

Examples

Obtain Dimension with Specified Labels

Create a dlarray with some repeated labels. Specify the labels as 'TSSU'. The dlarray call reorders the labels, because it enforces the order 'SCBTU'. See “Usage” on page 1-325.

dlX = dlarray(randn(5,4,3,2),'TSSU');

Obtain the dimensions with the label 'T'.

dimU = finddim(dlX,'T')
dimU = 3

Obtain the dimensions with the label 'S'.

dimS = finddim(dlX,'S')
dimS = 1x2

Obtain the dimensions with the label 'B'.

dimB = finddim(dlX,'B')
dimB =

1x0 empty double row vector

Obtain the size of the dlX dimensions labeled 'S'.

SSize = size(dlX,finddim(dlX,'S'))
SSize = 1x2

4 3
Input Arguments

dlX — Input dlarray

dlarray object

Input dlarray, specified as a dlarray object.

Example: `dlX = dlarray(randn(3,4),'ST')`

label — Single dlarray label

'S' | 'C' | 'B' | 'T' | 'U'

Single dlarray label, specified as one of these characters:

- S — Spatial
- C — Channel
- B — Batch observations
- T — Time or sequence
- U — Unspecified

Example: "C"

Data Types: char | string

Output Arguments

dim — Dimension

real vector

Dimension, returned as a real vector. If no label in the input array `dlX` matches `label`, `dim` is empty. So if `dlX` is unlabeled, `dim` is empty.

See Also

dims | dlarray | stripdims

Introduced in R2019b
findPlaceholderLayers

Find placeholder layers in network architecture imported from Keras or ONNX

Syntax

placeholderLayers = findPlaceholderLayers(importedLayers)
[placeholderLayers,indices] = findPlaceholderLayers(importedLayers)

Description

placeholderLayers = findPlaceholderLayers(importedLayers) returns all placeholder layers that exist in the network architecture importedLayers imported by the importKerasLayers or importONNXLayers functions, or created by the functionToLayerGraph function. Placeholder layers are the layers that these functions insert in place of layers that are not supported by Deep Learning Toolbox.

To use with an imported network, this function requires either the Deep Learning Toolbox Importer for TensorFlow-Keras Models support package or the Deep Learning Toolbox Converter for ONNX Model Format support package.

[placeholderLayers,indices] = findPlaceholderLayers(importedLayers) also returns the indices of the placeholder layers.

Examples

Find and Explore Placeholder Layers

Specify the Keras network file to import layers from.

modelfile = 'digitsDAGnetwithnoise.h5';

Import the network architecture. The network includes some layer types that are not supported by Deep Learning Toolbox. The importKerasLayers function replaces each unsupported layer with a placeholder layer and returns a warning message.

lgraph = importKerasLayers(modelfile)

Warning: Unable to import some Keras layers, because they are not yet supported by the Deep Learning Toolbox. They have been replaced by placeholder layers. To find these layers, call the function findPlaceholderLayers on the returned object.

> In nnet.internal.cnn.keras.importKerasLayers (line 26)
 In importKerasLayers (line 102)

lgraph =

LayerGraph with properties:

 Layers: [15×1 nnet.cnn.layer.Layer]
 Connections: [15×2 table]

Display the imported layers of the network. Two placeholder layers replace the Gaussian noise layers in the Keras network.

lgraph.Layers
ans =

 15x1 Layer array with layers:
 1 'input_1' Image Input 28x28x1 images
 2 'conv2d_1' Convolution 20 7x7 convolutions with stride [1 1] and padding 'same'
 3 'conv2d_1_relu' ReLU ReLU
 4 'conv2d_2' Convolution 20 3x3 convolutions with stride [1 1] and padding 'same'
 5 'conv2d_2_relu' ReLU ReLU
 6 'gaussian_noise_1' PLACEHOLDER LAYER Placeholder for 'GaussianNoise' Keras layer
 7 'gaussian_noise_2' PLACEHOLDER LAYER Placeholder for 'GaussianNoise' Keras layer
 8 'max_pooling2d_1' Max Pooling 2x2 max pooling with stride [2 2] and padding 'same'
 9 'max_pooling2d_2' Max Pooling 2x2 max pooling with stride [2 2] and padding 'same'
 10 'flatten_1' Keras Flatten Flatten activations into 1D assuming C-style (row-major) order
 11 'flatten_2' Keras Flatten Flatten activations into 1D assuming C-style (row-major) order
 12 'concatenate_1' Depth concatenation Depth concatenation of 2 inputs
 13 'dense_1' Fully Connected 10 fully connected layer
 14 'activation_1_softmax' Softmax softmax
 15 'ClassificationLayer_activation_1' Classification Output crossentropyex

Find the placeholder layers using findPlaceholderLayers. The output argument contains the two placeholder layers that importKerasLayers inserted in place of the Gaussian noise layers of the Keras network.

placeholders = findPlaceholderLayers(lgraph)

placeholders =

 2x1 PlaceholderLayer array with layers:
 1 'gaussian_noise_1' PLACEHOLDER LAYER Placeholder for 'GaussianNoise' Keras layer
 2 'gaussian_noise_2' PLACEHOLDER LAYER Placeholder for 'GaussianNoise' Keras layer

Display the configuration of each placeholder layer.

gaussian1.KerasConfiguration

ans =

 struct with fields:
 trainable: 1
 name: 'gaussian_noise_1'
 stddev: 1.5000

ans =

 struct with fields:
 trainable: 1
 name: 'gaussian_noise_2'
 stddev: 0.7000

Assemble Network from Pretrained Keras Layers

This example shows how to import the layers from a pretrained Keras network, replace the unsupported layers with custom layers, and assemble the layers into a network ready for prediction.
Import Keras Network

Import the layers from a Keras network model. The network in 'digitsDAGnetwithnoise.h5' classifies images of digits.

```matlab
filename = 'digitsDAGnetwithnoise.h5';
lgraph = importKerasLayers(filename,'ImportWeights',true);
```

Warning: Unable to import some Keras layers, because they are not supported by the Deep Learning Toolbox.

The Keras network contains some layers that are not supported by Deep Learning Toolbox. The `importKerasLayers` function displays a warning and replaces the unsupported layers with placeholder layers.

Plot the layer graph using `plot`.

```matlab
figure
plot(lgraph)
title("Imported Network")
```

Replace Placeholder Layers

To replace the placeholder layers, first identify the names of the layers to replace. Find the placeholder layers using `findPlaceholderLayers`.

```matlab
placeholderLayers = findPlaceholderLayers(lgraph)
```

Replace Placeholder Layers

To replace the placeholder layers, first identify the names of the layers to replace. Find the placeholder layers using `findPlaceholderLayers`.

```matlab
placeholderLayers = findPlaceholderLayers(lgraph)
```

Replace Placeholder Layers

To replace the placeholder layers, first identify the names of the layers to replace. Find the placeholder layers using `findPlaceholderLayers`.

```matlab
placeholderLayers = findPlaceholderLayers(lgraph)
```

```matlab
placeholderLayers =
2x1 PlaceholderLayer array with layers:
```
Display the Keras configurations of these layers.

```matlab
placeholderLayers.KerasConfiguration
ans = struct with fields:
    trainable: 1
    name: 'gaussian_noise_1'
    stddev: 1.5000

ans = struct with fields:
    trainable: 1
    name: 'gaussian_noise_2'
    stddev: 0.7000
```

Define a custom Gaussian noise layer. To create this layer, save the file `gaussianNoiseLayer.m` in the current folder. Then, create two Gaussian noise layers with the same configurations as the imported Keras layers.

```matlab
gnLayer1 = gaussianNoiseLayer(1.5, 'new_gaussian_noise_1');
gnLayer2 = gaussianNoiseLayer(0.7, 'new_gaussian_noise_2');
```

Replace the placeholder layers with the custom layers using `replaceLayer`.

```matlab
lgraph = replaceLayer(lgraph, 'gaussian_noise_1', gnLayer1);
lgraph = replaceLayer(lgraph, 'gaussian_noise_2', gnLayer2);
```

Plot the updated layer graph using `plot`.

```matlab
figure
plot(lgraph)
title("Network with Replaced Layers")
```
Specify Class Names

If the imported classification layer does not contain the classes, then you must specify these before prediction. If you do not specify the classes, then the software automatically sets the classes to 1, 2, ..., N, where N is the number of classes.

Find the index of the classification layer by viewing the Layers property of the layer graph.

lgraph.Layers

ans =
15x1 Layer array with layers:

1 'input_1' Image Input 28x28x1 images
2 'conv2d_1' Convolution 20 7x7x1 convolutions with stride [1 1] and padding 'same'
3 'conv2d_1_relu' ReLU ReLU
4 'conv2d_2' Convolution 20 3x3x1 convolutions with stride [1 1] and padding 'same'
5 'conv2d_2_relu' ReLU ReLU
6 'new_gaussian_noise_1' Gaussian Noise Gaussian noise with standard deviation 1.5
7 'new_gaussian_noise_2' Gaussian Noise Gaussian noise with standard deviation 0.7
8 'max_pooling2d_1' Max Pooling 2x2 max pooling with stride [2 2] and padding 'same'
9 'max_pooling2d_2' Max Pooling 2x2 max pooling with stride [2 2]
10 'flatten_1' Keras Flatten Flatten activations into 1-D assuming C-style (row-major) order
11 'flatten_2' Keras Flatten Flatten activations into 1-D assuming C-style (row-major) order
12 'concatenate_1' Depth concatenation Depth concatenation of 2 inputs
13 'dense_1' Fully Connected 10 fully connected layer
14 'activation_1' Softmax softmax
15 'ClassificationLayer_activation_1' Classification Output crossentropyex
The classification layer has the name 'ClassificationLayer_activation_1'. View the classification layer and check the Classes property.

cLayer = lgraph.Layers(end)

cLayer = ClassificationOutputLayer with properties:

 Name: 'ClassificationLayer_activation_1'
 Classes: 'auto'
 OutputSize: 'auto'

 Hyperparameters
 LossFunction: 'crossentropyex'

Because the Classes property of the layer is 'auto', you must specify the classes manually. Set the classes to 0, 1, ..., 9, and then replace the imported classification layer with the new one.

cLayer.Classes = string(0:9)

cLayer = ClassificationOutputLayer with properties:

 Name: 'ClassificationLayer_activation_1'
 Classes: [0 1 2 3 4 5 6 7 8 9]
 OutputSize: 10

 Hyperparameters
 LossFunction: 'crossentropyex'

lgraph = replaceLayer(lgraph,'ClassificationLayer_activation_1',cLayer);

Assemble Network

Assemble the layer graph using assembleNetwork. The function returns a DAGNetwork object that is ready to use for prediction.

net = assembleNetwork(lgraph)

net = DAGNetwork with properties:

 Layers: [15x1 nnet.cnn.layer.Layer]
 Connections: [15x2 table]
 InputNames: {'input_1'}
 OutputNames: {'ClassificationLayer_activation_1'}

Input Arguments

importedLayers — Network architecture imported from Keras or ONNX or created by functionToLayerGraph
Layer array | LayerGraph object

Network architecture imported from Keras or ONNX or created by functionToLayerGraph, specified as a Layer array or LayerGraph object.
Output Arguments

placeholderLayers — All placeholder layers in network architecture
array of `PlaceholderLayer` objects

All placeholder layers in the network architecture, returned as an array of `PlaceholderLayer` objects.

indices — Indices of placeholder layers
vector

Indices of placeholder layers, returned as a vector:

- If `importedLayers` is a layer array, then `indices` are the indices of the placeholder layers in `importedLayers`.
- If `importedLayers` is a `LayerGraph` object, then `indices` are the indices of the placeholder layers in `importedLayers.Layers`.

If you remove a layer from or add a layer to a `Layer` array or `LayerGraph` object, then the indices of the other layers in the object can change. You must use `findPlaceholderLayers` again to find the updated indices of the rest of the placeholder layers.

Tips

- If you have installed Deep Learning Toolbox Importer for TensorFlow-Keras Models and `findPlaceholderLayers` is unable to find placeholder layers created when importing an ONNX network, then try updating the Deep Learning Toolbox Importer for TensorFlow-Keras Models support package in the Add-On Explorer.

See Also

- `PlaceholderLayer`
- `assembleNetwork`
- `functionToLayerGraph`
- `importKerasLayers`
- `importONNXLayers`
- `replaceLayer`

Topics

- “List of Deep Learning Layers”
- “Define Custom Deep Learning Layers”
- “Define Custom Deep Learning Layer with Learnable Parameters”
- “Check Custom Layer Validity”
- “Assemble Network from Pretrained Keras Layers”

Introduced in R2017b
flattenLayer

Flatten layer

Description

A flatten layer collapses the spatial dimensions of the input into the channel dimension.

For example, if the input to the layer is an \(H \)-by-\(W \)-by-\(C \)-by-\(N \)-by-\(S \) array (sequences of images), then the flattened output is an \((H \times W \times C) \)-by-\(N \)-by-\(S \) array.

This layer supports sequence input only.

Creation

Syntax

layer = flattenLayer
layer = flattenLayer('Name',Name)

Description

layer = flattenLayer creates a flatten layer.

layer = flattenLayer('Name',Name) sets the optional Name property using a name-value pair. For example, flattenLayer('Name','flatten1') creates a flatten layer with name 'flatten1'.

Properties

Name — Layer name

' ' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to ' ', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

NumInputs — Number of inputs

1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames — Input names

{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: `cell`

NumOutputs — Number of outputs

1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: `double`

OutputNames — Output names

`{'out'}` (default)

Output names of the layer. This layer has a single output only.

Data Types: `cell`

Object Functions

Examples

Create Flatten Layer

Create a flatten layer with the name `'flatten1'`.
layer = `flattenLayer('Name','flatten1')`

layer =
 FlattenLayer with properties:
 Name: `'flatten1'`

Create Network for Video Classification

Create a deep learning network for data containing sequences of images, such as video and medical image data.

- To input sequences of images into a network, use a sequence input layer.
- To apply convolutional operations independently to each time step, first convert the sequences of images to an array of images using a sequence folding layer.
- To restore the sequence structure after performing these operations, convert this array of images back to image sequences using a sequence unfolding layer.
- To convert images to feature vectors, use a flatten layer.

You can then input vector sequences into LSTM and BiLSTM layers.

Define Network Architecture

Create a classification LSTM network that classifies sequences of 28-by-28 grayscale images into 10 classes.
Define the following network architecture:

- A sequence input layer with an input size of \([28 \ 28 \ 1]\).
- A convolution, batch normalization, and ReLU layer block with 20 5-by-5 filters.
- An LSTM layer with 200 hidden units that outputs the last time step only.
- A fully connected layer of size 10 (the number of classes) followed by a softmax layer and a classification layer.

To perform the convolutional operations on each time step independently, include a sequence folding layer before the convolutional layers. LSTM layers expect vector sequence input. To restore the sequence structure and reshape the output of the convolutional layers to sequences of feature vectors, insert a sequence unfolding layer and a flatten layer between the convolutional layers and the LSTM layer.

```plaintext
inputSize = [28 28 1];
filterSize = 5;
numFilters = 20;
numHiddenUnits = 200;
numClasses = 10;

layers = [ ...
    sequenceInputLayer(inputSize,'Name','input')
    sequenceFoldingLayer('Name','fold')
    convolution2dLayer(filterSize,numFilters,'Name','conv')
    batchNormalizationLayer('Name','bn')
    reluLayer('Name','relu')
    sequenceUnfoldingLayer('Name','unfold')
    flattenLayer('Name','flatten')
    lstmLayer(numHiddenUnits,'OutputMode','last','Name','lstm')
    fullyConnectedLayer(numClasses, 'Name','fc')
    softmaxLayer('Name','softmax')
    classificationLayer('Name','classification')];
```

Convert the layers to a layer graph and connect the `miniBatchSize` output of the sequence folding layer to the corresponding input of the sequence unfolding layer.

```plaintext
lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph,'fold/miniBatchSize','unfold/miniBatchSize');
```

View the final network architecture using the `plot` function.

```plaintext
figure
plot(lgraph)
```
Extended Capabilities

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
bilstmLayer | classifyAndUpdateState | gruLayer | lstmLayer | predictAndUpdateState | resetState | sequenceFoldingLayer | sequenceInputLayer | sequenceUnfoldingLayer

Topics
“Classify Videos Using Deep Learning”
“Sequence Classification Using Deep Learning”
“Time Series Forecasting Using Deep Learning”
“Sequence-to-Sequence Classification Using Deep Learning”
“Visualize Activations of LSTM Network”
“Long Short-Term Memory Networks”
“Deep Learning in MATLAB”
“List of Deep Learning Layers”

Introduced in R2019a
forward

Compute deep learning network output for training

Syntax

dlY = forward(dlnet,dlX)
dlY = forward(dlnet,dlX1,...,dlXM)
[dly1,...,dlYN] = forward(__)
[dly1,...,dlYK] = forward(__,'Outputs',layerNames)
[___,state] = forward(__)

Description

Some deep learning layers behave differently during training and inference (prediction). For example, during training, dropout layers randomly set input elements to zero to help prevent overfitting, but during inference, dropout layers do not change the input.

To compute network outputs for training, use the `forward` function. To compute network outputs for inference, use the `predict` function.

dlY = forward(dlnet,dlX) returns the network output dlY during training given the input data dlX.

dlY = forward(dlnet,dlX1,...,dlXM) returns the network output dlY during training given the M inputs dlX1, ...,dlXM and the network dlnet that has M inputs and a single output.

[dly1,...,dlYN] = forward(__) returns the N outputs dlY1, ..., dlYN during training for networks that have N outputs using any of the previous syntaxes.

[dly1,...,dlYK] = forward(__,'Outputs',layerNames) returns the outputs dlY1, ..., dlYK during training for the specified layers using any of the previous syntaxes.

[___,state] = forward(__) also returns the updated network state using any of the previous syntaxes.

Examples

Train Network Using Custom Training Loop

This example shows how to train a network that classifies handwritten digits with a custom learning rate schedule.

If `trainingOptions` does not provide the options you need (for example, a custom learning rate schedule), then you can define your own custom training loop using automatic differentiation.

This example trains a network to classify handwritten digits with the `time-based decay` learning rate schedule: for each iteration, the solver uses the learning rate given by $\rho_t = \frac{\rho_0}{1 + kt}$, where t is the iteration number, ρ_0 is the initial learning rate, and k is the decay.
Load Training Data

Load the digits data as an image datastore using the `imageDatastore` function and specify the folder containing the image data.

```matlab
dataFolder = fullfile(toolboxdir('nnet'),'nndemos','nndatasets','DigitDataset');
imds = imageDatastore(dataFolder, ... 
    'IncludeSubfolders',true, .... 
    'LabelSource','foldernames');
```

Partition the data into training and validation sets. Set aside 10% of the data for validation using the `splitEachLabel` function.

```matlab
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.9,'randomize');
```

The network used in this example requires input images of size 28-by-28-by-1. To automatically resize the training images, use an augmented image datastore. Specify additional augmentation operations to perform on the training images: randomly translate the images up to 5 pixels in the horizontal and vertical axes. Data augmentation helps prevent the network from overfitting and memorizing the exact details of the training images.

```matlab
inputSize = [28 28 1];
pixelRange = [-5 5];
imageAugmenter = imageDataAugmenter( ... 
    'RandXTranslation',pixelRange, ... 
    'RandYTranslation',pixelRange);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain,'DataAugmentation',imageAugmenter);
```

To automatically resize the validation images without performing further data augmentation, use an augmented image datastore without specifying any additional preprocessing operations.

```matlab
augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);
```

Determine the number of classes in the training data.

```matlab
classes = categories(imdsTrain.Labels);
umClasses = numel(classes);
```

Define Network

Define the network for image classification.

```matlab
layers = [
    imageInputLayer(inputSize,'Normalization','none','Name','input')
    convolution2dLayer(5,20,'Name','conv1')
    batchNormalizationLayer('Name','bn1')
    reluLayer('Name','relu1')
    convolution2dLayer(3,20,'Padding','same','Name','conv2')
    batchNormalizationLayer('Name','bn2')
    reluLayer('Name','relu2')
    convolution2dLayer(3,20,'Padding','same','Name','conv3')
    batchNormalizationLayer('Name','bn3')
    reluLayer('Name','relu3')
    fullyConnectedLayer(numClasses,'Name','fc')
    softmaxLayer('Name','softmax')
];
lgraph = layerGraph(layers);
```

Create a `dlnetwork` object from the layer graph.

dlnet = dlnetwork(lgraph)

dlnet =
 dlnetwork with properties:

 Layers: [12x1 nnet.cnn.layer.Layer]
 Connections: [11x2 table]
 Learnables: [14x3 table]
 State: [6x3 table]
 InputNames: {'input'}
 OutputNames: {'softmax'}

Define Model Gradients Function

Create the function modelGradients, listed at the end of the example, that takes a dlnetwork object, a mini-batch of input data with corresponding labels and returns the gradients of the loss with respect to the learnable parameters in the network and the corresponding loss.

Specify Training Options

Train for ten epochs with a mini-batch size of 128.

numEpochs = 10;
miniBatchSize = 128;

Specify the options for SGDM optimization. Specify an initial learn rate of 0.01 with a decay of 0.01, and momentum 0.9.

initialLearnRate = 0.01;
decay = 0.01;
momentum = 0.9;

Train Model

Create a minibatchqueue object that processes and manages mini-batches of images during training. For each mini-batch:

- Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of this example) to convert the labels to one-hot encoded variables.
- Format the image data with the dimension labels 'SSCB' (spatial, spatial, channel, batch). By default, the minibatchqueue object converts the data to dlarray objects with underlying type single. Do not add a format to the class labels.
- Train on a GPU if one is available. By default, the minibatchqueue object converts each output to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA® enabled NVIDIA® GPU with compute capability 3.0 or higher.

mbq = minibatchqueue(augimdsTrain,...
 'MiniBatchSize',miniBatchSize,...
 'MiniBatchFcn',@preprocessMiniBatch,...
 'MiniBatchFormat',{'SSCB',''});

Initialize the training progress plot.

figure
lineLossTrain = animatedline('Color',[0.85 0.325 0.098]);
ylim([0 inf])
Initialize the velocity parameter for the SGDM solver.

velocity = [];

Train the network using a custom training loop. For each epoch, shuffle the data and loop over mini-batches of data. For each mini-batch:

- Evaluate the model gradients, state, and loss using the `dlfeval` and `modelGradients` functions and update the network state.
- Determine the learning rate for the time-based decay learning rate schedule.
- Update the network parameters using the `sgdmupdate` function.
- Display the training progress.

iteration = 0;
start = tic;

% Loop over epochs.
for epoch = 1:numEpochs
 % Shuffle data.
 shuffle(mbq);

 % Loop over mini-batches.
 while hasdata(mbq)
 iteration = iteration + 1;

 % Read mini-batch of data.
 [dlX, dlY] = next(mbq);

 % Evaluate the model gradients, state, and loss using dlfeval and the
 % modelGradients function and update the network state.
 [gradients,state,loss] = dlfeval(@modelGradients,dlnet,dlX,dlY);
 dlnet.State = state;

 % Determine learning rate for time-based decay learning rate schedule.
 learnRate = initialLearnRate/(1 + decay*iteration);

 % Update the network parameters using the SGDM optimizer.
 [dlnet,velocity] = sgdmupdate(dlnet,gradients,velocity,learnRate,momentum);

 % Display the training progress.
 D = duration(0,0,toc(start),'Format','hh:mm:ss');
 addpoints(lineLossTrain,iteration,loss)
 title("Epoch: " + epoch + ", Elapsed: " + string(D))
 drawnow
 end
end
Test Model

Test the classification accuracy of the model by comparing the predictions on the validation set with the true labels.

After training, making predictions on new data does not require the labels. Create `minibatchqueue` object containing only the predictors of the test data:

- To ignore the labels for testing, set the number of outputs of the mini-batch queue to 1.
- Specify the same mini-batch size used for training.
- Preprocess the predictors using the `preprocessMiniBatchPredictors` function, listed at the end of the example.
- For the single output of the datastore, specify the mini-batch format 'SSCB' (spatial, spatial, channel, batch).

```matlab
numOutputs = 1;
mbqTest = minibatchqueue(augimdsValidation,numOutputs, ... 'MiniBatchSize',miniBatchSize, ... 'MiniBatchFcn',@preprocessMiniBatchPredictors, ... 'MiniBatchFormat','SSCB');
```

Loop over the mini-batches and classify the images using `modelPredictions` function, listed at the end of the example.

```matlab
predictions = modelPredictions(dlnet,mbqTest,classes);
```
Evaluate the classification accuracy.

```matlab
YTest = imdsValidation.Labels;
accuracy = mean(predictions == YTest)
accuracy = 0.9530
```

Model Gradients Function

The `modelGradients` function takes a `dlnetwork` object `dlnet`, a mini-batch of input data `dlX` with corresponding labels `Y` and returns the gradients of the loss with respect to the learnable parameters in `dlnet`, the network state, and the loss. To compute the gradients automatically, use the `dlgradient` function.

```matlab
function [gradients,state,loss] = modelGradients(dlnet,dlX,Y)
[dlYPred,state] = forward(dlnet,dlX);
loss = crossentropy(dlYPred,Y);
gradients = dlgradient(loss,dlnet.Learnables);
loss = double(gather(extractdata(loss)));
end
```

Model Predictions Function

The `modelPredictions` function takes a `dlnetwork` object `dlnet`, a `minibatchqueue` of input data `mbq`, and the network classes, and computes the model predictions by iterating over all data in the `minibatchqueue` object. The function uses the `onehotdecode` function to find the predicted class with the highest score.

```matlab
function predictions = modelPredictions(dlnet,mbq,classes)
predictions = [];
while hasdata(mbq)
    dlXTest = next(mbq);
    dlYPred = predict(dlnet,dlXTest);
    YPred = onehotdecode(dlYPred,classes,1)';
    predictions = [predictions; YPred];
end
end
```

Mini Batch Preprocessing Function

The `preprocessMiniBatch` function preprocesses a mini-batch of predictors and labels using the following steps:

1. Preprocess the images using the `preprocessMiniBatchPredictors` function.
2. Extract the label data from the incoming cell array and concatenate into a categorical array along the second dimension.
One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension produces an encoded array that matches the shape of the network output.

```matlab
function [X,Y] = preprocessMiniBatch(XCell,YCell)
% Preprocess predictors.
X = preprocessMiniBatchPredictors(XCell);
% Extract label data from cell and concatenate.
Y = cat(2,YCell{1:end});
% One-hot encode labels.
Y = onehotencode(Y,1);
end
```

Mini-Batch Predictors Preprocessing Function

The `preprocessMiniBatchPredictors` function preprocesses a mini-batch of predictors by extracting the image data from the input cell array and concatenate into a numeric array. For grayscale input, concatenating over the fourth dimension adds a third dimension to each image, to use as a singleton channel dimension.

```matlab
function X = preprocessMiniBatchPredictors(XCell)
% Concatenate.
X = cat(4,XCell{1:end});
end
```

Input Arguments

- **dlnet** — Network for custom training loops

 `dlnetwork` object

 Network for custom training loops, specified as a `dlnetwork` object.

- **dlX** — Input data

 `formatted dlarray`

 Input data, specified as a formatted `dlarray`. For more information about `dlarray` formats, see the `fmt` input argument of `dlarray`.

- **layerNames** — Layers to extract outputs from

 `string array | cell array of character vectors`

 Layers to extract outputs from, specified as a string array or a cell array of character vectors containing the layer names.

 - If `layerNames(i)` corresponds to a layer with a single output, then `layerNames(i)` is the name of the layer.
 - If `layerNames(i)` corresponds to a layer with multiple outputs, then `layerNames(i)` is the layer name followed by the character "/" and the name of the layer output: `'layerName/outputName'`.
Output Arguments

dLY — Output data
formatted dlarray

Output data, returned as a formatted dlarray. For more information about dlarray formats, see the fmt input argument of dlarray.

state — Updated network state
table

Updated network state, returned as a table.

The network state is a table with three columns:

- **Layer** - Layer name, specified as a string scalar.
- **Parameter** - Parameter name, specified as a string scalar.
- **Value** - Value of parameter, specified as a numeric array object.

The network state contains information remembered by the network between iterations. For example, the state of LSTM and batch normalization layers.

Update the state of a dlnetwork using the State property.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

- This function runs on the GPU if either or both of the following conditions are met:
 - Any of the values of the network learnable parameters inside dlnet.Learnables.Value are dlarray objects with underlying data of type gpuArray
 - The input argument dlX is a dlarray with underlying data of type gpuArray

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | dlfeval | dlgradient | dlnetwork | predict

Topics
“Train Generative Adversarial Network (GAN)”
“Automatic Differentiation Background”
“Define Custom Training Loops, Loss Functions, and Networks”

Introduced in R2019b
freezeParameters

Convert learnable network parameters in `ONNXParameters` to nonlearnable.

Syntax

```matlab
params = freezeParameters(params,names)
```

Description

The function `freezeParameters` moves the specified parameters from `params.Learnables` in the input argument `params` to `params.Nonlearnables` in the output argument `params`.

Examples

Train Imported ONNX Function Using Custom Training Loop

Import the `alexnet` convolution neural network as a function and fine-tune the pretrained network with transfer learning to perform classification on a new collection of images.

This example uses several helper functions. To view the code for these functions, see Helper Functions on page 1-0.

Unzip and load the new images as an image datastore. `imageDatastore` automatically labels the images based on folder names and stores the data as an `ImageDatastore` object. An image datastore enables you to store large image data, including data that does not fit in memory, and efficiently read batches of images during training of a convolutional neural network. Specify the mini-batch size.

```matlab
unzip('MerchData.zip');
miniBatchSize = 8;
imds = imageDatastore('MerchData', ...  
    'IncludeSubfolders',true, ...  
    'LabelSource','foldernames',...  
    'ReadSize', miniBatchSize);
```

This data set is small, containing 75 training images. Display some sample images.

```matlab
numImages = numel(imds.Labels);
idx = randperm(numImages,16);
figure
for i = 1:16
    subplot(4,4,i)
    I = readimage(imds,idx(i));
    imshow(I)
end
```
Extract the training set and one-hot encode the categorical classification labels.

\[
X_{\text{Train}} = \text{readall(imds)}; \\
X_{\text{Train}} = \text{single(cat(4,XTrain{:}))}; \\
Y_{\text{Train}_\text{categ}} = \text{categorical(imds.Labels)}; \\
Y_{\text{Train}} = \text{onehotencode(YTrain_categ,2)'};
\]

Determine the number of classes in the data.

\[
\text{classes} = \text{categories(YTrain_categ)}; \\
\text{numClasses} = \text{numel(classes)}
\]

\[
\text{numClasses} = 5
\]

AlexNet is a convolutional neural network that is trained on more than a million images from the ImageNet database. As a result, the network has learned rich feature representations for a wide range of images. The network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many animals.

Import the pretrained alexnet network as a function.

\[
\text{alexnetONNX()} \\
\text{params} = \text{importONNXFunction('alexnet.onnx','alexnetFcn')}
\]

A function containing the imported ONNX network has been saved to the file alexnetFcn.m. To learn how to use this function, type: help alexnetFcn.

\[
\text{params} = \\
\text{ONNXParameters with properties:}
\]
Learnables: [1x1 struct]
Nonlearnables: [1x1 struct]
State: [1x1 struct]
NumDimensions: [1x1 struct]
NetworkFunctionName: 'alexnetFcn'

params is an ONNXParameters object that contains the network parameters. alexnetFcn is a model function that contains the network architecture. importONNXFunction saves alexnetFcn in the current folder.

Calculate the classification accuracy of the pretrained network on the new training set.

accuracyBeforeTraining = getNetworkAccuracy(XTrain,YTrain,params);
fprintf('%.2f accuracy before transfer learning
',accuracyBeforeTraining);

0.01 accuracy before transfer learning

The accuracy is very low.

Display the learnable parameters of the network. These parameters, for example the weights (W) and bias (B) of convolution and fully connected layers, are updated by the network during training. Nonlearnable parameters remain constant during training.

params.Learnables

ans = struct with fields:
 data_Mean: [227x227x3 dlarray]
 conv1_W: [11x11x3x96 dlarray]
 conv1_B: [96x1 dlarray]
 conv2_W: [5x5x48x256 dlarray]
 conv2_B: [256x1 dlarray]
 conv3_W: [3x3x256x384 dlarray]
 conv3_B: [384x1 dlarray]
 conv4_W: [3x3x192x384 dlarray]
 conv4_B: [384x1 dlarray]
 conv5_W: [3x3x192x256 dlarray]
 conv5_B: [256x1 dlarray]
 fc6_W: [6x6x256x4096 dlarray]
 fc6_B: [4096x1 dlarray]
 fc7_W: [1x1x4096x4096 dlarray]
 fc7_B: [4096x1 dlarray]
 fc8_W: [1x1x4096x1000 dlarray]
 fc8_B: [1000x1 dlarray]

The last two learnable parameters of the pretrained network are configured for 1000 classes. The parameters fc8_W and fc8_B must be fine-tuned for the new classification problem. Transfer the parameters to classify 5 classes by initializing them.

params.Learnables.fc8_B = rand(5,1);
params.Learnables.fc8_W = rand(1,1,4096,5);

Freeze all the parameters of the network to convert them to nonlearnable parameters. Because you do not need to compute the gradients of the frozen layers, freezing the weights of many initial layers can significantly speed up network training.

1-465
params = freezeParameters(params,'all');

Unfreeze the last two parameters of the network to convert them to learnable parameters.

params = unfreezeParameters(params,'fc8_W');
params = unfreezeParameters(params,'fc8_B');

Now the network is ready for training. Initialize the training progress plot.

plots = "training-progress";
if plots == "training-progress"
 figure
 lineLossTrain = animatedline;
 xlabel("Iteration")
 ylabel("Loss")
end

Specify the training options.

velocity = [];
numEpochs = 5;
miniBatchSize = 16;
numObservations = size(YTrain,2);
numIterationsPerEpoch = floor(numObservations./miniBatchSize);
initialLearnRate = 0.01;
momentum = 0.9;
decay = 0.01;

Train the network.

iteration = 0;
start = tic;
executionEnvironment = "cpu"; % Change to "gpu" to train on a GPU.

% Loop over epochs.
for epoch = 1:numEpochs

 % Shuffle data.
 idx = randperm(numObservations);
 XTrain = XTrain(:,:, :,idx);
 YTrain = YTrain(:, idx);

 % Loop over mini-batches.
 for i = 1:numIterationsPerEpoch
 iteration = iteration + 1;

 % Read mini-batch of data.
 idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
 X = XTrain(:,:, :,idx);
 Y = YTrain(:,idx);

 % If training on a GPU, then convert data to gpuArray.
 if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
 X = gpuArray(X);
 end

 % Evaluate the model gradients and loss using dlfeval and the
 % modelGradients function.
 [gradients,loss,state] = dlfeval(@modelGradients,X,Y,params);

end
params.State = state;

% Determine learning rate for time-based decay learning rate schedule.
learnRate = initialLearnRate/(1 + decay*iteration);

% Update the network parameters using the SGDM optimizer.
[params.Learnables,velocity] = sgdmupdate(params.Learnables,gradients,velocity);

% Display the training progress.
if plots == "training-progress"
 D = duration(0,0,toc(start),'Format','hh:mm:ss');
 addpoints(lineLossTrain,iteration,double(gather(extractdata(loss))))
 title("Epoch: " + epoch + ", Elapsed: " + string(D))
 drawnow
end
end
end

Calculate the classification accuracy of the network after fine-tuning.

accuracyAfterTraining = getNetworkAccuracy(XTrain,YTrain,params);
fprintf('%.2f accuracy after transfer learning\n',accuracyAfterTraining);

0.99 accuracy after transfer learning

Helper Functions

This section provides the code of the helper functions used in this example.
The `getNetworkAccuracy` function evaluates the network performance by calculating the classification accuracy.

```matlab
function accuracy = getNetworkAccuracy(X,Y,onnxParams)

N = size(X,4);
Ypred = alexnetFcn(X, onnxParams, 'Training', false);

[-,YIdx] = max(Y,[],1);
[-,YpredIdx] = max(Ypred,[],1);
umIncorrect = sum(abs(YIdx-YpredIdx) > 0);
accuracy = 1 - numIncorrect/N;
end
```

The `modelGradients` function calculates the loss and gradients.

```matlab
function [grad, loss, state] = modelGradients(X,Y,onnxParams)

[y,state] = alexnetFcn(X, onnxParams, 'Training', true);
loss = crossentropy(y,Y,'DataFormat','CB');
grad = dlgradient(loss, onnxParams.Learnables);
end
```

The `alexnetONNX` function generates an ONNX model of the alexnet network. You need Deep Learning Toolbox Model for AlexNet Network support to access this model.

```matlab
function alexnetONNX()

exportONNXNetwork(alexnet,'alexnet.onnx');
end
```

Input Arguments

- **params** — Network parameters
 ONNXParameters object

 Network parameters, specified as an ONNXParameters object. `params` contains the network parameters of the imported ONNX model.

- **names** — Names of parameters to freeze
 'all' | string array

 Names of the parameters to freeze, specified as 'all' or a string array. Freeze all learnable parameters by setting `names` to 'all'. Freeze `k` learnable parameters by defining the parameter names in the 1-by-`k` string array `names`.

 Example: 'all'
 Example: ['gpu_0_sl_pred_b_0', 'gpu_0_sl_pred_w_0']

 Data Types: char | string
Output Arguments

params — Network parameters
ONNXParameters object

Network parameters, returned as an ONNXParameters object. params contains the network parameters updated by freezeParameters.

See Also
ONNXParameters | importONNXFunction | unfreezeParameters

Introduced in R2020b
fullyconnect

Sum all weighted input data and apply a bias

Syntax

\[
dlY = \text{fullyconnect}(dlX,\text{weights},\text{bias})
\]

\[
dlY = \text{fullyconnect}(dlX,\text{weights},\text{bias},'\text{DataFormat}',\text{FMT})
\]

Description

The fully connect operation multiplies the input by a weight matrix and then adds a bias vector.

Note This function applies the fully connect operation to `dlarray` data. If you want to apply average pooling within a `layerGraph` object or `Layer` array, use the following layer:

- `fullyConnectedLayer`

\[
dlY = \text{fullyconnect}(dlX,\text{weights},\text{bias})\]

computes the weighted sum of the spatial, channel, and unspecified data in `dlX` using the weights specified by `weights`, and adds a bias. The input `dlX` is a formatted `dlarray` with dimension labels. The output `dlY` is a formatted `dlarray`.

\[
dlY = \text{fullyconnect}(dlX,\text{weights},\text{bias},'\text{DataFormat}',\text{FMT})\]

also specifies the dimension format `FMT` when `dlX` is not a formatted `dlarray`. The output `dlY` is an unformatted `dlarray`.

Examples

Fully Connect All Input Data to Output Features

The `fullyconnect` function uses the weighted sum to connect all inputs of an observation to each output feature.

Create the input data as a single observation of random values with a height and width of 12 and 32 channels.

\[
\begin{align*}
\text{height} &= 12; \\
\text{width} &= 12; \\
\text{channels} &= 32; \\
\text{observations} &= 1;
\end{align*}
\]

\[
X = \text{rand}(\text{height},\text{width},\text{channels},\text{observations});
\]

\[
dlX = \text{dlarray}(X,\text{'}SSCB\text{'});
\]

Create the learnable parameters. For this operation there are ten output features.

\[
\begin{align*}
\text{outputFeatures} &= 10; \\
\text{weights} &= \text{ones}(\text{outputFeatures},\text{height},\text{width},\text{channels}); \\
\text{bias} &= \text{ones}(\text{outputFeatures},1);
\end{align*}
\]
Apply the `fullyconnect` operation.

dlY = fullyconnect(dlX,weights,bias);

dlY =
10(C) × 1(B) dlarray
1.0e+03 *
 2.3266
 2.3266
 2.3266
 2.3266
 2.3266
 2.3266
 2.3266
 2.3266
 2.3266
 2.3266

The output dlY is a 2-D dlarray with one channel dimension of size ten and one singleton batch dimension.

Input Arguments

dlX — Input data

dlarray | numeric array

Input data, specified as a dlarray with or without dimension labels or a numeric array. When dlX is not a formatted dlarray, you must specify the dimension label format using 'DataFormat', FMT. If dlX is a numeric array, at least one of weights or bias must be a dlarray.

The `fullyconnect` operation sums over the 'S', 'C', and 'U' dimensions of dlX for each output feature specified by weights. The size of each 'B' or 'T' dimension of dlX is preserved.

Data Types: single | double

weights — Weights

dlarray | numeric array

Weights, specified as a dlarray with or without labels or a numeric array.

If weights is an unformatted dlarray or a numeric array, the first dimension of weights must match the number of output features. If weights is a formatted dlarray, the size of the 'C' dimension must match the number of output features. weights must contain the same number of elements as the combined size of the 'S', 'C', and 'U' dimensions of input dlX multiplied by the number of output features.

Data Types: single | double

bias — Bias constant

dlarray vector | numeric vector

Bias constant, specified as a dlarray vector with or without labels or a numeric vector.
Each element of bias is the bias applied to the corresponding feature output. The number of elements of bias must match the number of output features specified by the first dimension of weights.

If bias is a formatted dlarray, the nonsingleton dimension must be a channel dimension labeled 'C'.

Data Types: single | double

FMT — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of 'DataFormat' and a character array or string FMT that provides a label for each dimension of the data. Each character in FMT must be one of the following:

- 'S' — Spatial
- 'C' — Channel
- 'B' — Batch (for example, samples and observations)
- 'T' — Time (for example, sequences)
- 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at most once.

You must specify 'DataFormat',FMT when the input data dlX is not a formatted dlarray.

Example: 'DataFormat','SSCB'

Data Types: char | string

Output Arguments

dlY — Weighted output features
dlarray

Weighted output features, returned as a dlarray. The output dlY has the same underlying data type as the input dlX.

If the input dlX is a formatted dlarray, the output dlY has one dimension labeled 'C' representing the output features, and the same number of 'B' or 'T' dimensions as the input dlX, if either or both are present. If dlX has no 'B' or 'T' dimensions, dlY has the format 'CB', where the 'B' dimension is singleton.

If the input dlX is not a formatted dlarray, output dlY is unformatted. The first dimension of dlY contains the output features. Other dimensions of dlY correspond to the 'B' and 'T' dimensions of dlX, if either or both are present, and are provided in the same order as in FMT. If dlX has no 'B' or 'T' dimensions, the first dimension of dlY contains the output features and the second dimension is singleton.
More About

Fully Connect Operation

The `fullyconnect` function connects all outputs of the previous operation to the outputs of the `fullyconnect` function. For more information, see the definition of “Fully Connected Layer” on page 1-480 on the `fullyConnectedLayer` reference page.

Extended Capabilities

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

- When at least one of the following input arguments is a `gpuArray` or a `dlarray` with underlying data of type `gpuArray`, this function runs on the GPU:
 - `dlX`
 - `weights`
 - `bias`

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also

`batchnorm` | `dlarray` | `dlconv` | `dlfeval` | `dlgradient` | `relu` | `sigmoid` | `softmax`

Topics

“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”
“Make Predictions Using Model Function”
“Train a Siamese Network to Compare Images”
“Train Network with Multiple Outputs”

Introduced in R2019b
fullyConnectedLayer

Fully connected layer

Description

A fully connected layer multiplies the input by a weight matrix and then adds a bias vector.

Creation

Syntax

layer = fullyConnectedLayer(outputSize)
layer = fullyConnectedLayer(outputSize,Name,Value)

Description

layer = fullyConnectedLayer(outputSize) returns a fully connected layer and specifies the OutputSize property.

layer = fullyConnectedLayer(outputSize,Name,Value) sets the optional “Parameters and Initialization” on page 1-474, “Learn Rate and Regularization” on page 1-476, and Name properties using name-value pairs. For example, fullyConnectedLayer(10,'Name','fc1') creates a fully connected layer with an output size of 10 and the name 'fc1'. You can specify multiple name-value pairs. Enclose each property name in single quotes.

Properties

Fully Connected

OutputSize — Output size

positive integer

Output size for the fully connected layer, specified as a positive integer.

Example: 10

InputSize — Input size

‘auto’ (default) | positive integer

Input size for the fully connected layer, specified as a positive integer or ‘auto’. If InputSize is ‘auto’, then the software automatically determines the input size during training.

Parameters and Initialization

WeightsInitializer — Function to initialize weights

‘glorot’ (default) | ‘he’ | ‘orthogonal’ | ‘narrow-normal’ | ‘zeros’ | ‘ones’ | function handle

Function to initialize the weights, specified as one of the following:
• `'glorot'` - Initialize the weights with the Glorot initializer [1] (also known as Xavier initializer). The Glorot initializer independently samples from a uniform distribution with zero mean and variance \(2/(\text{InputSize} + \text{OutputSize})\).

• `'he'` - Initialize the weights with the He initializer [2]. The He initializer samples from a normal distribution with zero mean and variance \(2/\text{InputSize}\).

• `'orthogonal'` - Initialize the input weights with \(Q\), the orthogonal matrix given by the QR decomposition of \(Z = QR\) for a random matrix \(Z\) sampled from a unit normal distribution. [3]

• `'narrow-normal'` - Initialize the weights by independently sampling from a normal distribution with zero mean and standard deviation 0.01.

• `'zeros'` - Initialize the weights with zeros.

• `'ones'` - Initialize the weights with ones.

• Function handle - Initialize the weights with a custom function. If you specify a function handle, then the function must be of the form \(\text{weights} = \text{func}(\text{sz})\), where \(\text{sz}\) is the size of the weights. For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the weights when the `Weights` property is empty.

Data Types: `char` | `string` | `function_handle`

BiasInitializer — Function to initialize bias

• `'zeros'` (default) | `'narrow-normal'` | `'ones'` | `function_handle`

Function to initialize the bias, specified as one of the following:

• `'zeros'` - Initialize the bias with zeros.

• `'ones'` - Initialize the bias with ones.

• `'narrow-normal'` - Initialize the bias by independently sampling from a normal distribution with zero mean and standard deviation 0.01.

• Function handle - Initialize the bias with a custom function. If you specify a function handle, then the function must be of the form \(\text{bias} = \text{func}(\text{sz})\), where \(\text{sz}\) is the size of the bias.

The layer only initializes the bias when the `Bias` property is empty.

Data Types: `char` | `string` | `function_handle`

Weights — Layer weights

• \([\,]\) (default) | `matrix`

Layer weights, specified as a matrix.

The layer weights are learnable parameters. You can specify the initial value for the weights directly using the `Weights` property of the layer. When training a network, if the `Weights` property of the layer is nonempty, then `trainNetwork` uses the `Weights` property as the initial value. If the `Weights` property is empty, then `trainNetwork` uses the initializer specified by the `WeightsInitializer` property of the layer.

At training time, `Weights` is an `OutputSize`-by-`InputSize` matrix.

Data Types: `single` | `double`

Bias — Layer biases

• \([\,]\) (default) | `matrix`

Layer biases, specified as a matrix.

The layer biases are learnable parameters. When training a network, if Bias is nonempty, then `trainNetwork` uses the Bias property as the initial value. If Bias is empty, then `trainNetwork` uses the initializer specified by BiasInitializer.

At training time, Bias is an `OutputSize`-by-1 matrix.

Data Types: single | double

Learn Rate and Regularization

WeightLearnRateFactor — Learning rate factor for weights

1 (default) | nonnegative scalar

Learning rate factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the weights in this layer. For example, if `WeightLearnRateFactor` is 2, then the learning rate for the weights in this layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the `trainingOptions` function.

Example: 2

BiasLearnRateFactor — Learning rate factor for biases

1 (default) | nonnegative scalar

Learning rate factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the biases in this layer. For example, if `BiasLearnRateFactor` is 2, then the learning rate for the biases in the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the `trainingOptions` function.

Example: 2

WeightL2Factor — L2 regularization factor for weights

1 (default) | nonnegative scalar

L2 regularization factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2 regularization for the weights in this layer. For example, if `WeightL2Factor` is 2, then the L2 regularization for the weights in this layer is twice the global L2 regularization factor. You can specify the global L2 regularization factor using the `trainingOptions` function.

Example: 2

BiasL2Factor — L2 regularization factor for biases

0 (default) | nonnegative scalar

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2 regularization for the biases in this layer. For example, if `BiasL2Factor` is 2, then the L2 regularization for the biases in this layer is twice the global L2 regularization factor. You can specify the global L2 regularization factor using the `trainingOptions` function.
Example: 2

Layer

Name — Layer name

' ' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and `Name` is set to ' ', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

NumInputs — Number of inputs

1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames — Input names

{'}in'} (default)

Input names of the layer. This layer accepts a single input only.

Data Types: cell

NumOutputs — Number of outputs

1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames — Output names

{'}out'} (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Create Fully Connected Layer

Create a fully connected layer with an output size of 10 and the name 'fc1'.

```matlab
layer = fullyConnectedLayer(10,'Name','fc1')
```

```matlab
dl = FullyConnectedLayer with properties:
Name: 'fc1'

Hyperparameters
InputSize: 'auto'
OutputSize: 10
```
Learnable Parameters
Weights: []
Bias: []

Show all properties

Include a fully connected layer in a Layer array.

```
layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]
```

```
layers =
7x1 Layer array with layers:
  1  ''  Image Input             28x28x1 images with 'zerocenter' normalization
  2  ''  Convolution             20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
  3  ''  ReLU                    ReLU
  4  ''  Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
  5  ''  Fully Connected         10 fully connected layer
  6  ''  Softmax                 softmax
  7  ''  Classification Output   crossentropyex
```

Specify Initial Weights and Biases in Fully Connected Layer

To specify the weights and bias initializer functions, use the **WeightsInitializer** and **BiasInitializer** properties respectively. To specify the weights and biases directly, use the **Weights** and **Bias** properties respectively.

Specify Initialization Function

Create a fully connected layer with an output size of 10 and specify the weights initializer to be the He initializer.

```
outputSize = 10;
layer = fullyConnectedLayer(outputSize,'WeightsInitializer','he')
```

```
layer =
  FullyConnectedLayer with properties:
    Name: ''
    Hyperparameters
      InputSize: 'auto'
      OutputSize: 10
  Learnable Parameters
    Weights: []
```
Note that the **Weights** and **Bias** properties are empty. At training time, the software initializes these properties using the specified initialization functions.

Specify Custom Initialization Function

To specify your own initialization function for the weights and biases, set the **WeightsInitializer** and **BiasInitializer** properties to a function handle. For these properties, specify function handles that take the size of the weights and biases as input and output the initialized value.

Create a fully connected layer with output size 10 and specify initializers that sample the weights and biases from a Gaussian distribution with a standard deviation of 0.0001.

```matlab
outputSize = 10;
weightsInitializationFcn = @(sz) rand(sz) * 0.0001;
biasInitializationFcn = @(sz) rand(sz) * 0.0001;

layer = fullyConnectedLayer(outputSize, ...
    'WeightsInitializer',weightsInitializationFcn, ...
    'BiasInitializer',biasInitializationFcn)
```

Again, the **Weights** and **Bias** properties are empty. At training time, the software initializes these properties using the specified initialization functions.

Specify Weights and Bias Directly

Create a fully connected layer with an output size of 10 and set the weights and bias to \(W \) and \(b \) in the MAT file `FCWeights.mat` respectively.

```matlab
outputSize = 10;
load FCWeights

layer = fullyConnectedLayer(outputSize, ...
    'Weights',W, ...
    'Bias',b)
```
Hyperparameters
InputSize: 720
OutputSize: 10

Learnable Parameters
Weights: [10x720 double]
Bias: [10x1 double]

Show all properties

Here, the Weights and Bias properties contain the specified values. At training time, if these properties are non-empty, then the software uses the specified values as the initial weights and biases. In this case, the software does not use the initializer functions.

More About

Fully Connected Layer

A fully connected layer multiplies the input by a weight matrix and then adds a bias vector.

The convolutional (and down-sampling) layers are followed by one or more fully connected layers.

As the name suggests, all neurons in a fully connected layer connect to all the neurons in the previous layer. This layer combines all of the features (local information) learned by the previous layers across the image to identify the larger patterns. For classification problems, the last fully connected layer combines the features to classify the images. This is the reason that the outputSize argument of the last fully connected layer of the network is equal to the number of classes of the data set. For regression problems, the output size must be equal to the number of response variables.

You can also adjust the learning rate and the regularization parameters for this layer using the related name-value pair arguments when creating the fully connected layer. If you choose not to adjust them, then trainNetwork uses the global training parameters defined by the trainingOptions function. For details on global and layer training options, see “Set Up Parameters and Train Convolutional Neural Network”.

A fully connected layer multiplies the input by a weight matrix \(W \) and then adds a bias vector \(b \).

If the input to the layer is a sequence (for example, in an LSTM network), then the fully connected layer acts independently on each time step. For example, if the layer before the fully connected layer outputs an array \(X \) of size \(D \)-by-\(N \)-by-\(S \), then the fully connected layer outputs an array \(Z \) of size \(\text{outputSize} \)-by-\(N \)-by-\(S \). At time step \(t \), the corresponding entry of \(Z \) is \(WX_t + b \), where \(X_t \) denotes time step \(t \) of \(X \).

Compatibility Considerations

Default weights initialization is Glorot

Behavior changed in R2019a
Starting in R2019a, the software, by default, initializes the layer weights of this layer using the Glorot initializer. This behavior helps stabilize training and usually reduces the training time of deep networks.

In previous releases, the software, by default, initializes the layer weights by sampling from a normal distribution with zero mean and variance 0.01. To reproduce this behavior, set the 'WeightsInitializer' option of the layer to 'narrow-normal'.

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
Deep Network Designer | batchNormalizationLayer | convolution2dLayer | reluLayer | trainNetwork

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Compare Layer Weight Initializers”
“List of Deep Learning Layers”

Introduced in R2016a
functionToLayerGraph

Convert deep learning model function to a layer graph

Syntax

lgraph = functionToLayerGraph(fun,x)
lgraph = functionToLayerGraph(fun,x,Name,Value)

Description

lgraph = functionToLayerGraph(fun,x) returns a layer graph based on the deep learning array function fun. functionToLayerGraph converts only those operations in fun that operate on dlarray objects among the inputs in x. To include extra parameters or data in fun, see the topic “Parameterizing Functions” or the example “Create Layer Graph from Function” on page 1-482.

functionToLayerGraph evaluates fun(x) and traces the execution to derive an equivalent layer graph, to the extent possible. The steps in fun(x) that functionToLayerGraph can trace are both based on dlarray arguments and are supported calls for dlarray. See “List of Functions with dlarray Support”. For unsupported functions, functionToLayerGraph creates a PlaceholderLayer.

lgraph = functionToLayerGraph(fun,x,Name,Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Create Layer Graph from Function

The simplemodel function at the end of this example creates fully connected outputs followed by a softmax operation. To create a layer graph from this function based on dlarray data, create input arrays as dlarray objects, and create a function handle to the simplemodel function including the data.

rng default % For reproducibility
dlX1 = dlarray(rand(10),'CB');
dlX2 = dlarray(zeros(10,1),'CB');
fun = @(x)simplemodel(x,dlX1,dlX2);

Call functionToLayerGraph using a dlarray for the input data dlX.

dlX = dlarray(ones(10,1),'CB');
lgraph = functionToLayerGraph(fun,dlX)

lgraph =
LayerGraph with properties:
 Layers: [2x1 nnet.cnn.layer.Layer]
 Connections: [1x2 table]
 InputNames: {1x0 cell}
OutputNames: {1x0 cell}

Examine the resulting layers in lgraph.

disp(lgraph.Layers)

2x1 Layer array with layers:
1 'fc_1' Fully Connected 10 fully connected layer
2 'sm_1' Softmax softmax

function y = simplemodel(x,w,b)
y = fullyconnect(x,w,b);
y = softmax(y);
end

Input Arguments

fun — Function to convert
function handle

Function to convert, specified as a function handle.

Example: @relu

Data Types: function_handle

x — Data for function
any data type

Data for the function, specified as any data type. Only dlarray data is traced and converted to a layer graph.

Example: dlarray(zeros(12*50,23))

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | logical | char | string | struct | table | cell | function_handle | categorical | datetime | duration | calendarDuration | fi

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'GenerateLayer','placeholder-layer'

GenerateLayer — Type of layer to generate for unsupported operations
'custom-layer' (default) | 'placeholder-layer'

Type of layer to generate for unsupported operations in fun, specified as 'custom-layer' or 'placeholder-layer'.

When an operation in fun does not correspond to a layer in Deep Learning Toolbox, the software generates a layer to represent that functionality. The 'GenerateLayer' option specifies the type of layer as follows.
• 'custom-layer' — The software generates a custom layer that performs the operation.
• 'placeholder-layer' — The software generates a PlaceholderLayer object. To create a working network in this case, see “Define Custom Deep Learning Layers” or “Define Network as Model Function”.

Example: 'GenerateLayer', 'placeholder-layer'

CustomLayerPrefix — Prefix for generated custom layers
'customLayer' (default) | char vector

Prefix for generate custom layers, specified as a char vector.

This option applies only when the 'GenerateLayer' option is 'custom-layer'. The name of each generated custom layer starts with the specified prefix.

Example: 'CustomLayerPrefix', 'myGeneratedLayer'

Output Arguments

lgraph — Layer graph
LayerGraph object

Layer graph, returned as a LayerGraph object.

See Also

PlaceholderLayer | *dlarray* | *findPlaceholderLayers* | *layerGraph*

Topics

“List of Functions with dlarray Support”

Introduced in R2019b
getL2Factor

Package: nnet.cnn.layer

Get L2 regularization factor of layer learnable parameter

Syntax

```matlab
factor = getL2Factor(layer,parameterName)
factor = getL2Factor(layer,parameterPath)
```

```matlab
factor = getL2Factor(dlnet,layerName,parameterName)
factor = getL2Factor(dlnet,parameterPath)
```

Description

- `factor = getL2Factor(layer,parameterName)` returns the L2 regularization factor of the parameter with the name `parameterName` in `layer`.

 For built-in layers, you can get the L2 regularization factor directly by using the corresponding property. For example, for a `convolution2dLayer` layer, the syntax `factor = getL2Factor(layer,'Weights')` is equivalent to `factor = layer.WeightL2Factor`.

- `factor = getL2Factor(layer,parameterPath)` returns the L2 regularization factor of the parameter specified by the path `parameterPath`. Use this syntax when the parameter is in a `dlnetwork` object in a custom layer.

- `factor = getL2Factor(dlnet,layerName,parameterName)` returns the L2 regularization factor of the parameter with the name `parameterName` in the layer with name `layerName` for the specified `dlnetwork` object.

- `factor = getL2Factor(dlnet,parameterPath)` returns the L2 regularization factor of the parameter specified by the path `parameterPath`. Use this syntax when the parameter is in a nested layer.

Examples

Set and Get L2 Regularization Factor of Learnable Parameter

Set and get the L2 regularization factor of a learnable parameter of a layer.

Define a custom PReLU layer. To create this layer, save the file `preluLayer.m` in the current folder.

Create a layer array including a custom layer `preluLayer`.

```matlab
layers = [...]  
    imageInputLayer([28 28 1])  
    convolution2dLayer(5,20)  
    batchNormalizationLayer  
    preluLayer(20,'prelu')  
    fullyConnectedLayer(10)
```

1-485
softmaxLayer
classificationLayer];

Set the L2 regularization factor of the 'Alpha' learnable parameter of the preluLayer to 2.

layers(4) = setL2Factor(layers(4),'Alpha',2);

View the updated L2 regularization factor.

factor = getL2Factor(layers(4),'Alpha')

factor = 2

Set and Get L2 Regularization Factor of Nested Layer Learnable Parameter

Set and get the L2 regularization factor of a learnable parameter of a nested layer.

Create a residual block layer using the custom layer residualBlockLayer attached to this example as a supporting file. To access this file, open this example as a Live Script.

inputSize = [224 224 64];
numFilters = 64;
layer = residualBlockLayer(inputSize,numFilters)

layer =
residualBlockLayer with properties:

 Name: ''

 Learnable Parameters
 Network: [1x1 dlnetwork]

Show all properties

View the layers of the nested network.

layer.Network.Layers

ans = 8x1 Layer array with layers:

 1 'in' Image Input 224x224x64 images
 2 'conv1' Convolution 64 3x3x64 convolutions with stride [1 1] and padding 'same'
 3 'gn1' Group Normalization Group normalization with 64 channels split into 1 groups
 4 'relu1' ReLU
 5 'conv2' Convolution 64 3x3x64 convolutions with stride [1 1] and padding 'same'
 6 'gn2' Group Normalization Group normalization with 64 channels split into 64 groups
 7 'add' Addition Element-wise addition of 2 inputs
 8 'relu2' ReLU

Set the L2 regularization factor of the learnable parameter 'Weights' of the layer 'conv1' to 2 using the setL2Factor function.

factor = 2;
layer = setL2Factor(layer,'Network/conv1/Weights',factor);
Get the updated L2 regularization factor using the `getL2Factor` function.

```matlab
cfactor = getL2Factor(layer, 'Network/conv1/Weights')
factor = 2
```

Set and Get L2 Regularization Factor of dlnetwork Learnable Parameter

Set and get the L2 regularization factor of a learnable parameter of a `dlnetwork` object.

Create a `dlnetwork` object.

```matlab
layers = [
    imageInputLayer([28 28 1], 'Normalization', 'none', 'Name', 'in')
    convolution2dLayer(5, 20, 'Name', 'conv')
    batchNormalizationLayer('Name', 'bn')
    reluLayer('Name', 'relu')
    fullyConnectedLayer(10, 'Name', 'fc')
    softmaxLayer('Name', 'sm')];

lgraph = layerGraph(layers);
dlnet = dlnetwork(lgraph);

Set the L2 regularization factor of the 'Weights' learnable parameter of the convolution layer to 2 using the `setL2Factor` function.

```matlab
factor = 2;
dlnet = setL2Factor(dlnet, 'conv', 'Weights', factor);
```

Get the updated L2 regularization factor using the `getL2Factor` function.

```matlab
factor = getL2Factor(dlnet, 'conv', 'Weights')
factor = 2
```

**Set and Get L2 Regularization Factor of Nested dlnetwork Learnable Parameter**

Set and get the L2 regularization factor of a learnable parameter of a nested layer in a `dlnetwork` object.

Create a `dlnetwork` object containing the custom layer `residualBlockLayer` attached to this example as a supporting file. To access this file, open this example as a Live Script.

```matlab
inputSize = [224 224 3];
numFilters = 32;
numClasses = 5;

layers = [
 imageInputLayer(inputSize, 'Normalization', 'none', 'Name', 'in')
 convolution2dLayer(7, numFilters, 'Stride', 2, 'Padding', 'same', 'Name', 'conv')
 groupNormalizationLayer('all-channels', 'Name', 'gn')
 reluLayer('Name', 'relu')
];
```

1-487
maxPooling2dLayer(3,'Stride',2,'Name','max')
residualBlockLayer([56 56 numFilters],numFilters,'Name','res1')
residualBlockLayer([56 56 numFilters],numFilters,'Name','res2')
residualBlockLayer([56 56 numFilters],2*numFilters,'Name','res3')
residualBlockLayer([28 28 2*numFilters],2*numFilters,'Name','res4')
residualBlockLayer([28 28 2*numFilters],4*numFilters,'Name','res5')
globalAveragePooling2dLayer('Name','gap')
fullyConnectedLayer(numClasses,'Name','fc')
softmaxLayer('Name','sm')]

lgraph = layerGraph(layers);
dlnet = dlnetwork(lgraph);

The Learnables property of the dlnetwork object is a table that contains the learnable parameters of the network. The table includes parameters of nested layers in separate rows. View the learnable parameters of the layer "res1".

learnables = dlnet.Learnables;
idx = learnables.Layer == "res1";
learnables(idx,:)

ans=8x3 table
    Layer            Parameter                  Value
    ___________    _______________________    ___________________
    "res1"    "Network/conv1/Weights"    {3x3x32x32 dlarray}
    "res1"    "Network/conv1/Bias"       {1x1x32    dlarray}
    "res1"    "Network/gn1/Offset"       {1x1x32    dlarray}
    "res1"    "Network/gn1/Scale"        {1x1x32    dlarray}
    "res1"    "Network/conv2/Weights"    {3x3x32x32 dlarray}
    "res1"    "Network/conv2/Bias"       {1x1x32    dlarray}
    "res1"    "Network/gn2/Offset"       {1x1x32    dlarray}
    "res1"    "Network/gn2/Scale"        {1x1x32    dlarray}

For the layer "res1", set the L2 regularization factor of the learnable parameter 'Weights' of the layer 'conv1' to 2 using the setL2Factor function.

factor = 2;
dlnet = setL2Factor(dlnet,'res1/Network/conv1/Weights',factor);

Get the updated L2 regularization factor using the getL2Factor function.

factor = getL2Factor(dlnet,'res1/Network/conv1/Weights')

factor = 2

Input Arguments

layer — Input layer
scalar Layer object

Input layer, specified as a scalar Layer object.

parameterName — Parameter name
character vector | string scalar
Parameter name, specified as a character vector or a string scalar.

`parameterPath` — Path to parameter in nested layer  
string scalar | character vector

Path to parameter in nested layer, specified as a string scalar or a character vector. A nested layer is a custom layer that itself defines a layer graph as a learnable parameter.

If the input to `getL2Factor` is a nested layer, then the parameter path has the form "propertyName/layerName/parameterName", where:

- `propertyName` is the name of the property containing a `dlnetwork` object
- `layerName` is the name of the layer in the `dlnetwork` object
- `parameterName` is the name of the parameter

If there are multiple levels of nested layers, then specify each level using the form "propertyName1/layerName1/.../propertyNameN/layerNameN/parameterName", where `propertyName1` and `layerName1` correspond to the layer in the input to the `getL2Factor` function, and the subsequent parts correspond to the deeper levels.

Example: For layer input to `getL2Factor`, the path "Network/conv1/Weights" specifies the "Weights" parameter of the layer with name "conv1" in the `dlnetwork` object given by `layer.Network`.

If the input to `getL2Factor` is a `dlnetwork` object and the desired parameter is in a nested layer, then the parameter path has the form "layerName1/propertyName/layerName/parameterName", where:

- `layerName1` is the name of the layer in the input `dlnetwork` object
- `propertyName` is the property of the layer containing a `dlnetwork` object
- `layerName` is the name of the layer in the `dlnetwork` object
- `parameterName` is the name of the parameter

If there are multiple levels of nested layers, then specify each level using the form "layerName1/propertyName1/.../layerNameN/propertyNameN/layerName/parameterName", where `layerName1` and `propertyName1` correspond to the layer in the input to the `getL2Factor` function, and the subsequent parts correspond to the deeper levels.

Example: For `dlnetwork` input to `getL2Factor`, the path "res1/Network/conv1/Weights" specifies the "Weights" parameter of the layer with name "conv1" in the `dlnetwork` object given by `layer.Network`, where `layer` is the layer with name "res1" in the input network `dlnet`.

Data Types: char | string

`dlnet` — Network for custom training loops  
dlnetwork object

Network for custom training loops, specified as a `dlnetwork` object.

`layerName` — Layer name  
string scalar | character vector

Layer name, specified as a string scalar or a character vector.

Data Types: char | string
Output Arguments

factor — L2 regularization factor
nonnegative scalar

L2 regularization factor for the parameter, returned as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2 regularization for the specified parameter. For example, if `factor` is 2, then the L2 regularization for the specified parameter is twice the current global L2 regularization. The software determines the global L2 regularization based on the settings specified with the `trainingOptions` function.

See Also
getLearnRateFactor | setL2Factor | setLearnRateFactor | trainNetwork | trainingOptions

Topics
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Define Custom Deep Learning Layers”

Introduced in R2017b
getLearnRateFactor

Package: nnet.cnn.layer

Get learn rate factor of layer learnable parameter

Syntax

factor = getLearnRateFactor(layer, parameterName)
factor = getLearnRateFactor(layer, parameterPath)

factor = getLearnRateFactor(dlnet, layerName, parameterName)
factor = getLearnRateFactor(dlnet, parameterPath)

Description

factor = getLearnRateFactor(layer, parameterName) returns the learn rate factor of the learnable parameter with the name parameterName in layer.

For built-in layers, you can get the learn rate factor directly by using the corresponding property. For example, for a convolution2dLayer layer, the syntax factor = getLearnRateFactor(layer,'Weights') is equivalent to factor = layer.WeightLearnRateFactor.

factor = getLearnRateFactor(layer, parameterPath) returns the learn rate factor of the parameter specified by the path parameterPath. Use this syntax when the parameter is in a dlnetwork object in a custom layer.

factor = getLearnRateFactor(dlnet, layerName, parameterName) returns the learn rate factor of the parameter with the name parameterName in the layer with name layerName for the specified dlnetwork object.

factor = getLearnRateFactor(dlnet, parameterPath) returns the learn rate factor of the parameter specified by the path parameterPath. Use this syntax when the parameter is in a nested layer.

Examples

Set and Get Learning Rate Factor of Learnable Parameter

Set and get the learning rate factor of a learnable parameter of a custom PReLU layer.

Define a custom PReLU layer. To create this layer, save the file preluLayer.m in the current folder.

Create a layer array including the custom layer preluLayer.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    batchNormalizationLayer ...
]
Set the learn rate factor of the 'Alpha' learnable parameter of the preluLayer to 2.

```
layers(4) = setLearnRateFactor(layers(4), 'Alpha', 2);
```

View the updated learn rate factor.
```
factor = getLearnRateFactor(layers(4), 'Alpha')
```
```
factor = 2
```

### Set and Get Learning Rate Factor of Nested Layer Learnable Parameter

Set and get the learning rate factor of a learnable parameter of a nested layer.

Create a residual block layer using the custom layer `residualBlockLayer` attached to this example as a supporting file. To access this file, open this example as a Live Script.

```
inputSize = [224 224 64];
numFilters = 64;
layer = residualBlockLayer(inputSize, numFilters)
```
```
layer =
 residualBlockLayer with properties:
 Name: ''
 Learnable Parameters
 Network: [1x1 dlnetwork]

Show all properties
```

View the layers of the nested network.
```
layer.Network.Layers
```
```
ans =
 8x1 Layer array with layers:
 1 'in' Image Input 224x224x64 images
 2 'conv1' Convolution 64 3x3x64 convolutions with stride [1 1] and padding 'same'
 3 'gn1' Group Normalization Group normalization with 64 channels split into 1 groups
 4 'relu1' ReLU ReLU
 5 'conv2' Convolution 64 3x3x64 convolutions with stride [1 1] and padding 'same'
 6 'gn2' Group Normalization Group normalization with 64 channels split into 64 groups
 7 'add' Addition Element-wise addition of 2 inputs
 8 'relu2' ReLU ReLU
```

Set the learning rate factor of the learnable parameter 'Weights' of the layer 'conv1' to 2 using the `setLearnRateFactor` function.
Set and Get Learn Rate Factor of \texttt{dlnetwork} Learnable Parameter

Set and get the learning rate factor of a learnable parameter of a \texttt{dlnetwork} object.

Create a \texttt{dlnetwork} object.

\begin{verbatim}
layers = [    imageInputLayer([28 28 1],'Normalization','none','Name','in')    convolution2dLayer(5,20,'Name','conv')    batchNormalizationLayer('Name','bn')    reluLayer('Name','relu')    fullyConnectedLayer(10,'Name','fc')    softmaxLayer('Name','sm')];
lgraph = layerGraph(layers);
dlnet = dlnetwork(lgraph);
\end{verbatim}

Set the learn rate factor of the ‘Weights’ learnable parameter of the convolution layer to 2 using the \texttt{setLearnRateFactor} function.

\begin{verbatim}
factor = 2;
dlnet = setLearnRateFactor(dlnet,'conv','Weights',factor);
\end{verbatim}

Get the updated learn rate factor using the \texttt{getLearnRateFactor} function.

\begin{verbatim}
factor = getLearnRateFactor(dlnet,'conv','Weights')
factor = 2
\end{verbatim}

Set and Get Learning Rate Factor of Nested \texttt{dlnetwork} Learnable Parameter

Set and get the learning rate factor of a learnable parameter of a nested layer in a \texttt{dlnetwork} object.

Create a \texttt{dlnetwork} object containing the custom layer \texttt{residualBlockLayer} attached to this example as a supporting file. To access this file, open this example as a Live Script.

\begin{verbatim}
inputSize = [224 224 3];
numFilters = 32;
numClasses = 5;

layers = [    imageInputLayer(inputSize,'Normalization','none','Name','in')    convolution2dLayer(inputSize,'Name','conv')    batchNormalizationLayer('Name','bn')    reluLayer('Name','relu')    fullyConnectedLayer(10,'Name','fc')    softmaxLayer('Name','sm')]
\end{verbatim}
convolution2dLayer(7,numFilters,'Stride',2,'Padding','same','Name','conv')
groupNormalizationLayer('all-channels','Name','gn')
reluLayer('Name','relu')
maxPooling2dLayer(3,'Stride',2,'Name','max')
residualBlockLayer([56 56 numFilters],numFilters,'Name','res1')
residualBlockLayer([56 56 numFilters],numFilters,'Name','res2')
residualBlockLayer([56 56 numFilters],2*numFilters,'Stride',2,'IncludeSkipConvolution',true,'Name','res3')
residualBlockLayer([28 28 2*numFilters],2*numFilters,'Name','res4')
residualBlockLayer([28 28 2*numFilters],4*numFilters,'Stride',2,'IncludeSkipConvolution',true,'Name','res5')
residualBlockLayer([14 14 4*numFilters],4*numFilters,'Name','res6')
globalAveragePooling2dLayer('Name','gap')
fullyConnectedLayer(numClasses,'Name','fc')
softmaxLayer('Name','sm');
lgraph = layerGraph(layers);
dlnet = dlnetwork(lgraph);

View the layers of the nested network in the layer 'res1'.
dlnet.Layers(6).Network.Layers
ans =
  8x1 Layer array with layers:
1  'in'     Image Input           56x56x32 images
2  'conv1'  Convolution           32 3x3x32 convolutions with stride [1  1] and padding 'same'
3  'gn1'    Group Normalization   Group normalization with 32 channels split into 1 groups
4  'relu1'  ReLU                  ReLU
5  'conv2'  Convolution           32 3x3x32 convolutions with stride [1  1] and padding 'same'
6  'gn2'    Group Normalization   Group normalization with 32 channels split into 32 groups
7  'add'    Addition              Element-wise addition of 2 inputs
8  'relu2'  ReLU                  ReLU

Set the learning rate factor of the learnable parameter 'Weights' of the layer 'conv1' to 2 using the setLearnRateFactor function.

factor = 2;
dlnet = setLearnRateFactor(dlnet,'res1/Network/conv1/Weights',factor);

Get the updated learning rate factor using the getLearnRateFactor function.

factor = getLearnRateFactor(dlnet,'res1/Network/conv1/Weights')

factor = 2

**Input Arguments**

- **layer** — Input layer
  scalar `Layer` object

  Input layer, specified as a scalar `Layer` object.

- **parameterName** — Parameter name
  character vector | string scalar

  Parameter name, specified as a character vector or a string scalar.
parameterPath — Path to parameter in nested layer

string scalar | character vector

Path to parameter in nested layer, specified as a string scalar or a character vector. A nested layer is a custom layer that itself defines a layer graph as a learnable parameter.

If the input to getLearnRateFactor is a nested layer, then the parameter path has the form "propertyName/layerName/parameterName", where:

- propertyName is the name of the property containing a dlnetwork object
- layerName is the name of the layer in the dlnetwork object
- parameterName is the name of the parameter

If there are multiple levels of nested layers, then specify each level using the form "propertyName1/layerName1/.../propertyNameN/layerNameN/parameterName", where propertyName1 and layerName1 correspond to the layer in the input to the getLearnRateFactor function, and the subsequent parts correspond to the deeper levels.

Example: For layer input to getLearnRateFactor, the path "Network/conv1/Weights" specifies the "Weights" parameter of the layer with name "conv1" in the dlnetwork object given by layer.Network.

If the input to getLearnRateFactor is a dlnetwork object and the desired parameter is in a nested layer, then the parameter path has the form "layerName1/propertyName/layerName/parameterName", where:

- layerName1 is the name of the layer in the input dlnetwork object
- propertyName is the property of the layer containing a dlnetwork object
- layerName is the name of the layer in the dlnetwork object
- parameterName is the name of the parameter

If there are multiple levels of nested layers, then specify each level using the form "layerName1/propertyNameln/.../layerNameN/propertyNameln/layerName/parameterName", where layerName1 and propertyName1 correspond to the layer in the input to the getLearnRateFactor function, and the subsequent parts correspond to the deeper levels.

Example: For dlnetwork input to getLearnRateFactor, the path "res1/Network/conv1/Weights" specifies the "Weights" parameter of the layer with name "conv1" in the dlnetwork object given by layer.Network, where layer is the layer with name "res1" in the input network dlnet.

Data Types: char | string

dlnet — Network for custom training loops
dlnetwork object

Network for custom training loops, specified as a dlnetwork object.

layerName — Layer name

string scalar | character vector

Layer name, specified as a string scalar or a character vector.

Data Types: char | string
Output Arguments

factor — Learning rate factor
nonnegative scalar

Learning rate factor for the parameter, returned as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the specified parameter. For example, if factor is 2, then the learning rate for the specified parameter is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the trainingOptions function.

See Also
getL2Factor | setL2Factor | setLearnRateFactor | trainNetwork | trainingOptions

Topics
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Define Custom Deep Learning Layers”

Introduced in R2017b
globalAveragePooling2dLayer

Global average pooling layer

Description

A global average pooling layer performs down-sampling by computing the mean of the height and width dimensions of the input.

Creation

Syntax

layer = globalAveragePooling2dLayer
layer = globalAveragePooling2dLayer('Name',name)

Description

layer = globalAveragePooling2dLayer creates a global average pooling layer.
layer = globalAveragePooling2dLayer('Name',name) sets the optional Name property.

Properties

Name — Layer name

' ' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to ' ', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

NumInputs — Number of inputs

1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames — Input names

{'in'} (default)

Input names of the layer. This layer accepts a single input only.

Data Types: cell

NumOutputs — Number of outputs

1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

**OutputNames — Output names**

`{'out'}` (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

**Examples**

**Create Global Average Pooling Layer**

Create a global average pooling layer with the name `'gap1'`.

```matlab
classLayer = globalAveragePooling2dLayer('Name','gap1')
```

```matlab
classLayer =
 GlobalAveragePooling2DLayer with properties:
 Name: 'gap1'
```

Include a global average pooling layer in a `Layer` array.

```matlab
layers = [...
 imageInputLayer([28 28 1])
 convolution2dLayer(5,20)
 reluLayer
 globalAveragePooling2dLayer
 fullyConnectedLayer(10)
 softmaxLayer
 classificationLayer]
```

```matlab
layers =
 7x1 Layer array with layers:
 1 '' Image Input 28x28x1 images with 'zerocenter' normalization
 2 '' Convolution 20 5x5 convolutions with stride [1 1] and padding [0 0 0 0]
 3 '' ReLU ReLU
 4 '' Global Average Pooling Global average pooling
 5 '' Fully Connected 10 fully connected layer
 6 '' Softmax softmax
 7 '' Classification Output crossentropyex
```

**Tips**

- In an image classification network, you can use a `globalAveragePooling2dLayer` before the final fully connected layer to reduce the size of the activations without sacrificing performance. The reduced size of the activations means that the downstream fully connected layers will have fewer weights, reducing the size of your network.

- You can use a `globalAveragePooling2dLayer` towards the end of a classification network instead of a `fullyConnectedLayer`. Since global pooling layers have no learnable parameters, they can be less prone to overfitting and can reduce the size of the network. These networks can
also be more robust to spatial translations of input data. You can also replace a fully connected layer with a `globalMaxPooling2dLayer` instead. Whether a `globalMaxPooling2dLayer` or a `globalAveragePooling2dLayer` is more appropriate depends on your data set.

To use a global average pooling layer instead of a fully connected layer, the size of the input to `globalAveragePooling2dLayer` must match the number of classes in the classification problem.

**Extended Capabilities**

**C/C++ Code Generation**
Generate C and C++ code using MATLAB® Coder™.

**GPU Code Generation**
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

**See Also**
`averagePooling2dLayer` | `convolution2dLayer` | `globalAveragePooling3dLayer` | `globalMaxPooling2dLayer` | `maxPooling2dLayer`

**Topics**
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

**Introduced in R2019b**
**globalAveragePooling3dLayer**

3-D global average pooling layer

**Description**

A 3-D global average pooling layer performs down-sampling by computing the mean of the height, width, and depth dimensions of the input.

**Creation**

**Syntax**

```matlab
defaultLayer = globalAveragePooling3dLayer
layer = globalAveragePooling3dLayer('Name',name)
```

**Description**

`layer = globalAveragePooling3dLayer` creates a 3-D global average pooling layer.

`layer = globalAveragePooling3dLayer('Name',name)` sets the optional Name property.

**Properties**

- **Name** — Layer name
  - `' '` (default) | character vector | string scalar
  - Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to `' '`, then the software automatically assigns a name to the layer at training time.
  - Data Types: `char` | `string`

- **NumInputs** — Number of inputs
  - 1 (default)
  - Number of inputs of the layer. This layer accepts a single input only.
  - Data Types: `double`

- **InputNames** — Input names
  - `{'in'}` (default)
  - Input names of the layer. This layer accepts a single input only.
  - Data Types: `cell`

- **NumOutputs** — Number of outputs
  - 1 (default)
  - Number of outputs of the layer. This layer has a single output only.
Data Types: double

**OutputNames — Output names**

`{'out'}` (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

## Examples

### Create 3-D Global Average Pooling Layer

Create a 3-D global average pooling layer with the name 'gap1'.

```matlab
layer = globalAveragePooling3dLayer('Name','gap1')
```

```matlab
layer =
 GlobalAveragePooling3DLayer with properties:

 Name: 'gap1'
```

Include a 3-D global average pooling layer in a Layer array.

```matlab
layers = [...
 image3dInputLayer([28 28 28 3])
 convolution3dLayer(5,20)
 reluLayer
 globalAveragePooling3dLayer
 fullyConnectedLayer(10)
 softmaxLayer
 classificationLayer]
```

```matlab
layers =
 7x1 Layer array with layers:

 1 '' 3-D Image Input 28x28x28x3 images with 'zerocenter' normalization
 2 '' Convolution 20 5x5x5 convolutions with stride [1 1 1] and padding [0 0 0; 0 0 0]
 3 '' ReLU ReLU
 4 '' 3-D Global Average Pooling 3-D global average pooling
 5 '' Fully Connected 10 fully connected layer
 6 '' Softmax softmax
 7 '' Classification Output crossentropyex
```

### Tips

- In an image classification network, you can use a `globalAveragePooling3dLayer` before the final fully connected layer to reduce the size of the activations without sacrificing performance. The reduced size of the activations means that the downstream fully connected layers will have fewer weights, reducing the size of your network.

- You can use a `globalAveragePooling3dLayer` towards the end of a classification network instead of a `fullyConnectedLayer`. Since global pooling layers have no learnable parameters, they can be less prone to overfitting and can reduce the size of the network. These networks can...
also be more robust to spatial translations of input data. You can also replace a fully connected layer with a `globalMaxPooling3dLayer` instead. Whether a `globalMaxPooling3dLayer` or a `globalAveragePooling3dLayer` is more appropriate depends on your data set.

To use a global average pooling layer instead of a fully connected layer, the size of the input to `globalAveragePooling3dLayer` must match the number of classes in the classification problem.

**See Also**

`averagePooling3dLayer` | `convolution3dLayer` | `globalAveragePooling2dLayer` | `globalMaxPooling3dLayer` | `maxPooling3dLayer`

**Topics**

“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

**Introduced in R2019b**
globalMaxPooling2dLayer

Global max pooling layer

Description

A global max pooling layer performs down-sampling by computing the maximum of the height and width dimensions of the input.

Creation

Syntax

layer = globalMaxPooling2dLayer
layer = globalMaxPooling2dLayer('Name',name)

Description

layer = globalMaxPooling2dLayer creates a global max pooling layer.

layer = globalMaxPooling2dLayer('Name',name) sets the optional Name property.

Properties

Name — Layer name

'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to '', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

NumInputs — Number of inputs

1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames — Input names

{"in"} (default)

Input names of the layer. This layer accepts a single input only.

Data Types: cell

NumOutputs — Number of outputs

1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

**OutputNames — Output names**

`{'out'}` (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

### Object Functions

### Examples

**Create Global Max Pooling Layer**

Create a global max pooling layer with the name 'gmp1'.

```matlab
layer = globalMaxPooling2dLayer('Name','gmp1')
```

```matlab
layer =
 GlobalMaxPooling2DLayer with properties:
 Name: 'gmp1'
```

Include a global max pooling layer in a `Layer` array.

```matlab
layers = [...
 imageInputLayer([28 28 1])
 convolution2dLayer(5,20)
 reluLayer
 globalMaxPooling2dLayer
 fullyConnectedLayer(10)
 softmaxLayer
 classificationLayer]

layers =
 7x1 Layer array with layers:

 1 '' Image Input 28x28x1 images with 'zerocenter' normalization
 2 '' Convolution 20 5x5 convolutions with stride [1 1] and padding [0 0 0 0]
 3 '' ReLU ReLU
 4 '' Global Max Pooling Global max pooling
 5 '' Fully Connected 10 fully connected layer
 6 '' Softmax softmax
 7 '' Classification Output crossentropyex
```

### Tips

- In an image classification network, you can use a `globalMaxPooling2dLayer` before the final fully connected layer to reduce the size of the activations without sacrificing performance. The reduced size of the activations means that the downstream fully connected layers will have fewer weights, reducing the size of your network.
• You can use a `globalMaxPooling2dLayer` towards the end of a classification network instead of a `fullyConnectedLayer`. Since global pooling layers have no learnable parameters, they can be less prone to overfitting and can reduce the size of the network. These networks can also be more robust to spatial translations of input data. You can also replace a fully connected layer with a `globalAveragePooling2dLayer` instead. Whether a `globalAveragePooling2dLayer` or a `globalMaxPooling2dLayer` is more appropriate depends on your data set.

To use a global average pooling layer instead of a fully connected layer, the size of the input to `globalMaxPooling2dLayer` must match the number of classes in the classification problem.

### Extended Capabilities

**C/C++ Code Generation**
Generate C and C++ code using MATLAB® Coder™.

**GPU Code Generation**
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

**See Also**
`averagePooling2dLayer` | `convolution2dLayer` | `globalAveragePooling2dLayer` | `globalMaxPooling3dLayer` | `maxPooling2dLayer`

**Topics**
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

**Introduced in R2020a**
**globalMaxPooling3dLayer**

3-D global max pooling layer

**Description**

A 3-D global max pooling layer performs down-sampling by computing the maximum of the height, width, and depth dimensions of the input.

**Creation**

**Syntax**

`layer = globalMaxPooling3dLayer`  
`layer = globalMaxPooling3dLayer('Name',name)`

**Description**

`layer = globalMaxPooling3dLayer` creates a 3-D global max pooling layer.  
`layer = globalMaxPooling3dLayer('Name',name)` sets the optional `Name` property.

**Properties**

- **Name — Layer name**  
  `' '` (default) | character vector | string scalar  

  Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and `Name` is set to `' '`, then the software automatically assigns a name to the layer at training time.

  Data Types: `char` | `string`

- **NumInputs — Number of inputs**  
  `1` (default)

  Number of inputs of the layer. This layer accepts a single input only.

  Data Types: `double`

- **InputNames — Input names**  
  `{'in'}` (default)

  Input names of the layer. This layer accepts a single input only.

  Data Types: `cell`

- **NumOutputs — Number of outputs**  
  `1` (default)

  Number of outputs of the layer. This layer has a single output only.
Data Types: double

**OutputNames — Output names**

`{'out'}` (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

### Object Functions

### Examples

#### Create 3-D Global Max Pooling Layer

Create a 3-D global max pooling layer with name 'gmp1'.

```matlab
layer = globalMaxPooling3dLayer('Name','gmp1')
```

```matlab
layer =
 GlobalMaxPooling3DLayer with properties:
 Name: 'gmp1'
```

Include a 3-D max pooling layer in a `Layer` array.

```matlab
layers = [...
 image3dInputLayer([28 28 28 3])
 convolution3dLayer(5,20)
 reluLayer
 globalMaxPooling3dLayer
 fullyConnectedLayer(10)
 softmaxLayer
 classificationLayer]
```

```matlab
layers =
 7x1 Layer array with layers:
 1 '' 3-D Image Input 28x28x28x3 images with 'zero-center' normalization
 2 '' Convolution 20 5x5x5 convolutions with stride [1 1 1] and padding [0 0 0; 0 0 0]
 3 '' ReLU ReLU
 4 '' 3-D Global Max Pooling 3-D global max pooling
 5 '' Fully Connected 10 fully connected layer
 6 '' Softmax softmax
 7 '' Classification Output crossentropyex
```

### Tips

- In an image classification network, you can use a `globalMaxPooling3dLayer` before the final fully connected layer to reduce the size of the activations without sacrificing performance. The reduced size of the activations means that the downstream fully connected layers will have fewer weights, reducing the size of your network.
• You can use a `globalMaxPooling3dLayer` towards the end of a classification network instead of a `fullyConnectedLayer`. Since global pooling layers have no learnable parameters, they can be less prone to overfitting and can reduce the size of the network. These networks can also be more robust to spatial translations of input data. You can also replace a fully connected layer with a `globalAveragePooling3dLayer` instead. Whether a `globalAveragePooling3dLayer` or a `globalMaxPooling3dLayer` is more appropriate depends on your data set.

To use a global average pooling layer instead of a fully connected layer, the size of the input to `globalMaxPooling3dLayer` must match the number of classes in the classification problem.

**See Also**
`averagePooling3dLayer` | `convolution3dLayer` | `globalAveragePooling3dLayer` | `globalMaxPooling2dLayer` | `maxPooling3dLayer`

**Topics**
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

**Introduced in R2020a**
**googlenet**

GoogLeNet convolutional neural network

**Syntax**

```matlab
net = googlenet
net = googlenet('Weights',weights)
```

```matlab
lgraph = googlenet('Weights','none')
```

**Description**

GoogLeNet is a convolutional neural network that is 22 layers deep. You can load a pretrained version of the network trained on either the ImageNet [1] or Places365 [2][3] data sets. The network trained on ImageNet classifies images into 1000 object categories, such as keyboard, mouse, pencil, and many animals. The network trained on Places365 is similar to the network trained on ImageNet, but classifies images into 365 different place categories, such as field, park, runway, and lobby. These networks have learned different feature representations for a wide range of images. The pretrained networks both have an image input size of 224-by-224. For more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

To classify new images using GoogLeNet, use `classify`. For an example, see “Classify Image Using GoogLeNet”.

You can retrain a GoogLeNet network to perform a new task using transfer learning. When performing transfer learning, the most common approach is to use networks pretrained on the ImageNet data set. If the new task is similar to classifying scenes, then using the network trained on Places-365 can give higher accuracies. For an example showing how to retrain GoogLeNet on a new classification task, see “Train Deep Learning Network to Classify New Images”.

```matlab
net = googlenet
```


This function requires the Deep Learning Toolbox Model for GoogLeNet Network support package. If this support package is not installed, then the function provides a download link.

```matlab
net = googlenet('Weights',weights)
```

returns a GoogLeNet network trained on either the ImageNet or Places365 data set. The syntax ```googlenet('Weights','imagenet')``` (default) is equivalent to ```googlenet```

The network trained on ImageNet requires the Deep Learning Toolbox Model for GoogLeNet Network support package. The network trained on Places365 requires the Deep Learning Toolbox Model for Places365-GoogLeNet Network support package. If the required support package is not installed, then the function provides a download link.

```matlab
lgraph = googlenet('Weights','none')
```

returns the untrained GoogLeNet network architecture. The untrained model does not require the support package.

**Examples**
**Download GoogLeNet Support Package**

Download and install the Deep Learning Toolbox Model for GoogLeNet Network support package.

Type `googlenet` at the command line.

```matlab
googlenet
```

If the Deep Learning Toolbox Model for GoogLeNet Network support package is not installed, then the function provides a link to the required support package in the Add-On Explorer. To install the support package, click the link, and then click **Install**. Check that the installation is successful by typing `googlenet` at the command line. If the required support package is installed, then the function returns a DAGNetwork object.

```matlab
ans =
DAGNetwork with properties:
 Layers: [144×1 nnet.cnn.layer.Layer]
 Connections: [170×2 table]
```

**Input Arguments**

- **`weights` — Source of network parameters**
  - `'imagenet'` (default) | `'places365'` | `'none'`

  Source of network parameters, specified as `'imagenet'`, `'places365'`, or `'none'`.

  - If `weights` equals `'imagenet'`, then the network has weights trained on the ImageNet data set.
  - If `weights` equals `'places365'`, then the network has weights trained on the Places365 data set.
  - If `weights` equals `'none'`, then the untrained network architecture is returned.

  Example: `'places365'`

**Output Arguments**

- **`net` — Pretrained GoogLeNet convolutional neural network**
  - DAGNetwork object

  Pretrained GoogLeNet convolutional neural network, returned as a DAGNetwork object.

- **`lgraph` — Untrained GoogLeNet convolutional neural network architecture**
  - LayerGraph object

  Untrained GoogLeNet convolutional neural network architecture, returned as a LayerGraph object.

**References**


**Extended Capabilities**

**C/C++ Code Generation**
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax `net = googlenet` or by passing the `googlenet` function to `coder.loadDeepLearningNetwork`. For example: `net = coder.loadDeepLearningNetwork('googlenet')`

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax `googlenet('Weights','none')` is not supported for code generation.

**GPU Code Generation**
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

- For code generation, you can load the network by using the syntax `net = googlenet` or by passing the `googlenet` function to `coder.loadDeepLearningNetwork`. For example: `net = coder.loadDeepLearningNetwork('googlenet')`.

  For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).

- The syntax `googlenet('Weights','none')` is not supported for GPU code generation.

**See Also**
DAGNetwork | densenet201 | inceptionresnetv2 | inceptionv3 | layerGraph | plot | resnet101 | resnet18 | resnet50 | squeezenet | trainNetwork | vgg16 | vgg19

**Topics**
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Train Residual Network for Image Classification”

**Introduced in R2017b**
groupedConvolution2dLayer

2-D grouped convolutional layer

Description

A 2-D grouped convolutional layer separates the input channels into groups and applies sliding convolutional filters. Use grouped convolutional layers for channel-wise separable (also known as depth-wise separable) convolution.

For each group, the layer convolves the input by moving the filters along the input vertically and horizontally and computing the dot product of the weights and the input, and then adding a bias term. The layer combines the convolutions for each group independently. If the number of groups is equal to the number of channels, then this layer performs channel-wise convolution.

Creation

Syntax

layer = groupedConvolution2dLayer(filterSize,numFiltersPerGroup,numGroups)
layer = groupedConvolution2dLayer(filterSize,numFiltersPerGroup,'channel-wise')
layer = groupedConvolution2dLayer(___,Name,Value)

Description

layer = groupedConvolution2dLayer(filterSize,numFiltersPerGroup,numGroups)
creates a 2-D grouped convolutional layer and sets the FilterSize, NumFiltersPerGroup, and NumGroups properties.

layer = groupedConvolution2dLayer(filterSize,numFiltersPerGroup,'channel-wise')
creates a layer for channel-wise convolution (also known as depth-wise convolution). In this case, the software determines the NumGroups property at training time. This syntax is equivalent to setting NumGroups to the number of input channels.

layer = groupedConvolution2dLayer(___,Name,Value)
sets the optional Stride, DilationFactor, “Parameters and Initialization” on page 1-515, “Learn Rate and Regularization” on page 1-516, and Name properties using name-value pairs. To specify input padding, use the 'Padding' name-value pair argument. For example,
groupedConvolution2dLayer(5,128,2,'Padding','same')
creates a 2-D grouped convolutional layer with 2 groups of 128 filters of size [5 5] and pads the input to so that the output has the same size. You can specify multiple name-value pairs. Enclose each property name in single quotes.

Input Arguments

Name-Value Pair Arguments

Use comma-separated name-value pair arguments to specify the size of the zero padding to add along the edges of the layer input or to set the Stride, DilationFactor, “Parameters and Initialization”
on page 1-515, “Learn Rate and Regularization” on page 1-516, and Name properties. Enclose names in single quotes.

Example: groupedConvolution2dLayer(5,128,2,'Padding','same') creates a 2-D grouped convolutional layer with 2 groups of 128 filters of size [5 5] and pads the input to so that the output has the same size.

Padding — Input edge padding
[0 0 0 0] (default) | vector of nonnegative integers | 'same'

Input edge padding, specified as the comma-separated pair consisting of 'Padding' and one of these values:

- 'same' — Add padding of size calculated by the software at training or prediction time so that the output has the same size as the input when the stride equals 1. If the stride is larger than 1, then the output size is ceil(inputSize/stride), where inputSize is the height or width of the input and stride is the stride in the corresponding dimension. The software adds the same amount of padding to the top and bottom, and to the left and right, if possible. If the padding that must be added vertically has an odd value, then the software adds extra padding to the bottom. If the padding that must be added horizontally has an odd value, then the software adds extra padding to the right.
- Nonnegative integer p — Add padding of size p to all the edges of the input.
- Vector [a b] of nonnegative integers — Add padding of size a to the top and bottom of the input and padding of size b to the left and right.
- Vector [t b l r] of nonnegative integers — Add padding of size t to the top, b to the bottom, l to the left, and r to the right of the input.

Example: 'Padding',1 adds one row of padding to the top and bottom, and one column of padding to the left and right of the input.

Example: 'Padding','same' adds padding so that the output has the same size as the input (if the stride equals 1).

Properties

Grouped Convolution

FilterSize — Height and width of filters
vector of two positive integers

Height and width of the filters, specified as a vector [h w] of two positive integers, where h is the height and w is the width. FilterSize defines the size of the local regions to which the neurons connect in the input.

When creating the layer, you can specify FilterSize as a scalar to use the same value for the height and width.

Example: [5 5] specifies filters with a height of 5 and a width of 5.

NumFiltersPerGroup — Number of filters per group
positive integer
Number of filters per group, specified as a positive integer. This property determines the number of channels in the output of the layer. The number of output channels is $\text{FiltersPerGroup} \times \text{NumGroups}$.

Example: 10

**NumGroups — Number of groups**

positive integer | 'channel-wise'

Number of groups, specified as a positive integer or 'channel-wise'.

If NumGroups is 'channel-wise', then the software creates a layer for channel-wise convolution (also known as depth-wise convolution). In this case, the layer determines the NumGroups property at training time. This value is equivalent to setting NumGroups to the number of input channels.

The number of groups must evenly divide the number of channels of the layer input.

Example: 2

**Stride — Step size for traversing input**

[1 1] (default) | vector of two positive integers

Step size for traversing the input vertically and horizontally, specified as a vector $[a \ b]$ of two positive integers, where $a$ is the vertical step size and $b$ is the horizontal step size. When creating the layer, you can specify Stride as a scalar to use the same value for both step sizes.

Example: [2 3] specifies a vertical step size of 2 and a horizontal step size of 3.

**DilationFactor — Factor for dilated convolution**

[1 1] (default) | vector of two positive integers

Factor for dilated convolution (also known as atrous convolution), specified as a vector $[h \ w]$ of two positive integers, where $h$ is the vertical dilation and $w$ is the horizontal dilation. When creating the layer, you can specify DilationFactor as a scalar to use the same value for both horizontal and vertical dilations.

Use dilated convolutions to increase the receptive field (the area of the input which the layer can see) of the layer without increasing the number of parameters or computation.

The layer expands the filters by inserting zeros between each filter element. The dilation factor determines the step size for sampling the input or equivalently the upsampling factor of the filter. It corresponds to an effective filter size of $(\text{Filter Size} - 1) \times \text{Dilation Factor} + 1$. For example, a 3-by-3 filter with the dilation factor $[2 \ 2]$ is equivalent to a 5-by-5 filter with zeros between the elements.

Example: [2 3]

**PaddingSize — Size of padding**

[0 0 0 0] (default) | vector of four nonnegative integers

Size of padding to apply to input borders, specified as a vector $[t \ b \ l \ r]$ of four nonnegative integers, where $t$ is the padding applied to the top, $b$ is the padding applied to the bottom, $l$ is the padding applied to the left, and $r$ is the padding applied to the right.

When you create a layer, use the 'Padding' name-value pair argument to specify the padding size.

Example: [1 1 2 2] adds one row of padding to the top and bottom, and two columns of padding to the left and right of the input.
PaddingMode — Method to determine padding size
'manual' (default) | 'same'

Method to determine padding size, specified as 'manual' or 'same'.

The software automatically sets the value of PaddingMode based on the 'Padding' value you specify when creating a layer.

- If you set the 'Padding' option to a scalar or a vector of nonnegative integers, then the software automatically sets PaddingMode to 'manual'.
- If you set the 'Padding' option to 'same', then the software automatically sets PaddingMode to 'same' and calculates the size of the padding at training time so that the output has the same size as the input when the stride equals 1. If the stride is larger than 1, then the output size is \( \text{ceil}(\text{inputSize} / \text{stride}) \), where inputSize is the height or width of the input and stride is the stride in the corresponding dimension. The software adds the same amount of padding to the top and bottom, and to the left and right, if possible. If the padding that must be added vertically has an odd value, then the software adds extra padding to the bottom. If the padding that must be added horizontally has an odd value, then the software adds extra padding to the right.

NumChannelsPerGroup — Number of channels per group
'auto' (default) | positive integer

Number of channels per group, specified as 'auto' or a positive integer. The number of channels per group is equal to the number of input channels divided by the number of groups.

The software automatically sets this property at training time.

Example: 256

Parameters and Initialization

WeightsInitializer — Function to initialize weights
'glorot' (default) | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function handle

Function to initialize the weights, specified as one of the following:

- 'glorot' - Initialize the weights with the Glorot initializer [1] (also known as Xavier initializer). The Glorot initializer independently samples from a uniform distribution with zero mean and variance \( 2 / (\text{numIn} + \text{numOut}) \), where \( \text{numIn} = \text{FilterSize}(1) \times \text{FilterSize}(2) \times \text{NumChannelsPerGroup} \) and \( \text{numOut} = \text{FilterSize}(1) \times \text{FilterSize}(2) \times \text{NumFiltersPerGroup} \).
- 'he' - Initialize the weights with the He initializer [2]. The He initializer samples from a normal distribution with zero mean and variance \( 2 / \text{numIn} \), where \( \text{numIn} = \text{FilterSize}(1) \times \text{FilterSize}(2) \times \text{NumChannelsPerGroup} \).
- 'narrow-normal' - Initialize the weights by independently sampling from a normal distribution with zero mean and standard deviation 0.01.
- 'zeros' - Initialize the weights with zeros.
- 'ones' - Initialize the weights with ones.
- Function handle - Initialize the weights with a custom function. If you specify a function handle, then the function must be of the form \( \text{weights} = \text{func}(\text{sz}) \), where \( \text{sz} \) is the size of the weights. For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the weights when the Weights property is empty.
Data Types: `char` | `string` | `function_handle`

**BiasInitializer — Function to initialize bias**

`'zeros'` (default) | `'narrow-normal'` | `'ones'` | `function handle`

Function to initialize the bias, specified as one of the following:

- `'zeros'` - Initialize the bias with zeros.
- `'ones'` - Initialize the bias with ones.
- `'narrow-normal'` - Initialize the bias by independently sampling from a normal distribution with zero mean and standard deviation 0.01.
- Function handle - Initialize the bias with a custom function. If you specify a function handle, then the function must be of the form `bias = func(sz)`, where `sz` is the size of the bias.

The layer only initializes the bias when the `Bias` property is empty.

Data Types: `char` | `string` | `function_handle`

**Weights — Layer weights**

`[]` (default) | numeric array

Layer weights for the layer, specified as a numeric array.

The layer weights are learnable parameters. You can specify the initial value for the weights directly using the `Weights` property of the layer. When training a network, if the `Weights` property of the layer is nonempty, then `trainNetwork` uses the `Weights` property as the initial value. If the `Weights` property is empty, then `trainNetwork` uses the initializer specified by the `WeightsInitializer` property of the layer.

At training time, `Weights` is a `FilterSize(1)`-by-`FilterSize(2)`-by-`NumChannelsPerGroup`-by-`NumFiltersPerGroup`-by-`NumGroups` array, where `NumInputChannels` is the number of channels of the layer input.

Data Types: `single` | `double`

**Bias — Layer biases**

`[]` (default) | numeric array

Layer biases for the layer, specified as a numeric array.

The layer biases are learnable parameters. When training a network, if `Bias` is nonempty, then `trainNetwork` uses the `Bias` property as the initial value. If `Bias` is empty, then `trainNetwork` uses the initializer specified by the `BiasInitializer`.

At training time, `Bias` is a `1`-by-`1`-by-`NumFiltersPerGroup`-by-`NumGroups` array.

Data Types: `single` | `double`

**Learn Rate and Regularization**

**WeightLearnRateFactor — Learning rate factor for weights**

1 (default) | nonnegative scalar

Learning rate factor for the weights, specified as a nonnegative scalar.
The software multiplies this factor by the global learning rate to determine the learning rate for the weights in this layer. For example, if `WeightLearnRateFactor` is 2, then the learning rate for the weights in this layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the `trainingOptions` function.

Example: 2

**BiasLearnRateFactor — Learning rate factor for biases**

1 (default) | nonnegative scalar

Learning rate factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the biases in this layer. For example, if `BiasLearnRateFactor` is 2, then the learning rate for the biases in the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the `trainingOptions` function.

Example: 2

**WeightL2Factor — L2 regularization factor for weights**

1 (default) | nonnegative scalar

L2 regularization factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2 regularization for the weights in this layer. For example, if `WeightL2Factor` is 2, then the L2 regularization for the weights in this layer is twice the global L2 regularization factor. You can specify the global L2 regularization factor using the `trainingOptions` function.

Example: 2

**BiasL2Factor — L2 regularization factor for biases**

0 (default) | nonnegative scalar

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2 regularization for the biases in this layer. For example, if `BiasL2Factor` is 2, then the L2 regularization for the biases in this layer is twice the global L2 regularization factor. You can specify the global L2 regularization factor using the `trainingOptions` function.

Example: 2

**Layer**

**Name — Layer name**

'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and `Name` is set to '', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

**NumInputs — Number of inputs**

1 (default)
Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

**InputNames — Input names**

`{'in'}` (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

**NumOutputs — Number of outputs**

1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

**OutputNames — Output names**

`{'out'}` (default)

Output names of the layer. This layer has a single output only.
Data Types: cell

## Examples

### Create Grouped Convolution Layer

Create a grouped convolutional layer with 3 groups of 10 filters, each with a height and width of 11, and the name `'gconv1'`.

```matlab
className = 'groupedConvolution2dLayer';
layer = groupedConvolution2dLayer(11, 10, 3, 'Name', 'gconv1')
```

```
GroupedConvolution2DLayer with properties:

Name: 'gconv1'

Hyperparameters

FilterSize: [11 11]
NumGroups: 3
NumChannelsPerGroup: 'auto'
NumFiltersPerGroup: 10
Stride: [1 1]
DilationFactor: [1 1]
PaddingMode: 'manual'
PaddingSize: [0 0 0 0]

Learnable Parameters

Weights: []
Bias: []
```

Show all properties
Create Channel-Wise Convolution Layer

Create a channel-wise convolutional (also known as depth-wise convolutional) layer with groups of 10 filters, each with a height and width of 11, and the name 'cwconv1'.

```matlab
classname = 'GroupedConvolution2DLayer';
filterSize = 11;
numGroups = 10;
numChannelsPerGroup = 'auto';
numFiltersPerGroup = 10;
Stride = [1 1];
DilationFactor = [1 1];
PaddingMode = 'manual';
PaddingSize = [0 0 0 0];
```

```matlab
layer = groupedConvolution2dLayer(filterSize,numGroups,numChannelsPerGroup,numFiltersPerGroup,Stride,DilationFactor,PaddingMode,PaddingSize);
```

```matlab
layer = GroupedConvolution2DLayer with properties:
 Name: 'cwconv1'
 Hyperparameters
 FilterSize: [11 11]
 NumGroups: 'channel-wise'
 NumChannelsPerGroup: 'auto'
 NumFiltersPerGroup: 10
 Stride: [1 1]
 DilationFactor: [1 1]
 PaddingMode: 'manual'
 PaddingSize: [0 0 0 0]
 Learnable Parameters
 Weights: []
 Bias: []
```

Create Layers for Channel-Wise Separable Convolution

A typical convolutional neural network contains blocks of convolution, batch normalization, and ReLU layers. For example,

```matlab
filterSize = 3;
umFilters = 16;
convLayers = [convolution2dLayer(filterSize,numFilters,'Stride',2,'Padding','same')
 batchNormalizationLayer
 reluLayer];
```

For channel-wise separable convolution (also known as depth-wise separable convolution), replace the convolution block with channel-wise convolution and point-wise convolution blocks.

Specify the filter size and the stride in the channel-wise convolution and the number of filters in the point-wise convolution. For the channel-wise convolution, specify one filter per group. For point-wise convolution, specify filters of size 1 in `convolution2dLayer`.

```matlab
cwsConvLayers = [
 groupedConvolution2dLayer(filterSize,1,'channel-wise','Stride',2,'Padding','same')
 batchNormalizationLayer
 reluLayer
 convolution2dLayer(1,numFilters,'Padding','same')
];
```
Create a network containing layers for channel-wise separable convolution.

```matlab
layers = [
 imageInputLayer([227 227 3])
 convolution2dLayer(3,32,'Padding','same')
 batchNormalizationLayer
 reluLayer
 groupedConvolution2dLayer(3,1,'channel-wise','Stride',2,'Padding','same')
 batchNormalizationLayer
 reluLayer
 convolution2dLayer(1,16,'Padding','same')
 batchNormalizationLayer
 reluLayer
 maxPooling2dLayer(2,'Stride',2)
 fullyConnectedLayer(5)
 softmaxLayer
 classificationLayer
];
```

**References**


**Extended Capabilities**

**C/C++ Code Generation**
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- Code generation for the ARM Compute Library is not supported for a 2-D grouped convolution layer that has the `NumGroups` property set to an integer value greater than two.

**GPU Code Generation**
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

- Code generation for the ARM Mali GPU is not supported for a 2-D grouped convolution layer that has the `NumGroups` property set as 'channel-wise' or a value greater than two.
See Also
batchNormalizationLayer | convolution2dLayer | fullyConnectedLayer |
maxPooling2dLayer | reluLayer | trainNetwork

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Compare Layer Weight Initializers”
“List of Deep Learning Layers”

Introduced in R2019a
groupnorm

Normalize activations across groups of channels

Syntax

dlY = groupnorm(dlX,numGroups,offset,scaleFactor)
dlY = groupnorm(___,Name,Value)
dlY = groupnorm(___,'DataFormat',FMT)

Description

The group normalization operation divides the channels of the input data into groups and normalizes
the activations across each group. To speed up training of convolutional neural networks and reduce
the sensitivity to network initialization, use group normalization between convolution and nonlinear
operations such as relu. You can perform instance normalization and layer normalization by setting
the appropriate number of groups.

Note This function applies the group normalization operation to dlarray data. If you want to apply
batch normalization within a layerGraph object or Layer array, use the following layer:
• groupNormalizationLayer


dlY = groupnorm(dlX,numGroups,offset,scaleFactor)

normalizes each observation in dlX
across groups of channels specified
by numGroups, then applies a scale factor and offset to each
channel.

The normalized activation is calculated using the following formula:

\[ \hat{x}_i = \frac{x_i - \mu_g}{\sqrt{\sigma_g^2 + \varepsilon}} \]

where \( x_i \) is the input activation, \( \mu_g \) and \( \sigma_g^2 \) are the per-group mean and variance, respectively, and \( \varepsilon \) is
a small constant. The mean and variance are calculated per-observation over all 'S' (spatial), 'T'
(time), and 'U' (unspecified) dimensions in dlX for each group of channels.

The normalized activation is offset and scaled according to the following formula:

\[ y_i = \gamma \hat{x}_i + \beta. \]

The offset \( \beta \) and scale factor \( \gamma \) are specified with the offset and scaleFactor arguments.

The input dlX is a formatted dlarray with dimension labels. The output dlY is a formatted dlarray
with the same dimension labels as dlX.

dlY = groupnorm(___,'DataFormat',FMT) also specifies the dimension format FMT when dlX
is not a formatted dlarray in addition to the input arguments in previous syntaxes. The output dlY
is an unformatted dlarray with the same dimension order as dlX.
dlY = groupnorm(___Name,Value) specifies options using one or more name-value pair arguments in addition to the input arguments in previous syntaxes. For example, 'Epsilon', 3e-5 sets the variance offset.

Examples

Normalize Data

Use groupnorm to normalize input data across channel groups.

Create the input data as a single observation of random values with a height and width of four and six channels.

height = 4;
width = 4;
channels = 6;
observations = 1;

X = rand(height,width,channels,observations);
dlX = dlarray(X,'SSCB');

Create the learnable parameters.

offset = zeros(channels,1);
scaleFactor = ones(channels,1);

Compute the group normalization. Divide the input into three groups of two channels each.

numGroups = 3;
dlY = groupnorm(dlX,numGroups,offset,scaleFactor);

Input Arguments

dlX — Input data
dlarray | numeric array

Input data, specified as a dlarray with or without dimension labels or a numeric array. When dlX is not a formatted dlarray, you must specify the dimension label format using 'DataFormat', FMT. If dlX is a numeric array, at least one of offset or scaleFactor must be a dlarray.

dlX must have a 'C' channel dimension.

Data Types: single | double

numGroups — Channel groups
positive integer | "all-channels" | "channel-wise"

Channel groups to normalize across, specified as a positive integer, "all-channels", or "channel-wise".
**numGroups**	**Description**
positive integer | The function divides the number of channels in `dlX` into the specified number of groups. The specified number of groups must exactly divide the number of channels in `dlX`.
"all-channels" | All channels in `dlX` are combined into a single group. The input data is normalized across all channels. This type of normalization is also known as layer normalization.
"channel-wise" | Each channel in `dlX` is considered as a single group and is normalized separately. This type of normalization is also known as instance normalization.

Data Types: `single` | `double` | `char` | `string`

**offset** — Channel offset

dlarray vector | numeric vector

Channel offset \( \beta \), specified as a `dlarray` vector with or without dimension labels or a numeric vector.

If `offset` is a formatted `dlarray`, it must contain a `C` dimension of the same size as the `C` dimension of the input data.

Data Types: `single` | `double`

**scaleFactor** — Channel scale factor

dlarray vector | numeric vector

Channel scale factor \( \gamma \), specified as a `dlarray` vector with or without dimension labels or a numeric vector.

If `scaleFactor` is a formatted `dlarray`, it must contain a `C` dimension of the same size as the `C` dimension of the input data.

Data Types: `single` | `double`

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `'Epsilon',3e-5` sets the variance offset to `3e-5` and 0.5, respectively.

**DataFormat** — Dimension order of unformatted data

char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of `'DataFormat'` and a character array or string `FMT` that provides a label for each dimension of the data. Each character in `FMT` must be one of the following:

- `'S'` — Spatial
- `'C'` — Channel
• 'B' — Batch (for example, samples and observations)
• 'T' — Time (for example, sequences)
• 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at most once.

You must specify 'DataFormat' when the input data dlX is not a formatted dlarray.

Example: 'DataFormat','SSCB'

Data Types: char | string

Epsilon — Variance offset
numeric scalar

Variance offset for preventing divide-by-zero errors, specified as the comma-separated pair consisting of 'Epsilon' and a numeric scalar. The specified value must be greater than 1e-5. The default value is 1e-5.

Data Types: single | double

Output Arguments

dlY — Normalized data
dlarray

Normalized data, returned as a dlarray. The output dlY has the same underlying data type as the input dlX.

If the input data dlX is a formatted dlarray, dlY has the same dimension labels as dlX. If the input data is not a formatted dlarray, dlY is an unformatted dlarray with the same dimension order as the input data.

More About

Group Normalization

The groupnorm function normalizes each input channel of a mini-batch of data. For more information, see the definition of “Group Normalization Layer” on page 1-532 on the groupNormalizationLayer reference page.

Extended Capabilities

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying data of type gpuArray, this function runs on the GPU:
  • dlX

1-525
offset
scaleFactor

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
batchnorm | dlarray | dlconv | dlfeval | dlgradient | fullyconnect | relu

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”

Introduced in R2020b
groupNormalizationLayer

Group normalization layer

Description

A group normalization layer divides the channels of the input data into groups and normalizes the activations across each group. To speed up training of convolutional neural networks and reduce the sensitivity to network initialization, use group normalization layers between convolutional layers and nonlinearities, such as ReLU layers. You can perform instance normalization and layer normalization by setting the appropriate number of groups.

You can use a group normalization layer in place of a batch normalization layer. This is particularly useful when training with small batch sizes as it can increase the stability of training.

The layer first normalizes the activations of each group by subtracting the group mean and dividing by the group standard deviation. Then, the layer shifts the input by a learnable offset $\beta$ and scales it by a learnable scale factor $\gamma$.

Creation

Syntax

layer = groupNormalizationLayer(numGroups)
layer = groupNormalizationLayer(numGroups,Name,Value)

Description

layer = groupNormalizationLayer(numGroups) creates a group normalization layer that divides the channels in the layer input into numGroups groups and normalizes across each group.

layer = groupNormalizationLayer(numGroups,Name,Value) creates a group normalization layer and sets the optional "Normalization" on page 1-528, "Parameters and Initialization" on page 1-528, “Learn Rate and Regularization” on page 1-529, and Name properties using one or more name-value pair arguments. You can specify multiple name-value pair arguments. Enclose each property name in quotes.

Input Arguments

numGroups — Number of groups
positive integer | "all-channels" | "channel-wise"

Number of groups into which to divide the channels of the input data, specified as a positive integer, "all-channels" or "channel-wise".

If you specify numGroups as a positive integer, the layer divides the incoming channels in to the specified number of groups. The specified number of groups must divide the number of channels exactly.
If you specify `numGroups` as "all-channels", the layer groups all incoming channels into a single group. This is also known as layer normalization.

If you specify `numGroups` as a "channel-wise", the layer treats all incoming channels as separate groups. This is also known as instance normalization.

**Properties**

**Normalization**

**Epsilon** — Constant to add to mini-batch variances

`1e-5` (default) | numeric scalar

Constant to add to the mini-batch variances, specified as a numeric scalar equal to or larger than `1e-5`.

The layer adds this constant to the mini-batch variances before normalization to ensure numerical stability and avoid division by zero.

**NumChannels** — Number of input channels

`'auto'` (default) | positive integer

Number of input channels, specified as `'auto'` or a positive integer.

This property is always equal to the number of channels of the input to the layer. If `NumChannels` equals `'auto'`, then the software infers the correct value for the number of channels at training time.

**Parameters and Initialization**

**ScaleInitializer** — Function to initialize channel scale factors

`'ones'` (default) | `'narrow-normal'` | function handle

Function to initialize the channel scale factors, specified as one of the following:

- `'ones'` - Initialize the channel scale factors with ones.
- `'zeros'` - Initialize the channel scale factors with zeros.
- `'narrow-normal'` - Initialize the channel scale factors by independently sampling from a normal distribution with zero mean and standard deviation 0.01.
- Function handle - Initialize the channel scale factors with a custom function. If you specify a function handle, then the function must be of the form `scale = func(sz)`, where `sz` is the size of the scale. For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the channel scale factors when the `Scale` property is empty.

Data Types: `char` | `string` | `function_handle`

**OffsetInitializer** — Function to initialize channel offsets

`'zeros'` (default) | `'ones'` | `'narrow-normal'` | function handle

Function to initialize the channel offsets, specified as one of the following:

- `'zeros'` - Initialize the channel offsets with zeros.
- 'ones' - Initialize the channel offsets with ones.
- 'narrow-normal' - Initialize the channel offsets by independently sampling from a normal distribution with zero mean and standard deviation 0.01.
- Function handle - Initialize the channel offsets with a custom function. If you specify a function handle, then the function must be of the form \( \text{offset} = \text{func}(\text{sz}) \), where \( \text{sz} \) is the size of the scale. For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the channel offsets when the Offset property is empty.

**Data Types:** char | string | function_handle

**Scale — Channel scale factors**

[] (default) | numeric array

Channel scale factors \( \gamma \), specified as a numeric array.

The channel scale factors are learnable parameters. When training a network, if Scale is nonempty, then \texttt{trainNetwork} uses the Scale property as the initial value. If Scale is empty, then \texttt{trainNetwork} uses the initializer specified by ScaleInitializer.

At training time, Scale is one of the following:
- For 2-D image input, a numeric array of size 1-by-1-by-NumChannels
- For 3-D image input, a numeric array of size 1-by-1-by-1-by-NumChannels
- For feature or sequence input, a numeric array of size NumChannels-by-1

**Offset — Channel offsets**

[] (default) | numeric array

Channel offsets \( \beta \), specified as a numeric array.

The channel offsets are learnable parameters. When training a network, if Offset is nonempty, then \texttt{trainNetwork} uses the Offset property as the initial value. If Offset is empty, then \texttt{trainNetwork} uses the initializer specified by OffsetInitializer.

At training time, Offset is one of the following:
- For 2-D image input, a numeric array of size 1-by-1-by-NumChannels
- For 3-D image input, a numeric array of size 1-by-1-by-1-by-NumChannels
- For feature or sequence input, a numeric array of size NumChannels-by-1

**Learn Rate and Regularization**

**ScaleLearnRateFactor — Learning rate factor for scale factors**

1 (default) | nonnegative scalar

Learning rate factor for the scale factors, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the scale factors in a layer. For example, if ScaleLearnRateFactor is 2, then the learning rate for the scale factors in the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the trainingOptions function.
OffsetLearnRateFactor — Learning rate factor for offsets
1 (default) | nonnegative scalar

Learning rate factor for the offsets, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the offsets in a layer. For example, if OffsetLearnRateFactor equals 2, then the learning rate for the offsets in the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the trainingOptions function.

ScaleL2Factor — L<sub>2</sub> regularization factor for scale factors
1 (default) | nonnegative scalar

L<sub>2</sub> regularization factor for the scale factors, specified as a nonnegative scalar.

The software multiplies this factor by the global L<sub>2</sub> regularization factor to determine the learning rate for the scale factors in a layer. For example, if ScaleL2Factor is 2, then the L<sub>2</sub> regularization for the offsets in the layer is twice the global L<sub>2</sub> regularization factor. You can specify the global L<sub>2</sub> regularization factor using the trainingOptions function.

OffsetL2Factor — L<sub>2</sub> regularization factor for offsets
1 (default) | nonnegative scalar

L<sub>2</sub> regularization factor for the offsets, specified as a nonnegative scalar.

The software multiplies this factor by the global L<sub>2</sub> regularization factor to determine the learning rate for the offsets in a layer. For example, if OffsetL2Factor is 2, then the L<sub>2</sub> regularization for the offsets in the layer is twice the global L<sub>2</sub> regularization factor. You can specify the global L<sub>2</sub> regularization factor using the trainingOptions function.

Layer

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to '', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.

Data Types: cell

NumOutputs — Number of outputs
1 (default)
Number of outputs of the layer. This layer has a single output only.

Data Types: double

**OutputNames — Output names**

`{'out'}` (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

**Examples**

**Create Group Normalization Layer**

Create a group normalization layer that normalizes incoming data across three groups of channels. Name the layer 'groupnorm'.

```matlab
layer = groupNormalizationLayer(3,'Name','groupnorm')
```

```
GroupNormalizationLayer with properties:
 Name: 'groupnorm'
 NumChannels: 'auto'

Hyperparameters
 NumGroups: 3
 Epsilon: 1.0000e-05

Learnable Parameters
 Offset: []
 Scale: []
```

Include a group normalization layer in a `Layer` array. Normalize the incoming 20 channels in four groups.

```matlab
layers = [
 imageInputLayer([28 28 3])
 convolution2dLayer(5,20)
 groupNormalizationLayer(4)
 reluLayer
 maxPooling2dLayer(2,'Stride',2)
 fullyConnectedLayer(10)
 softmaxLayer
 classificationLayer]
```

```
layers = 8x1 Layer array with layers:
1 '' Image Input 28x28x3 images with 'zerocenter' normalization
2 '' Convolution 20 5x5 convolutions with stride [1 1] and padding [0 0 0 0 0 0 0]
3 '' Group Normalization Group normalization
4 '' ReLU ReLU
```
More About

**Group Normalization Layer**

A group normalization layer divides the channels of the input data into groups and normalizes the activations across each group. To speed up training of convolutional neural networks and reduce the sensitivity to network initialization, use group normalization layers between convolutional layers and nonlinearities, such as ReLU layers.

You can also use a group normalization layer to perform layer normalization or instance normalization. Layer normalization combines and normalizes activations across all channels in a single observation. Instance normalization normalizes the activations of each channel of the observation separately.

The layer first normalizes the activations of each group by subtracting the group mean and dividing by the group standard deviation. Then, the layer shifts the input by a learnable offset $\beta$ and scales it by a learnable scale factor $\gamma$.

Group normalization layers normalize the activations and gradients propagating through a neural network, making network training an easier optimization problem. To take full advantage of this fact, you can try increasing the learning rate. Since the optimization problem is easier, the parameter updates can be larger and the network can learn faster. You can also try reducing the $L_2$ and dropout regularization.

You can use a group normalization layer in place of a batch normalization layer. This is particularly useful when training with small batch sizes as it can increase the stability of training.

**Algorithms**

A group normalization normalizes its inputs $x_i$ by first calculating the mean $\mu_g$ and variance $\sigma_g^2$ over the specified groups of channels. Then, it calculates the normalized activations as

$$\hat{x}_i = \frac{x_i - \mu_g}{\sqrt{\sigma_g^2 + \varepsilon}}$$

Here, $\varepsilon$ (the property Epsilon) improves numerical stability when the group variance is very small. To allow for the possibility that inputs with zero mean and unit variance are not optimal for the layer that follows the group normalization layer, the group normalization layer further shifts and scales the activations as

$$y_i = \gamma \hat{x}_i + \beta.$$ 

Here, the offset $\beta$ and scale factor $\gamma$ (Offset and Scale properties) are learnable parameters that are updated during network training.
References


See Also

batchNormalizationLayer | convolution2dLayer | fullyConnectedLayer | reluLayer | trainNetwork | trainingOptions

Topics

“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2020b
gru

Gated recurrent unit

Syntax

dlY = gru(dlX,H0,weights,recurrentWeights,bias)
[dly,hiddenState] = gru(dlX,H0,weights,recurrentWeights,bias)
[___] = gru(___,'DataFormat',FMT)

Description

The gated recurrent unit (GRU) operation allows a network to learn dependencies between time steps in time series and sequence data.

Note This function applies the deep learning GRU operation to dlarray data. If you want to apply an GRU operation within a layerGraph object or Layer array, use the following layer:

• gruLayer

dlY = gru(dlX,H0,weights,recurrentWeights,bias) applies a gated recurrent unit (GRU) calculation to input dlX using the initial hidden state H0, and parameters weights, recurrentWeights, and bias. The input dlX is a formatted dlarray with dimension labels. The output dlY is a formatted dlarray with the same dimension labels as dlX, except for any 'S' dimensions.

The gru function updates the hidden state using the hyperbolic tangent function (tanh) as the state activation function. The gru function uses the sigmoid function given by \( \sigma(x) = (1 + e^{-x})^{-1} \) as the gate activation function.

[dly,hiddenState] = gru(dlX,H0,weights,recurrentWeights,bias) also returns the hidden state after the GRU operation.

[___] = gru(___,'DataFormat',FMT) also specifies the dimension format FMT when dlX is not a formatted dlarray. The output dlY is an unformatted dlarray with the same dimension order as dlX, except for any 'S' dimensions.

Examples

Apply GRU Operation to Sequence Data

Perform a GRU operation using 100 hidden units.

Create the input sequence data as 32 observations with ten channels and a sequence length of 64.

numFeatures = 10;
numObservations = 32;
sequenceLength = 64;

X = randn(numFeatures,numObservations,sequenceLength);
dlX = dlarray(X,'CBT');

Create the initial hidden state with 100 hidden units. Use the same initial hidden state for all observations.

numHiddenUnits = 100;
H0 = zeros(numHiddenUnits,1);

Create the learnable parameters for the GRU operation.

weights = dlarray(randn(3*numHiddenUnits,numFeatures));
recurrentWeights = dlarray(randn(3*numHiddenUnits,numHiddenUnits));
bias = dlarray(randn(3*numHiddenUnits,1));

Perform the GRU calculation.

[dlY,hiddenState] = gru(dlX,H0,weights,recurrentWeights,bias);

View the size and dimension labels of dlY.

size(dlY)
ans = 1x3
    100   32   64

dlY.dims
ans = 'CBT'

View the size of hiddenState.

size(hiddenState)
ans = 1x2
    100   32

You can use the hidden state to keep track of the state of the GRU operation and input further sequential data.

**Input Arguments**

**dlX — Input data**
dlarray | numeric array

Input data, specified as a dlarray with or without dimension labels or a numeric array. When dlX is not a formatted dlarray, you must specify the dimension label format using 'DataFormat', FMT. If dlX is a numeric array, at least one of H0, weights, recurrentWeights, or bias must be a dlarray.
dlX must contain a sequence dimension labeled 'T'. If dlX has any spatial dimensions labeled 'S', they are flattened into the 'C' channel dimensions. If dlX has any unspecified dimensions labeled 'U', they must be singleton.

Data Types: single | double

**H0 — Initial hidden state vector**

dlarray | numeric array

Initial hidden state vector, specified as a dlarray with or without dimension labels or a numeric array.

If H0 is a formatted dlarray, it must contain a channel dimension labeled 'C' and optionally a batch dimension labeled 'B' with the same size as the 'B' dimension of dlX. If H0 does not have a 'B' dimension, the function uses the same hidden state vector for each observation in dlX.

If H0 is a formatted dlarray, then the size of the 'C' dimension determines the number of hidden units. Otherwise, the size of the first dimension determines the number of hidden units.

Data Types: single | double

**weights — Weights**

dlarray | numeric array

Weights, specified as a dlarray with or without dimension labels or a numeric array.

Specify weights as a matrix of size 3*NumHiddenUnits-by-InputSize, where NumHiddenUnits is the size of the 'C' dimension of H0, and InputSize is the size of the 'C' dimension of dlX multiplied by the size of each 'S' dimension of dlX, where present.

If weights is a formatted dlarray, it must contain a 'C' dimension of size 3*NumHiddenUnits and a 'U' dimension of size InputSize.

Data Types: single | double

**recurrentWeights — Recurrent weights**

dlarray | numeric array

Recurrent weights, specified as a dlarray with or without dimension labels or a numeric array.

Specify recurrentWeights as a matrix of size 3*NumHiddenUnits-by-NumHiddenUnits, where NumHiddenUnits is the size of the 'C' dimension of H0.

If recurrentWeights is a formatted dlarray, it must contain a 'C' dimension of size 3*NumHiddenUnits and a 'U' dimension of size NumHiddenUnits.

Data Types: single | double

**bias — Bias**

dlarray vector | numeric vector

Bias, specified as a dlarray vector with or without dimension labels or a numeric vector.

Specify bias as a vector of length 3*NumHiddenUnits, where NumHiddenUnits is the size of the 'C' dimension of H0.

If bias is a formatted dlarray, the nonsingleton dimension must be labeled with 'C'.
Data Types: single | double

**FMT** — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of 'DataFormat' and a character array or string FMT that provides a label for each dimension of the data. Each character in FMT must be one of the following:

- 'S' — Spatial
- 'C' — Channel
- 'B' — Batch (for example, samples and observations)
- 'T' — Time (for example, sequences)
- 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at most once.

You must specify 'DataFormat',FMT when the input data dlX is not a formatted dlarray.

Example: 'DataFormat','SSCB'

Data Types: char | string

**Output Arguments**

daY — GRU output
dlarray

GRU output, returned as a dlarray. The output daY has the same underlying data type as the input dlX.

If the input data dlX is a formatted dlarray, daY has the same dimension labels as dlX, except for any 'S' dimensions. If the input data is not a formatted dlarray, daY is an unformatted dlarray with the same dimension order as the input data.

The size of the 'C' dimension of daY is the same as the number of hidden units, specified by the size of the 'C' dimension of H0.

**hiddenState** — Hidden state vector
dlarray | numeric array

Hidden state vector for each observation, returned as a dlarray or a numeric array with the same data type as H0.

If the input H0 is a formatted dlarray, then the output hiddenState is a formatted dlarray with the format 'CB'.

**Limitations**

- functionToLayerGraph does not support the gru function. If you use functionToLayerGraph with a function that contains the gru operation, the resulting LayerGraph contains placeholder layers.
More About

Gated Recurrent Unit

The GRU operation allows a network to learn dependencies between time steps in time series and sequence data. For more information, see the “Gated Recurrent Unit Layer” on page 1-548 definition on the gruLayer reference page.

References


Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

- When at least one of the following input arguments is a gpuArray or a dlarray with underlying data of type gpuArray, this function runs on the GPU:
  - dlX
  - H0
  - weights
  - recurrentWeights
  - bias

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | dlfeval | dlgradient | fullyconnect | lstm | softmax

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”
“Sequence-to-Sequence Translation Using Attention”
“Multilabel Text Classification Using Deep Learning”

Introduced in R2020a
**gruLayer**

Gated recurrent unit (GRU) layer

**Description**

A GRU layer learns dependencies between time steps in time series and sequence data.

**Creation**

**Syntax**

```matlab
layer = gruLayer(numHiddenUnits)
layer = gruLayer(numHiddenUnits,Name,Value)
```

**Description**

`layer = gruLayer(numHiddenUnits)` creates a GRU layer and sets the `NumHiddenUnits` property.

`layer = gruLayer(numHiddenUnits,Name,Value)` sets additional `OutputMode`, “Activations” on page 1-540, “State” on page 1-541, “Parameters and Initialization” on page 1-541, “Learn Rate and Regularization” on page 1-543, and `Name` properties using one or more name-value pair arguments. You can specify multiple name-value pair arguments. Enclose each property name in quotes.

**Properties**

**GRU**

- **NumHiddenUnits — Number of hidden units**
  
  Positive integer

  Number of hidden units (also known as the hidden size), specified as a positive integer.

  The number of hidden units corresponds to the amount of information remembered between time steps (the hidden state). The hidden state can contain information from all previous time steps, regardless of the sequence length. If the number of hidden units is too large, then the layer might overfit to the training data. This value can vary from a few dozen to a few thousand.

  The hidden state does not limit the number of time steps that are processed in an iteration. To split your sequences into smaller sequences for training, use the `SequenceLength` option in `trainingOptions`.

  Example: 200

- **OutputMode — Format of output**

  'sequence' (default) | 'last'

  *SequenceLength* option in `trainingOptions`.

  Example: 200
Format of output, specified as one of the following:
- 'sequence' - Output the complete sequence.
- 'last' - Output the last time step of the sequence.

**ResetGateMode — Reset gate mode**

\['after-multiplication'\] (default) | \['before-multiplication'\] | \['recurrent-bias-after-multiplication'\]

Reset gate mode, specified as one of the following:
- 'after-multiplication' - Apply reset gate after matrix multiplication. This option is cuDNN compatible.
- 'before-multiplication' - Apply reset gate before matrix multiplication.
- 'recurrent-bias-after-multiplication' - Apply reset gate after matrix multiplication and use an additional set of bias terms for the recurrent weights.

For more information about the reset gate calculations, see "Gated Recurrent Unit Layer" on page 1-548.

**InputSize — Input size**

\['auto'\] (default) | positive integer

Input size, specified as a positive integer or 'auto'. If InputSize is 'auto', then the software automatically assigns the input size at training time.

Example: 100

**Activations**

**StateActivationFunction — Activation function to update the hidden state**

\['tanh'\] (default) | \['softsign'\]

Activation function to update the hidden state, specified as one of the following:
- 'tanh' - Use the hyperbolic tangent function (tanh).
- 'softsign' - Use the softsign function \( \text{softsign}(x) = \frac{x}{1 + |x|} \).

The layer uses this option as the function \( \sigma_s \) in the calculations to update the hidden state.

**GateActivationFunction — Activation function to apply to the gates**

\['sigmoid'\] (default) | \['hard-sigmoid'\]

Activation function to apply to the gates, specified as one of the following:
- 'sigmoid' - Use the sigmoid function \( \sigma(x) = \frac{1}{1 + e^{-x}} \).
- 'hard-sigmoid' - Use the hard sigmoid function

\[
\sigma(x) = \begin{cases} 
0 & \text{if } x < -2.5 \\
0.2x + 0.5 & \text{if } -2.5 \leq x \leq 2.5 \\
1 & \text{if } x > 2.5 
\end{cases}
\]

The layer uses this option as the function \( \sigma_g \) in the calculations for the layer gates.
State

**HiddenState — Initial value of the hidden state**
numeric vector

Initial value of the hidden state, specified as a `NumHiddenUnits`-by-1 numeric vector. This value corresponds to the hidden state at time step 0.

After setting this property, calls to the `resetState` function set the hidden state to this value.

Parameters and Initialization

**InputWeightsInitializer — Function to initialize input weights**
'glorot' (default) | 'he' | 'orthogonal' | 'narrow-normal' | 'zeros' | 'ones' | function handle

Function to initialize the input weights, specified as one of the following:

- 'glorot' - Initialize the input weights with the Glorot initializer [2] (also known as Xavier initializer). The Glorot initializer independently samples from a uniform distribution with zero mean and variance $2/(\text{InputSize} + \text{numOut})$, where numOut = 3*`NumHiddenUnits`.
- 'he' - Initialize the input weights with the He initializer [3]. The He initializer samples from a normal distribution with zero mean and variance $2/\text{InputSize}$.
- 'orthogonal' - Initialize the input weights with $Q$, the orthogonal matrix given by the QR decomposition of $Z = QR$ for a random matrix $Z$ sampled from a unit normal distribution. [4]
- 'narrow-normal' - Initialize the input weights by independently sampling from a normal distribution with zero mean and standard deviation 0.01.
- 'zeros' - Initialize the input weights with zeros.
- 'ones' - Initialize the input weights with ones.
- Function handle - Initialize the input weights with a custom function. If you specify a function handle, then the function must be of the form `weights = func(sz)`, where `sz` is the size of the input weights.

The layer only initializes the input weights when the `InputWeights` property is empty.

Data Types: char | string | function_handle

**RecurrentWeightsInitializer — Function to initialize recurrent weights**
'orthogonal' (default) | 'glorot' | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function handle

Function to initialize the recurrent weights, specified as one of the following:

- 'orthogonal' - Initialize the recurrent weights with $Q$, the orthogonal matrix given by the QR decomposition of $Z = QR$ for a random matrix $Z$ sampled from a unit normal distribution. [4]
- 'glorot' - Initialize the recurrent weights with the Glorot initializer [2] (also known as Xavier initializer). The Glorot initializer independently samples from a uniform distribution with zero mean and variance $2/(\text{numIn} + \text{numOut})$, where numIn = `NumHiddenUnits` and numOut = 3*`NumHiddenUnits`.
- 'he' - Initialize the recurrent weights with the He initializer [3]. The He initializer samples from a normal distribution with zero mean and variance $2/\text{NumHiddenUnits}$.
• 'narrow-normal' – Initialize the recurrent weights by independently sampling from a normal distribution with zero mean and standard deviation 0.01.
• 'zeros' – Initialize the recurrent weights with zeros.
• 'ones' – Initialize the recurrent weights with ones.
• Function handle - Initialize the recurrent weights with a custom function. If you specify a function handle, then the function must be of the form weights = func(sz), where sz is the size of the recurrent weights.

The layer only initializes the recurrent weights when the RecurrentWeights property is empty.

Data Types: char | string | function_handle

BiasInitializer — Function to initialize bias
`'zeros'` (default) | `'narrow-normal'` | `'ones'` | function handle

Function to initialize the bias, specified as one of the following:

• 'zeros' – Initialize the bias with zeros.
• 'narrow-normal' – Initialize the bias by independently sampling from a normal distribution with zero mean and standard deviation 0.01.
• 'ones' – Initialize the bias with ones.
• Function handle - Initialize the bias with a custom function. If you specify a function handle, then the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.

Data Types: char | string | function_handle

InputWeights — Input weights
[] (default) | matrix

Input weights, specified as a matrix.

The input weight matrix is a concatenation of the three input weight matrices for the components in the GRU layer. The three matrices are concatenated vertically in the following order:

1. Reset gate
2. Update gate
3. Candidate state

The input weights are learnable parameters. When training a network, if InputWeights is nonempty, then trainNetwork uses the InputWeights property as the initial value. If InputWeights is empty, then trainNetwork uses the initializer specified by InputWeightsInitializer.

At training time, InputWeights is a 3*NumHiddenUnits-by-InputSize matrix.

RecurrentWeights — Recurrent weights
[] (default) | matrix

Recurrent weights, specified as a matrix.

The recurrent weight matrix is a concatenation of the three recurrent weight matrices for the components in the GRU layer. The three matrices are vertically concatenated in the following order:
The recurrent weights are learnable parameters. When training a network, if `RecurrentWeights` is nonempty, then `trainNetwork` uses the `RecurrentWeights` property as the initial value. If `RecurrentWeights` is empty, then `trainNetwork` uses the initializer specified by `RecurrentWeightsInitializer`.

At training time `RecurrentWeights` is a 3*NumHiddenUnits-by-NumHiddenUnits matrix.

**Bias — Layer biases**

[] (default) | numeric vector

Layer biases for the GRU layer, specified as a numeric vector.

If `ResetGateMode` is 'after-multiplication' or 'before-multiplication', then the bias vector is a concatenation of three bias vectors for the components in the GRU layer. The three vectors are concatenated vertically in the following order:

1. Reset gate
2. Update gate
3. Candidate state

In this case, at training time, `Bias` is a 3*NumHiddenUnits-by-1 numeric vector.

If `ResetGateMode` is 'recurrent-bias-after-multiplication', then the bias vector is a concatenation of six bias vectors for the components in the GRU layer. The six vectors are concatenated vertically in the following order:

1. Reset gate
2. Update gate
3. Candidate state
4. Reset gate (recurrent bias)
5. Update gate (recurrent bias)
6. Candidate state (recurrent bias)

In this case, at training time, `Bias` is a 6*NumHiddenUnits-by-1 numeric vector.

The layer biases are learnable parameters. When training a network, if `Bias` is nonempty, then `trainNetwork` uses the `Bias` property as the initial value. If `Bias` is empty, then `trainNetwork` uses the initializer specified by `BiasInitializer`.

For more information about the reset gate calculations, see “Gated Recurrent Unit Layer” on page 1-548.

**Learn Rate and Regularization**

**InputWeightsLearnRateFactor — Learning rate factor for input weights**

1 (default) | numeric scalar | 1-by-3 numeric vector

Learning rate factor for the input weights, specified as a numeric scalar or a 1-by-3 numeric vector.
The software multiplies this factor by the global learning rate to determine the learning rate factor for the input weights of the layer. For example, if `InputWeightsLearnRateFactor` is 2, then the learning rate factor for the input weights of the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the `trainingOptions` function.

To control the value of the learning rate factor for the three individual matrices in `InputWeights`, specify a 1-by-3 vector. The entries of `InputWeightsLearnRateFactor` correspond to the learning rate factor of the following:

1. Reset gate
2. Update gate
3. Candidate state

To specify the same value for all the matrices, specify a nonnegative scalar.

Example: 2
Example: [1 2 1]

**RecurrentWeightsLearnRateFactor — Learning rate factor for recurrent weights**

1 (default) | numeric scalar | 1-by-3 numeric vector

Learning rate factor for the recurrent weights, specified as a numeric scalar or a 1-by-3 numeric vector.

The software multiplies this factor by the global learning rate to determine the learning rate for the recurrent weights of the layer. For example, if `RecurrentWeightsLearnRateFactor` is 2, then the learning rate for the recurrent weights of the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the `trainingOptions` function.

To control the value of the learning rate factor for the three individual matrices in `RecurrentWeights`, specify a 1-by-3 vector. The entries of `RecurrentWeightsLearnRateFactor` correspond to the learning rate factor of the following:

1. Reset gate
2. Update gate
3. Candidate state

To specify the same value for all the matrices, specify a nonnegative scalar.

Example: 2
Example: [1 2 1]

**BiasLearnRateFactor — Learning rate factor for biases**

1 (default) | nonnegative scalar | 1-by-3 numeric vector

Learning rate factor for the biases, specified as a nonnegative scalar or a 1-by-3 numeric vector.

The software multiplies this factor by the global learning rate to determine the learning rate for the biases in this layer. For example, if `BiasLearnRateFactor` is 2, then the learning rate for the biases in the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the `trainingOptions` function.
To control the value of the learning rate factor for the three individual vectors in Bias, specify a 1-by-3 vector. The entries of BiasLearnRateFactor correspond to the learning rate factor of the following:

1. Reset gate
2. Update gate
3. Candidate state

If ResetGateMode is 'recurrent-bias-after-multiplication', then the software uses the same vector for the recurrent bias vectors.

To specify the same value for all the vectors, specify a nonnegative scalar.

Example: 2
Example: [1 2 1]

**InputWeightsL2Factor — L2 regularization factor for input weights**

1 (default) | numeric scalar | 1-by-3 numeric vector

L2 regularization factor for the input weights, specified as a numeric scalar or a 1-by-3 numeric vector.

The software multiplies this factor by the global L2 regularization factor to determine the L2 regularization factor for the input weights of the layer. For example, if InputWeightsL2Factor is 2, then the L2 regularization factor for the input weights of the layer is twice the current global L2 regularization factor. The software determines the L2 regularization factor based on the settings specified with the trainingOptions function.

To control the value of the L2 regularization factor for the three individual matrices in InputWeights, specify a 1-by-3 vector. The entries of InputWeightsL2Factor correspond to the L2 regularization factor of the following:

1. Reset gate
2. Update gate
3. Candidate state

To specify the same value for all the matrices, specify a nonnegative scalar.

Example: 2
Example: [1 2 1]

**RecurrentWeightsL2Factor — L2 regularization factor for recurrent weights**

1 (default) | numeric scalar | 1-by-3 numeric vector

L2 regularization factor for the recurrent weights, specified as a numeric scalar or a 1-by-3 numeric vector.

The software multiplies this factor by the global L2 regularization factor to determine the L2 regularization factor for the recurrent weights of the layer. For example, if RecurrentWeightsL2Factor is 2, then the L2 regularization factor for the recurrent weights of the layer is twice the current global L2 regularization factor. The software determines the L2 regularization factor based on the settings specified with the trainingOptions function.
To control the value of the L2 regularization factor for the three individual matrices in `RecurrentWeights`, specify a 1-by-3 vector. The entries of `RecurrentWeightsL2Factor` correspond to the L2 regularization factor of the following:

1. Reset gate
2. Update gate
3. Candidate state

To specify the same value for all the matrices, specify a nonnegative scalar.

Example: 2
Example: [1 2 1]

**BiasL2Factor — L2 regularization factor for biases**

L2 regularization factor for the biases, specified as a nonnegative scalar or a 1-by-3 numeric vector.

The software multiplies this factor by the global L2 regularization factor to determine the L2 regularization for the biases in this layer. For example, if `BiasL2Factor` is 2, then the L2 regularization for the biases in this layer is twice the global L2 regularization factor. You can specify the global L2 regularization factor using the `trainingOptions` function.

To control the value of the L2 regularization factor for the individual vectors in `Bias`, specify a 1-by-3 vector. The entries of `BiasL2Factor` correspond to the L2 regularization factor of the following:

1. Reset gate
2. Update gate
3. Candidate state

If `ResetGateMode` is `'recurrent-bias-after-multiplication'`, then the software uses the same vector for the recurrent bias vectors.

To specify the same value for all the vectors, specify a nonnegative scalar.

Example: 2
Example: [1 2 1]

**Layer**

**Name — Layer name**

- `' ' (default)` | character vector | string scalar

Layer name, specified as a character vector or a string scalar. If `Name` is set to `' '`, then the software automatically assigns a name at training time.

Data Types: `char` | `string`

**NumInputs — Number of inputs**

1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: `double`
**InputNames — Input names**

`{'in'}` (default)

Input names of the layer. This layer accepts a single input only.

Data Types: `cell`

**NumOutputs — Number of outputs**

1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: `double`

**OutputNames — Output names**

`{'out'}` (default)

Output names of the layer. This layer has a single output only.

Data Types: `cell`

**Examples**

**Create GRU Layer**

Create a GRU layer with the name 'gru1' and 100 hidden units.

```matlab
layer = gruLayer(100,'Name','gru1')
```

```matlab
layer =
 GRULayer with properties:
 Name: 'gru1'

 Hyperparameters
 InputSize: 'auto'
 NumHiddenUnits: 100
 OutputMode: 'sequence'
 StateActivationFunction: 'tanh'
 GateActivationFunction: 'sigmoid'
 ResetGateMode: 'after-multiplication'
```

Include a GRU layer in a `Layer` array.

```matlab
inputSize = 12;
numHiddenUnits = 100;
```
numClasses = 9;

layers = [ ...
    sequenceInputLayer(inputSize)
    gruLayer(numHiddenUnits)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer]

layers =
5x1 Layer array with layers:
  1   ''   Sequence Input          Sequence input with 12 dimensions
  2   ''   GRU                     GRU with 100 hidden units
  3   ''   Fully Connected         9 fully connected layer
  4   ''   Softmax                 softmax
  5   ''   Classification Output   crossentropyex

More About

Gated Recurrent Unit Layer

A GRU layer learns dependencies between time steps in time series and sequence data.

The hidden state of the layer at time step \( t \) contains the output of the GRU layer for this time step. At each time step, the layer adds information to or removes information from the state. The layer controls these updates using gates.

The following components control the hidden state of the layer.

<table>
<thead>
<tr>
<th>Component</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset gate (( r ))</td>
<td>Control level of state reset</td>
</tr>
<tr>
<td>Update gate (( z ))</td>
<td>Control level of state update</td>
</tr>
<tr>
<td>Candidate state (( \tilde{h} ))</td>
<td>Control level of update added to hidden state</td>
</tr>
</tbody>
</table>

The learnable weights of a GRU layer are the input weights \( W \) (InputWeights), the recurrent weights \( R \) (RecurrentWeights), and the bias \( b \) (Bias). If the ResetGateMode property is 'recurrent-bias-after-multiplication', then the gate and state calculations require two sets of bias values. The matrices \( W \) and \( R \) are concatenations of the input weights and the recurrent weights of each component, respectively. These matrices are concatenated as follows:

\[
W = \begin{bmatrix}
W_r \\
W_z \\
W_{\tilde{h}}
\end{bmatrix},
R = \begin{bmatrix}
R_r \\
R_z \\
R_{\tilde{h}}
\end{bmatrix}
\]

where \( r \), \( z \), and \( \tilde{h} \) denote the reset gate, update gate, and candidate state, respectively.

The bias vector depends on the ResetGateMode property. If ResetGateMode is 'after-multiplication' or 'before-multiplication', then the bias vector is a concatenation of three vectors:
\[ b = \begin{bmatrix} b_{W_r} \\ b_{W_z} \\ b_{W_h} \\ b_{R_r} \\ b_{R_z} \\ b_{R_h} \end{bmatrix}, \]

where the subscript \( W \) indicates that this is the bias corresponding to the input weights multiplication.

If \( \text{ResetGateMode} \) is 'recurrent-bias-after-multiplication', then the bias vector is a concatenation of six vectors:

\[ b = \begin{bmatrix} b_{W_r} \\ b_{W_z} \\ b_{W_h} \\ b_{R_r} \\ b_{R_z} \\ b_{R_h} \end{bmatrix}, \]

where the subscript \( R \) indicates that this is the bias corresponding to the recurrent weights multiplication.

The hidden state at time step \( t \) is given by

\[ h_t = (1 - z_t) \odot \tilde{h}_t + z_t \odot h_{t-1}. \]

The following formulas describe the components at time step \( t \).

<table>
<thead>
<tr>
<th>Component</th>
<th>ResetGateMode</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset gate</td>
<td>'after-multiplication'</td>
<td>( r_t = \sigma_g(W_r x_t + b_{W_r} + R_r h_{t-1}) )</td>
</tr>
<tr>
<td></td>
<td>'before-multiplication'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>'recurrent-bias-after-multiplication'</td>
<td>( r_t = \sigma_g(W_r x_t + b_{W_r} + R_r h_{t-1} + b_{R_r}) )</td>
</tr>
<tr>
<td>Update gate</td>
<td>'after-multiplication'</td>
<td>( z_t = \sigma_g(W_z x_t + b_{W_z} + R_z h_{t-1}) )</td>
</tr>
<tr>
<td></td>
<td>'before-multiplication'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>'recurrent-bias-after-multiplication'</td>
<td>( z_t = \sigma_g(W_z x_t + b_{W_z} + R_z h_{t-1} + b_{R_z}) )</td>
</tr>
<tr>
<td>Candidate state</td>
<td>'after-multiplication'</td>
<td>( \tilde{h}<em>t = \sigma_s(W_h x_t + b</em>{W_h} + r_t \odot (R_h h_{t-1}) )</td>
</tr>
<tr>
<td>Component</td>
<td>ResetGateMode</td>
<td>Formula</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>'before-multiplication'</td>
<td>( \hat{h}<em>t = \sigma_s(W_h x_t + b</em>{Wh} + R_h \circ (r_t \odot h_{t-1})) )</td>
</tr>
<tr>
<td></td>
<td>'recurrent-bias-after-multiplication'</td>
<td>( \hat{h}<em>t = \sigma_s(W_h x_t + b</em>{Wh} + r_t \odot (R_h h_{t-1} + b_{Rh})) )</td>
</tr>
</tbody>
</table>

In these calculations, \( \sigma_g \) and \( \sigma_s \) denotes the gate and state activation functions, respectively. The `gruLayer` function, by default, uses the sigmoid function given by \( \sigma(x) = (1 + e^{-x})^{-1} \) to compute the gate activation function and the hyperbolic tangent function (tanh) to compute the state activation function. To specify the state and gate activation functions, use the `StateActivationFunction` and `GateActivationFunction` properties, respectively.

**References**


**Extended Capabilities**

**GPU Code Generation**
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

For code generation, the `ResetGateMode` property must be set to 'after-multiplication' or 'recurrent-bias-after-multiplication'.

**See Also**
`bilstmLayer` | `classifyAndUpdateState` | `flattenLayer` | `lstmLayer` | `predictAndUpdateState` | `resetState` | `sequenceFoldingLayer` | `sequenceInputLayer` | `sequenceUnfoldingLayer`

**Topics**
"Sequence Classification Using Deep Learning"
"Time Series Forecasting Using Deep Learning"
"Sequence-to-Sequence Classification Using Deep Learning"
“Sequence-to-Sequence Regression Using Deep Learning”
“Classify Videos Using Deep Learning”
“Visualize Activations of LSTM Network”
“Long Short-Term Memory Networks”
“Compare Layer Weight Initializers”
“Deep Learning in MATLAB”
“List of Deep Learning Layers”

Introduced in R2020a
hasdata

Determine if minibatchqueue can return a mini-batch

Syntax

\[ tf = \text{hasdata}(mbq) \]

Description

\[ tf = \text{hasdata}(mbq) \] returns 1 (true) if \( mbq \) can return a mini-batch using the next function, and 0 (false) otherwise.

Use hasdata in combination with next to iterate over all data in the minibatchqueue. You can call next on a minibatchqueue until all data is returned. If there are still mini-batches of data available in the minibatchqueue, hasdata returns 1. When you reach the end of the data, hasdata returns 0. Then, use reset or shuffle to reset the minibatchqueue and continue obtaining mini-batches with next.

Examples

Iterate Over All Mini-Batches

Use hasdata with a while loop to iterate over all data in the minibatchqueue.

Create a minibatchqueue from a datastore.

\[ ds = \text{digitDatastore}; \]
\[ mbq = \text{minibatchqueue}(ds,'\text{MinibatchSize}',256) \]

\[ mbq = \text{minibatchqueue with 1 output and properties:} \]

- Mini-batch creation:
  - MiniBatchSize: 256
  - PartialMiniBatch: 'return'
  - MiniBatchFcn: 'collate'
  - DispatchInBackground: 0

- Outputs:
  - OutputCast: {'single'}
  - OutputAsDlarray: 1
  - MiniBatchFormat: {''}
  - OutputEnvironment: {'auto'}

While there is still data available in the minibatchqueue, obtain the next mini-batch.

\[ \text{while hasdata}(mbq) \]
\[ \quad X = \text{next}(mbq) \]
\[ \text{end} \]
The loop ends when `hasdata` returns false, and all mini-batches have been returned.

**Input Arguments**

`mbq` — Queue of mini-batches

`minibatchqueue`

Queue of mini-batches, specified as a `minibatchqueue` object.

**Output Arguments**

`tf` — True or false result

`1 | 0`

True or false result, returned as a `1` or `0` of data type logical.

**See Also**

`minibatchqueue` | `next` | `reset` | `shuffle`

**Topics**

“Training Deep Learning Models in MATLAB”

“Define Custom Training Loops, Loss Functions, and Networks”

“Train Network Using Custom Training Loop”

“Train Generative Adversarial Network (GAN)”

“Sequence-to-Sequence Classification Using 1-D Convolutions”

**Introduced in R2020b**
imageDataAugmenter

Configure image data augmentation

**Description**

An image data augmenter configures a set of preprocessing options for image augmentation, such as resizing, rotation, and reflection.

The imageDataAugmenter is used by an augmentedImageDatastore to generate batches of augmented images. For more information, see “Augment Images for Training with Random Geometric Transformations”.

**Creation**

**Syntax**

```matlab
aug = imageDataAugmenter
aug = imageDataAugmenter(Name,Value)
```

**Description**

`aug = imageDataAugmenter` creates an imageDataAugmenter object with default property values consistent with the identity transformation.

`aug = imageDataAugmenter(Name,Value)` configures a set of image augmentation options using name-value pairs to set properties on page 1-554. You can specify multiple name-value pairs. Enclose each property name in quotes.

**Properties**

**FillValue — Fill value**

numeric scalar | numeric vector

Fill value used to define out-of-bounds points when resampling, specified as a numeric scalar or numeric vector.

- If the augmented images are single channel, then FillValue must be a scalar.
- If the augmented images are multichannel, then FillValue can be a scalar or a vector with length equal to the number of channels of the input image. For example, if the input image is an RGB image, FillValue can be a vector of length 3.

For grayscale and color images, the default fill value is 0. For categorical images, the default fill value is an '<undefined>' label and trainNetwork ignores filled pixels when training.

Example: 128

**RandXReflection — Random reflection**

false (default) | true
Random reflection in the left-right direction, specified as a logical scalar. When `RandXReflection` is true (1), each image is reflected horizontally with 50% probability. When `RandXReflection` is false (0), no images are reflected.

**RandYReflection — Random reflection**
false (default) | true

Random reflection in the top-bottom direction, specified as a logical scalar. When `RandYReflection` is true (1), each image is reflected vertically with 50% probability. When `RandYReflection` is false (0), no images are reflected.

**RandRotation — Range of rotation**
[0 0] (default) | 2-element numeric vector | function handle

Range of rotation, in degrees, applied to the input image, specified as one of the following.

- 2-element numeric vector. The second element must be larger than or equal to the first element. The rotation angle is picked randomly from a continuous uniform distribution within the specified interval.
- function handle. The function must accept no input arguments and return the rotation angle as a numeric scalar. Use a function handle to pick rotation angles from a disjoint interval or using a nonuniform probability distribution. For more information about function handles, see “Create Function Handle”.

By default, augmented images are not rotated.

Example: [-45 45]

**RandScale — Range of uniform scaling**
[1 1] (default) | 2-element numeric vector | function handle

Range of uniform (isotropic) scaling applied to the input image, specified as one of the following.

- 2-element numeric vector. The second element must be larger than or equal to the first element. The scale factor is picked randomly from a continuous uniform distribution within the specified interval.
- function handle. The function must accept no input arguments and return the scale factor as a numeric scalar. Use a function handle to pick scale factors from a disjoint interval or using a nonuniform probability distribution. For more information about function handles, see “Create Function Handle”.

By default, augmented images are not scaled.

Example: [0.5 4]

**RandXScale — Range of horizontal scaling**
[1 1] (default) | 2-element vector of positive numbers | function handle

Range of horizontal scaling applied to the input image, specified as one of the following.

- 2-element numeric vector. The second element must be larger than or equal to the first element. The horizontal scale factor is picked randomly from a continuous uniform distribution within the specified interval.
- function handle. The function must accept no input arguments and return the horizontal scale factor as a numeric scalar. Use a function handle to pick horizontal scale factors from a disjoint interval.
interval or using a nonuniform probability distribution. For more information about function
handles, see “Create Function Handle”.

By default, augmented images are not scaled in the horizontal direction.

**Note** If you specify RandScale, then imageDataAugmenter ignores the value of RandXScale
when scaling images.

Example: [0.5 4]

**RandYScale — Range of vertical scaling**

[1 1] (default) | 2-element vector of positive numbers | function handle

Range of vertical scaling applied to the input image, specified as one of the following.

- 2-element numeric vector. The second element must be larger than or equal to the first element.
The vertical scale factor is picked randomly from a continuous uniform distribution within the
specified interval.
- function handle. The function must accept no input arguments and return the vertical scale factor
as a numeric scalar. Use a function handle to pick vertical scale factors from a disjoint interval or
using a nonuniform probability distribution. For more information about function handles, see
“Create Function Handle”.

By default, augmented images are not scaled in the vertical direction.

**Note** If you specify RandScale, then imageDataAugmenter ignores the value of RandYScale
when scaling images.

Example: [0.5 4]

**RandXShear — Range of horizontal shear**

[0 0] (default) | 2-element numeric vector | function handle

Range of horizontal shear applied to the input image, specified as one of the following. Shear is
measured as an angle in degrees, and is in the range (-90, 90).

- 2-element numeric vector. The second element must be larger than or equal to the first element.
The horizontal shear angle is picked randomly from a continuous uniform distribution within the
specified interval.
- function handle. The function must accept no input arguments and return the horizontal shear
angle as a numeric scalar. Use a function handle to pick horizontal shear angles from a disjoint
interval or using a nonuniform probability distribution. For more information about function
handles, see “Create Function Handle”.

By default, augmented images are not sheared in the horizontal direction.

Example: [0 45]

**RandYShear — Range of vertical shear**

[0 0] (default) | 2-element numeric vector | function handle
Range of vertical shear applied to the input image, specified as one of the following. Shear is measured as an angle in degrees, and is in the range \((-90, 90)\).

- 2-element numeric vector. The second element must be larger than or equal to the first element. The vertical shear angle is picked randomly from a continuous uniform distribution within the specified interval.
- function handle. The function must accept no input arguments and return the vertical shear angle as a numeric scalar. Use a function handle to pick vertical shear angles from a disjoint interval or using a nonuniform probability distribution. For more information about function handles, see “Create Function Handle”.

By default, augmented images are not sheared in the vertical direction.

Example: \([0 \ 45]\)

**RandXTranslation — Range of horizontal translation**

\([0 \ 0]\) (default) | 2-element numeric vector | function handle

Range of horizontal translation applied to the input image, specified as one of the following. Translation distance is measured in pixels.

- 2-element numeric vector. The second element must be larger than or equal to the first element. The horizontal translation distance is picked randomly from a continuous uniform distribution within the specified interval.
- function handle. The function must accept no input arguments and return the horizontal translation distance as a numeric scalar. Use a function handle to pick horizontal translation distances from a disjoint interval or using a nonuniform probability distribution. For more information about function handles, see “Create Function Handle”.

By default, augmented images are not translated in the horizontal direction.

Example: \([-5 \ 5]\)

**RandYTranslation — Range of vertical translation**

\([0 \ 0]\) (default) | 2-element numeric vector | function handle

Range of vertical translation applied to the input image, specified as one of the following. Translation distance is measured in pixels.

- 2-element numeric vector. The second element must be larger than or equal to the first element. The vertical translation distance is picked randomly from a continuous uniform distribution within the specified interval.
- function handle. The function must accept no input arguments and return the vertical translation distance as a numeric scalar. Use a function handle to pick vertical translation distances from a disjoint interval or using a nonuniform probability distribution. For more information about function handles, see “Create Function Handle”.

By default, augmented images are not translated in the vertical direction.

Example: \([-5 \ 5]\)

**Object Functions**

- **augment**  Apply identical random transformations to multiple images
Examples

Create Image Data Augmenter to Resize and Rotate Images

Create an image data augmenter that preprocesses images before training. This augmenter rotates images by random angles in the range \([0, 360]\) degrees and resizes images by random scale factors in the range \([0.5, 1]\).

\[
\text{augmenter} = \text{ imageDataAugmenter( ...}
\text{ 'RandRotation',[0 360], ...}
\text{ 'RandScale',[0.5 1])}
\]

\[
\text{augmenter} = \text{ imageDataAugmenter with properties:}
\text{ FillValue: 0}
\text{ RandXReflection: 0}
\text{ RandYReflection: 0}
\text{ RandRotation: [0 360]}
\text{ RandScale: [0.5000 1]}
\text{ RandXScale: [1 1]}
\text{ RandYScale: [1 1]}
\text{ RandXShear: [0 0]}
\text{ RandYShear: [0 0]}
\text{ RandXTranslation: [0 0]}
\text{ RandYTranslation: [0 0]}
\]

Create an augmented image datastore using the image data augmenter. The augmented image datastore also requires sample data, labels, and an output image size.

\[
\text{[XTrain,YTrain]} = \text{ digitTrain4DArrayData;}
\text{ imageSize = [56 56 1];}
\text{ auimds = augmentedImageDatastore(imageSize,XTrain,YTrain,'DataAugmentation',augmenter)}
\]

\[
\text{auimds} = \text{ augmentedImageDatastore with properties:}
\text{ NumObservations: 5000}
\text{ MiniBatchSize: 128}
\text{ DataAugmentation: [1x1 imageDataAugmenter]}
\text{ ColorPreprocessing: 'none'}
\text{ OutputSize: [56 56]}
\text{ OutputSizeMode: 'resize'}
\text{ DispatchInBackground: 0}
\]

Preview the random transformations applied to the first eight images in the image datastore.

\[
\text{minibatch} = \text{ preview(auimds);}\n\text{ imshow(imtile(minibatch.input));}
\]
Preview different random transformations applied to the same set of images.

```matlab
minibatch = preview(auimds);
imshow(imtile(minibatch.input));
```

**Train Network with Augmented Images**

Train a convolutional neural network using augmented image data. Data augmentation helps prevent the network from overfitting and memorizing the exact details of the training images.

Load the sample data, which consists of synthetic images of handwritten digits.

```matlab
[XTrain,YTrain] = digitTrain4DArrayData;
digitTrain4DArrayData loads the digit training set as 4-D array data. XTrain is a 28-by-28-by-1-by-5000 array, where:
```
- 28 is the height and width of the images.
1 is the number of channels.
5000 is the number of synthetic images of handwritten digits.

\( Y_{\text{Train}} \) is a categorical vector containing the labels for each observation.

Set aside 1000 of the images for network validation.

\[
\text{id}x = \text{randperm}(	ext{size}(X_{\text{Train}},4),1000);
X_{\text{Validation}} = X_{\text{Train}}(:,:,\text{id}x);
X_{\text{Train}}(:,:,\text{id}x) = [];
Y_{\text{Validation}} = Y_{\text{Train}}(\text{id}x);
Y_{\text{Train}}(\text{id}x) = [];
\]

Create an \texttt{ImageDataAugmenter} object that specifies preprocessing options for image augmentation, such as resizing, rotation, translation, and reflection. Randomly translate the images up to three pixels horizontally and vertically, and rotate the images with an angle up to 20 degrees.

\[
\text{imageAugmenter} = \text{ImageDataAugmenter}(\ldots
\text{\textit{RandRotation}},[-20,20],\ldots
\text{\textit{RandXTranslation}},[-3 3],\ldots
\text{\textit{RandYTranslation}},[-3 3])
\]

\[
\text{imageAugmenter} = \text{ImageDataAugmenter} \text{ with properties:}
\]
\[
\begin{align*}
\text{FillValue} & : 0 \\
\text{RandXReflection} & : 0 \\
\text{RandYReflection} & : 0 \\
\text{RandRotation} & : [-20 20] \\
\text{RandScale} & : [1 1] \\
\text{RandXScale} & : [1 1] \\
\text{RandYScale} & : [1 1] \\
\text{RandXShear} & : [0 0] \\
\text{RandYShear} & : [0 0] \\
\text{RandXTranslation} & : [-3 3] \\
\text{RandYTranslation} & : [-3 3]
\end{align*}
\]

Create an \texttt{augmentedImageDatastore} object to use for network training and specify the image output size. During training, the datastore performs image augmentation and resizes the images. The datastore augments the images without saving any images to memory. \texttt{trainNetwork} updates the network parameters and then discards the augmented images.

\[
\text{imageSize} = [28 28 1];
\text{augimds} = \text{augmentedImageDatastore}(\text{imageSize},X_{\text{Train}},Y_{\text{Train}},'DataAugmentation',\text{imageAugmenter});
\]

Specify the convolutional neural network architecture.

\[
\text{layers} = [
\text{imageInputLayer}(\text{imageSize})
\text{\texttt{convolution2dLayer}}(3,8,'Padding','same')
\text{batchNormalizationLayer}
\text{reluLayer}
\text{maxPooling2dLayer}(2,'Stride',2)
\text{\texttt{convolution2dLayer}}(3,16,'Padding','same')
\]

1-560
Specify training options for stochastic gradient descent with momentum.

```matlab
opts = trainingOptions('sgdm', ...
 'MaxEpochs',15, ...
 'Shuffle','every-epoch', ...
 'Plots','training-progress', ...
 'Verbose',false, ...
 'ValidationData',{XValidation,YValidation});
```

Train the network. Because the validation images are not augmented, the validation accuracy is higher than the training accuracy.

```matlab
net = trainNetwork(augimds,layers,opts);
```

**Tips**

- To preview the transformations applied to sample images, use the `augment` function.
To perform image augmentation during training, create an augmentedImageDatastore and specify preprocessing options by using the 'DataAugmentation' name-value pair with an imageDataAugmenter. The augmented image datastore automatically applies random transformations to the training data.

**See Also**
augmentedImageDatastore | imageDataAugmenter | trainNetwork

**Topics**
“Deep Learning in MATLAB”
“Preprocess Images for Deep Learning”
“Create Function Handle”

**Introduced in R2017b**
**image3dInputLayer**

3-D image input layer

**Description**

A 3-D image input layer inputs 3-D images or volumes to a network and applies data normalization. For 2-D image input, use `imageInputLayer`.

**Creation**

**Syntax**

\[
\text{layer} = \text{image3dInputLayer}(\text{inputSize}) \\
\text{layer} = \text{image3dInputLayer}(\text{inputSize}, \text{Name}, \text{Value})
\]

**Description**

`layer = image3dInputLayer(inputSize)` returns a 3-D image input layer and specifies the `InputSize` property.

`layer = image3dInputLayer(inputSize,Name,Value)` sets the optional properties using name-value pairs. You can specify multiple name-value pairs. Enclose each property name in single quotes.

**Properties**

**3-D Image Input**

**InputSize — Size of the input**

row vector of integers

Size of the input data, specified as a row vector of integers \([h \ w \ d \ c]\), where \(h, w, d,\) and \(c\) correspond to the height, width, depth, and number of channels respectively.

- For grayscale input, specify a vector with \(c\) equal to 1.
- For RGB input, specify a vector with \(c\) equal to 3.
- For multispectral or hyperspectral input, specify a vector with \(c\) equal to the number of channels.

For 2-D image input, use `imageInputLayer`.

Example: `[132 132 116 3]`

**Normalization — Data normalization**

`'zerocenter'` (default) | `'zscore'` | `'rescale-symmetric'` | `'rescale-zero-one'` | `'none'` | function handle
Data normalization to apply every time data is forward propagated through the input layer, specified as one of the following:

- `'zerocenter'` — Subtract the mean specified by `Mean`.
- `'zscore'` — Subtract the mean specified by `Mean` and divide by `StandardDeviation`.
- `'rescale-symmetric'` — Rescale the input to be in the range $[-1, 1]$ using the minimum and maximum values specified by `Min` and `Max`, respectively.
- `'rescale-zero-one'` — Rescale the input to be in the range $[0, 1]$ using the minimum and maximum values specified by `Min` and `Max`, respectively.
- `'none'` — Do not normalize the input data.
- Function handle — Normalize the data using the specified function. The function must be of the form $Y = \text{func}(X)$, where $X$ is the input data, and the output $Y$ is the normalized data.

**Tip** The software, by default, automatically calculates the normalization statistics at training time. To save time when training, specify the required statistics for normalization and set the `'ResetInputNormalization'` option in `trainingOptions` to `false`.

**NormalizationDimension** — Normalization dimension

`'auto'` (default) | `'channel'` | `'element'` | `'all'`

Normalization dimension, specified as one of the following:

- `'auto'` — If the training option is `false` and you specify any of the normalization statistics (`Mean`, `StandardDeviation`, `Min`, or `Max`), then normalize over the dimensions matching the statistics. Otherwise, recalculate the statistics at training time and apply channel-wise normalization.
- `'channel'` — Channel-wise normalization.
- `'element'` — Element-wise normalization.
- `'all'` — Normalize all values using scalar statistics.

**Mean** — Mean for zero-center and z-score normalization

`[]` (default) | 4-D array | numeric scalar

Mean for zero-center and z-score normalization, specified as a $h$-by-$w$-by-$d$-by-$c$ array, a 1-by-1-by-1-by-$c$ array of means per channel, a numeric scalar, or `[]`, where $h$, $w$, $d$, and $c$ correspond to the height, width, depth, and the number of channels of the mean, respectively.

If you specify the `Mean` property, then `Normalization` must be `'zerocenter'` or `'zscore'`. If `Mean` is `[]`, then the software calculates the mean at training time.

You can set this property when creating networks without training (for example, when assembling networks using `assembleNetwork`).

Data Types: `single` | `double` | `int8` | `int16` | `int32` | `int64` | `uint8` | `uint16` | `uint32` | `uint64`

**StandardDeviation** — Standard deviation for z-score normalization

`[]` (default) | 4-D array | numeric scalar

Standard deviation for z-score normalization, specified as a $h$-by-$w$-by-$d$-by-$c$ array, a 1-by-1-by-1-by-$c$ array of means per channel, a numeric scalar, or `[]`, where $h$, $w$, $d$, and $c$ correspond to the height, width, depth, and the number of channels of the standard deviation, respectively.
If you specify the `StandardDeviation` property, then `Normalization` must be 'zscore'. If `StandardDeviation` is [], then the software calculates the standard deviation at training time.

You can set this property when creating networks without training (for example, when assembling networks using `assembleNetwork`).

Data Types: `single` | `double` | `int8` | `int16` | `int32` | `int64` | `uint8` | `uint16` | `uint32` | `uint64`

**Min — Minimum value for rescaling**

```
[] (default) | 4-D array | numeric scalar
```

Minimum value for rescaling, specified as a `h`-by-`w`-by-`d`-by-`c` array, a `1`-by-`1`-by-`1`-by-`c` array of minima per channel, a numeric scalar, or [], where `h`, `w`, `d`, and `c` correspond to the height, width, depth, and the number of channels of the minima, respectively.

If you specify the `Min` property, then `Normalization` must be 'rescale-symmetric' or 'rescale-zero-one'. If `Min` is [], then the software calculates the minimum at training time.

You can set this property when creating networks without training (for example, when assembling networks using `assembleNetwork`).

Data Types: `single` | `double` | `int8` | `int16` | `int32` | `int64` | `uint8` | `uint16` | `uint32` | `uint64`

**Max — Maximum value for rescaling**

```
[] (default) | 4-D array | numeric scalar
```

Maximum value for rescaling, specified as a `h`-by-`w`-by-`d`-by-`c` array, a `1`-by-`1`-by-`1`-by-`c` array of maxima per channel, a numeric scalar, or [], where `h`, `w`, `d`, and `c` correspond to the height, width, depth, and the number of channels of the maxima, respectively.

If you specify the `Min` property, then `Normalization` must be 'rescale-symmetric' or 'rescale-zero-one'. If `Max` is [], then the software calculates the maximum at training time.

You can set this property when creating networks without training (for example, when assembling networks using `assembleNetwork`).

Data Types: `single` | `double` | `int8` | `int16` | `int32` | `int64` | `uint8` | `uint16` | `uint32` | `uint64`

**Layer**

**Name — Layer name**

```
' ' (default) | character vector | string scalar
```

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and `Name` is set to ' ', then the software automatically assigns a name to the layer at training time.

Data Types: `char` | `string`

**NumInputs — Number of inputs**

```
0 (default)
```

Number of inputs of the layer. The layer has no inputs.

Data Types: `double`

**InputNames — Input names**

```
{} (default)
```


Input names of the layer. The layer has no inputs.

Data Types: cell

**NumOutputs — Number of outputs**

1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: double

**OutputNames — Output names**

{'}{'} (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

### Examples

#### Create 3-D Image Input Layer

Create a 3-D image input layer for 132-by-132-by-116 color 3-D images with name 'input'. By default, the layer performs data normalization by subtracting the mean image of the training set from every input image.

```matlab
layer = image3dInputLayer([132 132 116],'Name','input')
```

```
layer = Image3DInputLayer with properties:
 Name: 'input'
 InputSize: [132 132 116 1]

 Hyperparameters
 Normalization: 'zerocenter'
 NormalizationDimension: 'auto'
 Mean: []
```

Include a 3-D image input layer in a Layer array.

```matlab
layers = [image3dInputLayer([28 28 28 3])
 convolution3dLayer(5,16,'Stride',4)
 reluLayer
 maxPooling3dLayer(2,'Stride',4)
 fullyConnectedLayer(10)
 softmaxLayer
 classificationLayer]
```

```
layers = 7x1 Layer array with layers:
 1 3-D Image Input 28x28x28x3 images with 'zerocenter' normalization
 2 Convolution 16 5x5x5 convolutions with stride [4 4 4] and padding [0
 3 ReLU ReLU
```
Compatibility Considerations

**AverageImage property will be removed**

*Not recommended starting in R2019b*

*AverageImage* will be removed. Use *Mean* instead. To update your code, replace all instances of *AverageImage* with *Mean*. There are no differences between the properties that require additional updates to your code.

**imageInputLayer and image3dInputLayer, by default, use channel-wise normalization**

*Behavior change in future release*

Starting in R2019b, *imageInputLayer* and *image3dInputLayer*, by default, use channel-wise normalization. In previous versions, these layers use element-wise normalization. To reproduce this behavior, set the *NormalizationDimension* option of these layers to 'element'.

**See Also**

*averagePooling3dLayer* | *convolution3dLayer* | *fullyConnectedLayer* | *imageInputLayer* | *maxPooling3dLayer* | *trainNetwork* | *transposedConv3dLayer*

**Topics**

“3-D Brain Tumor Segmentation Using Deep Learning”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

**Introduced in R2019a**
imageInputLayer

Image input layer

Description

An image input layer inputs 2-D images to a network and applies data normalization.

For 3-D image input, use image3dInputLayer.

Creation

Syntax

layer = imageInputLayer(inputSize)
layer = imageInputLayer(inputSize,Name,Value)

Description

layer = imageInputLayer(inputSize) returns an image input layer and specifies the InputSize property.

layer = imageInputLayer(inputSize,Name,Value) sets the optional properties on page 1-568 using name-value pairs. You can specify multiple name-value pairs. Enclose each property name in single quotes.

Properties

Image Input

InputSize — Size of the input
row vector of integers

Size of the input data, specified as a row vector of integers [h  w  c], where h, w, and c correspond to the height, width, and number of channels respectively.

- For grayscale images, specify a vector with c equal to 1.
- For RGB images, specify a vector with c equal to 3.
- For multispectral or hyperspectral images, specify a vector with c equal to the number of channels.

For 3-D image or volume input, use image3dInputLayer.

Example: [224 224 3]

Normalization — Data normalization

'zerocenter' (default) | 'zscore' | 'rescale-symmetric' | 'rescale-zero-one' | 'none' | function handle
Data normalization to apply every time data is forward propagated through the input layer, specified as one of the following:

- 'zerocenter' — Subtract the mean specified by Mean.
- 'zscore' — Subtract the mean specified by Mean and divide by StandardDeviation.
- 'rescale-symmetric' — Rescale the input to be in the range [-1, 1] using the minimum and maximum values specified by Min and Max, respectively.
- 'rescale-zero-one' — Rescale the input to be in the range [0, 1] using the minimum and maximum values specified by Min and Max, respectively.
- 'none' — Do not normalize the input data.
- function handle — Normalize the data using the specified function. The function must be of the form $Y = \text{func}(X)$, where $X$ is the input data, and the output $Y$ is the normalized data.

**Tip** The software, by default, automatically calculates the normalization statistics at training time. To save time when training, specify the required statistics for normalization and set the 'ResetInputNormalization' option in trainingOptions to false.

**NormalizationDimension** — Normalization dimension  
'auto' (default) | 'channel' | 'element' | 'all'

Normalization dimension, specified as one of the following:

- 'auto' - If the training option is false and you specify any of the normalization statistics (Mean, StandardDeviation, Min, or Max), then normalize over the dimensions matching the statistics. Otherwise, recalculate the statistics at training time and apply channel-wise normalization.
- 'channel' - Channel-wise normalization.
- 'element' - Element-wise normalization.
- 'all' - Normalize all values using scalar statistics.

**Mean** — Mean for zero-center and z-score normalization  
[] (default) | 3-D array | numeric scalar

Mean for zero-center and z-score normalization, specified as a $h$-by-$w$-by-$c$ array, a 1-by-1-by-$c$ array of means per channel, a numeric scalar, or [], where $h$, $w$, and $c$ correspond to the height, width, and the number of channels of the mean, respectively.

If you specify the Mean property, then Normalization must be 'zerocenter' or 'zscore'. If Mean is [], then the software calculates the mean at training time.

You can set this property when creating networks without training (for example, when assembling networks using assembleNetwork).

**StandardDeviation** — Standard deviation for z-score normalization  
[] (default) | 3-D array | numeric scalar

Standard deviation for z-score normalization, specified as a $h$-by-$w$-by-$c$ array, a 1-by-1-by-$c$ array of means per channel, a numeric scalar, or [], where $h$, $w$, and $c$ correspond to the height, width, and the number of channels of the standard deviation, respectively.
If you specify the `StandardDeviation` property, then `Normalization` must be 'zscore'. If `StandardDeviation` is [], then the software calculates the standard deviation at training time.

You can set this property when creating networks without training (for example, when assembling networks using `assembleNetwork`).

Data Types: `single` | `double` | `int8` | `int16` | `int32` | `int64` | `uint8` | `uint16` | `uint32` | `uint64`

**Min — Minimum value for rescaling**

[] (default) | 3-D array | numeric scalar

Minimum value for rescaling, specified as a `h`-by-`w`-by-`c` array, a 1-by-1-by-`c` array of minima per channel, a numeric scalar, or [], where `h`, `w`, and `c` correspond to the height, width, and the number of channels of the minima, respectively.

If you specify the `Min` property, then `Normalization` must be 'rescale-symmetric' or 'rescale-zero-one'. If `Min` is [], then the software calculates the minimum at training time.

You can set this property when creating networks without training (for example, when assembling networks using `assembleNetwork`).

Data Types: `single` | `double` | `int8` | `int16` | `int32` | `int64` | `uint8` | `uint16` | `uint32` | `uint64`

**Max — Maximum value for rescaling**

[] (default) | 3-D array | numeric scalar

Maximum value for rescaling, specified as a `h`-by-`w`-by-`c` array, a 1-by-1-by-`c` array of maxima per channel, a numeric scalar, or [], where `h`, `w`, and `c` correspond to the height, width, and the number of channels of the maxima, respectively.

If you specify the `Max` property, then `Normalization` must be 'rescale-symmetric' or 'rescale-zero-one'. If `Max` is [], then the software calculates the maximum at training time.

You can set this property when creating networks without training (for example, when assembling networks using `assembleNetwork`).

Data Types: `single` | `double` | `int8` | `int16` | `int32` | `int64` | `uint8` | `uint16` | `uint32` | `uint64`

**DataAugmentation — Data augmentation transforms**

'none' (default) | 'randcrop' | 'randfliplr' | cell array of 'randcrop' and 'randfliplr'

**Note** The `DataAugmentation` property is not recommended. To preprocess images with cropping, reflection, and other geometric transformations, use `augmentedImageDatastore` instead.

Data augmentation transforms to use during training, specified as one of the following.

- 'none' — No data augmentation
- 'randcrop' — Take a random crop from the training image. The random crop has the same size as the input size.
- 'randfliplr' — Randomly flip the input images horizontally with a 50% chance.
- Cell array of 'randcrop' and 'randfliplr'. The software applies the augmentation in the order specified in the cell array.

Augmentation of image data is another way of reducing overfitting [1], [2].
Data Types: string | char | cell

Layer

**Name — Layer name**

' ' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and **Name** is set to ' ', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

**NumInputs — Number of inputs**

0 (default)

Number of inputs of the layer. The layer has no inputs.

Data Types: double

**InputNames — Input names**

{} (default)

Input names of the layer. The layer has no inputs.

Data Types: cell

**NumOutputs — Number of outputs**

1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: double

**OutputNames — Output names**

{"out"} (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

**Examples**

Create Image Input Layer

Create an image input layer for 28-by-28 color images with name 'input'. By default, the layer performs data normalization by subtracting the mean image of the training set from every input image.

```matlab
inputlayer = imageInputLayer([28 28 3],'Name','input')
```

```matlab
inputlayer = ImageInputLayer with properties:
 Name: 'input'
 InputSize: [28 28 3]
```
Hyperparameters
DataAugmentation: 'none'
Normalization: 'zerocenter'
NormalizationDimension: 'auto'
Mean: []

Include an image input layer in a Layer array.

```
layers = [...
 imageInputLayer([28 28 1])
 convolution2dLayer(5,20)
 reluLayer
 maxPooling2dLayer(2,'Stride',2)
 fullyConnectedLayer(10)
 softmaxLayer
 classificationLayer]
```

Layers = 7x1 Layer array with layers:
1  '  Image Input             28x28x1 images with 'zerocenter' normalization
2  '  Convolution             20 5x5 convolutions with stride [1  1] and padding [0 0 0]
3  '  ReLU                    ReLU
4  '  Max Pooling             2x2 max pooling with stride [2 2] and padding [0 0 0]
5  '  Fully Connected         10 fully connected layer
6  '  Softmax                 softmax
7  '  Classification Output  crossentropyex

Compatibility Considerations

**AverageImage property will be removed**

_Not recommended starting in R2019b_

AverageImage will be removed. Use Mean instead. To update your code, replace all instances of AverageImage with Mean. There are no differences between the properties that require additional updates to your code.

**imageInputLayer and image3dInputLayer, by default, use channel-wise normalization**

_Behavior change in future release_

Starting in R2019b, imageInputLayer and image3dInputLayer, by default, use channel-wise normalization. In previous versions, these layers use element-wise normalization. To reproduce this behavior, set the NormalizationDimension option of these layers to 'element'.

References


Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
• Code generation does not support 'Normalization' specified using a function handle.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:
• Code generation does not support 'Normalization' specified using a function handle.

See Also
Deep Network Designer | augmentedImageDatastore | convolution2dLayer | featureInputLayer | fullyConnectedLayer | image3dInputLayer | maxPooling2dLayer | trainNetwork

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2016a
imageLIME

Explain image classification result using LIME

Syntax

scoreMap = imageLIME(net,X,label)
[scoreMap,featureMap,featureImportance] = imageLIME(net,X,label)
___ = imageLIME(___,'Name',Value)

Description

scoreMap = imageLIME(net,X,label) uses the locally-interpretable model-agnostic explanation (LIME) technique to compute a map of the importance of the features in the input image X when the network net evaluates the class score for the class given by label. Use this function to explain classification decisions and check that your network is focusing on the appropriate features of the image.

The LIME technique approximates the classification behavior of the net using a simpler, more interpretable model. By generating synthetic data from input X, classifying the synthetic data using net, and then using the results to fit a simple regression model, the imageLIME function determines the importance of each feature of X to the network's classification score for class given by label.

This function requires Statistics and Machine Learning Toolbox.

[scoreMap,featureMap,featureImportance] = imageLIME(net,X,label) also returns a map of the features used to compute the LIME results and the calculated importance of each feature.

___ = imageLIME(___,'Name',Value) specifies options using one or more name-value pair arguments in addition to the input arguments in previous syntaxes. For example, 'NumFeatures',100 sets the target number of features to 100.

Examples

Visualize Which Parts of an Image are Important for Classification

Use imageLIME to visualize the parts of an image are important to a network for a classification decision.

Import the pretrained network SqueezeNet.

net = squeezenet;

Import the image and resize to match the input size for the network.

X = imread("laika_grass.jpg");
inputSize = net.Layers(1).InputSize(1:2);
X = imresize(X,inputSize);

Display the image. The image is of a dog named Laika.
Classify the image to get the class label.

```matlab
label = classify(net,X)
```

```matlab
categorical
 toy poodle
```

Use `imageLIME` to determine which parts of the image are important to the classification result.

```matlab
scoreMap = imageLIME(net,X,label);
```

Plot the result over the original image with transparency to see which areas of the image affect the classification score.

```matlab
figure
imshow(X)
hold on
imagesc(scoreMap,'AlphaData',0.5)
colormap jet
```
The network focuses predominantly on Laika's head and back to make the classification decision. Laika's eye and ear are also important to the classification result.

**Visualize Only the Most Important Features**

Use `imageLIME` to determine the most important features in an image and isolate them from the unimportant features.

Import the pretrained network SqueezeNet.

```matlab
net = squeezenet;
```

Import the image and resize to match the input size for the network.

```matlab
X = imread("sherlock.jpg");
inSize = net.Layers(1).InputSize(1:2);
X = imresize(X,inputSize);
```

Classify the image to get the class label.

```matlab
label = classify(net,X)
label = categorical
 golden retriever
```

Compute the map of the feature importance and also obtain the map of the features and the feature importance. Set the image segmentation method to `grid`, the number of features to 64, and the number of synthetic images to 3072.

```matlab
[scoreMap,featureMap,featureImportance] = imageLIME(net,X,label,'Segmentation','grid','NumFeatures',64,'NumSamples',3072);
```
Plot the result over the original image with transparency to see which areas of the image affect the classification score.

```matlab
figure
imshow(X)
hold on
imagesc(scoreMap,'AlphaData',0.5)
colormap jet
colorbar
```

Use the feature importance to find the indices of the most important five features.

```matlab
numTopFeatures = 5;
[~,idx] = maxk(featureImportance,numTopFeatures);
```

Use the map of the features to mask out the image so only the most important five features are visible. Display the masked image.

```matlab
mask = ismember(featureMap,idx);
maskedImg = uint8(mask).*X;
figure
imshow(maskedImg);
```
**Input Arguments**

**net — Image classification network**  
SeriesNetwork object | DAGNetwork object

Image classification network, specified as a *SeriesNetwork* object or a *DAGNetwork* object. You can get a trained network by importing a pretrained network or by training your own network using the *trainNetwork* function. For more information about pretrained networks, see “Pretrained Deep Neural Networks”.

*net* must contain a single input layer and a single output layer. The input layer must be an *imageInputLayer*. The output layer must be a *classificationLayer*.

**X — Input image**  
numeric array

Input image, specified as a numeric array.

The image must be the same size as the image input size of the network *net*. The input size is specified by the *InputSize* property of the network's *imageInputLayer*.

Data Types: `single` | `double` | `int8` | `int16` | `int32` | `int64` | `uint8` | `uint16` | `uint32` | `uint64`

**label — Class label**  
categorical | char vector | string scalar | vector

Class label used to calculate the feature importance map, specified as a categorical, a char vector, a string scalar or a vector of these values.

If you specify *label* as a vector, the software calculates the feature importance for each class label independently. In that case, *scoreMap(:,:,k)* and *featureImportance(idx,k)* correspond to...
the map of feature importance and the importance of feature idx for the kth element in label, respectively.

Example: ["cat" "dog"]

Data Types: char | string | categorical

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1,..., NameN, ValueN.

Example: 'NumFeatures', 100, 'Segmentation', 'grid', 'OutputUpsampling', 'bicubic', 'ExecutionEnvironment', 'gpu' segments the input image into a grid of approximately 100 features, executes the calculation on the GPU, and upsamples the resulting map to the same size as the input image using bicubic interpolation.

NumFeatures — Target number of features

49 (default) | positive integer

Target number of features to divide the input image into, specified as the comma-separated pair consisting of 'NumFeatures' and a positive integer.

A larger value of 'NumFeatures' divides the input image into more, smaller features. To get the best results when using a larger number of features, also increase the number of synthetic images using the 'NumSamples' name-value pair.

The exact number of features depends on the input image and segmentation method specified using the 'Segmentation' name-value pair and can be less than the target number of features.

When you specify 'Segmentation', 'superpixels', the actual number of features can be greater or less than the number specified using 'NumFeatures'.

When you specify 'Segmentation', 'grid', the actual number of features can be less than the number specified using 'NumFeatures'. If your input image is square specify 'NumFeatures' as a square number.

Example: 'NumFeatures', 100

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumSamples — Number of synthetic images

2048 (default) | positive integer

Number of synthetic images to generate, specified as the comma-separated pair consisting of 'NumSamples' and a positive integer.

A larger number of synthetic images gives better results but takes more time to compute.

Example: 'NumSamples', 1024

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Segmentation — Segmentation method

'superpixels' (default) | 'grid'
Segmentation method to use to divide the input image into features, specified as the comma-separated pair consisting of 'Segmentation' and 'superpixels' or 'grid'.

The imageLIME function segments the input image into features in the following ways depending on the segmentation method.

- 'superpixels' — Input image is divided into superpixel features, using the superpixels function. Features are irregularly shaped, based on the value of the pixels. This option requires Image Processing Toolbox.
- 'grid' — Input image is divided into a regular grid of features. Features are approximately square, based on the aspect ratio of the input image and the specified value of 'NumFeatures'. The number of grid cells can be smaller than the specified value of 'NumFeatures'. If the input image is square, specify 'NumFeatures' as a square number.

For photographic image data, the 'superpixels' option usually gives better results. In this case, features are based on the contents of the image, by segmenting the image into regions of similar pixel value. For other types of images, such as spectrograms, the more regular 'grid' option can provide more useful results.

Example: 'Segmentation','grid'

Data Types: char | string

**Model — Type of simple model**

'tree' (default) | 'linear'

Type of simple model to fit, specified as the specified as the comma-separated pair consisting of 'Model' and 'tree' or 'linear'.

The imageLIME function classifies the synthetic images using the network net and then uses the results to fit a simple, interpretable model. The methods used to fit the results and determine the importance of each feature depend on the type of simple model used.

- 'tree' — Fit a regression tree using fitrtree then compute the importance of each feature using predictorImportance
- 'linear' — Fit a linear model with lasso regression using fitrlinear then compute the importance of each feature using the weights of the linear model.

Example: 'Model','linear'

Data Types: char | string

**OutputUpsampling — Output upsampling method**

'nearest' (default) | 'bicubic' | 'none'

Output upsampling method to use when segmentation method is 'grid', specified as the comma-separated pair consisting of 'OutputUpsampling' and one of the following.

- 'nearest' — Use nearest-neighbor interpolation expand the map to the same size as the input data. The map indicates the size of the each feature with respect to the size of the input data.
- 'bicubic' — Use bicubic interpolation to produce a smooth map the same size as the input data.
- 'none' — Use no upsampling. The map can be smaller than the input data.

If 'OutputUpsampling' is 'nearest' or 'bicubic', the computed map is upsampled to the size of the input data using the imresize function.
Example: ‘OutputUpsampling’, ‘bicubic’

**MiniBatchSize — Size of mini-batch**

128 (default) | positive integer

Size of the mini-batch to use to compute the map feature importance, specified as the comma-separated pair consisting of 'MiniBatchSize' and a positive integer.

A mini-batch is a subset of the set of synthetic images. The mini-batch size specifies the number of synthetic images that are passed to the network at once. Larger mini-batch sizes lead to faster computation, at the cost of more memory.

Example: 'MiniBatchSize', 256

**ExecutionEnvironment — Hardware resource**

'auto' (default) | 'cpu' | 'gpu'

Hardware resource for computing map, specified as the comma-separated pair consisting of 'ExecutionEnvironment' and one of the following.

- 'auto' — Use a GPU if one is available. Otherwise, use the CPU.
- 'cpu' — Use the CPU.
- 'gpu' — Use the GPU.

The GPU option requires Parallel Computing Toolbox. To use a GPU for deep learning, you must also have a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If you choose the 'ExecutionEnvironment', 'gpu' option and Parallel Computing Toolbox or a suitable GPU is not available, then the software returns an error.

Example: 'ExecutionEnvironment', 'gpu'

### Output Arguments

**scoreMap — Map of feature importance**

Numeric matrix | Numeric array

Map of feature importance, returned as a numeric matrix or a numeric array. Areas in the map with higher positive values correspond to regions of input data that contribute positively to the specified classification label.

The value of scoreMap(i,j) denotes the importance of the image pixel (i,j) to the simple model, except when you use the options 'Segmentation', 'grid', and 'OutputUpsampling', 'none'. In that case, the scoreMap is smaller than the input image, and the value of scoreMap(i,j) denotes the importance of the feature at position (i,j) in the grid of features.

If label is specified as a vector, the change in classification score for each class label is calculated independently. In that case, scoreMap(:, :, k) corresponds to the occlusion map for the kth element in label.

**featureMap — Map of features**

Numeric matrix

Map of features, returned as a numeric matrix.
For each pixel \((i,j)\) in the input image, \(\text{idx} = \text{featureMap}(i,j)\) is an integer corresponding to the index of the feature containing that pixel.

**featureImportance — Feature importance**

numeric vector | numeric matrix

Feature importance, returned as a numeric vector or a numeric matrix.

The value of \(\text{featureImportance}(\text{idx})\) is the calculated importance of the feature specified by \(\text{idx}\). If you provide labels as a vector of categorical values, char vectors, or string scalars, then \(\text{featureImportance}(\text{idx},k)\) corresponds to the importance of feature \(\text{idx}\) for \(\text{label}(k)\).

**More About**

**LIME**

The locally interpretable model-agnostic explanations (LIME) technique is an explainability technique used to explain the classification decisions made by a deep neural network.

Given the classification decision of deep network for a piece of input data, the LIME technique calculates the importance of each feature of the input data to the classification result.

The LIME technique approximates the behavior of a deep neural network using a simpler, more interpretable model, such as a regression tree. To map the importance of different parts of the input image, the `imageLIME` function performs the following steps.

- Segment the image into features.
- Generate synthetic image data by randomly including or excluding features. Each pixel in an excluded feature is replaced with the value of the average image pixel.
- Classify the synthetic images using the deep network.
- Fit a regression model using the presence or absence of image features for each synthetic image as binary regression predictors for the scores of the target class.
- Compute the importance of each feature using the regression model.

The resulting map can be used to determine which features were most important to a particular classification decision. This can be especially useful for making sure your network is focusing on the appropriate features when classifying.

**See Also**

activations | classify | occlusionSensitivity

**Topics**

“Understand Network Predictions Using LIME”
“Understand Network Predictions Using Occlusion”
“Grad-CAM Reveals the Why Behind Deep Learning Decisions”
“Investigate Network Predictions Using Class Activation Mapping”

**Introduced in R2020b**
**importCaffeLayers**

Import convolutional neural network layers from Caffe

**Syntax**

```
layers = importCaffeLayers(protofile)
layers = importCaffeLayers(protofile,'InputSize',sz)
```

**Description**

`layers = importCaffeLayers(protofile)` imports the layers of a Caffe [1] network. The function returns the layers defined in the `.prototxt` file `protofile`.

This function requires Deep Learning Toolbox Importer for Caffe Models support package. If this support package is not installed, then the function provides a download link.

You can download pretrained networks from Caffe Model Zoo [2].

`layers = importCaffeLayers(protofile,'InputSize',sz)` specifies the size of the input data. If the `.prototxt` file does not specify the size of the input data, then you must specify the input size.

**Examples**

**Download Importer for Caffe Models Support Package**

Download and install Deep Learning Toolbox Importer for Caffe Models support package.

Download the required support package by typing `importCaffeLayers` at the command line.

```
importCaffeLayers
```

If Deep Learning Toolbox Importer for Caffe Models support package is not installed, then the function provides a link to the required support package in the Add-On Explorer. To install the support package, click the link, and then click **Install**.

**Import Layers from Caffe Network**

Specify the example file `digitsnet.prototxt` to import.

```
protofile = 'digitsnet.prototxt';
```

Import the network layers.

```
layers = importCaffeLayers(protofile)
```

```
layers =
1x7 Layer array with layers:
```
Input Arguments

**protofile — File name**

character vector | string scalar

File name of the `.prototxt` file containing the network architecture, specified as a character vector or a string scalar. `protofile` must be in the current folder, in a folder on the MATLAB path, or you must include a full or relative path to the file. If the `.prototxt` file does not specify the size of the input data, you must specify the size using the `sz` input argument.

Example: `'digitsnet.prototxt'`

**sz — Size of input data**

row vector

Size of input data, specified as a row vector. Specify a vector of two or three integer values `[h, w]`, or `[h, w, c]` corresponding to the height, width, and the number of channels of the input data.

Example: `[28 28 1]`

Output Arguments

**layers — Network architecture**

Layer array | LayerGraph object

Network architecture, returned as a Layer array or a LayerGraph object. Caffe networks that take color images as input expect the images to be in BGR format. During import, importCaffeLayers modifies the network so that the imported MATLAB network takes RGB images as input.

Tips

- `importCaffeLayers` can import networks with the following Caffe layer types, with some limitations:

<table>
<thead>
<tr>
<th>Caffe Layer</th>
<th>Deep Learning Toolbox Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BatchNormLayer</td>
<td>batchNormalizationLayer</td>
</tr>
<tr>
<td>ConcatLayer</td>
<td>depthConcatenationLayer</td>
</tr>
<tr>
<td>ConvolutionLayer</td>
<td>convolution2dLayer</td>
</tr>
<tr>
<td>DeconvolutionLayer</td>
<td>transposedConv2dLayer</td>
</tr>
<tr>
<td>DropoutLayer</td>
<td>dropoutLayer</td>
</tr>
<tr>
<td>EltwiseLayer (only sum)</td>
<td>additionLayer</td>
</tr>
<tr>
<td>EuclideanLossLayer</td>
<td>RegressionOutputLayer</td>
</tr>
<tr>
<td>InnerProductLayer</td>
<td>fullyConnectedLayer</td>
</tr>
<tr>
<td>Caffe Layer</td>
<td>Deep Learning Toolbox Layer</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>InputLayer</td>
<td>imageInputLayer</td>
</tr>
<tr>
<td>LRNLayer (Local Response Normalization)</td>
<td>crossChannelNormalizationLayer</td>
</tr>
<tr>
<td>PoolingLayer</td>
<td>maxPooling2dLayer or averagePooling2dLayer</td>
</tr>
<tr>
<td>ReLULayer</td>
<td>reluLayer or leakyReluLayer</td>
</tr>
<tr>
<td>ScaleLayer</td>
<td>batchNormalizationLayer</td>
</tr>
<tr>
<td>SigmoidLayer</td>
<td>nnet.caffe.layer.SigmoidLayer</td>
</tr>
<tr>
<td>SoftmaxLayer</td>
<td>softmaxLayer</td>
</tr>
<tr>
<td>TanHLayer</td>
<td>tanhLayer</td>
</tr>
</tbody>
</table>

If the network contains any other type of layer, then the software returns an error.

The function imports only the layers that `protofile` specifies with the include-phase TEST. The function ignores any layers that `protofile` specifies with the include-phase TRAIN.

**References**


**See Also**

`assembleNetwork`, `exportONNXNetwork`, `importCaffeNetwork`, `importKerasLayers`, `importKerasNetwork`, `importONNXLayers`, `importONNXNetwork`

**Topics**

“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“List of Deep Learning Layers”

**Introduced in R2017a**
importCaffeNetwork

Import pretrained convolutional neural network models from Caffe

Syntax

net = importCaffeNetwork(protofile,datafile)
net = importCaffeNetwork(____,Name,Value)

Description

net = importCaffeNetwork(protofile,datafile) imports a pretrained network from Caffe [1]. The function returns the pretrained network with the architecture specified by the .prototxt file protofile and with network weights specified by the .caffemodel file datafile.

This function requires Deep Learning Toolbox Importer for Caffe Models support package. If this support package is not installed, the function provides a download link.

You can download pretrained networks from Caffe Model Zoo [2].

net = importCaffeNetwork(____,Name,Value) returns a network with additional options specified by one or more Name,Value pair arguments using any of the previous syntaxes.

Examples

Download Importer for Caffe Models Support Package

Download and install Deep Learning Toolbox Importer for Caffe Models support package.

To download the required support package, type importCaffeNetwork at the command line.

importCaffeNetwork

If Deep Learning Toolbox Importer for Caffe Models support package is not installed, then the function provides a link to the required support package in the Add-On Explorer. To install the support package, click the link, and then click Install.

Import Caffe Network

Specify files to import.

protofile = 'digitsnet.prototxt';
datafile = 'digits_iter_10000.caffemodel';

Import network.

net = importCaffeNetwork(protofile,datafile)
net = SeriesNetwork with properties:
Layers: [7×1 nnet.cnn.layer.Layer]
InputNames: {'testdata'}
OutputNames: {'ClassificationOutput'}

**Input Arguments**

protofile — File name
character vector | string scalar

File name of the `.prototxt` file containing the network architecture, specified as a character vector or a string scalar. `protofile` must be in the current folder, in a folder on the MATLAB path, or you must include a full or relative path to the file. If the `.prototxt` file does not specify the size of the input data, you must specify the size using the `'InputSize'` name-value pair argument.

Example: 'digitsnet.prototxt'

datafile — File name
character vector | string scalar

File name of the `.caffemodel` file containing the network weights, specified as a character vector or a string scalar. `datafile` must be in the current folder, in a folder on the MATLAB path, or you must include a full or relative path to the file. To import network layers without weights, use `importCaffeLayers`.

Example: 'digits_iter_10000.caffemodel'

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `importCaffeNetwork(protofile,datafile,'AverageImage',I)` imports a pretrained network using the average image `I` for zero-center normalization.

**InputSize — Size of input data**
row vector

Size of input data, specified as a row vector. Specify a vector of two or three integer values `[h,w]`, or `[h,w,c]` corresponding to the height, width, and the number of channels of the input data. If the `.prototxt` file does not specify the size of the input data, then you must specify the input size.

Example: `[28 28 1]`

**AverageImage — Average image**
matrix

Average image for zero-center normalization, specified as a matrix. If you specify an image, then you must specify an image of the same size as the input data. If you do not specify an image, the software uses the data specified in the `.prototxt` file, if present. Otherwise, the function sets the `Normalization` property of the image input layer of the network to 'none'.

**Classes — Classes of the output layer**
'auto' (default) | categorical vector | string array | cell array of character vectors
Classes of the output layer, specified as a categorical vector, string array, cell array of character vectors, or ‘auto’. If you specify a string array or cell array of character vectors str, then the software sets the classes of the output layer to categorical(str,str). If Classes is ‘auto’, then the function sets the classes to categorical(1:N), where N is the number of classes.

Data Types: char | categorical | string | cell

Output Arguments

net — Imported pretrained Caffe network

SeriesNetwork object | DAGNetwork object

Imported pretrained Caffe network, returned as a SeriesNetwork object or DAGNetwork object. Caffe networks that take color images as input expect the images to be in BGR format. During import, importCaffeNetwork modifies the network so that the imported MATLAB network takes RGB images as input.

Tips

- importCaffeNetwork can import networks with the following Caffe layer types, with some limitations:

<table>
<thead>
<tr>
<th>Caffe Layer</th>
<th>Deep Learning Toolbox Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BatchNormLayer</td>
<td>batchNormalizationLayer</td>
</tr>
<tr>
<td>ConcatLayer</td>
<td>depthConcatenationLayer</td>
</tr>
<tr>
<td>ConvolutionLayer</td>
<td>convolution2dLayer</td>
</tr>
<tr>
<td>DeconvolutionLayer</td>
<td>transposedConv2dLayer</td>
</tr>
<tr>
<td>DropoutLayer</td>
<td>dropoutLayer</td>
</tr>
<tr>
<td>EltwiseLayer (only sum)</td>
<td>additionLayer</td>
</tr>
<tr>
<td>EuclideanLossLayer</td>
<td>RegressionOutputLayer</td>
</tr>
<tr>
<td>InnerProductLayer</td>
<td>fullyConnectedLayer</td>
</tr>
<tr>
<td>InputLayer</td>
<td>imageInputLayer</td>
</tr>
<tr>
<td>LRNLayer (Local Response Normalization)</td>
<td>crossChannelNormalizationLayer</td>
</tr>
<tr>
<td>PoolingLayer</td>
<td>maxPooling2dLayer or averagePooling2dLayer</td>
</tr>
<tr>
<td>ReLULayer</td>
<td>reluLayer or leakyReluLayer</td>
</tr>
<tr>
<td>ScaleLayer</td>
<td>batchNormalizationLayer</td>
</tr>
<tr>
<td>SigmoidLayer</td>
<td>nnet.caffe.layer.SigmoidLayer</td>
</tr>
<tr>
<td>SoftmaxLayer</td>
<td>softmaxLayer</td>
</tr>
<tr>
<td>TanHLayer</td>
<td>tanhLayer</td>
</tr>
</tbody>
</table>

If the network contains any other type of layer, then the software returns an error.

The function imports only the layers that protofile specifies with the include-phase TEST. The function ignores any layers that protofile specifies with the include-phase TRAIN.
Compatibility Considerations

'ClassNames' option will be removed
Not recommended starting in R2018b

'ClassNames' will be removed. Use 'Classes' instead. To update your code, replace all instances of 'ClassNames' with 'Classes'. There are some differences between the corresponding properties in classification output layers that require additional updates to your code.

The ClassNames property of a classification output layer is a cell array of character vectors. The Classes property is a categorical array. To use the value of Classes with functions that require cell array input, convert the classes using the cellstr function.

References


Extended Capabilities

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

For code generation, you can load the network by using the syntax net = importCaffeNetwork.

See Also
assembleNetwork | exportONNXNetwork | importCaffeLayers | importKerasLayers | importKerasNetwork | importONNXLayers | importONNXNetwork

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”

Introduced in R2017a
importKerasLayers

Import layers from Keras network

Syntax

layers = importKerasLayers(modelfile)
layers = importKerasLayers(modelfile,Name,Value)

Description

layers = importKerasLayers(modelfile) imports the layers of a TensorFlow-Keras network from a model file. The function returns the layers defined in the HDF5 (.h5) or JSON (.json) file given by the file name modelfile.

This function requires the Deep Learning Toolbox Importer for TensorFlow-Keras Models support package. If this support package is not installed, then the function provides a download link.

layers = importKerasLayers(modelfile,Name,Value) imports the layers from a TensorFlow-Keras network with additional options specified by one or more name-value pair arguments.

For example, importKerasLayers(modelfile,'ImportWeights',true) imports the network layers and the weights from the model file modelfile.

Examples

Download and Install Deep Learning Toolbox Importer for TensorFlow-Keras Models


Type importKerasLayers at the command line.

importKerasLayers

If the Deep Learning Toolbox Importer for TensorFlow-Keras Models support package is not installed, then the function provides a link to the required support package in the Add-On Explorer. To install the support package, click the link, and then click Install. Check that the installation is successful by importing the layers from the model file 'digitsDAGnet.h5' at the command line. If the required support package is installed, then the function returns a LayerGraph object.

modelfile = 'digitsDAGnet.h5';
net = importKerasLayers(modelfile)

net = 
LayerGraph with properties:

    Layers: [13x1 nnet.cnn.layer.Layer]
    Connections: [13x2 table]
    InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}
Import Layers from Keras Network and Plot Architecture

Import the network layers from the model file digitsDAGnet.h5.

```matlab
modelfile = 'digitsDAGnet.h5';
layers = importKerasLayers(modelfile)
layers =
 LayerGraph with properties:
 Layers: [13x1 nnet.cnn.layer.Layer]
 Connections: [13x2 table]
 InputNames: {'input_1'}
 OutputNames: {'ClassificationLayer_activation_1'}
```

Plot the network architecture.

```matlab
plot(layers)
```

Import Keras Network Layers and Train Network

Specify the network file to import.
modelfile = 'digitsDAGnet.h5';

Import network layers.

layers = importKerasLayers(modelfile)

layers = 
  LayerGraph with properties:
    Layers: [13x1 nnet.cnn.layer.Layer]
    Connections: [13x2 table]
    InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

Load a data set for training a classifier to recognize new digits.

folder = fullfile(toolboxdir('nnet'),'nndemos','nndatasets','DigitDataset');
imds = imageDatastore(folder, ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

Partition the dataset into training and test sets.

numTrainFiles = 750;
[imdsTrain,imdsTest] = splitEachLabel(imds,numTrainFiles,'randomize');

Set the training options.

options = trainingOptions('sgdm', ...
    'MaxEpochs',10, ...
    'InitialLearnRate',0.001);

Train network using training data.

net = trainNetwork(imdsTrain,layers,options);

Training on single CPU.

<table>
<thead>
<tr>
<th>Epoch</th>
<th>Iteration</th>
<th>Time Elapsed (hh:mm:ss)</th>
<th>Mini-batch Accuracy</th>
<th>Mini-batch Loss</th>
<th>Base Learning Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>00:00:01</td>
<td>15.63%</td>
<td>12.6982</td>
<td>0.0010</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>00:00:17</td>
<td>63.28%</td>
<td>1.2109</td>
<td>0.0010</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>00:00:31</td>
<td>85.16%</td>
<td>0.4193</td>
<td>0.0010</td>
</tr>
<tr>
<td>3</td>
<td>150</td>
<td>00:00:44</td>
<td>96.09%</td>
<td>0.1756</td>
<td>0.0010</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>00:00:59</td>
<td>99.22%</td>
<td>0.0460</td>
<td>0.0010</td>
</tr>
<tr>
<td>5</td>
<td>250</td>
<td>00:01:13</td>
<td>100.00%</td>
<td>0.0374</td>
<td>0.0010</td>
</tr>
<tr>
<td>6</td>
<td>300</td>
<td>00:01:28</td>
<td>96.88%</td>
<td>0.1217</td>
<td>0.0010</td>
</tr>
<tr>
<td>7</td>
<td>350</td>
<td>00:01:42</td>
<td>100.00%</td>
<td>0.0087</td>
<td>0.0010</td>
</tr>
<tr>
<td>7</td>
<td>400</td>
<td>00:01:54</td>
<td>100.00%</td>
<td>0.0167</td>
<td>0.0010</td>
</tr>
<tr>
<td>8</td>
<td>450</td>
<td>00:02:08</td>
<td>100.00%</td>
<td>0.0099</td>
<td>0.0010</td>
</tr>
<tr>
<td>9</td>
<td>500</td>
<td>00:02:19</td>
<td>100.00%</td>
<td>0.0047</td>
<td>0.0010</td>
</tr>
<tr>
<td>10</td>
<td>550</td>
<td>00:02:31</td>
<td>100.00%</td>
<td>0.0031</td>
<td>0.0010</td>
</tr>
<tr>
<td>10</td>
<td>580</td>
<td>00:02:37</td>
<td>100.00%</td>
<td>0.0059</td>
<td>0.0010</td>
</tr>
</tbody>
</table>

Run the trained network on the test set that was not used to train the network and predict the image labels (digits).
YPred = classify(net,imdsTest);
YTest = imdsTest.Labels;

Calculate the accuracy.
accuracy = sum(YPred == YTest)/numel(YTest)
accuracy = 0.9856

**Import Keras Network Architecture and Weights from Same File**

Specify the network file to import layers and weights from.

modelfile = 'digitsDAGnet.h5';

Import the network architecture and weights from the files you specified. To import the layer weights, specify 'ImportWeights' to be true. The function also imports the layers with their weights from the same HDF5 file.

layers = importKerasLayers(modelfile,'ImportWeights',true)
layers = 
LayerGraph with properties:

    Layers: [13x1 nnet.cnn.layer.Layer]
    Connections: [13x2 table]
    InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

View the size of the weights in the second layer.

weights = layers.Layers(2).Weights;
size(weights)
ans = 1x4

7 7 1 20

The function has imported the weights so the layer weights are non-empty.

**Import Keras Network Architecture and Weights from Separate Files**

Specify the network file to import layers from and the file containing weights.

modelfile = 'digitsDAGnet.json';
weights = 'digitsDAGnet.weights.h5';

Import the network architecture and weights from the files you specified. The .json file does not include an output layer. Specify the output layer, so that importKerasLayers adds an output layer at the end of the networks architecture.
layers = importKerasLayers(modelfile, ...
    'ImportWeights',true, ...
    'WeightFile',weights, ...
    'OutputLayerType','classification')

layers = 
LayerGraph with properties:
    Layers: [13x1 nnet.cnn.layer.Layer]
    Connections: [13x2 table]
    InputNames: {'input_1'}
    OutputNames: {'ClassificationLayer_activation_1'}

**Assemble Network from Pretrained Keras Layers**

This example shows how to import the layers from a pretrained Keras network, replace the unsupported layers with custom layers, and assemble the layers into a network ready for prediction.

**Import Keras Network**

Import the layers from a Keras network model. The network in `'digitsDAGnetwithnoise.h5'` classifies images of digits.

filename = 'digitsDAGnetwithnoise.h5';
lgraph = importKerasLayers(filename,'ImportWeights',true);

Warning: Unable to import some Keras layers, because they are not supported by the Deep Learning Toolbox.

The Keras network contains some layers that are not supported by Deep Learning Toolbox. The `importKerasLayers` function displays a warning and replaces the unsupported layers with placeholder layers.

Plot the layer graph using plot.

figure
plot(lgraph)
title("Imported Network")
Replace Placeholder Layers

To replace the placeholder layers, first identify the names of the layers to replace. Find the placeholder layers using `findPlaceholderLayers`.

```matlab
placeholderLayers = findPlaceholderLayers(lgraph)

placeholderLayers =
2x1 PlaceholderLayer array with layers:
1 'gaussian_noise_1' PLACEHOLDER LAYER Placeholder for 'GaussianNoise' Keras layer
2 'gaussian_noise_2' PLACEHOLDER LAYER Placeholder for 'GaussianNoise' Keras layer
```

Display the Keras configurations of these layers.

```matlab
placeholderLayers.KerasConfiguration

ans = struct with fields:
 trainable: 1
 name: 'gaussian_noise_1'
 stddev: 1.5000

ans = struct with fields:
 trainable: 1
 name: 'gaussian_noise_2'
 stddev: 0.7000
```
Define a custom Gaussian noise layer. To create this layer, save the file `gaussianNoiseLayer.m` in the current folder. Then, create two Gaussian noise layers with the same configurations as the imported Keras layers.

```matlab
gnLayer1 = gaussianNoiseLayer(1.5,'new_gaussian_noise_1');
gnLayer2 = gaussianNoiseLayer(0.7,'new_gaussian_noise_2');
```

Replace the placeholder layers with the custom layers using `replaceLayer`.

```matlab
lgraph = replaceLayer(lgraph,'gaussian_noise_1',gnLayer1);
lgraph = replaceLayer(lgraph,'gaussian_noise_2',gnLayer2);
```

Plot the updated layer graph using `plot`.

```matlab
figure
plot(lgraph)
title("Network with Replaced Layers")
```

### Specify Class Names

If the imported classification layer does not contain the classes, then you must specify these before prediction. If you do not specify the classes, then the software automatically sets the classes to 1, 2, ..., N, where N is the number of classes.

Find the index of the classification layer by viewing the `Layers` property of the layer graph.

```matlab
lgraph.Layers
```
ans =
15x1 Layer array with layers:

1   'input_1'                            Image Input             28x28x1 images
2   'conv2d_1'                           Convolution             20 7x7x1 convolutions with stride [1 1] and padding 'same'
3   'conv2d_1_relu'                      ReLU                    ReLU
4   'conv2d_2'                           Convolution             20 3x3x1 convolutions with stride [1 1] and padding 'same'
5   'conv2d_2_relu'                      ReLU                    ReLU
6   'new_gaussian_noise_1'               Gaussian Noise          Gaussian noise with standard deviation 1.5
7   'new_gaussian_noise_2'               Gaussian Noise          Gaussian noise with standard deviation 0.7
8   'max_pooling2d_1'                    Max Pooling             2x2 max pooling with stride [2 2] and padding 'same'
9   'max_pooling2d_2'                    Max Pooling             2x2 max pooling with stride [2 2] and padding 'same'
10  'flatten_1'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
11  'flatten_2'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
12  'concatenate_1'                      Depth concatenation     Depth concatenation of 2 inputs
13  'dense_1'                            Fully Connected         10 fully connected layer
14  'activation_1'                       Softmax                 softmax
15  'ClassificationLayer_activation_1'   Classification Output   crossentropyex

The classification layer has the name 'ClassificationLayer_activation_1'. View the classification layer and check the Classes property.

cLayer = lgraph.Layers(end)

cLayer =
ClassificationOutputLayer with properties:
   Name: 'ClassificationLayer_activation_1'
   Classes: 'auto'
   OutputSize: 'auto'

Hyperparameters
   LossFunction: 'crossentropyex'

Because the Classes property of the layer is 'auto', you must specify the classes manually. Set the classes to 0, 1, ..., 9, and then replace the imported classification layer with the new one.

cLayer.Classes = string(0:9)

cLayer =
ClassificationOutputLayer with properties:
   Name: 'ClassificationLayer_activation_1'
   Classes: [0    1    2    3    4    5    6    7    8    9]
   OutputSize: 10

Hyperparameters
   LossFunction: 'crossentropyex'

lgraph = replaceLayer(lgraph,'ClassificationLayer_activation_1',cLayer);

Assemble Network

Assemble the layer graph using assembleNetwork. The function returns a DAGNetwork object that is ready to use for prediction.

net = assembleNetwork(lgraph)
net = DAGNetwork with properties:
   Layers: [15x1 nnet.cnn.layer.Layer]
   Connections: [15x2 table]
   InputNames: {'input_1'}
   OutputNames: {'ClassificationLayer_activation_1'}

**Import Keras PReLU Layer**

Import layers from a Keras network that has parametric rectified linear unit (PReLU) layers.

A PReLU layer performs a threshold operation, where for each channel, any input value less than zero is multiplied by a scalar. The PReLU operation is given by

\[ f(x_i) = \begin{cases} 
  x_i & \text{if } x_i > 0 \\
  a_i x_i & \text{if } x_i \leq 0 
\end{cases} \]

where \( x_i \) is the input of the nonlinear activation \( f \) on channel \( i \), and \( a_i \) is the scaling parameter controlling the slope of the negative part. The subscript \( i \) in \( a_i \) indicates that the parameter can be a vector and the nonlinear activation can vary on different channels.

`importKerasNetwork` and `importKerasLayers` can import a network that includes PReLU layers. These functions support both scalar-valued and vector-valued scaling parameters. If a scaling parameter is a vector, then the functions replace the vector with the average of the vector elements. You can modify a PReLU layer to have a vector-valued scaling parameter after import.

Specify the network file to import.

`modelfile = 'digitsDAGnetwithPReLU.h5';`

digitsDAGnetwithPReLU includes two PReLU layers. One has a scalar-valued scaling parameter, and the other has a vector-valued scaling parameter.

Import the network architecture and weights from `modelfile`.

`layers = importKerasLayers(modelfile,'ImportWeights',true);`

Warning: Layer 'p_re_lu_1' is a PReLU layer with a vector-valued parameter. The function replaces the parameter with the average of the vector elements. You can change the parameter back to a vector after import.

The `importKerasLayers` function displays a warning for the PReLU layer `p_re_lu_1`. The function replaces the vector-valued scaling parameter of `p_re_lu_1` with the average of the vector elements. You can change the parameter back to a vector. First, find the index of the PReLU layer by viewing the `Layers` property.

`layers.Layers`

ans =
   13x1 Layer array with layers:
   1    'input_1'                Image Input       28x28x1 images
   2    'conv2d_1'               Convolution       20 7x7x1 convolutions with stride [1 1 1]
   3    'conv2d_2'               Convolution       20 3x3x1 convolutions with stride [1 1 1]
<table>
<thead>
<tr>
<th>Layer Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'p_re_lu_1'</td>
<td>PReLU</td>
<td>PReLU layer</td>
</tr>
<tr>
<td>'p_re_lu_2'</td>
<td>PReLU</td>
<td>PReLU layer</td>
</tr>
<tr>
<td>'max_pooling2d_1'</td>
<td>Max Pooling</td>
<td>2x2 max pooling with stride [2  2] and padding 'same'</td>
</tr>
<tr>
<td>'max_pooling2d_2'</td>
<td>Max Pooling</td>
<td>2x2 max pooling with stride [2  2] and padding 'same'</td>
</tr>
<tr>
<td>'flatten_1'</td>
<td>Keras Flatten</td>
<td>Flatten activations into 1-D assuming C-style (row-major) order</td>
</tr>
<tr>
<td>'flatten_2'</td>
<td>Keras Flatten</td>
<td>Flatten activations into 1-D assuming C-style (row-major) order</td>
</tr>
<tr>
<td>'concatenate_1'</td>
<td>Depth concatenation</td>
<td>Depth concatenation of 2 inputs</td>
</tr>
<tr>
<td>'dense_1'</td>
<td>Fully Connected</td>
<td>10 fully connected layer</td>
</tr>
<tr>
<td>'dense_1_softmax'</td>
<td>Softmax</td>
<td>softmax</td>
</tr>
<tr>
<td>'ClassificationLayer_dense_1'</td>
<td>Classification Output</td>
<td>crossentropyex</td>
</tr>
</tbody>
</table>

layers has two PReLU layers. Extract the fourth layer p_re_lu_1, which originally had a vector-valued scaling parameter for a channel dimension.

```python
importKerasLayers

tempLayer = layers.Layers(4)

tempLayer = PreluLayer with properties:

 Name: 'p_re_lu_1'
 RawAlpha: [20x1 single]

Learnable Parameters
 Alpha: 0.0044

Show all properties

The RawAlpha property contains the vector-valued scaling parameter, and the Alpha property contains a scalar that is an element average of the vector values. Reshape RawAlpha to place the vector values in the third dimension, which corresponds to the channel dimension. Then, replace Alpha with the reshaped RawAlpha values.

```python
tempLayer.Alpha = reshape(tempLayer.RawAlpha,[1,1,numel(tempLayer.RawAlpha)])
```

tempLayer = PreluLayer with properties:

 Name: 'p_re_lu_1'
 RawAlpha: [1x1x20 single]

Learnable Parameters
 Alpha: [1x1x20 single]

Show all properties

Replace the p_re_lu_1 layer in layers with tempLayer.

```python
layers = replaceLayer(layers,'p_re_lu_1', tempLayer);
layers.Layers(4)
```

ans = PreluLayer with properties:

 Name: 'p_re_lu_1'
 RawAlpha: [20x1 single]
Learnable Parameters

Alpha: [1x1x20 single]

Show all properties

Now the \texttt{p_re_lu_1} layer has a vector-valued scaling parameter.

Input Arguments

- **modelfile** — Name of Keras model file
character vector | string scalar

Name of the model file containing the network architecture, and possibly the weights, specified as a character vector or a string scalar. The file must be in the current folder, in a folder on the MATLAB path, or you must include a full or relative path to the file.

If \texttt{modelfile} includes

- The network architecture and weights, then it must be in HDF5 (.h5) format.
- Only the network architecture, then it can be in HDF5 or JSON (.json) format.

If \texttt{modelfile} includes only the network architecture, then you can optionally supply the weights using the 'ImportWeights' and 'WeightFile' name-value pair arguments. If you supply the weights, then the weights file must be in HDF5 format.

Example: 'digitsnet.h5'

Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of **Name,Value** arguments. **Name** is the argument name and **Value** is the corresponding value. **Name** must appear inside quotes. You can specify several name and value pair arguments in any order as **Name1,Value1,...,NameN,ValueN**.

Example: importKerasLayers(modelfile,'OutputLayerType','classification') imports the network layers from the model file \texttt{modelfile} and adds an output layer for a classification problem at the end of the Keras layers.

OutputLayerType — Type of output layer

'classification' | 'regression' | 'pixelclassification'

Type of the output layer that the function appends to the end of the imported network architecture when \texttt{modelfile} does not specify a loss function, specified as 'classification', 'regression', or 'pixelclassification'. Appending a pixelClassificationLayer object requires Computer Vision Toolbox.

If a network in \texttt{modelfile} has multiple outputs, then you cannot specify the output layer types using this argument. importKerasLayers inserts placeholder layers for the outputs. After importing, you can find and replace the placeholder layers by using findPlaceholderLayers and replaceLayer, respectively.

Example: 'OutputLayerType','regression'
ImageInputSize — Size of input images
vector of two or three numerical values

Size of the input images for the network, specified as a vector of two or three numerical values corresponding to \([\text{height}, \text{width}]\) for grayscale images and \([\text{height}, \text{width}, \text{channels}]\) for color images, respectively. The network uses this information when the modelfile does not specify the input size.

If a network in modelfile has multiple inputs, then you cannot specify the input sizes using this argument. importKerasLayers inserts placeholder layers for the inputs. After importing, you can find and replace the placeholder layers by using findPlaceholderLayers and replaceLayer, respectively.

Example: 'ImageInputSize',[28 28]

ImportWeights — Indicator to import weights
false (default) | true

Indicator to import weights as well as the network architecture, specified as either false or true.

- If 'ImportWeights' is true and modelfile includes the weights, then importKerasLayers imports the weights from modelfile, which must have HDF5 (.h5) format.
- If 'ImportWeights' is true and modelfile does not include the weights, then you must specify a separate file that includes weights, using the 'WeightFile' name-value pair argument.

Example: 'ImportWeights',true

Data Types: logical

WeightFile — Weight file name
character vector | string scalar

Weight file name, from which to import weights when modelfile does not include weights, specified as a character vector or a string scalar. To use this name-value pair argument, you also must set 'ImportWeights' to true.

Weight file must be in the current folder, in a folder on the MATLAB path, or you must include a full or relative path to the file.

Example: 'WeightFile','weights.h5'

Data Types: char | string

Output Arguments

layers — Network architecture
Layer array object | LayerGraph object

Network architecture, returned as a Layer array object when the Keras network is of type Sequential, or returned as a LayerGraph object when the Keras network is of type Model.

Tips

- importKerasLayers supports the following Keras layer types, with some limitations. If the network contains any other type of layer, then the software inserts a placeholder layer in place of
the unsupported layer. To find the names and indices of the unsupported layers in the network, use the `findPlaceholderLayers` function. You then can replace a placeholder layer with a new layer that you define. To replace a layer, use `replaceLayer`.

<table>
<thead>
<tr>
<th>Supported Keras Layer</th>
<th>Corresponding Deep Learning Toolbox Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td><code>additionLayer</code></td>
</tr>
<tr>
<td>Activation, with activation names:</td>
<td>Layers:</td>
</tr>
<tr>
<td>• 'elu'</td>
<td>• <code>eluLayer</code></td>
</tr>
<tr>
<td>• 'relu'</td>
<td>• <code>reluLayer</code> or <code>clippedReluLayer</code></td>
</tr>
<tr>
<td>• 'linear'</td>
<td>• <code>None</code></td>
</tr>
<tr>
<td>• 'softmax'</td>
<td>• <code>softmaxLayer</code></td>
</tr>
<tr>
<td>• 'sigmoid'</td>
<td>• <code>sigmoidLayer</code></td>
</tr>
<tr>
<td>• 'tanh'</td>
<td>• <code>tanhLayer</code></td>
</tr>
<tr>
<td>Advanced activations:</td>
<td>Layers:</td>
</tr>
<tr>
<td>• ELU</td>
<td>• <code>eluLayer</code></td>
</tr>
<tr>
<td>• Softmax</td>
<td>• <code>softmaxLayer</code></td>
</tr>
<tr>
<td>• ReLU</td>
<td>• <code>reluLayer, clippedReluLayer, or leakyReluLayer</code></td>
</tr>
<tr>
<td>• LeakyReLU</td>
<td>• <code>leakyReluLayer</code></td>
</tr>
<tr>
<td>• PReLU*</td>
<td>• <code>nnet.keras.layer.PreluLayer</code></td>
</tr>
<tr>
<td>AveragePooling2D</td>
<td><code>averagePooling2dLayer</code></td>
</tr>
<tr>
<td>BatchNormalization</td>
<td><code>batchNormalizationLayer</code></td>
</tr>
<tr>
<td>Bidirectional(LSTM())</td>
<td><code>bilstmLayer</code></td>
</tr>
<tr>
<td>Concatenate</td>
<td><code>depthConcatenationLayer</code></td>
</tr>
<tr>
<td>Conv2D</td>
<td><code>convolution2dLayer</code></td>
</tr>
<tr>
<td>Conv2DTranspose</td>
<td><code>transposedConv2dLayer</code></td>
</tr>
<tr>
<td>CuDNNLSTM</td>
<td><code>lstmLayer</code></td>
</tr>
<tr>
<td>Dense</td>
<td><code>fullyConnectedLayer</code></td>
</tr>
<tr>
<td>DepthwiseConv2D</td>
<td><code>groupedConvolution2dLayer</code></td>
</tr>
<tr>
<td>Dropout</td>
<td><code>dropoutLayer</code></td>
</tr>
<tr>
<td>Flatten</td>
<td><code>wordEmbeddingLayer</code></td>
</tr>
<tr>
<td>Flatten</td>
<td><code>nnet.keras.layer.FlattenCStyleLayer</code></td>
</tr>
<tr>
<td>GlobalAveragePooling2D</td>
<td><code>globalAveragePooling2dLayer</code></td>
</tr>
<tr>
<td>GlobalMaxPooling2D</td>
<td><code>globalMaxPooling2dLayer</code></td>
</tr>
<tr>
<td>GRU</td>
<td><code>gruLayer</code></td>
</tr>
<tr>
<td>Input</td>
<td><code>imageInputLayer</code></td>
</tr>
<tr>
<td>LSTM</td>
<td><code>lstmLayer</code></td>
</tr>
<tr>
<td>MaxPooling2D</td>
<td><code>maxPooling2dLayer</code></td>
</tr>
</tbody>
</table>
Supported Keras Layer | **Corresponding Deep Learning Toolbox Layer**
---|---
Multiply | multiplicationLayer
SeparableConv2D | groupedConvolution2dLayer or convolution2dLayer
UpSampling2D | resize2dLayer
UpSampling3D | resize3dLayer
ZeroPadding2D | nnet.keras.layer.ZeroPadding2DLayer

*For a PReLU layer, importKerasLayers replaces a vector-valued scaling parameter with the average of the vector elements. You can change the parameter back to a vector after import. For an example, see “Import Keras PReLU Layer” on page 1-598.

- You can replace a placeholder layer with a new layer that you define.
 - If the network is a series network, then replace the layer in the array directly. For example, `layer(2) = newLayer;`.
 - If the network is a DAG network, then replace the layer using replaceLayer. For an example, see “Assemble Network from Pretrained Keras Layers” on page 1-594.

- importKerasLayers supports the following Keras loss functions:
 - mean_squared_error
 - categorical_crossentropy
 - sparse_categorical_crossentropy
 - binary_crossentropy

- You can import a Keras network with multiple inputs and multiple outputs (MIMO). Use importKerasNetwork if the network includes input size information for the inputs and loss information for the outputs. Otherwise, use importKerasLayers. The importKerasLayers function inserts placeholder layers for the inputs and outputs. After importing, you can find and replace the placeholder layers by using findPlaceholderLayers and replaceLayer, respectively. The workflow for importing MIMO Keras networks is the same as the workflow for importing MIMO ONNX networks. For an example, see “Import ONNX Network with Multiple Outputs” on page 1-632. To learn about a deep learning network with multiple inputs and multiple outputs, see “Multiple-Input and Multiple-Output Networks”.

- To use a pretrained network for prediction or transfer learning on new images, you must preprocess your images in the same way as the images used to train the imported model were preprocessed. Resizing images, subtracting the average image, and converting the images from RGB to BGR format are the most common preprocessing operations.
 - To resize images, use imresize. For example, `imresize(im,[227 227])`.
 - To convert images from RGB to BGR format, use flip. For example, `flip(im,3)`.

For more information on preprocessing images for training and prediction, see “Preprocess Images for Deep Learning”.

References

See Also
assembleNetwork | exportONNXNetwork | findPlaceholderLayers | importCaffeLayers |
importCaffeNetwork | importKerasNetwork | importONNXLayers | importONNXNetwork |
replaceLayer

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“List of Deep Learning Layers”
“Define Custom Deep Learning Layers”
“Define Custom Deep Learning Layer with Learnable Parameters”
“Check Custom Layer Validity”

Introduced in R2017b
importKerasNetwork

Import a pretrained Keras network and weights

Syntax

net = importKerasNetwork(modelfile)
net = importKerasNetwork(modelfile,Name,Value)

Description

net = importKerasNetwork(modelfile) imports a pretrained TensorFlow-Keras network and its weights from modelfile. This function requires Deep Learning Toolbox Importer for TensorFlow-Keras Models support package. If this support package is not installed, the function provides a download link.

net = importKerasNetwork(modelfile,Name,Value) imports a pretrained TensorFlow-Keras network and its weights with additional options specified by one or more name-value pair arguments.

For example, importKerasNetwork(modelfile,'WeightFile',weights) imports the network from the model file modelfile and weights from the weight file weights. In this case, modelfile can be in HDF5 or JSON format, and the weight file must be in HDF5 format.

Examples

Download and Install Deep Learning Toolbox Importer for TensorFlow-Keras Models

Type importKerasNetwork at the command line.

importKerasNetwork

If the Deep Learning Toolbox Importer for TensorFlow-Keras Models support package is not installed, then the function provides a link to the required support package in the Add-On Explorer. To install the support package, click the link, and then click Install. Check that the installation is successful by importing the network from the model file 'digitsDAGnet.h5' at the command line. If the required support package is installed, then the function returns a DAGNetwork object.

modelfile = 'digitsDAGnet.h5';
net = importKerasNetwork(modelfile)

Warning: Saved Keras networks do not include classes. Classes will be set to categorical(1:N), where N is the number of classes in the classification output layer of the network. To specify classes, use the 'Classes' argument.

net = DAGNetwork with properties:

 Layers: [13x1 nnet.cnn.layer.Layer]
 Connections: [13x2 table]
Import and Plot Keras Network

Specify the file to import. The file `digitsDAGnet.h5` contains a directed acyclic graph convolutional neural network that classifies images of digits.

```matlab
modelfile = 'digitsDAGnet.h5';

Import the network.

net = importKerasNetwork(modelfile)

Warning: Saved Keras networks do not include classes. Classes will be set to categorical(1:N), where N is the number of classes in the classification output layer of the network.

net = DAGNetwork with properties:

- Layers: [13x1 nnet.cnn.layer.Layer]
- Connections: [13x2 table]
- InputNames: {'input_1'}
- OutputNames: {'ClassificationLayer_activation_1'}

Plot the network architecture.

plot(net)

title('DAG Network Architecture')
Import Keras Network and Weights

Specify the network and the weight files to import.

```matlab
modelfile = 'digitsDAGnet.json';
weights = 'digitsDAGnet.weights.h5';
```

This is a directed acyclic graph convolutional neural network trained on the digits data.

Import network architecture and import the weights from separate files. The .json file does not have an output layer or information on the cost function. Specify the output layer type when you import the files.

```matlab
net = importKerasNetwork(modelfile,'WeightFile',weights, ...
'OutputLayerType','classification')
```

Warning: Saved Keras networks do not include classes. Classes will be set to categorical(1:N), where N is the number of classes in the classification output layer of the network. To specify classes, use the 'Classes' argument.

```
net = DAGNetwork with properties:
 Layers: [13x1 nnet.cnn.layer.Layer]
 Connections: [13x2 table]
 InputNames: {'input_1'}
```
Import Pretrained Keras Network to Classify Image

Specify the model file.

```matlab
modelfile = 'digitsDAGnet.h5';
```

Specify class names.

```matlab
classNames = {'0','1','2','3','4','5','6','7','8','9'};
```

Import the Keras network with the class names.

```matlab
net = importKerasNetwork(modelfile,'Classes',classNames);
```

Read the image to classify.

```matlab
digitDatasetPath = fullfile(toolboxdir('nnet'),'nndemos','nndatasets','DigitDataset');
I = imread(fullfile(digitDatasetPath,'5','image4009.png'));
```

Classify the image using the pretrained network.

```matlab
label = classify(net,I);
```

Display the image and the classification result.

```matlab
imshow(I)
title(['Classification result: ' char(label)])
```

Classification result: 5

5

Input Arguments

- **modelfile** — Name of Keras model file
  character vector | string scalar

Name of the model file containing the network architecture, and possibly the weights, specified as a character vector or a string scalar. The file must be in the current folder, in a folder on the MATLAB path, or you must include a full or relative path to the file.

If `modelfile` includes

- The network architecture and weights, then it must be in HDF5 (.h5) format.
• Only the network architecture, then it can be in HDF5 or JSON (.json) format.

If `modelfile` includes only the network architecture, then you must supply the weights in an HDF5 file, using the 'WeightFile' name-value pair argument.

Example: 'digitsnet.h5'

Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `importKerasNetwork(modelfile,'OutputLayerType','classification','Classes',classes)` imports a network from the model file `modelfile`, adds an output layer for a classification problem at the end of the Keras layers, and specifies `classes` as the classes of the output layer.

**WeightFile — Name of file containing weights**

character vector | string scalar

Name of file containing weights, specified as a character vector or a string scalar. `WeightFile` must be in the current folder, in a folder on the MATLAB path, or you must include a full or relative path to the file.

Example: 'WeightFile','weights.h5'

**OutputLayerType — Type of output layer**

'classification' | 'regression' | 'pixelclassification'

Type of the output layer that the function appends to the end of the imported network architecture when `modelfile` does not specify a loss function, specified as 'classification', 'regression', or 'pixelclassification'. Appending a `pixelClassificationLayer` object requires Computer Vision Toolbox.

If a network in `modelfile` has multiple outputs, then you cannot specify the output layer types using this argument. Use `importKerasLayers` instead. `importKerasLayers` inserts placeholder layers for the outputs. After importing, you can find and replace the placeholder layers by using `findPlaceholderLayers` and `replaceLayer`, respectively.

Example: 'OutputLayerType','regression'

**ImageInputSize — Size of input images**

vector of two or three numerical values

Size of the input images for the network, specified as a vector of two or three numerical values corresponding to [height,width] for grayscale images and [height,width,channels] for color images, respectively. The network uses this information when the `modelfile` does not specify the input size.

If a network in `modelfile` has multiple inputs, then you cannot specify the input sizes using this argument. Use `importKerasLayers` instead. `importKerasLayers` inserts placeholder layers for the inputs. After importing, you can find and replace the placeholder layers by using `findPlaceholderLayers` and `replaceLayer`, respectively.
Example: 'ImageInputSize',[28 28]

**Classes — Classes of the output layer**
'auto' (default) | categorical vector | string array | cell array of character vectors

Classes of the output layer, specified as a categorical vector, string array, cell array of character vectors, or ‘auto’. If you specify a string array or cell array of character vectors str, then the software sets the classes of the output layer to categorical(str,str). If Classes is 'auto', then the function sets the classes to categorical(1:N), where N is the number of classes.

Data Types: char | categorical | string | cell

**Output Arguments**

**net — Pretrained Keras network**

SeriesNetwork object | DAGNetwork object

Pretrained Keras network, returned as one of the following:

- If the Keras network is of type Sequential, then net is a SeriesNetwork object.
- If the Keras network is of type Model, then net is a DAGNetwork object.

**Tips**

- `importKerasNetwork` can import a network with the following Keras layer types, with some limitations. If the network contains any other type of layer, then the software returns an error message. In this case, you can still use `importKerasLayers` to import the network architecture and weights.

<table>
<thead>
<tr>
<th>Supported Keras Layer</th>
<th>Corresponding Deep Learning Toolbox Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>additionLayer</td>
</tr>
<tr>
<td>Activation, with activation names:</td>
<td>Layers:</td>
</tr>
<tr>
<td>'elu'</td>
<td>• eluLayer</td>
</tr>
<tr>
<td>'relu'</td>
<td>• reluLayer or clippedReluLayer</td>
</tr>
<tr>
<td>'linear'</td>
<td>• None</td>
</tr>
<tr>
<td>'softmax'</td>
<td>• softmaxLayer</td>
</tr>
<tr>
<td>'sigmoid'</td>
<td>• sigmoidLayer</td>
</tr>
<tr>
<td>'tanh'</td>
<td>• tanhLayer</td>
</tr>
<tr>
<td>Advanced activations:</td>
<td>Layers:</td>
</tr>
<tr>
<td>ELU</td>
<td>• eluLayer</td>
</tr>
<tr>
<td>Softmax</td>
<td>• softmaxLayer</td>
</tr>
<tr>
<td>ReLU</td>
<td>• reluLayer, clippedReluLayer, or leakyReluLayer</td>
</tr>
<tr>
<td>LeakyReLU</td>
<td>• leakyReluLayer</td>
</tr>
<tr>
<td>PReLU*</td>
<td>• nnet.keras.layer.PreluLayer</td>
</tr>
<tr>
<td>Supported Keras Layer</td>
<td>Corresponding Deep Learning Toolbox Layer</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------------------------</td>
</tr>
<tr>
<td>AveragePooling2D</td>
<td>averagePooling2dLayer</td>
</tr>
<tr>
<td>BatchNormalization</td>
<td>batchNormalizationLayer</td>
</tr>
<tr>
<td>Bidirectional(LSTM(__))</td>
<td>bilstmLayer</td>
</tr>
<tr>
<td>Concatenate</td>
<td>depthConcatenationLayer</td>
</tr>
<tr>
<td>Conv2D</td>
<td>convolution2dLayer</td>
</tr>
<tr>
<td>Conv2DTranspose</td>
<td>transposedConv2dLayer</td>
</tr>
<tr>
<td>CuDNNLSTM</td>
<td>lstmLayer</td>
</tr>
<tr>
<td>Dense</td>
<td>fullyConnectedLayer</td>
</tr>
<tr>
<td>DepthwiseConv2D</td>
<td>groupedConvolution2dLayer</td>
</tr>
<tr>
<td>Dropout</td>
<td>dropoutLayer</td>
</tr>
<tr>
<td>Embedding</td>
<td>wordEmbeddingLayer</td>
</tr>
<tr>
<td>Flatten</td>
<td>nnet.keras.layer.FlattenCStyleLayer</td>
</tr>
<tr>
<td>GlobalAveragePooling2D</td>
<td>globalAveragePooling2dLayer</td>
</tr>
<tr>
<td>GlobalMaxPooling2D</td>
<td>globalMaxPooling2dLayer</td>
</tr>
<tr>
<td>GRU</td>
<td>gruLayer</td>
</tr>
<tr>
<td>Input</td>
<td>imageInputLayer</td>
</tr>
<tr>
<td>LSTM</td>
<td>lstmLayer</td>
</tr>
<tr>
<td>MaxPooling2D</td>
<td>maxPooling2dLayer</td>
</tr>
<tr>
<td>Multiply</td>
<td>multiplicationLayer</td>
</tr>
<tr>
<td>SeparableConv2D</td>
<td>groupedConvolution2dLayer or convolution2dLayer</td>
</tr>
<tr>
<td>UpSampling2D</td>
<td>resize2dLayer</td>
</tr>
<tr>
<td>UpSampling3D</td>
<td>resize3dLayer</td>
</tr>
<tr>
<td>ZeroPadding2D</td>
<td>nnet.keras.layer.ZeroPadding2DLayer</td>
</tr>
</tbody>
</table>

*For a PReLU layer, importKerasNetwork replaces a vector-valued scaling parameter with the average of the vector elements. You can change the parameter back to a vector after import. For an example, see “Import Keras PReLU Layer” on page 1-598.

- importKerasNetwork supports the following Keras loss functions:
  - mean_squared_error
  - categorical_crossentropy
  - sparse_categorical_crossentropy
  - binary_crossentropy

- You can import a Keras network with multiple inputs and multiple outputs (MIMO). Use importKerasNetwork if the network includes input size information for the inputs and loss information for the outputs. Otherwise, use importKerasLayers. The importKerasLayers function inserts placeholder layers for the inputs and outputs. After importing, you can find and replace the placeholder layers by using findPlaceholderLayers and replaceLayer, respectively. The workflow for importing MIMO Keras networks is the same as the workflow for
importing MIMO ONNX networks. For an example, see “Import ONNX Network with Multiple Outputs” on page 1-632. To learn about a deep learning network with multiple inputs and multiple outputs, see “Multiple-Input and Multiple-Output Networks”.

• To use a pretrained network for prediction or transfer learning on new images, you must preprocess your images in the same way as the images used to train the imported model were preprocessed. Resizing images, subtracting the average image, and converting the images from RGB to BGR format are the most common preprocessing operations.

  • To resize images, use `imresize`. For example, `imresize(im,[227 227])`.
  • To convert images from RGB to BGR format, use `flip`. For example, `flip(im,3)`.

  For more information on preprocessing images for training and prediction, see “Preprocess Images for Deep Learning”.

**Compatibility Considerations**

 `'ClassNames' option will be removed
Not recommended starting in R2018b

`'ClassNames'` will be removed. Use `'Classes'` instead. To update your code, replace all instances of `'ClassNames'` with `'Classes'`. There are some differences between the corresponding properties in classification output layers that require additional updates to your code.

The `ClassNames` property of a classification output layer is a cell array of character vectors. The `Classes` property is a categorical array. To use the value of `Classes` with functions that require cell array input, convert the classes using the `cellstr` function.

**References**


**See Also**

`exportONNXNetwork` | `importCaffeLayers` | `importCaffeNetwork` | `importKerasLayers` | `importONNXLayers` | `importONNXNetwork` 

**Topics**

“Preprocess Images for Deep Learning”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”

**Introduced in R2017b**
importONNXFunction

Import pretrained ONNX network as a function

Syntax

params = importONNXFunction(modelfile,NetworkFunctionName)

Description

params = importONNXFunction(modelfile,NetworkFunctionName) imports an ONNX (Open Neural Network Exchange) network from the file modelfile and returns an ONNXParameters object (params) that contains the network parameters. The function also creates a model function with the name specified by NetworkFunctionName that contains the network architecture. For more information about the network function, see “Imported ONNX Model Function” on page 1-623.

Use the ONNXParameters object and the NetworkFunctionName model function to perform common deep learning tasks, such as image and sequence data classification, transfer learning, object detection, and image segmentation. importONNXFunction is useful when you cannot import the network using the importONNXNetwork function (for example, importONNXFunction can import YOLOv3) or if you want to define your own custom training loop (for more details, see “Train Network Using Custom Training Loop” on page 1-455).

This function requires the Deep Learning Toolbox Converter for ONNX Model Format support package. If this support package is not installed, then the function provides a download link.

Examples

Import ONNX Network with Unsupported Operators as a Function

Import an ONNX network as a function. The network contains ONNX operators that are not supported by Deep Learning Toolbox layers. You can use the imported model function for deep learning tasks, such as prediction and transfer learning.

Download and install the Deep Learning Toolbox Converter for ONNX Model Format support package. You can enter importONNXFunction at the command line to check if the support package is installed. If it is not installed, then the function provides a link to the required support package in the Add-On Explorer. To install the support package, click the link, and then click Install.

Specify the file to import as shufflenet with operator set 9 from the ONNX Model Zoo. shufflenet is a convolutional neural network that is trained on images from the ImageNet database.

modelfile = 'shufflenet-9.onnx';

A recommended practice is to try to import the network by using importONNXNetwork. If importONNXNetwork is unable to import the network because some of the network layers are not supported, you can import the network as layers by using importONNXLayers, or as a function by using importONNXFunction.
Import the `shufflenet` network as layers. The software generates placeholder layers in place of the unsupported layers.

```matlab
lgraph = importONNXLayers(modelfile,'OutputLayerType','classification');
```

Warning: Unable to import some ONNX operators, because they are not supported. They have been replaced by placeholder layers.

```
4 operators(s) : Average pooling layer in ONNX file does not include padding in the average.
32 operators(s) : The Reshape operator is supported only when it performs a flattening operation.
16 operators(s) : The operator 'Transpose' is not supported.
```

To import the ONNX network as a function, which can support most ONNX operators, call `importONNXFunction`.

Find the placeholder layers and display the number of placeholder layers.

```matlab
indPlaceholderLayers = findPlaceholderLayers(lgraph);
numel(indPlaceholderLayers)
```

```
ans = 48
```

You must replace the 48 placeholder layers to use `lgraph` for deep learning tasks, such as prediction.

Instead, import the network as a function to generate a model function that you can readily use for deep learning tasks.

```matlab
params = importONNXFunction(modelfile,'shufflenetFcn')
```

```
OpsetVersion = 9
A function 'shufflenetFcn' containing the imported ONNX network has been saved to the current directory.
To learn how to use this function, type: help shufflenetFcn
```

```
params =
 ONNXParameters with properties:
 Learnables: [1x1 struct]
 NonLearnables: [1x1 struct]
 State: [1x1 struct]
 NumDimensions: [1x1 struct]
 NetworkFunctionName: 'shufflenetFcn'
```

`importONNXFunction` returns the `ONNXParameters` object `params`, which contains the network parameters, and the model function `shufflenetFcn`, which contains the network architecture. `importONNXFunction` saves `shufflenetFcn` in the current folder. You can open the model function to view or edit the network architecture by using `open shufflenetFcn`.

### Predict Using Imported ONNX Function

Import an ONNX network as a function, and use the pretrained network to predict the class label of an input image.

Specify the file to import as `shufflenet` with operator set 9 from the ONNX Model Zoo. `shufflenet` is a convolutional neural network that is trained on more than a million images from the ImageNet database. As a result, the network has learned rich feature representations for a wide range of images. The network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many animals.
modelfile = 'shufflenet-9.onnx';

Import the pretrained ONNX network as a function by using importONNXFunction, which returns an ONNXParameters object that contains the network parameters. The function also creates a new model function in the current folder that contains the network architecture. Specify the name of the model function as shufflenetFcn.

params = importONNXFunction(modelfile,'shufflenetFcn');

OpsetVersion = 9
A function 'shufflenetFcn' containing the imported ONNX network has been saved to the current directory.
To learn how to use this function, type: help shufflenetFcn

Read the image you want to classify and display the size of the image. The image is 792-by-1056 pixels and has three color channels (RGB).

I = imread('peacock.jpg');
size(I)
ans = 1×3
    792   1056     3

Resize the image to the input size of the network. Show the image.

I = imresize(I,[224 224]);
imshow(I)

The inputs to shufflenet require further preprocessing (for more details, see ShuffleNet in ONNX Model Zoo). Rescale the image. Normalize the image by subtracting the training images mean and dividing by the training images standard deviation.

I = rescale(I,0,1);
meanIm = [0.485 0.456 0.406];
stdIm = [0.229 0.224 0.225];
I = (I - reshape(meanIm,[1 1 3]))./reshape(stdIm,[1 1 3]);
imshow(I)

Import the class names from squeezenet, which is also trained with images from the ImageNet database.

net = squeezenet;
ClassNames = net.Layers(end).ClassNames;

Calculate the class probabilities by specifying the image to classify I and the ONNXParameters object params as input arguments to the model function shufflenetFcn.

scores = shufflenetFcn(I,params);

Find the class index with the highest probability. Display the predicted class for the input image and the corresponding classification score.

indMax = find(scores==max(scores));
ClassNames(indMax)

ans = 1x1 cell array
     {'peacock'}

scoreMax = scores(indMax)

scoreMax = 0.7517
Train Imported ONNX Function Using Custom Training Loop

Import the alexnet convolution neural network as a function and fine-tune the pretrained network with transfer learning to perform classification on a new collection of images.

This example uses several helper functions. To view the code for these functions, see Helper Functions on page 1-0.

Unzip and load the new images as an image datastore. imageDatastore automatically labels the images based on folder names and stores the data as an ImageDatastore object. An image datastore enables you to store large image data, including data that does not fit in memory, and efficiently read batches of images during training of a convolutional neural network. Specify the mini-batch size.

```matlab
unzip('MerchData.zip');
miniBatchSize = 8;
imds = imageDatastore('MerchData', ...'
 'IncludeSubfolders',true,...'
 'LabelSource','foldernames',...
 'ReadSize', miniBatchSize);
```

This data set is small, containing 75 training images. Display some sample images.

```matlab
numImages = numel(imds.Labels);
idx = randperm(numImages,16);
figure
for i = 1:16
 subplot(4,4,i)
 I = readimage(imds,idx(i));
 imshow(I)
end
```
Extract the training set and one-hot encode the categorical classification labels.

```matlab
XTrain = readall(imds);
XTrain = single(cat(4,XTrain{:}));
YTrain_categ = categorical(imds.Labels);
YTrain = onehotencode(YTrain_categ,2)';
```

Determine the number of classes in the data.

```matlab
classes = categories(YTrain_categ);
umClasses = numel(classes)
```

```matlab
numClasses = 5
```

AlexNet is a convolutional neural network that is trained on more than a million images from the ImageNet database. As a result, the network has learned rich feature representations for a wide range of images. The network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many animals.

Import the pretrained `alexnet` network as a function.

```matlab
alexnetONNX()
params = importONNXFunction('alexnet.onnx','alexnetFcn')
```

A function containing the imported ONNX network has been saved to the file `alexnetFcn.m`. To learn how to use this function, type: `help alexnetFcn`.

```matlab
params =
ONNXParameters with properties:
Learnables: [1x1 struct]
Nonlearnables: [1x1 struct]
State: [1x1 struct]
NumDimensions: [1x1 struct]

NetworkFunctionName: 'alexnetFcn'

params is an ONNXParameters object that contains the network parameters. alexnetFcn is a model function that contains the network architecture. importONNXFunction saves alexnetFcn in the current folder.

Calculate the classification accuracy of the pretrained network on the new training set.

accuracyBeforeTraining = getNetworkAccuracy(XTrain,YTrain,params);
fprintf('%.2f accuracy before transfer learning
',accuracyBeforeTraining);

0.01 accuracy before transfer learning

The accuracy is very low.

Display the learnable parameters of the network. These parameters, for example the weights (W) and bias (B) of convolution and fully connected layers, are updated by the network during training. Nonlearnable parameters remain constant during training.

params.Learnables

ans = struct with fields:
 data_Mean: [227 x 227 x 3 dlarray]
 conv1_W: [11 x 11 x 3 x 96 dlarray]
 conv1_B: [96 x 1 dlarray]
 conv2_W: [5 x 5 x 48 x 256 dlarray]
 conv2_B: [256 x 1 dlarray]
 conv3_W: [3 x 3 x 256 x 384 dlarray]
 conv3_B: [384 x 1 dlarray]
 conv4_W: [3 x 3 x 192 x 384 dlarray]
 conv4_B: [384 x 1 dlarray]
 conv5_W: [3 x 3 x 192 x 256 dlarray]
 conv5_B: [256 x 1 dlarray]
 fc6_W: [6 x 6 x 256 x 4096 dlarray]
 fc6_B: [4096 x 1 dlarray]
 fc7_W: [1 x 1 x 4096 x 4096 dlarray]
 fc7_B: [4096 x 1 dlarray]
 fc8_W: [1 x 1 x 4096 x 1000 dlarray]
 fc8_B: [1000 x 1 dlarray]

The last two learnable parameters of the pretrained network are configured for 1000 classes. The parameters fc8_W and fc8_B must be fine-tuned for the new classification problem. Transfer the parameters to classify 5 classes by initializing them.

params.Learnables.fc8_B = rand(5,1);
params.Learnables.fc8_W = rand(1,1,4096,5);

Freeze all the parameters of the network to convert them to nonlearnable parameters. Because you do not need to compute the gradients of the frozen layers, freezing the weights of many initial layers can significantly speed up network training.
params = freezeParameters(params,'all');

Unfreeze the last two parameters of the network to convert them to learnable parameters.

params = unfreezeParameters(params,'fc8_W');
params = unfreezeParameters(params,'fc8_B');

Now the network is ready for training. Initialize the training progress plot.

plots = "training-progress";
if plots == "training-progress"
 figure
 lineLossTrain = animatedline;
 xlabel("Iteration")
 ylabel("Loss")
end

Specify the training options.

velocity = [];
numEpochs = 5;
miniBatchSize = 16;
numObservations = size(YTrain,2);
numIterationsPerEpoch = floor(numObservations./miniBatchSize);
initialLearnRate = 0.01;
momentum = 0.9;
decay = 0.01;

Train the network.

iteration = 0;
start = tic;
executionEnvironment = "cpu"; % Change to "gpu" to train on a GPU.

% Loop over epochs.
for epoch = 1:numEpochs
 % Shuffle data.
 idx = randperm(numObservations);
 XTrain = XTrain(:,idx);
 YTrain = YTrain(:,idx);

 % Loop over mini-batches.
 for i = 1:numIterationsPerEpoch
 iteration = iteration + 1;
 % Read mini-batch of data.
 idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
 X = XTrain(:,idx);
 Y = YTrain(:,idx);

 % If training on a GPU, then convert data to gpuArray.
 if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
 X = gpuArray(X);
 end

 % Evaluate the model gradients and loss using dlfeval and the % modelGradients function.
 [gradients,loss,state] = dlfeval(@modelGradients,X,Y,params);
params.State = state;

% Determine learning rate for time-based decay learning rate schedule.
learnRate = initialLearnRate/(1 + decay*iteration);

% Update the network parameters using the SGDM optimizer.
[params.Learnables,velocity] = sgdmupdate(params.Learnables,gradients,velocity);

% Display the training progress.
if plots == "training-progress"
 D = duration(0,0,toc(start),'Format','hh:mm:ss');
 addpoints(lineLossTrain,iteration,double(gather(extractdata(loss))))
 title("Epoch: " + epoch + ", Elapsed: " + string(D))
 drawnow
end
end

Calculate the classification accuracy of the network after fine-tuning.

accuracyAfterTraining = getNetworkAccuracy(XTrain,YTrain,params);
fprintf('%.2f accuracy after transfer learning\n',accuracyAfterTraining);

0.99 accuracy after transfer learning

Helper Functions

This section provides the code of the helper functions used in this example.
The `getNetworkAccuracy` function evaluates the network performance by calculating the classification accuracy.

```matlab
function accuracy = getNetworkAccuracy(X,Y, onnxParams)
N = size(X,4);
Ypred = alexnetFcn(X, onnxParams, 'Training', false);

[-,YIdx] = max(Y,[],1);
[-,YpredIdx] = max(Ypred,[],1);
numIncorrect = sum(abs(YIdx-YpredIdx) > 0);
accuracy = 1 - numIncorrect/N;
end
```

The `modelGradients` function calculates the loss and gradients.

```matlab
function [grad, loss, state] = modelGradients(X,Y, onnxParams)
[y,state] = alexnetFcn(X, onnxParams, 'Training', true);
loss = crossentropy(y,Y,'DataFormat','CB');
grad = dlgradient(loss, onnxParams.Learnables);
end
```

The `alexnetONNX` function generates an ONNX model of the alexnet network. You need Deep Learning Toolbox Model for AlexNet Network support to access this model.

```matlab
function alexnetONNX()
exportONNXNetwork(alexnet, 'alexnet.onnx');
end
```

Input Arguments

- `modelfile` — Name of ONNX model file
 character vector | string scalar

 Name of the ONNX model file containing the network, specified as a character vector or string scalar. The file must be in the current folder or a folder on the MATLAB path, or you must include a full or relative path to the file.

 Example: `shufflenet.onnx`

- `NetworkFunctionName` — Name of model function
 character vector | string scalar

 Name of the model function, specified as a character vector or string scalar. The function `NetworkFunctionName` contains the architecture of the imported ONNX network. The file is saved in an M-file in the current folder, or you must include a full or relative path to the file. The `NetworkFunctionName` file is required for using the network. For more information, see “Imported ONNX Model Function” on page 1-623.

 Example: `shufflenetFcn`
Output Arguments

params — Network parameters
ONNXParameters object

Network parameters, returned as an ONNXParameters object. params contains the network parameters of the imported ONNX model. Use dot notation to reference properties of params. For example, params.Learnables displays the network learnable parameters, such as the weights of the convolution layers.

More About

Imported ONNX Model Function

importONNXFunction creates a model function that contains the network architecture of the imported ONNX model. Specify the name NetworkFunctionName as an input argument to importONNXFunction.

Syntax

Use the following syntaxes to interface with the imported ONNX model function (NetworkFunctionName):

- \([Y,\text{state}] = \text{NetworkFunctionName}(X,\text{params})\) returns the output data \(Y\) and the updated network state for the input data \(X\).
- \([Y,\text{state}] = \text{NetworkFunctionName}(X,\text{params},\text{Name,Value})\) uses additional options specified by one or more name-value pair arguments.
- \([Y_1,Y_2,\ldots,Y_n,\text{state}] = \text{NetworkFunctionName}(X_1,X_2,\ldots,X_n,\text{params})\) returns multiple output data \((Y_1,Y_2,\ldots,Y_n)\) and the updated network state for the multiple input data \((X_1,X_2,\ldots,X_n)\).
- \([Y_1,Y_2,\ldots,Y_n,\text{state}] = \text{NetworkFunctionName}(X_1,X_2,\ldots,X_n,\text{params},\text{Name,Value})\) uses additional options specified by one or more name-value pair arguments for multiple inputs and outputs.

Input Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Input data, specified as an array or dlarray.</td>
</tr>
<tr>
<td>params</td>
<td>Network parameters, specified as an ONNXParameters object.</td>
</tr>
</tbody>
</table>
Name-Value Pair Arguments

<table>
<thead>
<tr>
<th>Argument name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Training'</td>
<td>Training option, specified as 'false' (default) or 'true'.</td>
</tr>
<tr>
<td></td>
<td>• Set value to 'false' to use ONNXFunction to predict. For an example, see "Predict UsingImported ONNX Function" on page 1-614.</td>
</tr>
<tr>
<td></td>
<td>• Set value to 'true' to use ONNXFunction to train. For an example, see “Train Imported ONNX Function Using Custom Training Loop" on page 1-616.</td>
</tr>
<tr>
<td>'InputDataPermutation'</td>
<td>Permutation applied to the dimension ordering of input X, specified as 'auto' (default), 'none', a numeric vector, or a cell array.</td>
</tr>
<tr>
<td></td>
<td>Assign a value to the name-value pair argument ‘InputDataPermutation’ to permute the input data into the dimension ordering required by the imported ONNX model.</td>
</tr>
<tr>
<td></td>
<td>• Assign the value 'auto' to apply an automatic permutation based on assumptions about common input data X. For more details, see “Automatic Input Data Permutation” on page 1-625.</td>
</tr>
<tr>
<td></td>
<td>• Assign the value 'none' to pass X in the original ordering.</td>
</tr>
<tr>
<td></td>
<td>• Assign a numeric vector value to customize the input dimension ordering; for example, [4 3 1 2].</td>
</tr>
<tr>
<td></td>
<td>• Assign a cell array value for multiple inputs; for example, {[3 2 1], 'none'}.</td>
</tr>
</tbody>
</table>
Argument name

<table>
<thead>
<tr>
<th>Argument name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'OutputDataPermutation'</td>
<td>Permutation applied to the dimension ordering of output Y, specified as 'auto' (default), 'none', a numeric vector, or a cell array.</td>
</tr>
</tbody>
</table>

Assign a value to the name-value pair argument 'OutputDataPermutation' to match the dimension ordering of the imported ONNX model.

- Assign the value 'auto' to return Y in Deep Learning Toolbox ordering. For more details, see “Automatic Output Data Permutation” on page 1-626.
- Assign the value 'none' to return Y in ONNX ordering.
- Assign a numeric vector value to customize the output dimension ordering; for example, [3 4 2 1].
- Assign a cell array value for multiple outputs; for example, {{3 2 1}, 'none'}. |

Output Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Output data, returned as an array or dlarray.</td>
</tr>
<tr>
<td></td>
<td>• If X is an array or you use ONNXFunction to predict, Y is a array.</td>
</tr>
<tr>
<td></td>
<td>• If X is a dlarray or you use ONNXFunction for training, Y is a dlarray.</td>
</tr>
<tr>
<td>state</td>
<td>Updated network state, specified as a structure.</td>
</tr>
<tr>
<td></td>
<td>The network state contains information remembered by the network between iterations and updated across multiple training batches.</td>
</tr>
</tbody>
</table>

The interpretation of input argument X and output argument Y can differ between models. For more information about the model input and output arguments, refer to help for the imported model function NetworkFunctionName, or refer to the ONNX documentation [1].

Automatic Permutation for Imported Model Function

By default, NetworkFunctionName automatically permutes input and output data to facilitate image classification tasks. Automatic permutation might be unsuitable for other tasks, such as object detection and time series classification.

Automatic Input Data Permutation

To automatically permute the input, NetworkFunctionName assumes the following based on the input dimensions specified by the imported ONNX network.
<table>
<thead>
<tr>
<th>Number of ONNX Model Input Dimensions</th>
<th>Interpretation of Input Data</th>
<th>ONNX Standard Dimension Ordering</th>
<th>Deep Learning Toolbox Standard Dimension Ordering</th>
<th>Automatic Permutation of Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2-D image</td>
<td>NCHW</td>
<td>HWCN</td>
<td>[4 3 1 2]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H, W, and C correspond to the height, width, and number of channels of the image, respectively, and N is the number of observations.</td>
<td>H, W, and C correspond to the height, width, and number of channels of the image, respectively, and N is the number of observations.</td>
<td></td>
</tr>
</tbody>
</table>

If the size of the input dimensions is a number other than 4, NetworkFunctionName specifies the input argument 'InputDataPermutation' as 'none'.

Automatic Output Data Permutation

To automatically permute the output, NetworkFunctionName assumes the following based on the output dimensions specified by the imported ONNX network.

<table>
<thead>
<tr>
<th>Number of ONNX Model Output Dimensions</th>
<th>Interpretation of Output Data</th>
<th>ONNX Standard Dimension Ordering</th>
<th>Deep Learning Toolbox Standard Dimension Ordering</th>
<th>Automatic Permutation of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2-D image classification scores</td>
<td>NK</td>
<td>KN</td>
<td>[2 1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K is the number of classes and N is the number of observations.</td>
<td>K is the number of classes and N is the number of observations.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2-D image pixel classification scores</td>
<td>NKHW</td>
<td>HWKN</td>
<td>[3 4 2 1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H and W correspond to the height and width of the image, respectively, K is the number of classes, and N is the number of observations.</td>
<td>H and W correspond to the height and width of the image, respectively, K is the number of classes, and N is the number of observations.</td>
<td></td>
</tr>
</tbody>
</table>

If the size of the output dimensions is a number other than 2 or 4, NetworkFunctionName specifies the input argument 'OutputDataPermutation' as 'none'.

Supported ONNX Layers

importONNXFunction supports the following ONNX layers, with some limitations. Compare these layers with the layers supported by importONNXNetwork.
<table>
<thead>
<tr>
<th>ONNX Layers Supported by importONNXFunction</th>
<th>importONNXNetwork Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abs</td>
<td>No</td>
</tr>
<tr>
<td>Add</td>
<td>Yes</td>
</tr>
<tr>
<td>And</td>
<td>No</td>
</tr>
<tr>
<td>ArgMax</td>
<td>No</td>
</tr>
<tr>
<td>AveragePool</td>
<td>Yes</td>
</tr>
<tr>
<td>BatchNormalization</td>
<td>Yes</td>
</tr>
<tr>
<td>Cast</td>
<td>No</td>
</tr>
<tr>
<td>Ceil</td>
<td>No</td>
</tr>
<tr>
<td>Clip</td>
<td>Yes</td>
</tr>
<tr>
<td>Compress</td>
<td>No</td>
</tr>
<tr>
<td>Concat</td>
<td>Yes</td>
</tr>
<tr>
<td>Constant</td>
<td>Yes</td>
</tr>
<tr>
<td>ConstantOfShape</td>
<td>No</td>
</tr>
<tr>
<td>Conv</td>
<td>Yes</td>
</tr>
<tr>
<td>ConvTranspose</td>
<td>Yes</td>
</tr>
<tr>
<td>DepthToSpace</td>
<td>No</td>
</tr>
<tr>
<td>Div</td>
<td>Yes</td>
</tr>
<tr>
<td>Dropout</td>
<td>Yes</td>
</tr>
<tr>
<td>Equal</td>
<td>No</td>
</tr>
<tr>
<td>Exp</td>
<td>No</td>
</tr>
<tr>
<td>Expand</td>
<td>No</td>
</tr>
<tr>
<td>Flatten</td>
<td>Yes</td>
</tr>
<tr>
<td>Floor</td>
<td>No</td>
</tr>
<tr>
<td>Gather</td>
<td>No</td>
</tr>
<tr>
<td>Gemm</td>
<td>Yes</td>
</tr>
<tr>
<td>GlobalAveragePool</td>
<td>Yes</td>
</tr>
<tr>
<td>Greater</td>
<td>Yes</td>
</tr>
<tr>
<td>Hardmax</td>
<td>No</td>
</tr>
<tr>
<td>Identity</td>
<td>Yes</td>
</tr>
<tr>
<td>If</td>
<td>No</td>
</tr>
<tr>
<td>InstanceNormalization</td>
<td>Yes</td>
</tr>
<tr>
<td>LeakyRelu</td>
<td>Yes</td>
</tr>
<tr>
<td>Less</td>
<td>No</td>
</tr>
<tr>
<td>Log</td>
<td>No</td>
</tr>
<tr>
<td>Loop</td>
<td>No</td>
</tr>
<tr>
<td>LRN</td>
<td>Yes</td>
</tr>
<tr>
<td>ONNX Layers Supported by importONNXFunction</td>
<td>importONNXNetwork Support</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td>LSTM</td>
<td>Yes</td>
</tr>
<tr>
<td>MatMul</td>
<td>Yes</td>
</tr>
<tr>
<td>MaxPool</td>
<td>Yes</td>
</tr>
<tr>
<td>Mul</td>
<td>Yes</td>
</tr>
<tr>
<td>NonMaxSuppression</td>
<td>No</td>
</tr>
<tr>
<td>NonZero</td>
<td>No</td>
</tr>
<tr>
<td>Not</td>
<td>No</td>
</tr>
<tr>
<td>OneHot</td>
<td>No</td>
</tr>
<tr>
<td>Or</td>
<td>No</td>
</tr>
<tr>
<td>Pad</td>
<td>No</td>
</tr>
<tr>
<td>Pow</td>
<td>No</td>
</tr>
<tr>
<td>PRelu</td>
<td>Yes</td>
</tr>
<tr>
<td>RandomUniform</td>
<td>No</td>
</tr>
<tr>
<td>Range</td>
<td>No</td>
</tr>
<tr>
<td>Reciprocal</td>
<td>No</td>
</tr>
<tr>
<td>ReduceMax</td>
<td>No</td>
</tr>
<tr>
<td>ReduceMean</td>
<td>No</td>
</tr>
<tr>
<td>ReduceMin</td>
<td>No</td>
</tr>
<tr>
<td>ReduceProd</td>
<td>No</td>
</tr>
<tr>
<td>ReduceSum</td>
<td>No</td>
</tr>
<tr>
<td>Relu</td>
<td>Yes</td>
</tr>
<tr>
<td>Reshape</td>
<td>Yes</td>
</tr>
<tr>
<td>Resize</td>
<td>Yes</td>
</tr>
<tr>
<td>RoiAlign</td>
<td>No</td>
</tr>
<tr>
<td>Round</td>
<td>No</td>
</tr>
<tr>
<td>Scan</td>
<td>No</td>
</tr>
<tr>
<td>Scatter</td>
<td>No</td>
</tr>
<tr>
<td>ScatterElements</td>
<td>No</td>
</tr>
<tr>
<td>SequenceAt</td>
<td>No</td>
</tr>
<tr>
<td>Shape</td>
<td>No</td>
</tr>
<tr>
<td>Sigmoid</td>
<td>Yes</td>
</tr>
<tr>
<td>Slice</td>
<td>No</td>
</tr>
<tr>
<td>Softmax</td>
<td>Yes</td>
</tr>
<tr>
<td>SpaceToDepth</td>
<td>Yes</td>
</tr>
<tr>
<td>Split</td>
<td>No</td>
</tr>
<tr>
<td>SplitToSequence</td>
<td>No</td>
</tr>
<tr>
<td>ONNX Layers Supported by importONNXFunction</td>
<td>importONNXNetwork Support</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Sqrt</td>
<td>No</td>
</tr>
<tr>
<td>Squeeze</td>
<td>No</td>
</tr>
<tr>
<td>Sub</td>
<td>Yes</td>
</tr>
<tr>
<td>Sum</td>
<td>Yes</td>
</tr>
<tr>
<td>Tanh</td>
<td>Yes</td>
</tr>
<tr>
<td>Tile</td>
<td>No</td>
</tr>
<tr>
<td>TopK</td>
<td>No</td>
</tr>
<tr>
<td>Transpose</td>
<td>No</td>
</tr>
<tr>
<td>Unsqueeze</td>
<td>No</td>
</tr>
<tr>
<td>Upsample</td>
<td>No</td>
</tr>
<tr>
<td>Where</td>
<td>No</td>
</tr>
</tbody>
</table>

Tips

- Refer to the ONNX documentation for each model to see the required preprocessing of the network inputs. For example, you need to resize (using `imresize`), rescale, and normalize the input images to networks trained with the ImageNet dataset (such as AlexNet, GoogleNet, ShuffleNet, and SqueezeNet).
- `importONNXFunction` supports ONNX operator sets 7, 8, 9, 10, and 11.

Alternative Functionality

`importONNXFunction` is useful when you cannot import a pretrained ONNX network by using `importONNXNetwork`. If you want to generate code for a pretrained network, use `importONNXLayers`. Find and replace the generated placeholder layers by using `findPlaceholderLayers` and `replaceLayer`, respectively. Then, use `assembleNetwork` to return a `DAGNetwork` object. You can generate code for a trained `DAGNetwork`.

References

See Also

ONNXParameters | importONNXLayers | importONNXNetwork

Topics

“Make Predictions Using Model Function”
“Train Network Using Custom Training Loop”
“Pretrained Deep Neural Networks”

Introduced in R2020b
importONNXLayers

Import layers from ONNX network

Syntax

`layers = importONNXLayers(modelfile)`
`layers = importONNXLayers(modelfile,Name,Value)`

Description

`layers = importONNXLayers(modelfile)` imports the layers of an ONNX (Open Neural Network Exchange) network from the file `modelfile`. You can train the imported layers on a new data set or assemble the layers into a network ready for prediction. For an example of the workflow of assembling a network, see "Assemble Network from Pretrained Keras Layers".

This function requires the Deep Learning Toolbox Converter for ONNX Model Format support package. If this support package is not installed, then the function provides a download link.

`layers = importONNXLayers(modelfile,Name,Value)` imports the layers from an ONNX network with additional options specified by one or more name-value pair arguments.

For example, `importONNXLayers(modelfile,'ImportWeights',false)` imports the network architecture without weights from the file `modelfile`.

Examples

Download and Install Deep Learning Toolbox Converter for ONNX Model Format

Download and install the Deep Learning Toolbox Converter for ONNX Model Format support package.

Type `importONNXLayers` at the command line.

```
importONNXLayers
```

If Deep Learning Toolbox Converter for ONNX Model Format is not installed, then the function provides a link to the required support package in the Add-On Explorer. To install the support package, click the link, and then click **Install**. Check that the installation is successful by importing the network from the model file 'cifarResNet.onnx' at the command line. If the support package is installed, then the function returns a `DAGNetwork` object.

```
modelfile = 'cifarResNet.onnx';
layers = importONNXLayers(modelfile,'OutputLayerType','classification')
```

```
layers = LayerGraph with properties:
```
Import ONNX Network Architecture

Import the architecture and weights of a residual neural network trained on the CIFAR-10 data set. Specify the file containing the ONNX network and the type of the output layer to add to the imported network.

```matlab
modelfile = 'cifarResNet.onnx';
lgraph = importONNXLayers(modelfile, ...
    'OutputLayerType','classification', ...
    'ImportWeights',true)
```

Analyze the imported network architecture.

```matlab
analyzeNetwork(lgraph)
```
Import ONNX Network with Multiple Outputs

Import an ONNX network that has multiple outputs by using `importONNXLayers`. The function inserts placeholder layers for the outputs. After importing, you can find and replace the placeholder layers by using `findPlaceholderLayers` and `replaceLayer`, respectively.

Specify the network file from which to import layers and weights.

```matlab
modelfile = 'digitsMIMO.onnx';
```

The network in `digitsMIMO.onnx` has two output layers: one classification layer to classify digits and one regression layer to compute the mean squared error for the predicted angles of the digits. Import the layers and weights from `modelfile`.

```matlab
layers = importONNXLayers('digitsMIMO.onnx','ImportWeights',true)
```

Warning: ONNX network has multiple outputs. `importONNXLayers` inserts placeholder layers for the outputs. Find and replace the layers by using `findPlaceholderLayers` and `replaceLayer`, respectively.

```matlab
layers = LayerGraph with properties:
```
importONNXLayers displays a warning and inserts placeholder layers for the output layers.

Plot the layer graph using plot.

plot(layers)

The layer graph has two output layers: Output_fc_1_Flatten and Output_sm_1. These two layers are the placeholders for the outputs. You can check the placeholder layers by viewing the Layers property or by using the findPlaceholderLayers function.

layers.Layers

ans =
19x1 Layer array with layers:

1 'Input_input' Image Input 28x28x1 images
2 'conv_1' Convolution 16 5x5x1 convolutions with stride [1 1] and padding [2 2 2 2]
3 'BN_1' Batch Normalization Batch normalization with 16 channels
4 'relu_1' ReLU ReLU
5 'conv_2' Convolution 32 1x1x16 convolutions with stride [2 2]
6 'conv_3' Convolution 32 3x3x16 convolutions with stride [2 2]
placeholderLayers = findPlaceholderLayers(layers)

placeholderLayers =
 2x1 PlaceholderOutputLayer array with layers:
 1 'Output_sm_1' PLACEHOLDER LAYER Placeholder for 'Output' ONNX operator
 2 'Output_fc_1_Flatten' PLACEHOLDER LAYER Placeholder for 'Output' ONNX operator

Create output layers to replace the placeholder layers. First, create a classification layer with the name Output_sm_1. Specify the classes of the output layer as 0, 1, ..., 9. If you do not specify the classes, then the software automatically sets them to 1, 2, ..., N, where N is the number of classes.

output1 = classificationLayer('Name','Output_sm_1','Classes',string(0:9));

Create a regression layer with the name Output_fc_1_Flatten.

output2 = regressionLayer('Name','Output_fc_1_Flatten');

Replace the placeholder layers with output1 and output2 using replaceLayer.

layers = replaceLayer(layers,'Output_sm_1',output1);
layers = replaceLayer(layers,'Output_fc_1_Flatten',output2);

Display the Layers property of the layer graph to confirm the replacement.

layers.Layers

ans =
 19x1 Layer array with layers:
 1 'Input_input' Image Input 28x28x1 images
 2 'conv_1' Convolution 16 5x5x1 convolutions with stride [1 1 1] and padding [2 2 2 2]
 3 'BN_1' Batch Normalization Batch normalization with 16 channels
 4 'relu_1' ReLU ReLU
 5 'conv_2' Convolution 32 1x1x16 convolutions with stride [2 2 2] and padding [0 0 0 0]
 6 'conv_3' Convolution 32 3x3x16 convolutions with stride [2 2 2] and padding [1 1 1 1]
 7 'BN_2' Batch Normalization Batch normalization with 32 channels
 8 'relu_2' ReLU ReLU
 9 'conv_4' Convolution 32 3x3x32 convolutions with stride [1 1 1] and padding [1 1 1 1]
 10 'BN_3' Batch Normalization Batch normalization with 32 channels
 11 'relu_3' ReLU ReLU
 12 'plus_1' Addition Element-wise addition of 2 inputs
 13 'fc_1' Convolution 1 14x14x32 convolutions with stride [1 1 1] and padding [0 0 0 0]
 14 'fc_2' Convolution 10 14x14x32 convolutions with stride [1 1 1 1] and padding [0 0 0 0]
 15 'sm_1_Flatten' ONNX Flatten Flatten activations into 1-D assuming C-style (row-major) order
 16 'sm_1' Softmax softmax
 17 'Output_sm_1' PLACEHOLDER LAYER Placeholder for 'Output' ONNX operator
 18 'fc_1_Flatten' ONNX Flatten Flatten activations into 1-D assuming C-style (row-major) order
 19 'Output_fc_1_Flatten' PLACEHOLDER LAYER Placeholder for 'Output' ONNX operator
Assemble the layer graph using `assembleNetwork`. The function returns a `DAGNetwork` object that is ready to use for prediction.

```matlab
assembledNet = assembleNetwork(layers)
```

`assembledNet` = `DAGNetwork` with properties:
- `Layers`: [19×1 `nnet.cnn.layer.Layer`]
- `Connections`: [19×2 `table`]
- `InputNames`: {'Input_input'}
- `OutputNames`: {'Output_sm_1' 'Output_fc_1_Flatten'}

Input Arguments

`modelfile` — Name of ONNX model file
character vector | string scalar

Name of ONNX model file containing the network, specified as a character vector or a string scalar. The file must be in the current folder, in a folder on the MATLAB path, or you must include a full or relative path to the file.

Example: 'cifarResNet.onnx'

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: importONNXLayers(modelfile,'OutputLayerType','classification') imports the network layers from `modelfile` and adds an output layer for a classification output layer at the end of the imported layers.

`OutputLayerType` — Type of output layer
'classification' | 'regression' | 'pixelclassification'

Type of the output layer that the function appends to the end of the imported network architecture, specified as 'classification', 'regression', or 'pixelclassification'. Using 'pixelclassification' appends a `pixelClassificationLayer` object (requires Computer Vision Toolbox).

If a network in `modelfile` has multiple outputs, then you cannot specify the output layer types using this argument. `importONNXLayers` inserts placeholder layers for the outputs. After importing, you can find and replace the placeholder layers by using `findPlaceholderLayers` and `replaceLayer`, respectively.

Example: 'OutputLayerType','regression'
ImportWeights — Indicator to import weights

false (default) | true

Indicator to import weights as well as the network architecture, specified as either false or true.

Example: 'ImportWeights',true

Data Types: logical

Output Arguments

layers — Network architecture

LayerGraph object

Network architecture, returned as a LayerGraph object.

Limitations

- `importONNXLayers` supports ONNX versions as follows:
 - `importONNXLayers` supports ONNX intermediate representation version 6.
 - `importONNXLayers` fully supports ONNX operator sets 6, 7, 8, and 9.
 - `importONNXLayers` offers limited support for ONNX operator sets 10 and 11.

Note If you import an exported network, layers of the reimported network might differ from the original network and might not be supported.

Tips

- If the ONNX network contains a layer that Deep Learning Toolbox Converter for ONNX Model Format does not support, then `importONNXLayers` inserts a placeholder layer in place of the unsupported layer. To find the names and indices of the unsupported layers in the network, use the `findPlaceholderLayers` function. You then can replace a placeholder layer with a new layer that you define. To replace a layer, use `replaceLayer`.
- `importONNXLayers` supports the following ONNX layers, with some limitations:

<table>
<thead>
<tr>
<th>ONNX Layer</th>
<th>Deep Learning Toolbox Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td><code>additionLayer</code> or <code>nnet.onnx.layer.ElementwiseAffineLayer</code></td>
</tr>
<tr>
<td>AveragePool</td>
<td><code>averagePooling2dLayer</code></td>
</tr>
<tr>
<td>BatchNormalization</td>
<td><code>batchNormalizationLayer</code></td>
</tr>
<tr>
<td>Clip</td>
<td><code>nnet.onnx.layer.ClipLayer</code></td>
</tr>
<tr>
<td>Concat</td>
<td><code>concatenationLayer</code></td>
</tr>
<tr>
<td>Constant</td>
<td>None (Imported as weights)</td>
</tr>
<tr>
<td>Conv</td>
<td><code>convolution2dLayer</code></td>
</tr>
<tr>
<td>ConvTranspose</td>
<td><code>transposedConv2dLayer</code></td>
</tr>
<tr>
<td>ONNX Layer</td>
<td>Deep Learning Toolbox Layer</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>Div</td>
<td>nnet.onnx.layer.ElementwiseAffineLayer</td>
</tr>
<tr>
<td>Dropout</td>
<td>dropoutLayer</td>
</tr>
<tr>
<td>Flatten</td>
<td>nnet.onnx.layer.FlattenLayer or nnet.onnx.layer.Flatten3dLayer</td>
</tr>
<tr>
<td>Elu</td>
<td>eluLayer</td>
</tr>
<tr>
<td>Gemm</td>
<td>fullyConnectedLayer if ONNX network is recurrent, otherwise nnet.onnx.layer.FlattenLayer followed by convolution2dLayer</td>
</tr>
<tr>
<td>GlobalAveragePool</td>
<td>globalAveragePooling2dLayer</td>
</tr>
<tr>
<td>GlobalMaxPool</td>
<td>globalMaxPooling2dLayer</td>
</tr>
<tr>
<td>GRU</td>
<td>gruLayer</td>
</tr>
<tr>
<td>Identity</td>
<td>nnet.onnx.layer.IdentityLayer</td>
</tr>
<tr>
<td>ImageScaler</td>
<td>nnet.onnx.layer.ElementwiseAffineLayer</td>
</tr>
<tr>
<td>InstanceNormalization</td>
<td>groupNormalizationLayer with numGroups specified as "channel-wise"</td>
</tr>
<tr>
<td>LeakyRelu</td>
<td>leakyReluLayer</td>
</tr>
<tr>
<td>LRN</td>
<td>CrossChannelNormalizationLayer</td>
</tr>
<tr>
<td>LSTM</td>
<td>lstmLayer or bilstmLayer</td>
</tr>
<tr>
<td>MatMul</td>
<td>fullyConnectedLayer if ONNX network is recurrent, otherwise convolution2dLayer</td>
</tr>
<tr>
<td>MaxPool</td>
<td>maxPooling2dLayer</td>
</tr>
<tr>
<td>Mul</td>
<td>multiplicationLayer</td>
</tr>
<tr>
<td>PRelu</td>
<td>nnet.onnx.layer.PReluLayer</td>
</tr>
<tr>
<td>Relu</td>
<td>reluLayer or clippedReluLayer</td>
</tr>
<tr>
<td>Reshape</td>
<td>nnet.onnx.layer.FlattenLayer</td>
</tr>
<tr>
<td>Sigmoid</td>
<td>sigmoidLayer</td>
</tr>
<tr>
<td>Softmax</td>
<td>softmaxLayer</td>
</tr>
<tr>
<td>Sub</td>
<td>nnet.onnx.layer.ElementwiseAffineLayer</td>
</tr>
<tr>
<td>Sum</td>
<td>additionLayer</td>
</tr>
<tr>
<td>Tanh</td>
<td>tanhLayer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ONNX Layer</th>
<th>Computer Vision Toolbox Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpaceToDepth</td>
<td>spaceToDepthLayer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ONNX Layer</th>
<th>Image Processing Toolbox Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resize</td>
<td>resize2dLayer or resize3dLayer</td>
</tr>
</tbody>
</table>
• The workflow for assembling layers imported from ONNX into a network ready for prediction is the same as assembling layers imported from Keras. For an example of this workflow, see “Assemble Network from Pretrained Keras Layers”.

• You can import an ONNX network with multiple inputs and multiple outputs. If the network has multiple inputs and a single output, use importONNXNetwork. If the network has multiple outputs, use importONNXLayers. The importONNXLayers function inserts placeholder layers for the outputs. After importing, you can find and replace the placeholder layers by using findPlaceholderLayers and replaceLayer, respectively. For an example, see “Import ONNX Network with Multiple Outputs” on page 1-632. To learn about a deep learning network with multiple inputs and multiple outputs, see “Multiple-Input and Multiple-Output Networks”.

• To use a pretrained network for prediction or transfer learning on new images, you must preprocess your images in the same way the images that were used to train the imported model were preprocessed. Most common preprocessing steps are resizing images, subtracting image average values, and converting the images from BGR images to RGB.

 • To resize images, use imresize. For example, imresize(image,[227,227,3]).
 • To convert images from RGB to BGR format, use flip. For example, flip(image,3).

For more information on preprocessing images for training and prediction, see “Preprocess Images for Deep Learning”.

References

See Also

assembleNetwork | exportONNXNetwork | findPlaceholderLayers | importCaffeLayers | importCaffeNetwork | importKerasLayers | importKerasNetwork | importONNXFunction | importONNXNetwork | replaceLayer

Topics

“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“List of Deep Learning Layers”
“Define Custom Deep Learning Layers”
“Define Custom Deep Learning Layer with Learnable Parameters”
“Check Custom Layer Validity”
“Assemble Network from Pretrained Keras Layers”

Introduced in R2018a
importONNXNetwork

Import pretrained ONNX network

Syntax

```matlab
net = importONNXNetwork(modelfile,'OutputLayerType',outputtype)
net = importONNXNetwork(modelfile,'OutputLayerType',outputtype,'Classes',classes)
```

Description

```matlab
net = importONNXNetwork(modelfile,'OutputLayerType',outputtype) imports a pretrained network from the ONNX (Open Neural Network Exchange) file modelfile and specifies the output layer type of the imported network.
```

This function requires the Deep Learning Toolbox Converter for ONNX Model Format support package. If this support package is not installed, then the function provides a download link.

```matlab
net = importONNXNetwork(modelfile,'OutputLayerType',outputtype,'Classes',classes) additionally specifies the classes for a classification network.
```

Examples

Download and Install Deep Learning Toolbox Converter for ONNX Model Format

Download and install the Deep Learning Toolbox Converter for ONNX Model Format support package.

Type `importONNXNetwork` at the command line.

```matlab
importONNXNetwork
```

If Deep Learning Toolbox Converter for ONNX Model Format is not installed, then the function provides a link to the required support package in the Add-On Explorer. To install the support package, click the link, and then click **Install**. Check that the installation is successful by importing the network from the model file 'cifarResNet.onnx' at the command line. If the support package is installed, then the function returns a `DAGNetwork` object.

```matlab
modelfile = 'cifarResNet.onnx';
classes = ["airplane" "automobile" "bird" "cat" "deer" "dog" "frog" "horse" "ship" "truck"];
net = importONNXNetwork(modelfile,'OutputLayerType','classification','Classes',classes)
```

```matlab
net = DAGNetwork with properties:
    Layers: [77x1 nnet.cnn.layer.Layer]
    Connections: [85x2 table]
```
Import ONNX Network

Import a residual neural network trained on the CIFAR-10 data set. Specify the file containing the ONNX network, its output type, and its output classes.

```matlab
modelfile = 'cifarResNet.onnx';
classes = ['airplane' 'automobile' 'bird' 'cat' 'deer' 'dog' 'frog' 'horse' 'ship' 'truck'];
net = importONNXNetwork(modelfile,'OutputLayerType','classification','Classes',classes)
```

```matlab
t = DAGNetwork with properties:
    Layers: [77×1 nnet.cnn.layer.Layer]
    Connections: [85×2 table]
    InputNames: {'Input_input'}
    OutputNames: {'ClassificationLayer_softmax'}
```

Analyze the imported network.

```matlab
analyzeNetwork(net)
```
Input Arguments

modelfile — Name of ONNX model file
character vector | string scalar

Name of ONNX model file containing the network, specified as a character vector or a string scalar. The file must be in the current folder, in a folder on the MATLAB path, or you must include a full or relative path to the file.

Example: 'cifarResNet.onnx'

outputtype — Type of output layer
'classification' | 'regression' | 'pixelclassification'

Type of the output layer that the function appends to the end of the imported network, specified as 'classification', 'regression', or 'pixelclassification'. Using 'pixelclassification' appends a pixelClassificationLayer object (requires Computer Vision Toolbox).

If a network in modelfile has multiple outputs, then you cannot specify the output layer types using this argument. Use importONNXLayers instead. importONNXLayers inserts placeholder layers for the outputs. After importing, you can find and replace the placeholder layers by using findPlaceholderLayers and replaceLayer, respectively.

Example: 'regression'

classes — Classes of the output layer
'auto' (default) | categorical vector | string array | cell array of character vectors

Classes of the output layer, specified as a categorical vector, string array, cell array of character vectors, or 'auto'. If Classes is 'auto', then the software sets the classes to categorical(1:N), where N is the number of classes. If you specify a string array or cell array of character vectors str, then the software sets the classes of the output layer to categorical(str,str).

Data Types: char | categorical | string | cell

Output Arguments

net — Pretrained network
DAGNetwork object

Pretrained network, returned as DAGNetwork object.

Limitations

- importONNXNetwork supports ONNX versions as follows:
 - importONNXNetwork supports ONNX intermediate representation version 6.
 - importONNXNetwork fully supports ONNX operator sets 6, 7, 8, and 9.
 - importONNXNetwork offers limited support for ONNX operator sets 10 and 11.
Note If you import an exported network, layers of the reimported network might differ from the original network and might not be supported.

Tips

- If the ONNX network contains a layer that Deep Learning Toolbox Converter for ONNX Model Format does not support, then the function returns an error message. In this case, you can still use `importONNXLayers` to import the network architecture and weights.
- `importONNXNetwork` supports the following ONNX layers, with some limitations:

<table>
<thead>
<tr>
<th>ONNX Layer</th>
<th>Deep Learning Toolbox Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>additionLayer or nnet.onnx.layer.ElementwiseAffineLayer</td>
</tr>
<tr>
<td>AveragePool</td>
<td>averagePooling2dLayer</td>
</tr>
<tr>
<td>BatchNormalization</td>
<td>batchNormalizationLayer</td>
</tr>
<tr>
<td>Clip</td>
<td>nnet.onnx.layer.ClipLayer</td>
</tr>
<tr>
<td>Concat</td>
<td>concatenationLayer</td>
</tr>
<tr>
<td>Constant</td>
<td>None (Imported as weights)</td>
</tr>
<tr>
<td>Conv</td>
<td>convolution2dLayer</td>
</tr>
<tr>
<td>ConvTranspose</td>
<td>transposedConv2dLayer</td>
</tr>
<tr>
<td>Div</td>
<td>nnet.onnx.layer.ElementwiseAffineLayer</td>
</tr>
<tr>
<td>Dropout</td>
<td>dropoutLayer</td>
</tr>
<tr>
<td>Flatten</td>
<td>nnet.onnx.layer.FlattenLayer or nnet.onnx.layer.Flatten3dLayer</td>
</tr>
<tr>
<td>Elu</td>
<td>eluLayer</td>
</tr>
<tr>
<td>Gemm</td>
<td>fullyConnectedLayer if ONNX network is recurrent, otherwise nnet.onnx.layer.FlattenLayer followed by convolution2dLayer</td>
</tr>
<tr>
<td>GlobalAveragePool</td>
<td>globalAveragePooling2dLayer</td>
</tr>
<tr>
<td>GlobalMaxPool</td>
<td>globalMaxPooling2dLayer</td>
</tr>
<tr>
<td>GRU</td>
<td>gruLayer</td>
</tr>
<tr>
<td>Identity</td>
<td>nnet.onnx.layer.IdentityLayer</td>
</tr>
<tr>
<td>ImageScaler</td>
<td>nnet.onnx.layer.ElementwiseAffineLayer</td>
</tr>
<tr>
<td>InstanceNormalization</td>
<td>groupNormalizationLayer with numGroups specified as "channel-wise"</td>
</tr>
<tr>
<td>LeakyRelu</td>
<td>leakyReluLayer</td>
</tr>
<tr>
<td>LRN</td>
<td>CrossChannelNormalizationLayer</td>
</tr>
<tr>
<td>LSTM</td>
<td>lstmLayer or bilstmLayer</td>
</tr>
</tbody>
</table>
ONNX Layer

<table>
<thead>
<tr>
<th>ONNX Layer</th>
<th>Deep Learning Toolbox Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MatMul</td>
<td>fullyConnectedLayer if ONNX network is recurrent, otherwise convolution2dLayer</td>
</tr>
<tr>
<td>MaxPool</td>
<td>maxPooling2dLayer</td>
</tr>
<tr>
<td>Mul</td>
<td>multiplicationLayer</td>
</tr>
<tr>
<td>PRelu</td>
<td>nnet.onnx.layer.PReluLayer</td>
</tr>
<tr>
<td>Relu</td>
<td>reluLayer or clippedReluLayer</td>
</tr>
<tr>
<td>Reshape</td>
<td>nnet.onnx.layer.FlattenLayer</td>
</tr>
<tr>
<td>Sigmoid</td>
<td>sigmoidLayer</td>
</tr>
<tr>
<td>Softmax</td>
<td>softmaxLayer</td>
</tr>
<tr>
<td>Sub</td>
<td>nnet.onnx.layer.ElementwiseAffineLayer</td>
</tr>
<tr>
<td>Sum</td>
<td>additionLayer</td>
</tr>
<tr>
<td>Tanh</td>
<td>tanhLayer</td>
</tr>
</tbody>
</table>

ONNX Layer

<table>
<thead>
<tr>
<th>ONNX Layer</th>
<th>Computer Vision Toolbox Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpaceToDepth</td>
<td>spaceToDepthLayer</td>
</tr>
</tbody>
</table>

ONNX Layer

<table>
<thead>
<tr>
<th>ONNX Layer</th>
<th>Image Processing Toolbox</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resize</td>
<td>resize2dLayer or resize3dLayer</td>
</tr>
<tr>
<td>Upsample</td>
<td>resize2dLayer or resize3dLayer</td>
</tr>
</tbody>
</table>

- You can import an ONNX network with multiple inputs and a single output using `importONNXNetwork`. If the network has multiple outputs, use `importONNXLayers`. The `importONNXLayers` function inserts placeholder layers for the outputs. After importing, you can find and replace the placeholder layers by using `findPlaceholderLayers` and `replaceLayer`, respectively. For an example, see “Import ONNX Network with Multiple Outputs” on page 1-632. To learn about a deep learning network with multiple inputs and multiple outputs, see “Multiple-Input and Multiple-Output Networks”.

- To use a pretrained network for prediction or transfer learning on new images, you must preprocess your images in the same way the images that were used to train the imported model were preprocessed. Most common preprocessing steps are resizing images, subtracting image average values, and converting the images from BGR images to RGB.

 - To resize images, use `imresize`. For example, `imresize(image,[227,227,3])`.
 - To convert images from RGB to BGR format, use `flip`. For example, `flip(image,3)`.

For more information on preprocessing images for training and prediction, see “Preprocess Images for Deep Learning”.

Compatibility Considerations

- **ClassNames** option will be removed

 Not recommended starting in R2018b
'ClassNames' will be removed. Use 'Classes' instead. To update your code, replace all instances of 'ClassNames' with 'Classes'. There are some differences between the corresponding properties in classification output layers that require additional updates to your code.

The ClassNames property of a classification output layer is a cell array of character vectors. The Classes property is a categorical array. To use the value of Classes with functions that require cell array input, convert the classes using the cellstr function.

References

See Also

exportONNXNetwork | importCaffeLayers | importCaffeNetwork | importKerasLayers | importKerasNetwork | importONNXFunction | importONNXLayers

Topics

“Preprocess Images for Deep Learning”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”

Introduced in R2018a
inceptionresnetv2

Pretrained Inception-ResNet-v2 convolutional neural network

Syntax

net = inceptionresnetv2

Description

Inception-ResNet-v2 is a convolutional neural network that is trained on more than a million images from the ImageNet database [1]. The network is 164 layers deep and can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many animals. As a result, the network has learned rich feature representations for a wide range of images. The network has an image input size of 299-by-299. For more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the Inception-ResNet-v2 network. Follow the steps of “Classify Image Using GoogLeNet” and replace GoogLeNet with Inception-ResNet-v2.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network to Classify New Images” and load Inception-ResNet-v2 instead of GoogLeNet.

net = inceptionresnetv2 returns a pretrained Inception-ResNet-v2 network.

This function requires the Deep Learning Toolbox Model for Inception-ResNet-v2 Network support package. If this support package is not installed, then the function provides a download link.

Examples

Load Inception-ResNet-v2 Network

Type inceptionresnetv2 at the command line.

inceptionresnetv2

If the Deep Learning Toolbox Model for Inception-ResNet-v2 Network support package is not installed, then the function provides a link to the required support package in the Add-On Explorer. To install the support package, click the link, and then click Install. Check that the installation is successful by typing inceptionresnetv2 at the command line. If the required support package is installed, then the function returns a DAGNetwork object.

net = inceptionresnetv2

net =

DAGNetwork with properties:
Layers: [825x1 nnet.cnn.layer.Layer]
Connections: [922x2 table]

Output Arguments

net — Pretrained Inception-ResNet-v2 convolutional neural network

DAGNetwork object

Pretrained Inception-ResNet-v2 convolutional neural network, returned as a DAGNetwork object.

References

[3] https://keras.io/api/applications/inceptionresnetv2/

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax `net = inceptionresnetv2` or by passing the `inceptionresnetv2` function to `coder.loadDeepLearningNetwork`. For example:

```matlab
net = coder.loadDeepLearningNetwork('inceptionresnetv2')
```

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

GPU Code Generation

Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

For code generation, you can load the network by using the syntax `net = inceptionresnetv2` or by passing the `inceptionresnetv2` function to `coder.loadDeepLearningNetwork`. For example:

```matlab
net = coder.loadDeepLearningNetwork('inceptionresnetv2')
```

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).

See Also

DAGNetwork | densenet201 | googlenet | importKerasLayers | importKerasNetwork | inceptionv3 | layerGraph | plot | resnet101 | resnet18 | resnet50 | squeezenet | trainNetwork | vgg16 | vgg19

Topics

“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

Introduced in R2017b
inceptionv3

Inception-v3 convolutional neural network

Syntax

net = inceptionv3
net = inceptionv3('Weights','imagenet')
lgraph = inceptionv3('Weights','none')

Description

Inception-v3 is a convolutional neural network that is 48 layers deep. You can load a pretrained version of the network trained on more than a million images from the ImageNet database [1]. The pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many animals. As a result, the network has learned rich feature representations for a wide range of images. The network has an image input size of 299-by-299. For more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the Inception-v3 model. Follow the steps of “Classify Image Using GoogLeNet” and replace GoogLeNet with Inception-v3.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network to Classify New Images” and load Inception-v3 instead of GoogLeNet.

net = inceptionv3 returns an Inception-v3 network trained on the ImageNet database.

This function requires the Deep Learning Toolbox Model for Inception-v3 Network support package. If this support package is not installed, then the function provides a download link.

net = inceptionv3('Weights','imagenet') returns an Inception-v3 network trained on the ImageNet database. This syntax is equivalent to net = inceptionv3.

lgraph = inceptionv3('Weights','none') returns the untrained Inception-v3 network architecture. The untrained model does not require the support package.

Examples

Download Inception-v3 Support Package

Download and install the Deep Learning Toolbox Model for Inception-v3 Network support package.

Type inceptionv3 at the command line.

inceptionv3

If the Deep Learning Toolbox Model for Inception-v3 Network support package is not installed, then the function provides a link to the required support package in the Add-On Explorer. To install the support package, click the link, and then click Install. Check that the installation is successful by
typing `inceptionv3` at the command line. If the required support package is installed, then the function returns a `DAGNetwork` object.

```matlab
inceptionv3
ans =
    DAGNetwork with properties:
        Layers: [316×1 nnet.cnn.layer.Layer]
        Connections: [350×2 table]
```

Output Arguments

- **net** — Pretrained Inception-v3 convolutional neural network
 DAGNetwork object
 Pretrained Inception-v3 convolutional neural network, returned as a `DAGNetwork` object.

- **lgraph** — Untrained Inception-v3 convolutional neural network architecture
 LayerGraph object
 Untrained Inception-v3 convolutional neural network architecture, returned as a `LayerGraph` object.

References

[3] https://keras.io/api/applications/inceptionv3/

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax `net = inceptionv3` or by passing the `inceptionv3` function to `coder.loadDeepLearningNetwork`. For example: `net = coder.loadDeepLearningNetwork('inceptionv3')`

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax `inceptionv3('Weights','none')` is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:
For code generation, you can load the network by using the syntax `net = inceptionv3` or by passing the `inceptionv3` function to `coder.loadDeepLearningNetwork`. For example: `net = coder.loadDeepLearningNetwork('inceptionv3')`.

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).

- The syntax `inceptionv3('Weights','none')` is not supported for GPU code generation.

See Also

DAGNetwork | densenet201 | googlenet | inceptionresnetv2 | layerGraph | plot | resnet18 | resnet50 | squeezenet | trainNetwork | vgg16 | vgg19

Topics

“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

Introduced in R2017b
isdlarray

Determine whether input is dlarray

Syntax
TF = isdlarray(X)

Description
TF = isdlarray(X) returns logical 1 (true) if X is a dlarray, and logical 0 (false) otherwise. You can use this function with an if statement to avoid executing code that expects dlarray input.

Examples

Determine if Array is dlarray
Create an array of random numbers.
X = rand(3,3);
Create a dlarray from X.
dlX = dlarray(X);
Use the function isdlarray to verify that dlX is a dlarray
isdlarray(dlX)
ans =
 1
Verify that X is not a dlarray
isdlarray(X)
ans =
 0

Input Arguments
X — Input variable
workspace variable
Input variable, specified as a workspace variable. X can be any data type.

Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | extractdata

Topics
“Automatic Differentiation Background”
“Use Automatic Differentiation In Deep Learning Toolbox”
“List of Functions with dlarray Support”

Introduced in R2020b
Layer

Network layer for deep learning

Description

Layers that define the architecture of neural networks for deep learning.

Creation

For a list of deep learning layers in MATLAB, see “List of Deep Learning Layers”. To specify the architecture of a neural network with all layers connected sequentially, create an array of layers directly. To specify the architecture of a network where layers can have multiple inputs or outputs, use a LayerGraph object.

Alternatively, you can import layers from Caffe, Keras, and ONNX using importCaffeLayers, importKerasLayers, and importONNXLayers respectively.

To learn how to create your own custom layers, see “Define Custom Deep Learning Layers”.

Object Functions

trainNetwork Train neural network for deep learning

Examples

Construct Network Architecture

Define a convolutional neural network architecture for classification with one convolutional layer, a ReLU layer, and a fully connected layer.

```matlab
layers = [ ... 
    imageInputLayer([28 28 3])
    convolution2dLayer([5 5],10)
    reluLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]
```

layers = 6x1 Layer array with layers:

1 ' ' Image Input 28x28x3 images with 'zerocenter' normalization
2 ' ' Convolution 10 5x5 convolutions with stride [1 1] and padding [0 0 0 0]
3 ' ' ReLU ReLU
4 ' ' Fully Connected 10 fully connected layer
5 ' ' Softmax softmax
6 ' ' Classification Output crossentropyex

layers is a Layer object.
Alternatively, you can create the layers individually and then concatenate them.

```matlab
input = imageInputLayer([28 28 3]);
conv = convolution2dLayer([5 5],10);
relu = reluLayer;
fc = fullyConnectedLayer(10);
sm = softmaxLayer;
co = classificationLayer;

layers = [ ...
    input
    conv
    relu
    fc
    sm
    co];

layers = 6x1 Layer array with layers:
  1   ''   Image Input             28x28x3 images with 'zerocenter' normalization
  2   ''   Convolution             10 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
  3   ''   ReLU                    ReLU
  4   ''   Fully Connected         10 fully connected layer
  5   ''   Softmax                 softmax
  6   ''   Classification Output   crossentropyex
```

Access Layers and Properties in Layer Array

Define a convolutional neural network architecture for classification with one convolutional layer, a ReLU layer, and a fully connected layer:

```matlab
layers = [ ...
    imageInputLayer([28 28 3])
    convolution2dLayer([5 5],10)
    reluLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];
```

Display the image input layer by selecting the first layer.

```matlab
layers(1)
ans =
    ImageInputLayer with properties:
        Name: ''
        InputSize: [28 28 3]

Hyperparameters
    DataAugmentation: 'none'
    Normalization: 'zerocenter'
    NormalizationDimension: 'auto'
    Mean: []
```
Create Simple DAG Network

Create a simple directed acyclic graph (DAG) network for deep learning. Train the network to classify images of digits. The simple network in this example consists of:

- A main branch with layers connected sequentially.
- A shortcut connection containing a single 1-by-1 convolutional layer. Shortcut connections enable the parameter gradients to flow more easily from the output layer to the earlier layers of the network.

Create the main branch of the network as a layer array. The addition layer sums multiple inputs element-wise. Specify the number of inputs for the addition layer to sum. All layers must have names and all names must be unique.

```matlab
layers = [
    imageInputLayer([28 28 1],'Name','input')
    convolution2dLayer(5,16,'Padding','same','Name','conv_1')
    batchNormalizationLayer('Name','BN_1')
    reluLayer('Name','relu_1')

    convolution2dLayer(3,32,'Padding','same','Stride',2,'Name','conv_2')
    batchNormalizationLayer('Name','BN_2')
    reluLayer('Name','relu_2')

    convolution2dLayer(3,32,'Padding','same','Name','conv_3')
    batchNormalizationLayer('Name','BN_3')
    reluLayer('Name','relu_3')

    additionLayer(2,'Name','add')

    averagePooling2dLayer(2,'Stride',2,'Name','avpool')
    fullyConnectedLayer(10,'Name','fc')
    softmaxLayer('Name','softmax')
    classificationLayer('Name','classOutput')];
```
Create a layer graph from the layer array. `layerGraph` connects all the layers in `layers` sequentially. Plot the layer graph.

```matlab
layerGraph = layerGraph(layers);
figure
plot(lgraph)
```

Create the 1-by-1 convolutional layer and add it to the layer graph. Specify the number of convolutional filters and the stride so that the activation size matches the activation size of the `'relu_3'` layer. This arrangement enables the addition layer to add the outputs of the `'skipConv'` and `'relu_3'` layers. To check that the layer is in the graph, plot the layer graph.

```matlab
skipConv = convolution2dLayer(1,32,'Stride',2,'Name','skipConv');
lgraph = addLayers(lgraph,skipConv);
figure
plot(lgraph)
```
Create the shortcut connection from the 'relu_1' layer to the 'add' layer. Because you specified two as the number of inputs to the addition layer when you created it, the layer has two inputs named 'in1' and 'in2'. The 'relu_3' layer is already connected to the 'in1' input. Connect the 'relu_1' layer to the 'skipConv' layer and the 'skipConv' layer to the 'in2' input of the 'add' layer. The addition layer now sums the outputs of the 'relu_3' and 'skipConv' layers. To check that the layers are connected correctly, plot the layer graph.

```matlab
lgraph = connectLayers(lgraph,'relu_1','skipConv');
lgraph = connectLayers(lgraph,'skipConv','add/in2');
figure
plot(lgraph);
```
Load the training and validation data, which consists of 28-by-28 grayscale images of digits.

```matlab
[XTrain,YTrain] = digitTrain4DArrayData;
[XValidation,YValidation] = digitTest4DArrayData;
```

Specify training options and train the network. `trainNetwork` validates the network using the validation data every `ValidationFrequency` iterations.

```matlab
options = trainingOptions('sgdm', ...
    'MaxEpochs',8, ...  
    'Shuffle','every-epoch', ...  
    'ValidationData',{XValidation,YValidation}, ...  
    'ValidationFrequency',30, ...  
    'Verbose',false, ...  
    'Plots','training-progress');
net = trainNetwork(XTrain,YTrain,lgraph,options);
```
Display the properties of the trained network. The network is a DAGNetwork object.

```matlab
def = DAGNetwork with properties:
    Layers: [16×1 nnet.cnn.layer.Layer]
    Connections: [16×2 table]
    InputNames: {'input'}
    OutputNames: {'classOutput'}
```

Classify the validation images and calculate the accuracy. The network is very accurate.

```matlab
YPredicted = classify(def,XValidation);
accuracy = mean(YPredicted == YValidation)
accuracy = 0.9930
```

See Also
Layer | LayerGraph | assembleNetwork | importCaffeLayers | importKerasLayers | trainNetwork

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”
“Define Custom Deep Learning Layers”

Introduced in R2016a
layerGraph

Graph of network layers for deep learning

Description

A layer graph specifies the architecture of a deep learning network with a more complex graph structure in which layers can have inputs from multiple layers and outputs to multiple layers. Networks with this structure are called directed acyclic graph (DAG) networks. After you create a layerGraph object, you can use the object functions to plot the graph and modify it by adding, removing, connecting, and disconnecting layers. To train the network, use the layer graph as the layers on page 1-0 input argument to trainNetwork.

Creation

Syntax

lgraph = layerGraph
lgraph = layerGraph(layers)
lgraph = layerGraph(dagNet)
lgraph = layerGraph(dlnet)

Description

lgraph = layerGraph creates an empty layer graph that contains no layers. You can add layers to the empty graph by using the addLayers function.

lgraph = layerGraph(layers) creates a layer graph from an array of network layers and sets the Layers property. The layers in lgraph are connected in the same sequential order as in layers. All layers must have unique, nonempty names.

lgraph = layerGraph(dagNet) extracts the layer graph of a DAGNetwork. For example, you can extract the layer graph of a pretrained network to perform transfer learning.

lgraph = layerGraph(dlnet) extracts the layer graph of a dlnetwork. Use this syntax to use a dlnetwork with the trainNetwork function or Deep Network Designer.

Input Arguments

dagNet — DAG network
DAGNetwork object

DAG network, specified as a DAGNetwork object.

dlnet — Network
dlnetwork object

Network for custom training loops, specified as a dlnetwork object.
For `dlnetwork` input, the software extracts the numeric data from the learnable parameters and converts it to single precision.

Properties

Layers — Network layers
Layer array

Network layers, specified as a `Layer` array.

Connections — Layer connections
table

Layer connections, specified as a table with two columns.

Each table row represents a connection in the layer graph. The first column, `Source`, specifies the source of each connection. The second column, `Destination`, specifies the destination of each connection. The connection sources and destinations are either layer names or have the form `'layerName/IOName'`, where `'IOName'` is the name of the layer input or output.

Data Types: `table`

InputNames — Network input layer names
cell array

Network input layer names, specified as a cell array of character vectors.

Data Types: `cell`

OutputNames — Network output layer names
cell array

Network output layer names, specified as a cell array of character vectors.

Data Types: `cell`

Object Functions

- `addLayers` Add layers to layer graph
- `removeLayers` Remove layers from layer graph
- `replaceLayer` Replace layer in layer graph
- `connectLayers` Connect layers in layer graph
- `disconnectLayers` Disconnect layers in layer graph
- `plot` Plot neural network layer graph

Examples

Add Layers to Layer Graph

Create an empty layer graph and an array of layers. Add the layers to the layer graph and plot the graph. `addLayers` connects the layers sequentially.

```matlab
lgraph = layerGraph;
```
layers = [imageInputLayer([32 32 3],'Name','input')
 convolution2dLayer(3,16,'Padding','same','Name','conv_1')
 batchNormalizationLayer('Name','BN_1')
 reluLayer('Name','relu_1')];

lgraph = addLayers(lgraph,layers);
figure
plot(lgraph)

Create Layer Graph from an Array of Layers

Create an array of layers.

layers = [
 imageInputLayer([28 28 1],'Name','input')
 convolution2dLayer(3,16,'Padding','same','Name','conv_1')
 batchNormalizationLayer('Name','BN_1')
 reluLayer('Name','relu_1')];

Create a layer graph from the layer array. layerGraph connects all the layers in layers sequentially. Plot the layer graph.
lgraph = layerGraph(layers);
figure
plot(lgraph)

Extract Layer Graph of DAG Network

Load a pretrained SqueezeNet network. You can use this trained network for classification and prediction.

net = squeezenet;

To modify the network structure, first extract the structure of the DAG network by using `layerGraph`. You can then use the object functions of `LayerGraph` to modify the network architecture.

lgraph = layerGraph(net)

lgraph =
LayerGraph with properties:

 Layers: [68x1 nnet.cnn.layer.Layer]
 Connections: [75x2 table]
 InputNames: {'data'}
 OutputNames: {'ClassificationLayer_predictions'}
Create Simple DAG Network

Create a simple directed acyclic graph (DAG) network for deep learning. Train the network to classify images of digits. The simple network in this example consists of:

- A main branch with layers connected sequentially.
- A shortcut connection containing a single 1-by-1 convolutional layer. Shortcut connections enable the parameter gradients to flow more easily from the output layer to the earlier layers of the network.

Create the main branch of the network as a layer array. The addition layer sums multiple inputs element-wise. Specify the number of inputs for the addition layer to sum. All layers must have names and all names must be unique.

```matlab
layers = [
    imageInputLayer([28 28 1],'Name','input')
    convolution2dLayer(5,16,'Padding','same','Name','conv_1')
    batchNormalizationLayer('Name','BN_1')
    reluLayer('Name','relu_1')
    convolution2dLayer(3,32,'Padding','same','Stride',2,'Name','conv_2')
    batchNormalizationLayer('Name','BN_2')
    reluLayer('Name','relu_2')
    convolution2dLayer(3,32,'Padding','same','Name','conv_3')
    batchNormalizationLayer('Name','BN_3')
    reluLayer('Name','relu_3')
    additionLayer(2,'Name','add')
    averagePooling2dLayer(2,'Stride',2,'Name','avpool')
    fullyConnectedLayer(10,'Name','fc')
    softmaxLayer('Name','softmax')
    classificationLayer('Name','classOutput')
];
```

Create a layer graph from the layer array. `layerGraph` connects all the layers in `layers` sequentially. Plot the layer graph.

```matlab
lgraph = layerGraph(layers);
figure
plot(lgraph)
```
Create the 1-by-1 convolutional layer and add it to the layer graph. Specify the number of convolutional filters and the stride so that the activation size matches the activation size of the 'relu_3' layer. This arrangement enables the addition layer to add the outputs of the 'skipConv' and 'relu_3' layers. To check that the layer is in the graph, plot the layer graph.

```matlab
skipConv = convolution2dLayer(1,32,'Stride',2,'Name','skipConv');
lgraph = addLayers(lgraph,skipConv);
figure
plot(lgraph)
```
Create the shortcut connection from the 'relu_1' layer to the 'add' layer. Because you specified two as the number of inputs to the addition layer when you created it, the layer has two inputs named 'in1' and 'in2'. The 'relu_3' layer is already connected to the 'in1' input. Connect the 'relu_1' layer to the 'skipConv' layer and the 'skipConv' layer to the 'in2' input of the 'add' layer. The addition layer now sums the outputs of the 'relu_3' and 'skipConv' layers. To check that the layers are connected correctly, plot the layer graph.

```markdown
lgraph = connectLayers(lgraph,'relu_1','skipConv');
lgraph = connectLayers(lgraph,'skipConv','add/in2');
figure
plot(lgraph);
```
Load the training and validation data, which consists of 28-by-28 grayscale images of digits.

[XTrain,YTrain] = digitTrain4DArrayData;
[XValidation,YValidation] = digitTest4DArrayData;

Specify training options and train the network. trainNetwork validates the network using the validation data every ValidationFrequency iterations.

options = trainingOptions('sgdm', ...
 'MaxEpochs',8, ...
 'Shuffle','every-epoch', ...
 'ValidationData',{XValidation,YValidation}, ...
 'ValidationFrequency',30, ...
 'Verbose',false, ...
 'Plots','training-progress');
net = trainNetwork(XTrain,YTrain,lgraph,options);
Display the properties of the trained network. The network is a DAGNetwork object.

```matlab
net = DAGNetwork with properties:
    Layers: [16×1 nnet.cnn.layer.Layer]
    Connections: [16×2 table]
    InputNames: {'input'}
    OutputNames: {'classOutput'}
```

Classify the validation images and calculate the accuracy. The network is very accurate.

```matlab
YPredicted = classify(net, XValidation);
accuracy = mean(YPredicted == YValidation)
accuracy = 0.9930
```

Tips

- Layer graphs cannot specify the architecture of long short-term memory (LSTM) networks. For more information on how to create an LSTM network, see “Long Short-Term Memory Networks”.

See Also

DAGNetwork | Deep Network Designer | addLayers | additionLayer | analyzeNetwork | assembleNetwork | connectLayers | depthConcatenationLayer | disconnectLayers | googlenet | inceptionresnetv2 | inceptionv3 | plot | removeLayers | replaceLayer | resnet101 | resnet18 | resnet50 | squeezenet | trainNetwork
Topics
“Create Simple Deep Learning Network for Classification”
“Train Residual Network for Image Classification”
“Train Deep Learning Network to Classify New Images”
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“List of Deep Learning Layers”

Introduced in R2017b
leakyrelu

Apply leaky rectified linear unit activation

Syntax

\[
dlY = \text{leakyrelu}(dlX)
dlY = \text{leakyrelu}(dlX, \text{scaleFactor})
\]

Description

The leaky rectified linear unit (ReLU) activation operation performs a nonlinear threshold operation, where any input value less than zero is multiplied by a fixed scale factor.

This operation is equivalent to

\[
f(x) = \begin{cases}
 x, & x \geq 0 \\
 \text{scale} \cdot x, & x < 0
\end{cases}
\]

Note This function applies the leaky ReLU operation to `dlarray` data. If you want to apply leaky ReLU activation within a `layerGraph` object or `Layer` array, use the following layer:

- `leakyReluLayer`

\[
dlY = \text{leakyrelu}(dlX)
\] computes the leaky ReLU activation of the input `dlX` by applying a threshold operation. All values in `dlX` less than zero are multiplied by a default scale factor of 0.01.

\[
dlY = \text{leakyrelu}(dlX, \text{scaleFactor})
\] specifies the scale factor for the leaky ReLU operation.

Examples

Apply Leaky ReLU Activation

Use the `leakyrelu` function to scale negative values in the input data.

Create the input data as a single observation of random values with a height and width of 12 and 32 channels.

```matlab
height = 12;
width = 12;
channels = 32;
observations = 1;

X = randn(height,width,channels,observations);
dlX = dlarray(X,'SSCB');
```

Compute the leaky ReLU activation using a scale factor of 0.05 for the negative values in the input.
dlY = leakyrelu(dlX,0.05);

Input Arguments

dlX — Input data

dlarray

Input data, specified as a `dlarray` with or without dimension labels.

Data Types: `single` | `double`

scaleFactor — Scale factor for negative inputs

0.01 (default) | numeric scalar

Scale factor for negative inputs, specified as a numeric scalar. The default value is 0.01.

Data Types: `single` | `double`

Output Arguments

dlY — Leaky ReLU activations

dlarray

Leaky ReLU activations, returned as a `dlarray`. The output `dlY` has the same underlying data type as the input `dlX`.

If the input data `dlX` is a formatted `dlarray`, `dlY` has the same dimension labels as `dlX`. If the input data is not a formatted `dlarray`, `dlY` is an unformatted `dlarray` with the same dimension order as the input data.

Extended Capabilities

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

- When the input argument `dlX` is a `gpuArray` or a `dlarray` with underlying data of type `gpuArray`, this function runs on the GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also

`batchnorm | dlarray | dlconv | dlfeval | dlgradient | relu`

Topics

“Define Custom Training Loops, Loss Functions, and Networks”

“Train Network Using Model Function”

Introduced in R2019b
leakyReluLayer

Leaky Rectified Linear Unit (ReLU) layer

Description

A leaky ReLU layer performs a threshold operation, where any input value less than zero is multiplied by a fixed scalar.

This operation is equivalent to:

\[f(x) = \begin{cases}
 x, & x \geq 0 \\
 scale \cdot x, & x < 0
\end{cases} \]

Creation

Syntax

layer = leakyReluLayer
layer = leakyReluLayer(scale)
layer = leakyReluLayer(___ ,'Name',Name)

Description

layer = leakyReluLayer returns a leaky ReLU layer.

layer = leakyReluLayer(scale) returns a leaky ReLU layer with a scalar multiplier for negative inputs equal to scale.

layer = leakyReluLayer(___ ,'Name',Name) returns a leaky ReLU layer and sets the optional Name property.

Properties

Leaky ReLU

Scale — Scalar multiplier for negative input values

0.01 (default) | numeric scalar

Scalar multiplier for negative input values, specified as a numeric scalar.

Example: 0.4

Layer

Name — Layer name

'' (default) | character vector | string scalar
Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to '', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.

Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Create Leaky ReLU Layer

Create a leaky ReLU layer with the name 'leaky1' and a scalar multiplier for negative inputs equal to 0.1.

```matlab
layer = leakyReluLayer(0.1,'Name','leaky1')
```

```
layer =  
LeakyReLULayer with properties:  
    Name: 'leaky1'  
    Hyperparameters  
    Scale: 0.1000
```

Include a leaky ReLU layer in a Layer array.

```matlab
layers = [  
    imageInputLayer([28 28 1])  
    convolution2dLayer(3,16)  
    leakyReluLayer(0.1,'Name','leaky1')
]
```
layers =
11x1 Layer array with layers:

1 '' Image Input 28x28x1 images with 'zerocenter' normalization
2 '' Convolution 16 3x3 convolutions with stride [1 1] and padding [0 0 0 0]
3 '' Batch Normalization Batch normalization
4 '' Leaky ReLU Leaky ReLU with scale 0.01
5 '' Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]
6 '' Convolution 32 3x3 convolutions with stride [1 1] and padding [0 0 0 0]
7 '' Batch Normalization Batch normalization
8 '' Leaky ReLU Leaky ReLU with scale 0.01
9 '' Fully Connected 10 fully connected layer
10 '' Softmax softmax
11 '' Classification Output crossentropyex

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
clippedReluLayer | reluLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2017b
LSTM

Long short-term memory

Syntax

dlY = lstm(dlX,H0,C0,weights,recurrentWeights,bias)
[dly,hiddenState,cellState] = lstm(dlX,H0,C0,weights,recurrentWeights,bias)
[___] = lstm(___,'DataFormat',FMT)

Description

The long short-term memory (LSTM) operation allows a network to learn long-term dependencies between time steps in time series and sequence data.

Note This function applies the deep learning LSTM operation to dlarray data. If you want to apply an LSTM operation within a layerGraph object or Layer array, use the following layer:

• lstmLayer

dlY = lstm(dlX,H0,C0,weights,recurrentWeights,bias) applies a long short-term memory (LSTM) calculation to input dlX using the initial hidden state H0, initial cell state C0, and parameters weights, recurrentWeights, and bias. The input dlX is a formatted dlarray with dimension labels. The output dlY is a formatted dlarray with the same dimension labels as dlX, except for any 'S' dimensions.

The lstm function updates the cell and hidden states using the hyperbolic tangent function (tanh) as the state activation function. The lstm function uses the sigmoid function given by \(\sigma(x) = (1 + e^{-x})^{-1} \) as the gate activation function.

[dly,hiddenState,cellState] = lstm(dlX,H0,C0,weights,recurrentWeights,bias) also returns the hidden state and cell state after the LSTM operation.

[___] = lstm(___,'DataFormat',FMT) also specifies the dimension format FMT when dlX is not a formatted dlarray. The output dlY is an unformatted dlarray with the same dimension order as dlX, except for any 'S' dimensions.

Examples

Apply LSTM Operation to Sequence Data

Perform an LSTM operation using three hidden units.

Create the input sequence data as 32 observations with 10 channels and a sequence length of 64

numFeatures = 10;
numObservations = 32;
sequenceLength = 64;

X = randn(numFeatures, numObservations, sequenceLength);
dlX = dlarray(X, 'CBT');

Create the initial hidden and cell states with three hidden units. Use the same initial hidden state and cell state for all observations.

numHiddenUnits = 3;
H0 = zeros(numHiddenUnits, 1);
C0 = zeros(numHiddenUnits, 1);

Create the learnable parameters for the LSTM operation.

weights = dlarray(randn(4*numHiddenUnits, numFeatures), 'CU');
recurrentWeights = dlarray(randn(4*numHiddenUnits, numHiddenUnits), 'CU');
bias = dlarray(randn(4*numHiddenUnits, 1), 'C');

Perform the LSTM calculation

[dY, hiddenState, cellState] = lstm(dlX, H0, C0, weights, recurrentWeights, bias);

View the size and dimensions of dY.

size(dY)
ans = 1x3
 3 32 64

dY.dims
ans =
 'CBT'

View the size of hiddenState and cellState.

size(hiddenState)
ans = 1x2
 3 32

size(cellState)
ans = 1x2
 3 32

Check that the output hiddenState is the same as the last time step of output dY.

if extractdata(dY(:,:,end)) == hiddenState
 disp("The hidden state and the last time step are equal.");
else
 disp("The hidden state and the last time step are not equal.")
end
The hidden state and the last time step are equal.

You can use the hidden state and cell state to keep track of the state of the LSTM operation and input further sequential data.

Input Arguments

dlX — Input data

dlarray | numeric array

Input data, specified as a dlarray with or without dimension labels or a numeric array. When dlX is not a formatted dlarray, you must specify the dimension label format using 'DataFormat',FMT. If dlX is a numeric array, at least one of H0, C0, weights, recurrentWeights, or bias must be a dlarray.

dlX must contain a sequence dimension labeled 'T'. If dlX has any spatial dimensions labeled 'S', they are flattened into the 'C' channel dimensions. If dlX has any unspecified dimensions labeled 'U', they must be singleton.

Data Types: single | double

H0 — Initial hidden state vector

dlarray | numeric array

Initial hidden state vector, specified as a dlarray with or without dimension labels or a numeric array.

If H0 is a formatted dlarray, it must contain a channel dimension labeled 'C' and optionally a batch dimension labeled 'B' with the same size as the 'B' dimension of dlX. If H0 does not have a 'B' dimension, the function uses the same hidden state vector for each observation in dlX.

The size of the 'C' dimension determines the number of hidden units. The size of the 'C' dimension of H0 must be equal to the size of the 'C' dimensions of C0.

If H0 is a not a formatted dlarray, the size of the first dimension determines the number of hidden units and must be the same size as the first dimension or the 'C' dimension of C0.

Data Types: single | double

C0 — Initial cell state vector

dlarray | numeric array

Initial cell state vector, specified as a dlarray with or without dimension labels or a numeric array.

If C0 is a formatted dlarray, it must contain a channel dimension labeled 'C' and optionally a batch dimension labeled 'B' with the same size as the 'B' dimension of dlX. If C0 does not have a 'B' dimension, the function uses the same cell state vector for each observation in dlX.

The size of the 'C' dimension determines the number of hidden units. The size of the 'C' dimension of C0 must be equal to the size of the 'C' dimensions of H0.

If C0 is a not a formatted dlarray, the size of the first dimension determines the number of hidden units and must be the same size as the first dimension or the 'C' dimension of H0.

Data Types: single | double
weights — Weights
dlarray | numeric array

Weights, specified as a dlarray with or without dimension labels or a numeric array.

Specify weights as a matrix of size $4 \times \text{NumHiddenUnits} \times \text{InputSize}$, where NumHiddenUnits is the size of the 'C' dimension of both C0 and H0, and InputSize is the size of the 'C' dimension of dlX multiplied by the size of each 'S' dimension of dlX, where present.

If weights is a formatted dlarray, it must contain a 'C' dimension of size $4 \times \text{NumHiddenUnits}$ and a 'U' dimension of size InputSize.

Data Types: single | double

recurrentWeights — Recurrent weights
dlarray | numeric array

Recurrent weights, specified as a dlarray with or without dimension labels or a numeric array.

Specify recurrentWeights as a matrix of size $4 \times \text{NumHiddenUnits} \times \text{NumHiddenUnits}$, where NumHiddenUnits is the size of the 'C' dimension of both C0 and H0.

If recurrentWeights is a formatted dlarray, it must contain a 'C' dimension of size $4 \times \text{NumHiddenUnits}$ and a 'U' dimension of size NumHiddenUnits.

Data Types: single | double

bias — Bias
dlarray vector | numeric vector

Bias, specified as a dlarray vector with or without dimension labels or a numeric vector.

Specify bias as a vector of length $4 \times \text{NumHiddenUnits}$, where NumHiddenUnits is the size of the 'C' dimension of both C0 and H0.

If bias is a formatted dlarray, the nonsingleton dimension must be labeled with 'C'.

Data Types: single | double

FMT — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of 'DataFormat' and a character array or string FMT that provides a label for each dimension of the data. Each character in FMT must be one of the following:

- 'S' — Spatial
- 'C' — Channel
- 'B' — Batch (for example, samples and observations)
- 'T' — Time (for example, sequences)
- 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at most once.

You must specify 'DataFormat', FMT when the input data dlX is not a formatted dlarray.
Example: ‘DataFormat’, ‘SSCB’
Data Types: char | string

Output Arguments

dLY — LSTM output
dlarray

LSTM output, returned as a dlarray. The output dlY has the same underlying data type as the input dlX.

If the input data dlX is a formatted dlarray, dlY has the same dimension labels as dlX, except for any 'S' dimensions. If the input data is not a formatted dlarray, dlY is an unformatted dlarray with the same dimension order as the input data.

The size of the 'C' dimension of dlY is the same as the number of hidden units, specified by the size of the 'C' dimension of H0 or C0.

hiddenState — Hidden state vector
dlarray | numeric array

Hidden state vector for each observation, returned as a dlarray or a numeric array with the same data type as H0.

If the input H0 is a formatted dlarray, then the output hiddenState is a formatted dlarray with the format 'CB'.

cellState — Cell state vector
dlarray | numeric array

Cell state vector for each observation, returned as a dlarray or a numeric array. cellState is returned with the same data type as C0.

If the input C0 is a formatted dlarray, the output cellState is returned as a formatted dlarray with the format 'CB'.

Limitations

• functionToLayerGraph does not support the lstm function. If you use functionToLayerGraph with a function that contains the lstm operation, the resulting LayerGraph contains placeholder layers.

More About

Long Short-Term Memory

The LSTM operation allows a network to learn long-term dependencies between time steps in time series and sequence data. For more information, see the definition of Long Short-Term Memory Layer on page 1-695 on the lstmLayer reference page.
Extended Capabilities

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
- When at least one of the following input arguments is a `gpuArray` or a `dlarray` with underlying data of type `gpuArray`, this function runs on the GPU:
 - `dlX`
 - `H0`
 - `C0`
 - `weights`
 - `recurrentWeights`
 - `bias`

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | dlfeval | dlgradient | fullyconnect | gru | softmax

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”
“Sequence-to-Sequence Translation Using Attention”
“Multilabel Text Classification Using Deep Learning”

Introduced in R2019b
lstmLayer

Long short-term memory (LSTM) layer

Description

An LSTM layer learns long-term dependencies between time steps in time series and sequence data. The layer performs additive interactions, which can help improve gradient flow over long sequences during training.

Creation

Syntax

- `layer = lstmLayer(numHiddenUnits)`
- `layer = lstmLayer(numHiddenUnits,Name,Value)`

Description

- `layer = lstmLayer(numHiddenUnits)` creates an LSTM layer and sets the `NumHiddenUnits` property.

- `layer = lstmLayer(numHiddenUnits,Name,Value)` sets additional `OutputMode`, “Activations” on page 1-683, “State” on page 1-683, “Parameters and Initialization” on page 1-684, “Learn Rate and Regularization” on page 1-686, and `Name` properties using one or more name-value pair arguments. You can specify multiple name-value pair arguments. Enclose each property name in quotes.

Properties

LSTM

- **NumHiddenUnits — Number of hidden units**
 - `positive integer`

 Number of hidden units (also known as the hidden size), specified as a positive integer.

 The number of hidden units corresponds to the amount of information remembered between time steps (the hidden state). The hidden state can contain information from all previous time steps, regardless of the sequence length. If the number of hidden units is too large, then the layer might overfit to the training data. This value can vary from a few dozen to a few thousand.

 The hidden state does not limit the number of time steps that are processed in an iteration. To split your sequences into smaller sequences for training, use the 'SequenceLength' option in `trainingOptions`.

 Example: 200
OutputMode — Format of output
'sequence' (default) | 'last'

Format of output, specified as one of the following:
- 'sequence' - Output the complete sequence.
- 'last' - Output the last time step of the sequence.

InputSize — Input size
'auto' (default) | positive integer

Input size, specified as a positive integer or 'auto'. If InputSize is 'auto', then the software automatically assigns the input size at training time.

Example: 100

Activations

StateActivationFunction — Activation function to update the cell and hidden state
'tanh' (default) | 'softsign'

Activation function to update the cell and hidden state, specified as one of the following:
- 'tanh' - Use the hyperbolic tangent function (tanh).
- 'softsign' - Use the softsign function $\text{softsign}(x) = \frac{x}{1 + |x|}$.

The layer uses this option as the function σ_c in the calculations to update the cell and hidden state. For more information on how activation functions are used in an LSTM layer, see “Long Short-Term Memory Layer” on page 1-695.

GateActivationFunction — Activation function to apply to the gates
'sigmoid' (default) | 'hard-sigmoid'

Activation function to apply to the gates, specified as one of the following:
- 'sigmoid' - Use the sigmoid function $\sigma(x) = (1 + e^{-x})^{-1}$.
- 'hard-sigmoid' - Use the hard sigmoid function

\[
\sigma(x) = \begin{cases}
0 & \text{if } x < -2.5 \\
0.2x + 0.5 & \text{if } -2.5 \leq x \leq 2.5 \\
1 & \text{if } x > 2.5
\end{cases}
\]

The layer uses this option as the function σ_g in the calculations for the layer gates.

State

CellState — Initial value of cell state
numeric vector

Initial value of the cell state, specified as a NumHiddenUnits-by-1 numeric vector. This value corresponds to the cell state at time step 0.

After setting this property, calls to the resetState function set the cell state to this value.
HiddenState — Initial value of the hidden state

numeric vector

Initial value of the hidden state, specified as a NumHiddenUnits-by-1 numeric vector. This value corresponds to the hidden state at time step 0.

After setting this property, calls to the `resetState` function set the hidden state to this value.

Parameters and Initialization

InputWeightsInitializer — Function to initialize input weights

'glorot' (default) | 'he' | 'orthogonal' | 'narrow-normal' | 'zeros' | 'ones' | function handle

Function to initialize the input weights, specified as one of the following:

- 'glorot' - Initialize the input weights with the Glorot initializer [4] (also known as Xavier initializer). The Glorot initializer independently samples from a uniform distribution with zero mean and variance $2/(\text{InputSize} + \text{numOut})$, where $\text{numOut} = 4*\text{NumHiddenUnits}$.
- 'he' - Initialize the input weights with the He initializer [5]. The He initializer samples from a normal distribution with zero mean and variance $2/\text{InputSize}$.
- 'orthogonal' - Initialize the input weights with Q, the orthogonal matrix given by the QR decomposition of $Z = QR$ for a random matrix Z sampled from a unit normal distribution. [6]
- 'narrow-normal' - Initialize the input weights by independently sampling from a normal distribution with zero mean and standard deviation 0.01.
- 'zeros' - Initialize the input weights with zeros.
- 'ones' - Initialize the input weights with ones.
- Function handle - Initialize the input weights with a custom function. If you specify a function handle, then the function must be of the form `weights = func(sz)`, where `sz` is the size of the input weights.

The layer only initializes the input weights when the `InputWeights` property is empty.

Data Types: `char` | `string` | `function_handle`

RecurrentWeightsInitializer — Function to initialize recurrent weights

'orthogonal' (default) | 'glorot' | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function handle

Function to initialize the recurrent weights, specified as one of the following:

- 'orthogonal' - Initialize the recurrent weights with Q, the orthogonal matrix given by the QR decomposition of $Z = QR$ for a random matrix Z sampled from a unit normal distribution. [6]
- 'glorot' - Initialize the recurrent weights with the Glorot initializer [4] (also known as Xavier initializer). The Glorot initializer independently samples from a uniform distribution with zero mean and variance $2/(\text{numIn} + \text{numOut})$, where $\text{numIn} = \text{NumHiddenUnits}$ and $\text{numOut} = 4*\text{NumHiddenUnits}$.
- 'he' - Initialize the recurrent weights with the He initializer [5]. The He initializer samples from a normal distribution with zero mean and variance $2/\text{NumHiddenUnits}$.
- 'narrow-normal' - Initialize the recurrent weights by independently sampling from a normal distribution with zero mean and standard deviation 0.01.
• 'zeros' - Initialize the recurrent weights with zeros.
• 'ones' - Initialize the recurrent weights with ones.
• Function handle - Initialize the recurrent weights with a custom function. If you specify a function handle, then the function must be of the form weights = func(sz), where sz is the size of the recurrent weights.

The layer only initializes the recurrent weights when the RecurrentWeights property is empty.

Data Types: char | string | function_handle

BiasInitializer — Function to initialize bias

'unit-forget-gate' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:

• 'unit-forget-gate' - Initialize the forget gate bias with ones and the remaining biases with zeros.
• 'narrow-normal' - Initialize the bias by independently sampling from a normal distribution with zero mean and standard deviation 0.01.
• 'ones' - Initialize the bias with ones.
• Function handle - Initialize the bias with a custom function. If you specify a function handle, then the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.

Data Types: char | string | function_handle

InputWeights — Input weights

[] (default) | matrix

Input weights, specified as a matrix.

The input weight matrix is a concatenation of the four input weight matrices for the components (gates) in the LSTM layer. The four matrices are concatenated vertically in the following order:

1 Input gate
2 Forget gate
3 Cell candidate
4 Output gate

The input weights are learnable parameters. When training a network, if InputWeights is nonempty, then trainNetwork uses the InputWeights property as the initial value. If InputWeights is empty, then trainNetwork uses the initializer specified by InputWeightsInitializer.

At training time, InputWeights is a 4*NumHiddenUnits-by-InputSize matrix.

RecurrentWeights — Recurrent weights

[] (default) | matrix

Recurrent weights, specified as a matrix.
The recurrent weight matrix is a concatenation of the four recurrent weight matrices for the components (gates) in the LSTM layer. The four matrices are vertically concatenated in the following order:

1. Input gate
2. Forget gate
3. Cell candidate
4. Output gate

The recurrent weights are learnable parameters. When training a network, if **RecurrentWeights** is nonempty, then **trainNetwork** uses the **RecurrentWeights** property as the initial value. If **RecurrentWeights** is empty, then **trainNetwork** uses the initializer specified by **RecurrentWeightsInitializer**.

At training time **RecurrentWeights** is a 4*NumHiddenUnits-by-NumHiddenUnits matrix.

Bias — Layer biases

[] (default) | numeric vector

Layer biases for the LSTM layer, specified as a numeric vector.

The bias vector is a concatenation of the four bias vectors for the components (gates) in the LSTM layer. The four vectors are concatenated vertically in the following order:

1. Input gate
2. Forget gate
3. Cell candidate
4. Output gate

The layer biases are learnable parameters. When training a network, if **Bias** is nonempty, then **trainNetwork** uses the **Bias** property as the initial value. If **Bias** is empty, then **trainNetwork** uses the initializer specified by **BiasInitializer**.

At training time, **Bias** is a 4*NumHiddenUnits-by-1 numeric vector.

Learn Rate and Regularization

InputWeightsLearnRateFactor — Learning rate factor for input weights

1 (default) | numeric scalar | 1-by-4 numeric vector

Learning rate factor for the input weights, specified as a numeric scalar or a 1-by-4 numeric vector.

The software multiplies this factor by the global learning rate to determine the learning rate factor for the input weights of the layer. For example, if **InputWeightsLearnRateFactor** is 2, then the learning rate factor for the input weights of the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the **trainingOptions** function.

To control the value of the learning rate factor for the four individual matrices in **InputWeights**, specify a 1-by-4 vector. The entries of **InputWeightsLearnRateFactor** correspond to the learning rate factor of the following:

1. Input gate
2 Forget gate
3 Cell candidate
4 Output gate

To specify the same value for all the matrices, specify a nonnegative scalar.

Example: 2
Example: [1 2 1 1]

RecurrentWeightsLearnRateFactor — Learning rate factor for recurrent weights
1 (default) | numeric scalar | 1-by-4 numeric vector

Learning rate factor for the recurrent weights, specified as a numeric scalar or a 1-by-4 numeric vector.

The software multiplies this factor by the global learning rate to determine the learning rate for the recurrent weights of the layer. For example, if RecurrentWeightsLearnRateFactor is 2, then the learning rate for the recurrent weights of the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the trainingOptions function.

To control the value of the learning rate factor for the four individual matrices in RecurrentWeights, specify a 1-by-4 vector. The entries of RecurrentWeightsLearnRateFactor correspond to the learning rate factor of the following:

1 Input gate
2 Forget gate
3 Cell candidate
4 Output gate

To specify the same value for all the matrices, specify a nonnegative scalar.

Example: 2
Example: [1 2 1 1]

BiasLearnRateFactor — Learning rate factor for biases
1 (default) | nonnegative scalar | 1-by-4 numeric vector

Learning rate factor for the biases, specified as a nonnegative scalar or a 1-by-4 numeric vector.

The software multiplies this factor by the global learning rate to determine the learning rate for the biases in this layer. For example, if BiasLearnRateFactor is 2, then the learning rate for the biases in the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the trainingOptions function.

To control the value of the learning rate factor for the four individual vectors in Bias, specify a 1-by-4 vector. The entries of BiasLearnRateFactor correspond to the learning rate factor of the following:

1 Input gate
2 Forget gate
3 Cell candidate
4 Output gate

To specify the same value for all the vectors, specify a nonnegative scalar.

Example: 2
Example: [1 2 1 1]

InputWeightsL2Factor — L2 regularization factor for input weights

1 (default) | numeric scalar | 1-by-4 numeric vector

L2 regularization factor for the input weights, specified as a numeric scalar or a 1-by-4 numeric vector.

The software multiplies this factor by the global L2 regularization factor to determine the L2 regularization factor for the input weights of the layer. For example, if `InputWeightsL2Factor` is 2, then the L2 regularization factor for the input weights of the layer is twice the current global L2 regularization factor. The software determines the L2 regularization factor based on the settings specified with the `trainingOptions` function.

To control the value of the L2 regularization factor for the four individual matrices in `InputWeights`, specify a 1-by-4 vector. The entries of `InputWeightsL2Factor` correspond to the L2 regularization factor of the following:

1 Input gate
2 Forget gate
3 Cell candidate
4 Output gate

To specify the same value for all the matrices, specify a nonnegative scalar.

Example: 2
Example: [1 2 1 1]

RecurrentWeightsL2Factor — L2 regularization factor for recurrent weights

1 (default) | numeric scalar | 1-by-4 numeric vector

L2 regularization factor for the recurrent weights, specified as a numeric scalar or a 1-by-4 numeric vector.

The software multiplies this factor by the global L2 regularization factor to determine the L2 regularization factor for the recurrent weights of the layer. For example, if `RecurrentWeightsL2Factor` is 2, then the L2 regularization factor for the recurrent weights of the layer is twice the current global L2 regularization factor. The software determines the L2 regularization factor based on the settings specified with the `trainingOptions` function.

To control the value of the L2 regularization factor for the four individual matrices in `RecurrentWeights`, specify a 1-by-4 vector. The entries of `RecurrentWeightsL2Factor` correspond to the L2 regularization factor of the following:

1 Input gate
2 Forget gate
3 Cell candidate

Output gate

To specify the same value for all the matrices, specify a nonnegative scalar.

Example: 2
Example: [1 2 1 1]

BiasL2Factor — L2 regularization factor for biases

L2 regularization factor for the biases, specified as a nonnegative scalar or a 1-by-4 numeric vector.

The software multiplies this factor by the global L2 regularization factor to determine the L2 regularization for the biases in this layer. For example, if BiasL2Factor is 2, then the L2 regularization for the biases in this layer is twice the global L2 regularization factor. You can specify the global L2 regularization factor using the trainingOptions function.

To control the value of the L2 regularization factor for the four individual vectors in Bias, specify a 1-by-4 vector. The entries of BiasL2Factor correspond to the L2 regularization factor of the following:

1 Input gate
2 Forget gate
3 Cell candidate
4 Output gate

To specify the same value for all the vectors, specify a nonnegative scalar.

Example: 2
Example: [1 2 1 1]

Layer

Name — Layer name

'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. If Name is set to '' , then the software automatically assigns a name at training time.

Data Types: char | string

NumInputs — Number of inputs

1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames — Input names

{'in'} (default)

Input names of the layer. This layer accepts a single input only.

Data Types: cell

NumOutputs — Number of outputs

1 (default)
Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames — Output names

`{'out'}` (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Create LSTM Layer

Create an LSTM layer with the name 'lstm1' and 100 hidden units.

```matlab
layer = lstmLayer(100,'Name','lstm1')
```

Layer with properties:

- **Name**: 'lstm1'
- **Hyperparameters**:
 - **InputSize**: 'auto'
 - **NumHiddenUnits**: 100
 - **OutputMode**: 'sequence'
 - **StateActivationFunction**: 'tanh'
 - **GateActivationFunction**: 'sigmoid'
- **Learnable Parameters**:
 - **InputWeights**: []
 - **RecurrentWeights**: []
 - **Bias**: []
- **State Parameters**:
 - **HiddenState**: []
 - **CellState**: []

Include an LSTM layer in a `Layer` array.

```matlab
inputSize = 12;
umHiddenUnits = 100;
numClasses = 9;

layers = [ ...
  sequenceInputLayer(inputSize)
  lstmLayer(numHiddenUnits)
  fullyConnectedLayer(numClasses)
  softmaxLayer
  classificationLayer]

layers =
  5x1 Layer array with layers:
Train Network for Sequence Classification

Train a deep learning LSTM network for sequence-to-label classification.

Load the Japanese Vowels data set as described in [1] and [2]. XTrain is a cell array containing 270 sequences of varying length with 12 features corresponding to LPC cepstrum coefficients. Y is a categorical vector of labels 1,2,...,9. The entries in XTrain are matrices with 12 rows (one row for each feature) and a varying number of columns (one column for each time step).

[XTrain,YTrain] = japaneseVowelsTrainData;

Visualize the first time series in a plot. Each line corresponds to a feature.

figure
plot(XTrain{1}')
title("Training Observation 1")
numFeatures = size(XTrain{1},1);
legend("Feature " + string(1:numFeatures), 'Location', 'northeastoutside')
Define the LSTM network architecture. Specify the input size as 12 (the number of features of the input data). Specify an LSTM layer to have 100 hidden units and to output the last element of the sequence. Finally, specify nine classes by including a fully connected layer of size 9, followed by a softmax layer and a classification layer.

```matlab
code
inputSize = 12;
numHiddenUnits = 100;
umClasses = 9;
layers = [...
 sequenceInputLayer(inputSize)
 lstmLayer(numHiddenUnits,'OutputMode','last')
 fullyConnectedLayer(numClasses)
 softmaxLayer
 classificationLayer
];
layers =
5×1 Layer array with layers:
1 ' ' Sequence Input Sequence input with 12 dimensions
2 ' ' LSTM LSTM with 100 hidden units
3 ' ' Fully Connected 9 fully connected layer
4 ' ' Softmax softmax
5 ' ' Classification Output crossentropyex

Specify the training options. Specify the solver as 'adam' and 'GradientThreshold' as 1. Set the mini-batch size to 27 and set the maximum number of epochs to 70.

Because the mini-batches are small with short sequences, the CPU is better suited for training. Set 'ExecutionEnvironment' to 'cpu'. To train on a GPU, if available, set 'ExecutionEnvironment' to 'auto' (the default value).

```matlab
code
maxEpochs = 70;
miniBatchSize = 27;

options = trainingOptions('adam', ...
    'ExecutionEnvironment','cpu', ...
    'MaxEpochs',maxEpochs, ...
    'MiniBatchSize',miniBatchSize, ...
    'GradientThreshold',1, ...    'Verbose',false, ...
    'Plots','training-progress');
```

Train the LSTM network with the specified training options.

```matlab
code
net = trainNetwork(XTrain,YTrain,layers,options);`
Load the test set and classify the sequences into speakers.

\[ \text{[XTest,YTest]} = \text{japaneseVowelsTestData}; \]

Classify the test data. Specify the same mini-batch size used for training.

\[ \text{YPred} = \text{classify(net,XTest,'MiniBatchSize',miniBatchSize);} \]

Calculate the classification accuracy of the predictions.

\[ \text{acc} = \text{sum} (\text{YPred} == \text{YTest})./\text{numel} (\text{YTest}) \]

\[ \text{acc} = 0.9514 \]

**Classification LSTM Networks**

To create an LSTM network for sequence-to-label classification, create a layer array containing a sequence input layer, an LSTM layer, a fully connected layer, a softmax layer, and a classification output layer.

Set the size of the sequence input layer to the number of features of the input data. Set the size of the fully connected layer to the number of classes. You do not need to specify the sequence length.

For the LSTM layer, specify the number of hidden units and the output mode 'last'.

\[ \text{numFeatures} = 12; \]
\[ \text{numHiddenUnits} = 100; \]
\[ \text{numClasses} = 9; \]
\[ \text{layers} = [ \ldots \text{sequenceInputLayer(numFeatures)}\text{lstmLayer(numHiddenUnits,'OutputMode','last')}\text{fullyConnectedLayer(numClasses)} \]
softmaxLayer
classificationLayer];

For an example showing how to train an LSTM network for sequence-to-label classification and classify new data, see “Sequence Classification Using Deep Learning”.

To create an LSTM network for sequence-to-sequence classification, use the same architecture as for sequence-to-label classification, but set the output mode of the LSTM layer to 'sequence'.

```
numFeatures = 12;
umHiddenUnits = 100;
umClasses = 9;
layers = [
 sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits,'OutputMode','sequence')
 fullyConnectedLayer(numClasses)
 softmaxLayer
 classificationLayer];
```

**Regression LSTM Networks**

To create an LSTM network for sequence-to-one regression, create a layer array containing a sequence input layer, an LSTM layer, a fully connected layer, and a regression output layer.

Set the size of the sequence input layer to the number of features of the input data. Set the size of the fully connected layer to the number of responses. You do not need to specify the sequence length.

For the LSTM layer, specify the number of hidden units and the output mode 'last'.

```
numFeatures = 12;
umHiddenUnits = 125;
umResponses = 1;
layers = [
 sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits,'OutputMode','last')
 fullyConnectedLayer(numResponses)
 regressionLayer];
```

To create an LSTM network for sequence-to-sequence regression, use the same architecture as for sequence-to-one regression, but set the output mode of the LSTM layer to 'sequence'.

```
numFeatures = 12;
umHiddenUnits = 125;
umResponses = 1;
layers = [
 sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits,'OutputMode','sequence')
 fullyConnectedLayer(numResponses)
 regressionLayer];
```

For an example showing how to train an LSTM network for sequence-to-sequence regression and predict on new data, see “Sequence-to-Sequence Regression Using Deep Learning”.

1 - Deep Learning Functions

1-694
Deeper LSTM Networks

You can make LSTM networks deeper by inserting extra LSTM layers with the output mode 'sequence' before the LSTM layer. To prevent overfitting, you can insert dropout layers after the LSTM layers.

For sequence-to-label classification networks, the output mode of the last LSTM layer must be 'last'.

```matlab
numFeatures = 12;
numHiddenUnits1 = 125;
numHiddenUnits2 = 100;
numClasses = 9;
layers = [...
 sequenceInputLayer(numFeatures)
 lstmLayer(numHiddenUnits1,'OutputMode','sequence')
 dropoutLayer(0.2)
 lstmLayer(numHiddenUnits2,'OutputMode','last')
 dropoutLayer(0.2)
 fullyConnectedLayer(numClasses)
 softmaxLayer
classificationLayer];
```

For sequence-to-sequence classification networks, the output mode of the last LSTM layer must be 'sequence'.

```matlab
numFeatures = 12;
numHiddenUnits1 = 125;
numHiddenUnits2 = 100;
numClasses = 9;
layers = [...
 sequenceInputLayer(numFeatures)
 lstmLayer(numHiddenUnits1,'OutputMode','sequence')
 dropoutLayer(0.2)
 lstmLayer(numHiddenUnits2,'OutputMode','sequence')
 dropoutLayer(0.2)
 fullyConnectedLayer(numClasses)
 softmaxLayer
classificationLayer];
```

More About

Long Short-Term Memory Layer

An LSTM layer learns long-term dependencies between time steps in time series and sequence data.

The state of the layer consists of the hidden state (also known as the output state) and the cell state. The hidden state at time step t contains the output of the LSTM layer for this time step. The cell state contains information learned from the previous time steps. At each time step, the layer adds information to or removes information from the cell state. The layer controls these updates using gates.

The following components control the cell state and hidden state of the layer.
<table>
<thead>
<tr>
<th>Component</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input gate (i)</td>
<td>Control level of cell state update</td>
</tr>
<tr>
<td>Forget gate (f)</td>
<td>Control level of cell state reset (forget)</td>
</tr>
<tr>
<td>Cell candidate (g)</td>
<td>Add information to cell state</td>
</tr>
<tr>
<td>Output gate (o)</td>
<td>Control level of cell state added to hidden state</td>
</tr>
</tbody>
</table>

This diagram illustrates the flow of data at time step $t$. The diagram highlights how the gates forget, update, and output the cell and hidden states.

The learnable weights of an LSTM layer are the input weights $W$ (InputWeights), the recurrent weights $R$ (RecurrentWeights), and the bias $b$ (Bias). The matrices $W$, $R$, and $b$ are concatenations of the input weights, the recurrent weights, and the bias of each component, respectively. These matrices are concatenated as follows:

$$W = \begin{bmatrix} W_i \\ W_f \\ W_g \\ W_o \end{bmatrix}, R = \begin{bmatrix} R_i \\ R_f \\ R_g \\ R_o \end{bmatrix}, b = \begin{bmatrix} b_i \\ b_f \\ b_g \\ b_o \end{bmatrix}$$

where $i$, $f$, $g$, and $o$ denote the input gate, forget gate, cell candidate, and output gate, respectively.

The cell state at time step $t$ is given by

$$c_t = f_t \odot c_{t-1} + i_t \odot g_t$$
where $\odot$ denotes the Hadamard product (element-wise multiplication of vectors).

The hidden state at time step $t$ is given by

$$h_t = o_t \odot \sigma_c(c_t),$$

where $\sigma_c$ denotes the state activation function. The `lstmLayer` function, by default, uses the hyperbolic tangent function (tanh) to compute the state activation function.

The following formulas describe the components at time step $t$.

<table>
<thead>
<tr>
<th>Component</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input gate</td>
<td>$i_t = \sigma_g(W_i x_t + R_i h_{t-1} + b_i)$</td>
</tr>
<tr>
<td>Forget gate</td>
<td>$f_t = \sigma_g(W_f x_t + R_f h_{t-1} + b_f)$</td>
</tr>
<tr>
<td>Cell candidate</td>
<td>$g_t = \sigma_c(W_g x_t + R_g h_{t-1} + b_g)$</td>
</tr>
<tr>
<td>Output gate</td>
<td>$o_t = \sigma_g(W_o x_t + R_o h_{t-1} + b_o)$</td>
</tr>
</tbody>
</table>

In these calculations, $\sigma_g$ denotes the gate activation function. The `lstmLayer` function, by default, uses the sigmoid function given by $\sigma(x) = (1 + e^{-x})^{-1}$ to compute the gate activation function.

**Compatibility Considerations**

**Default input weights initialization is Glorot**

*Behavior changed in R2019a*

Starting in R2019a, the software, by default, initializes the layer input weights of this layer using the Glorot initializer. This behavior helps stabilize training and usually reduces the training time of deep networks.

In previous releases, the software, by default, initializes the layer input weights using the by sampling from a normal distribution with zero mean and variance 0.01. To reproduce this behavior, set the `'InputWeightsInitializer'` option of the layer to `'narrow-normal'`.

**Default recurrent weights initialization is orthogonal**

*Behavior changed in R2019a*

Starting in R2019a, the software, by default, initializes the layer recurrent weights of this layer with $Q$, the orthogonal matrix given by the QR decomposition of $Z = QR$ for a random matrix $Z$ sampled from a unit normal distribution. This behavior helps stabilize training and usually reduces the training time of deep networks.

In previous releases, the software, by default, initializes the layer recurrent weights using the by sampling from a normal distribution with zero mean and variance 0.01. To reproduce this behavior, set the `'RecurrentWeightsInitializer'` option of the layer to `'narrow-normal'`.

**References**


Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

- For code generation, the StateActivationFunction property must be set to 'tanh'.
- For code generation, the GateActivationFunction property must be set to 'sigmoid'.

See Also

Deep Network Designer | bilstmLayer | classifyAndUpdateState | flattenLayer | gruLayer | predictAndUpdateState | resetState | sequenceFoldingLayer | sequenceInputLayer | sequenceUnfoldingLayer

Topics

“Sequence Classification Using Deep Learning”
“Time Series Forecasting Using Deep Learning”
“Sequence-to-Sequence Classification Using Deep Learning”
“Sequence-to-Sequence Regression Using Deep Learning”
“Classify Videos Using Deep Learning”
“Visualize Activations of LSTM Network”
“Long Short-Term Memory Networks”
“Compare Layer Weight Initializers”
“Deep Learning in MATLAB”
“List of Deep Learning Layers”

Introduced in R2017b
maxpool

Pool data to maximum value

Syntax

dlY = maxpool(dlX,poolsize)
[dлY,indx,inputSize] = maxpool(dlX,poolsize)
___ = maxpool(___,Name,Value)
dlY = maxpool(dlX,'global')
___ = maxpool(___,'DataFormat',FMT)

Description

The maximum pooling operation performs downsampling by dividing the input into pooling regions and computing the maximum value of each region.

Note This function applies the maximum pooling operation to dlarray data. If you want to apply maximum pooling within a layerGraph object or Layer array, use one of the following layers:
- maxPooling2dLayer
- maxPooling3dLayer

dlY = maxpool(dlX,poolsize) performs downsampling by dividing the input dlX into rectangular or cuboidal regions defined by poolsize and computing the maximum value of the data in each region. The input dlX is a formatted dlarray with dimension labels. Pooling acts on spatial dimensions labeled 'S'. The output dlY is a formatted dlarray with the same dimension labels as dlX.

[dлY,indx,inputSize] = maxpool(dlX,poolsize) also returns the linear indices of the maximum value within each pooled region and the size of the input feature map dlX for use with the maxunpool operation.

___ = maxpool(___,Name,Value) specifies options using one or more name-value pair arguments. For example, 'Stride',3 sets the stride of the pooling operation.

dlY = maxpool(dlX,'global') computes the global maximum over the spatial dimensions of the input dlX. This syntax is equivalent to setting poolsize in the previous syntaxes to the size of the 'S' dimensions of dlX.

___ = maxpool(___,'DataFormat',FMT) also specifies the dimension format FMT when dlX is not a formatted dlarray, in addition to the input arguments in previous syntaxes. The output dlY is an unformatted dlarray with the same dimension order as dlX.

Examples
Pool Data to Maximum Values

Pool data to maximum values over two spatial dimensions.

Create the input data as a single observation of random values with a height and width of six and a single channel.

height = 6;
width = 6;
channels = 1;
observations = 1;

\[ X = \text{rand}(height, width, channels, observations); \]
\[ \text{dlX} = \text{dlarray}(X, 'SSCB') \]

\[ \text{dlX} = \begin{bmatrix}
0.1781 & 0.8819 & 0.1564 & 0.4820 & 0.2518 & 0.7302 \\
0.1280 & 0.6692 & 0.8555 & 0.1206 & 0.2904 & 0.3439 \\
0.9991 & 0.1904 & 0.6448 & 0.5895 & 0.6171 & 0.5841 \\
0.1711 & 0.3689 & 0.3763 & 0.2262 & 0.2653 & 0.1078 \\
0.0326 & 0.4607 & 0.1909 & 0.3846 & 0.8244 & 0.9063 \\
0.5612 & 0.9816 & 0.4283 & 0.5830 & 0.9827 & 0.8797 \\
\end{bmatrix} \]

Pool the data to maximum values over pooling regions of size 2 using a stride of 2.

\[ \text{dlY} = \text{maxpool}(\text{dlX}, 2, '\text{Stride}', 2) \]

\[ \text{dlY} = \begin{bmatrix}
0.8819 & 0.8555 & 0.7302 \\
0.9991 & 0.6448 & 0.6171 \\
0.9816 & 0.5830 & 0.9827 \\
\end{bmatrix} \]

Pool Data to Global Maximum Value

Pool data to its global maximum value.

Create the input data as an unformatted dlarray. The data contains a single observation of random values with a height of four, a width of six, and a single channel.

height = 4;
width = 6;
channels = 1;
observations = 1;

\[ X = \text{rand}(height, width, channels, observations); \]
\[ \text{dlX} = \text{dlarray}(X) \]

\[ \text{dlX} = \begin{bmatrix}
0.8147 & 0.6324 & 0.9575 & 0.9572 & 0.4218 & 0.6557 \\
0.9058 & 0.0975 & 0.9649 & 0.4854 & 0.9157 & 0.0357 \\
\end{bmatrix} \]
Pool the data to the global maximum value. Specify the dimension format of the input data.

dlY = maxpool(dlX,'global','DataFormat','SSCB')

dlY =
    1x1 dlarray
    0.9706

Input Arguments

dlX — Input data
dlarray

Input data, specified as a dlarray with or without dimension labels. When dlX is not a formatted dlarray, you must specify the dimension label format using 'DataFormat', FMT.

Pooling acts on dimensions that you specify as spatial dimensions using the 'S' dimension label. dlX must have at least one 'S' dimension. You can specify up to three dimensions in dlX as 'S' dimensions. The maxpool operation divides the data along each 'S' dimension into regions defined by poolsize. The function computes the maximum of all values within each pooling region.

Data Types: single | double

poolsize — Size of pooling regions
numeric scalar | numeric vector

Size of the pooling regions, specified as a numeric scalar or numeric vector. If you specify poolsize as a scalar, the pooling regions have the same size along all spatial dimensions. To use rectangular or cuboidal pooling regions that have different sizes along each spatial dimension, specify poolsize as a vector with the same length as the number of spatial dimensions.

Example: 3

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example: 'Stride',2 specifies the stride of the pooling regions as 2.

DataFormat — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of 'DataFormat' and a character array or string FMT that provides a label for each dimension of the data. Each character in FMT must be one of the following:

- 'S' — Spatial
- 'C' — Channel
• 'B' — Batch (for example, samples and observations)
• 'T' — Time (for example, sequences)
• 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at most once.

You must specify 'DataFormat' when the input data dlX is not a formatted dlarray.
Example: 'DataFormat','SSCB'
Data Types: char | string

**Stride — Step size for traversing input data**

1 (default) | numeric scalar | numeric vector

Step size for traversing the input data, specified as the comma-separated pair consisting of 'Stride' and a numeric scalar or numeric vector. If you specify 'Stride' as a scalar, the same value is used for all spatial dimensions. If you specify 'Stride' as a vector of the same size as the number of spatial dimensions of the input data, the vector values are used for the corresponding spatial dimensions.

The default value of 'Stride' is 1. If 'Stride' is less than poolsize in any dimension, then the pooling regions overlap.

The Stride parameter is not supported for global pooling using the 'global' option.
Example: 'Stride',3
Data Types: single | double

**Padding — Size of padding applied to edges of data**

0 (default) | 'same' | numeric scalar | numeric vector | numeric matrix

Size of padding applied to edges of data, specified as the comma-separated pair consisting of 'Padding' and one of the following:

• 'same' — Padding size is set so that the output size is the same as the input size when the stride is 1. More generally, the output size of each spatial dimension is \( \text{ceil}(\text{inputSize}/\text{stride}) \), where inputSize is the size of the input along a spatial dimension.

• Numeric scalar — The same amount of padding is applied to both ends of all spatial dimensions.

• Numeric vector — A different amount of padding is applied along each spatial dimension. Use a vector of size d, where d is the number of spatial dimensions of the input data. The i-th element of the vector specifies the size of padding applied to the start and the end along the i-th spatial dimension.

• Numeric matrix — A different amount of padding is applied to the start and end of each spatial dimension. Use a matrix of size 2-by-d, where d is the number of spatial dimensions of the input data. The element (1,d) specifies the size of padding applied to the start of spatial dimension d. The element (2,d) specifies the size of padding applied to the end of spatial dimension d. For example, in 2-D, the format is [top, left; bottom, right].

The 'Padding' parameter is not supported for global pooling using the 'global' option.
Example: 'Padding','same'
Data Types: single | double
Output Arguments

dlY — Pooled data
dlarray

Pooled data, returned as a dlarray. The output dlY has the same underlying data type as the input dlX.

If the input data dlX is a formatted dlarray, dlY has the same dimension labels as dlX. If the input data is not a formatted dlarray, dlY is an unformatted dlarray with the same dimension order as the input data.

indx — Indices of maximum values
dlarray

Indices of maximum values in each pooled region, returned as a dlarray. Each value in indx represents the location of the corresponding maximum value in dlY, given as a linear index of the values in dlX.

If dlX is a formatted dlarray, indx has the same size and format as the output dlY.

If dlX is not a formatted dlarray, indx is an unformatted dlarray. In that case, indx is returned with the following dimension order: all 'S' dimensions, followed by 'C', 'B', and 'T' dimensions, then all 'U' dimensions. The size of indx matches the size of dlY when dlY is permuted to match the previously stated dimension order.

Use the indx output with the maxunpool function to unpool the output of maxpool.

indx output is not supported when using the 'global' option.

inputSize — Size of input feature map
numeric vector

Size of the input feature map, returned as a numeric vector.

Use the inputSize output with the maxunpool function to unpool the output of maxpool.

inputSize output is not supported when using the 'global' option.

More About

Maximum Pooling

The maxpool function pools the input data to maximum values over the spatial dimensions. For more information, see the definition of “Max Pooling Layer” on page 1-711 on the maxPooling2dLayer reference page.

Compatibility Considerations

maxpool indices output argument changes shape and data type
Behavior changed in R2020a
Starting in R2020a, the data type and shape of the indices output argument of the `maxpool` function are changed. The `maxpool` function outputs the indices of the maximum values as a `dlarray` with the same shape and format as the pooled data, instead of a numeric vector.

The indices output of `maxpool` remains compatible with the indices input of `maxunpool`. The `maxunpool` function accepts the indices of the maximum values as a `dlarray` with the same shape and format as the input data. To prevent errors, use only the indices output of the `maxpool` function as the indices input to the `maxunpool` function.

To reproduce the previous behavior and obtain the indices output as a numeric vector, use the following code:

```matlab
[dlY, indx, inputSize] = maxpool(dlY, poolsize);
indx = extractdata(indx);
indx = reshape(indx,[],1);
```

**Extended Capabilities**

**GPU Arrays**
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
- When the input argument `dlX` is a `dlarray` with underlying data of type `gpuArray`, this function runs on the GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

**See Also**
`avgpool` | `dlarray` | `dlconv` | `dlfeval` | `dlgradient` | `maxunpool`

**Topics**
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”

**Introduced in R2019b**
**maxPooling2dLayer**

Max pooling layer

**Description**

A max pooling layer performs down-sampling by dividing the input into rectangular pooling regions, and computing the maximum of each region.

**Creation**

**Syntax**

```matlab
layer = maxPooling2dLayer(poolSize)
layer = maxPooling2dLayer(poolSize,Name,Value)
```

**Description**

`layer = maxPooling2dLayer(poolSize)` creates a max pooling layer and sets the `PoolSize` property.

`layer = maxPooling2dLayer(poolSize,Name,Value)` sets the optional `Stride`, `Name`, and `HasUnpoolingOutputs` properties using name-value pairs. To specify input padding, use the 'Padding' name-value pair argument. For example, `maxPooling2dLayer(2,'Stride',3)` creates a max pooling layer with pool size `[2 2]` and stride `[3 3]`. You can specify multiple name-value pairs. Enclose each property name in single quotes.

**Input Arguments**

**Name-Value Pair Arguments**

Use comma-separated name-value pair arguments to specify the size of the padding to add along the edges of the layer input and to set the `Stride`, `Name`, and `HasUnpoolingOutputs` properties. Enclose names in single quotes.

Example: `maxPooling2dLayer(2,'Stride',3)` creates a max pooling layer with pool size `[2 2]` and stride `[3 3].`

**Padding — Input edge padding**

`[0 0 0 0]` (default) | vector of nonnegative integers | `'same'`

Input edge padding, specified as the comma-separated pair consisting of 'Padding' and one of these values:

- 'same' — Add padding of size calculated by the software at training or prediction time so that the output has the same size as the input when the stride equals 1. If the stride is larger than 1, then the output size is `ceil(inputSize/stride)`, where `inputSize` is the height or width of the input and `stride` is the stride in the corresponding dimension. The software adds the same amount of padding to the top and bottom, and to the left and right, if possible. If the padding that must be added vertically has an odd value, then the software adds extra padding to the bottom. If
the padding that must be added horizontally has an odd value, then the software adds extra padding to the right.

- Nonnegative integer \( p \) — Add padding of size \( p \) to all the edges of the input.
- Vector \([a \ b]\) of nonnegative integers — Add padding of size \( a \) to the top and bottom of the input and padding of size \( b \) to the left and right.
- Vector \([t \ b \ l \ r]\) of nonnegative integers — Add padding of size \( t \) to the top, \( b \) to the bottom, \( l \) to the left, and \( r \) to the right of the input.

Example: 'Padding',1 adds one row of padding to the top and bottom, and one column of padding to the left and right of the input.

Example: 'Padding','same' adds padding so that the output has the same size as the input (if the stride equals 1).

Properties

Max Pooling

**PoolSize — Dimensions of pooling regions**
vector of two positive integers

Dimensions of the pooling regions, specified as a vector of two positive integers \([h \ w]\), where \( h \) is the height and \( w \) is the width. When creating the layer, you can specify `PoolSize` as a scalar to use the same value for both dimensions.

If the stride dimensions `Stride` are less than the respective pooling dimensions, then the pooling regions overlap.

The padding dimensions `PaddingSize` must be less than the pooling region dimensions `PoolSize`. Example: \([2 \ 1]\) specifies pooling regions of height 2 and width 1.

**Stride — Step size for traversing input**
\([1 \ 1]\) (default) | vector of two positive integers

Step size for traversing the input vertically and horizontally, specified as a vector of two positive integers \([a \ b]\), where \( a \) is the vertical step size and \( b \) is the horizontal step size. When creating the layer, you can specify `Stride` as a scalar to use the same value for both dimensions.

If the stride dimensions `Stride` are less than the respective pooling dimensions, then the pooling regions overlap.

The padding dimensions `PaddingSize` must be less than the pooling region dimensions `PoolSize`. Example: \([2 \ 3]\) specifies a vertical step size of 2 and a horizontal step size of 3.

**PaddingSize — Size of padding**
\([0 \ 0 \ 0 \ 0]\) (default) | vector of four nonnegative integers

Size of padding to apply to input borders, specified as a vector \([t \ b \ l \ r]\) of four nonnegative integers, where \( t \) is the padding applied to the top, \( b \) is the padding applied to the bottom, \( l \) is the padding applied to the left, and \( r \) is the padding applied to the right.

When you create a layer, use the 'Padding' name-value pair argument to specify the padding size.
Example: [1 1 2 2] adds one row of padding to the top and bottom, and two columns of padding to the left and right of the input.

**PaddingMode — Method to determine padding size**

'manual' (default) | 'same'

Method to determine padding size, specified as 'manual' or 'same'.

The software automatically sets the value of PaddingMode based on the 'Padding' value you specify when creating a layer:

- If you set the 'Padding' option to a scalar or a vector of nonnegative integers, then the software automatically sets PaddingMode to 'manual'.
- If you set the 'Padding' option to 'same', then the software automatically sets PaddingMode to 'same' and calculates the size of the padding at training time so that the output has the same size as the input when the stride equals 1. If the stride is larger than 1, then the output size is ceil(inputSize/stride), where inputSize is the height or width of the input and stride is the stride in the corresponding dimension. The software adds the same amount of padding to the top and bottom, and to the left and right, if possible. If the padding that must be added vertically has an odd value, then the software adds extra padding to the bottom. If the padding that must be added horizontally has an odd value, then the software adds extra padding to the right.

**Padding — Size of padding**

[0 0] (default) | vector of two nonnegative integers

Note Padding property will be removed in a future release. Use PaddingSize instead. When creating a layer, use the 'Padding' name-value pair argument to specify the padding size.

Size of padding to apply to input borders vertically and horizontally, specified as a vector [a b] of two nonnegative integers, where a is the padding applied to the top and bottom of the input data and b is the padding applied to the left and right.

Example: [1 1] adds one row of padding to the top and bottom, and one column of padding to the left and right of the input.

**HasUnpoolingOutputs — Flag for outputs to unpooling layer**

false (default) | true

Flag for outputs to unpooling layer, specified as true or false.

If the HasUnpoolingOutputs value equals false, then the max pooling layer has a single output with the name 'out'.

To use the output of a max pooling layer as the input to a max unpooling layer, set the HasUnpoolingOutputs value to true. In this case, the max pooling layer has two additional outputs that you can connect to a max unpooling layer:

- 'indices' — Indices of the maximum value in each pooled region.
- 'size' — Size of the input feature map.

To enable outputs to a max unpooling layer, the pooling regions of the max pooling layer must be nonoverlapping.
Layer

Name — Layer name

' ' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to ' ', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

NumInputs — Number of inputs

1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames — Input names

{'in'} (default)

Input names of the layer. This layer accepts a single input only.

Data Types: cell

NumOutputs — Number of outputs

1 (default) | 3

Number of outputs of the layer.

If the HasUnpoolingOutputs value equals false, then the max pooling layer has a single output with the name 'out'.

To use the output of a max pooling layer as the input to a max unpooling layer, set the HasUnpoolingOutputs value to true. In this case, the max pooling layer has two additional outputs that you can connect to a max unpooling layer:

- 'indices' — Indices of the maximum value in each pooled region.
- 'size' — Size of the input feature map.

To enable outputs to a max unpooling layer, the pooling regions of the max pooling layer must be nonoverlapping.

For more information on how to unpool the output of a max pooling layer, see maxUnpooling2dLayer.

Data Types: double

OutputNames — Output names

{'out'} (default) | {'out','indices','size'}

Output names of the layer.
If the `HasUnpoolingOutputs` value equals `false`, then the max pooling layer has a single output with the name 'out'.

To use the output of a max pooling layer as the input to a max unpooling layer, set the `HasUnpoolingOutputs` value to `true`. In this case, the max pooling layer has two additional outputs that you can connect to a max unpooling layer:

- 'indices' — Indices of the maximum value in each pooled region.
- 'size' — Size of the input feature map.

To enable outputs to a max unpooling layer, the pooling regions of the max pooling layer must be nonoverlapping.

For more information on how to unpool the output of a max pooling layer, see `maxUnpooling2dLayer`.

Data Types: `cell`

Examples

**Create Max Pooling Layer with Nonoverlapping Pooling Regions**

Create a max pooling layer with nonoverlapping pooling regions.

```matlab
layer = maxPooling2dLayer(2,'Stride',2)
```

```matlab
layer = MaxPooling2DLayer with properties:
Name: '
HasUnpoolingOutputs: 0
NumOutputs: 1
OutputNames: {'out'}

Hyperparameters
PoolSize: [2 2]
Stride: [2 2]
PaddingMode: 'manual'
PaddingSize: [0 0 0 0]
```

The height and the width of the rectangular regions (pool size) are both 2. The pooling regions do not overlap because the step size for traversing the images vertically and horizontally (stride) is also `[2 2]`.

Include a max pooling layer with nonoverlapping regions in a `Layer` array.

```matlab
layers = [...
 imageInputLayer([28 28 1])
 convolution2dLayer(5,20)
 reluLayer
 maxPooling2dLayer(2,'Stride',2)
 fullyConnectedLayer(10)
 softmaxLayer
 classificationLayer
]
layers =
7x1 Layer array with layers:
1 '' Image Input 28x28x1 images with 'zerocenter' normalization
2 '' Convolution 20 5x5 convolutions with stride [1 1] and padding [0 0 0 0]
3 '' ReLU ReLU
4 '' Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]
5 '' Fully Connected 10 fully connected layer
6 '' Softmax softmax
7 '' Classification Output crossentropyex

Create Max Pooling Layer with Overlapping Pooling Regions

Create a max pooling layer with overlapping pooling regions.

layer = maxPooling2dLayer([3 2],'Stride',2)

layer =
MaxPooling2DLayer with properties:
 Name: ''
 HasUnpoolingOutputs: 0
 NumOutputs: 1
 OutputNames: {'out'}

Hyperparameters
 PoolSize: [3 2]
 Stride: [2 2]
 PaddingMode: 'manual'
 PaddingSize: [0 0 0 0]

This layer creates pooling regions of size [3 2] and takes the maximum of the six elements in each region. The pooling regions overlap because there are stride dimensions Stride that are less than the respective pooling dimensions PoolSize.

Include a max pooling layer with overlapping pooling regions in a Layer array.

layers = [
 ...imageInputLayer([28 28 1])
 convolution2dLayer(5,20)
 reluLayer
 maxPooling2dLayer([3 2],'Stride',2)
 fullyConnectedLayer(10)
 softmaxLayer
 classificationLayer]

layers =
7x1 Layer array with layers:
1 '' Image Input 28x28x1 images with 'zerocenter' normalization
2 '' Convolution 20 5x5 convolutions with stride [1 1] and padding [0 0 0 0]
3 '' ReLU ReLU
4 '' Max Pooling 3x2 max pooling with stride [2 2] and padding [0 0 0 0]
5 '' Fully Connected 10 fully connected layer
More About

Max Pooling Layer

A max pooling layer performs down-sampling by dividing the input into rectangular pooling regions, and computing the maximum of each region.

Pooling layers follow the convolutional layers for down-sampling, hence, reducing the number of connections to the following layers. They do not perform any learning themselves, but reduce the number of parameters to be learned in the following layers. They also help reduce overfitting.

A max pooling layer returns the maximum values of rectangular regions of its input. The size of the rectangular regions is determined by the poolSize argument of maxPoolingLayer. For example, if poolSize equals [2,3], then the layer returns the maximum value in regions of height 2 and width 3.

Pooling layers scan through the input horizontally and vertically in step sizes you can specify using the ‘Stride’ name-value pair argument. If the pool size is smaller than or equal to the stride, then the pooling regions do not overlap.

For nonoverlapping regions (Pool Size and Stride are equal), if the input to the pooling layer is n-by-n, and the pooling region size is h-by-h, then the pooling layer down-samples the regions by h [1]. That is, the output of a max or average pooling layer for one channel of a convolutional layer is n/h-by-n/h. For overlapping regions, the output of a pooling layer is (Input Size - Pool Size + 2*Padding)/Stride + 1.

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
averagePooling2dLayer | convolution2dLayer | globalAveragePooling2dLayer | maxUnpooling2dLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2016a
maxPooling3dLayer

3-D max pooling layer

Description

A 3-D max pooling layer performs down-sampling by dividing three-dimensional input into cuboidal pooling regions, and computing the maximum of each region.

Creation

Syntax

layer = maxPooling3dLayer(poolSize)
layer = maxPooling3dLayer(poolSize,Name,Value)

Description

layer = maxPooling3dLayer(poolSize) creates a 3-D max pooling layer and sets the PoolSize property.

layer = maxPooling3dLayer(poolSize,Name,Value) sets the optional Stride and Name properties using name-value pairs. To specify input padding, use the 'Padding' name-value pair argument. For example, maxPooling3dLayer(2,'Stride',3) creates a 3-D max pooling layer with pool size [2 2 2] and stride [3 3 3]. You can specify multiple name-value pairs. Enclose each property name in single quotes.

Input Arguments

Name-Value Pair Arguments

Use comma-separated name-value pair arguments to specify the size of the padding to add along the edges of the layer input and to set the Stride and Name properties. Enclose names in single quotes.

Example: maxPooling3dLayer(2,'Stride',3) creates a 3-D max pooling layer with pool size [2 2 2] and stride [3 3 3].

Padding — Input edge padding

0 (default) | array of nonnegative integers | 'same'

Input edge padding, specified as the comma-separated pair consisting of 'Padding' and one of these values:

- 'same' — Add padding of size calculated by the software at training or prediction time so that the output has the same size as the input when the stride equals 1. If the stride is larger than 1, then the output size is ceil(inputSize/stride), where inputSize is the height, width, or depth of the input and stride is the stride in the corresponding dimension. The software adds the same amount of padding to the top and bottom, to the left and right, and to the front and back, if possible. If the padding in a given dimension has an odd value, then the software adds the extra padding to the input as postpadding. In other words, the software adds extra vertical padding to
the bottom, extra horizontal padding to the right, and extra depth padding to the back of the input.

- Nonnegative integer p — Add padding of size p to all the edges of the input.
- Three-element vector $[a \ b \ c]$ of nonnegative integers — Add padding of size a to the top and bottom, padding of size b to the left and right, and padding of size c to the front and back of the input.
- 2-by-3 matrix $[t \ l \ f; b \ r \ k]$ of nonnegative integers — Add padding of size t to the top, b to the bottom, l to the left, r to the right, f to the front, and k to the back of the input. In other words, the top row specifies the prepadding and the second row defines the postpadding in the three dimensions.

Example: ‘Padding’,1 adds one row of padding to the top and bottom, one column of padding to the left and right, and one plane of padding to the front and back of the input.

Example: ‘Padding’,’same’ adds padding so that the output has the same size as the input (if the stride equals 1).

Properties

Max Pooling

PoolSize — Dimensions of pooling regions

vector of three positive integers

Dimensions of the pooling regions, specified as a vector of three positive integers $[h \ w \ d]$, where h is the height, w is the width, and d is the depth. When creating the layer, you can specify **PoolSize** as a scalar to use the same value for all three dimensions.

If the stride dimensions **Stride** are less than the respective pooling dimensions, then the pooling regions overlap.

The padding dimensions **PaddingSize** must be less than the pooling region dimensions **PoolSize**.

Example: $[2 \ 1 \ 1]$ specifies pooling regions of height 2, width 1, and depth 1.

Stride — Step size for traversing input

$[1 \ 1 \ 1]$ (default) | vector of three positive integers

Step size for traversing the input in three dimensions, specified as a vector $[a \ b \ c]$ of three positive integers, where a is the vertical step size, b is the horizontal step size, and c is the step size along the depth direction. When creating the layer, you can specify **Stride** as a scalar to use the same value for step sizes in all three directions.

If the stride dimensions **Stride** are less than the respective pooling dimensions, then the pooling regions overlap.

The padding dimensions **PaddingSize** must be less than the pooling region dimensions **PoolSize**.

Example: $[2 \ 3 \ 1]$ specifies a vertical step size of 2, a horizontal step size of 3, and a step size along the depth of 1.

PaddingSize — Size of padding

$[0 \ 0 \ 0; 0 \ 0 \ 0]$ (default) | 2-by-3 matrix of nonnegative integers
Size of padding to apply to input borders, specified as 2-by-3 matrix \([t \ l \ f; b \ r \ k]\) of nonnegative integers, where \(t\) and \(b\) are the padding applied to the top and bottom in the vertical direction, \(l\) and \(r\) are the padding applied to the left and right in the horizontal direction, and \(f\) and \(k\) are the padding applied to the front and back along the depth. In other words, the top row specifies the prepadding and the second row defines the postpadding in the three dimensions.

When you create a layer, use the ‘Padding’ name-value pair argument to specify the padding size. Example: \([1 \ 2 \ 4;1 \ 2 \ 4]\) adds one row of padding to the top and bottom, two columns of padding to the left and right, and four planes of padding to the front and back of the input.

PaddingMode — Method to determine padding size

‘manual’ (default) | ‘same’

Method to determine padding size, specified as ‘manual’ or ‘same’.

The software automatically sets the value of **PaddingMode** based on the ‘Padding’ value you specify when creating a layer.

- If you set the ‘Padding’ option to a scalar or a vector of nonnegative integers, then the software automatically sets **PaddingMode** to ‘manual’.
- If you set the ‘Padding’ option to ‘same’, then the software automatically sets **PaddingMode** to ‘same’ and calculates the size of the padding at training time so that the output has the same size as the input when the stride equals 1. If the stride is larger than 1, then the output size is \(\text{ceil}(\text{inpu}tSize/\text{stride})\), where \(\text{inpu}tSize\) is the height, width, or depth of the input and \(\text{stride}\) is the stride in the corresponding dimension. The software adds the same amount of padding to the top and bottom, to the left and right, and to the front and back, if possible. If the padding in a given dimension has an odd value, then the software adds the extra padding to the input as postpadding. In other words, the software adds extra vertical padding to the bottom, extra horizontal padding to the right, and extra depth padding to the back of the input.

Layer

Name — Layer name

‘’ (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and **Name** is set to ‘’, then the software automatically assigns a name to the layer at training time.

Data Types: char | string

NumInputs — Number of inputs

1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames — Input names

{‘in’} (default)

Input names of the layer. This layer accepts a single input only.

Data Types: cell
NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Create Max Pooling 3-D Layer with Nonoverlapping Pooling Regions

Create a max pooling 3-D layer with nonoverlapping pooling regions.

layer = maxPooling3dLayer(2,'Stride',2)

layer =
MaxPooling3DLayer with properties:

Name: ''
NumOutputs: 1
OutputNames: {'out'}

Hyperparameters
PoolSize: [2 2 2]
Stride: [2 2 2]
PaddingMode: 'manual'
PaddingSize: [2x3 double]

The height, width, and depth of the cuboidal regions (pool size) are 2. The step size for traversing the images (stride) is 2 in all dimensions. The pooling regions do not overlap because the stride is greater than or equal to the corresponding pool size in all dimensions.

Include a max pooling layer with nonoverlapping regions in a Layer array.

layers = [...
 image3dInputLayer([28 28 28 3])
 convolution3dLayer(5,20)
 reluLayer
 maxPooling3dLayer(2,'Stride',2)
 fullyConnectedLayer(10)
 softmaxLayer
 classificationLayer]

layers =
7x1 Layer array with layers:

1 '' 3-D Image Input 28x28x28x3 images with 'zerocenter' normalization
2 '' Convolution 20 5x5x5 convolutions with stride [1 1 1] and padding [0 0 0]
3 '' ReLU ReLU
Create Max Pooling 3-D Layer with Overlapping Pooling Regions

Create a max pooling 3-D layer with overlapping pooling regions and padding for the top and bottom of the input.

```
layer = maxPooling3dLayer([3 2 2],'Stride',2,'Padding',[1 0 0])
```

This layer creates pooling regions of size 3-by-2-by-2 and takes the maximum of the twelve elements in each region. The stride is 2 in all dimensions. The pooling regions overlap because there are stride dimensions **Stride** that are less than the respective pooling dimensions **PoolSize**.

More About

3-D Max Pooling Layer

A 3-D max pooling layer extends the functionality of a max pooling layer to a third dimension, depth. A max pooling layer performs down-sampling by dividing the input into rectangular or cuboidal pooling regions, and computing the maximum of each region. To learn more, see the definition of max pooling layer on page 1-711 on the `maxPooling2dLayer` reference page.

See Also

- `averagePooling3dLayer`
- `convolution3dLayer`
- `globalAveragePooling3dLayer`
- `maxPooling2dLayer`

Topics

- “3-D Brain Tumor Segmentation Using Deep Learning”
- “Deep Learning in MATLAB”
- “Specify Layers of Convolutional Neural Network”
- “List of Deep Learning Layers”

Introduced in R2019a
maxunpool

Unpool the output of a maximum pooling operation

Syntax

dlY = maxunpool(dlX,indx,outputSize)
dlY = maxunpool(dlX,indx,outputSize,'DataFormat',FMT)

Description

The maximum unpooling operation un pools the output of a maximum pooling operation by upsampling and padding with zeros.

Note This function applies the maximum unpooling operation to \texttt{dlarray} data. If you want to apply maximum unpooling within a \texttt{layerGraph} object or \texttt{Layer} array, use the following layer:

• \texttt{maxUnpooling2dLayer}

\texttt{dlY = maxunpool(dlX,indx,outputSize)} upsamples the spatial dimensions of input data \texttt{dlX} to match the size \texttt{outputSize}. The data is padded with zeros between the locations of maximum values specified by \texttt{indx}. The input \texttt{dlX} is a formatted \texttt{dlarray} with dimension labels. The output \texttt{dlY} is a formatted \texttt{dlarray} with the same dimension labels as \texttt{dlX}.

\texttt{dlY = maxunpool(dlX,indx,outputSize,'DataFormat',FMT)} also specifies the dimension format \texttt{FMT} when \texttt{dlX} is not a formatted \texttt{dlarray}. The output \texttt{dlY} is an unformatted \texttt{dlarray} with the same dimension order as \texttt{dlX}.

Examples

Unpool Pooled Data

Create the input data as a single observation of random values with a height and width of six and a single channel.

\begin{verbatim}
height = 6;
width = 6;
channels = 1;
observations = 1;

X = rand(height, width, channels, observations);
dlX = dlarray(X,'SSCB')
\end{verbatim}

Pool the data to maximum values over pooling regions of size 2 using a stride of 2.

\begin{verbatim}
[dLY,indx,dataSize] = maxpool(dlX,2,'Stride',2);
dlX = 6(S) × 6(S) × 1(C) × 1(B) dlarray
\end{verbatim}
dlY =
3(S) × 3(S) × 1(C) × 1(B) dlarray
0.9171 0.9339 0.9857
0.9710 0.4417 0.9403
0.8533 0.7844 0.7390

indx =
3(S) × 3(S) × 1(C) × 1(B) dlarray
2 14 25
10 21 33
6 24 30

dataSize = 1×4
6 6 1 1

Unpool the data using the indices and output size from the maxpool operation.

dlY = maxunpool(dlY, indx, dataSize)

dlY =
6(S) × 6(S) × 1(C) × 1(B) dlarray
0 0 0 0 0.9857 0
0.9171 0 0.9339 0 0 0
0 0 0 0.4417 0 0.9403
0 0.9710 0 0 0 0
0 0 0 0 0 0
0.8533 0 0 0.7844 0.7390 0

Input Arguments

dlX — Input data
dlarray

Input data, specified as a dlarray with or without dimension labels. When dlX is not a formatted dlarray, you must specify the dimension label format using 'DataFormat', FMT.

Unpooling acts on dimensions that you specify as spatial dimensions using the 'S' dimension label. dlX must have at least one 'S' dimension. You can specify up to three dimensions in dlX as 'S' dimensions. Use the dlY output of the maxpool function as the dlX input to maxunpool.

Data Types: single | double

indx — Indices of maximum values
dlarray
Indices of maximum values in each pooled region, specified as a dlarray.

Use the indx output of the maxpool function as the indx input to maxpool.

Data Types: single | double

outputSize — Size of output feature map
numeric array

Size of the output feature map, specified as a numeric array.

Use the inputSize output of the maxpool function as the outputSize input to maxunpool.

Data Types: single | double

FMT — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of 'DataFormat' and a character array or string FMT that provides a label for each dimension of the data. Each character in FMT must be one of the following:

- 'S' — Spatial
- 'C' — Channel
- 'B' — Batch (for example, samples and observations)
- 'T' — Time (for example, sequences)
- 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at most once.

You must specify 'DataFormat', FMT when the input data dlX is not a formatted dlarray.

Example: 'DataFormat', 'SSCB'

Data Types: char | string

Output Arguments

dlY — Unpooled data

dlarray

Unpooled data, returned as a dlarray. The output dlY has the same underlying data type as the input dlX.

If the input data dlX is a formatted dlarray, dlY has the same dimension labels as dlX. If the input data is not a formatted dlarray, dlY is an unformatted dlarray with the same dimension order as the input data.

Extended Capabilities

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
• When the input argument dlX is a dlarray with underlying data of type gpuArray, this function runs on the GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dlarray | dlfeval | dlgradient | maxpool

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”

Introduced in R2019b
maxUnpooling2dLayer

Max unpooling layer

Description

A max unpooling layer unpools the output of a max pooling layer.

Creation

Syntax

layer = maxUnpooling2dLayer
layer = maxUnpooling2dLayer('Name',name)

Description

layer = maxUnpooling2dLayer creates a max unpooling layer.

layer = maxUnpooling2dLayer('Name',name) sets the Name property. To create a network containing a max unpooling layer you must specify a layer name.

Properties

Name — Layer name

' ' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to ' ', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

NumInputs — Number of inputs

3 (default)

Number of inputs of the layer.

There are three inputs to this layer:

- 'in' — Input feature map to unpool.
- 'indices' — Indices of the maximum value in each pooled region. This is output by the max pooling layer.
- 'size' — Output size of unpooled feature map. This is output by the max pooling layer.

Use the input names when connecting or disconnecting the max unpooling layer to other layers using connectLayers or disconnectLayers.

Data Types: double
InputNames — Input names
{\textquoteleft in\textquoteleft}, \textquoteleft indices\textquoteleft, \textquoteleft size\textquoteleft} (default)

Input names of the layer.

There are three inputs to this layer:

- \textquoteleft in\textquoteleft — Input feature map to unpool.
- \textquoteleft indices\textquoteleft — Indices of the maximum value in each pooled region. This is output by the max pooling layer.
- \textquoteleft size\textquoteleft — Output size of unpooled feature map. This is output by the max pooling layer.

Use the input names when connecting or disconnecting the max unpooling layer to other layers using \texttt{connectLayers} or \texttt{disconnectLayers}.

Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames — Output names
\{\textquoteleft out\textquoteleft\} (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Create Max Unpooling Layer

Create a max unpooling layer that un pools the output of a max pooling layer.

\begin{verbatim}
layer = maxUnpooling2dLayer
layer = MaxUnpooling2DLayer with properties:
 Name: ''
 NumInputs: 3
 InputNames: {'in' 'indices' 'size'}
\end{verbatim}

Unpool Max Pooling Layer

Create a max pooling layer, and set the \texttt{'HasUnpoolingOutputs'} property as \texttt{true}. This property gives the max pooling layer two additional outputs, \texttt{'indices'} and \texttt{'size'}, which enables unpooling the layer. Also create a max unpooling layer.
layers = [
 maxPooling2dLayer(2,'Stride',2,'Name','mpool','HasUnpoolingOutputs',true)
 maxUnpooling2dLayer('Name','unpool');
]
layers = 2x1 Layer array with layers:
1 'mpool' Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]
2 'unpool' Max Unpooling Max Unpooling

Sequentially connect layers by adding them to a layerGraph. This step connects the 'out' output of the max pooling layer to the 'in' input of the max unpooling layer:
lgraph = layerGraph(layers)
lgraph = LayerGraph with properties:
 Layers: [2x1 nnet.cnn.layer.Layer]
 Connections: [1x2 table]
 InputNames: {1x0 cell}
 OutputNames: {1x0 cell}

Unpool the output of the max pooling layer, by connecting the max pooling layer outputs to the max unpooling layer inputs:
lgraph = connectLayers(lgraph,'mpool/indices','unpool/indices');
lgraph = connectLayers(lgraph,'mpool/size','unpool/size');

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
connectLayers | disconnectLayers | layerGraph | maxPooling2dLayer | trainNetwork

Topics
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Train Residual Network for Image Classification”
“List of Deep Learning Layers”

Introduced in R2017b
minibatchqueue

Create mini-batches for deep learning

Description

Use minibatchqueue to create, preprocess, and manage mini-batches of data for training using custom training loops.

A minibatchqueue iterates over a datastore to provide data in a suitable format for training using custom training loops. Use a minibatchqueue to automatically convert your data to dlarray or gpuArray, convert data to a different precision, or apply a custom function to preprocess your data. You can prepare your data in parallel in the background.

During training, you can manage your data using the minibatchqueue. You can shuffle the data at the start of each training epoch using the shuffle function and collect data from the queue for each training iteration using the next function. You can check if there is any data left in the queue using the hasdata function, and reset the queue when it is empty.

Creation

Syntax

mbq = minibatchqueue(ds)
mbq = minibatchqueue(ds,numOutputs)

Description

mbq = minibatchqueue(ds) creates a minibatchqueue from the input datastore ds. The mini-batches in mbq have the same number of variables as the results of read on the input datastore.

mbq = minibatchqueue(ds,numOutputs) creates a minibatchqueue from the input datastore ds and sets the number of variables in each mini-batch. Use this syntax when you use MiniBatchFcn to specify a mini-batch preprocessing function that has a different number of outputs than the number of variables of the input datastore ds.

Input Arguments

ds — Input datastore
datastore | custom datastore

Input datastore, specified as a MATLAB datastore or a custom datastore.

For more information about datastores for deep learning, see “Datastores for Deep Learning”.

numOutputs — Number of mini-batch variables
positive integer

Number of mini-batch variables, specified as a positive integer. By default, the number of mini-batch variables is equal to the number of variables of the input datastore.
You can determine the number of variables of the input datastore by examining the output of `read(ds)`. If your datastore returns a table, the number of variables is the number of variables of the table. If your datastore returns a cell array, the number of variables is the size of the second dimension of the cell array.

If you use the `MiniBatchFcn` name-value pair to specify a mini-batch preprocessing function that outputs a different number of variables than the input datastore, you must set `numOutputs` to match the number of outputs of the function.

Example: 2

Properties

MiniBatchSize — Size of mini-batches

Size of mini-batches returned by the `next` function, specified as a positive integer. The default value is `128`.

Example: 256

PartialMiniBatch — Return or discard incomplete mini-batches

Return or discard incomplete mini-batches, specified as `"return"` or `"discard"`.

If the total number of observations is not exactly divisible by `MiniBatchSize`, the final mini-batch returned by the `next` function can have fewer than `MiniBatchSize` observations. This property specifies how any partial mini-batches are treated, using the following options:

- `"return"` — A mini-batch can contain fewer than `MiniBatchSize` observations. All data is returned.
- `"discard"` — All mini-batches must contain exactly `MiniBatchSize` observations. Some data can be discarded from the queue if there is not enough for a complete mini-batch.

Set `PartialMiniBatch` to `"discard"` if you require that all of your mini-batches are the same size.

Example: `"discard"

Data Types: `char` | `string`

MiniBatchFcn — Mini-batch preprocessing function

Mini-batch preprocessing function, specified as `"collate"` or a function handle.

The default value of `MiniBatchFcn` is `"collate"`. This function concatenates the mini-batch variables into arrays.

Use a function handle to a custom function to pre-process mini-batches for custom training. This is recommended for one-hot encoding classification labels, padding sequence data, calculating average
images, and so on. You must specify a custom function if your data consists of cell arrays containing arrays of different sizes.

If you specify a custom mini-batch preprocessing function, the function must concatenate each batch of output variables into an array after preprocessing and return each variable as a separate function output. The function must accept at least as many inputs as the number of variables of the underlying datastore. The inputs are passed to the custom function as N-by-1 cell arrays, where N is the number of observations in the mini-batch. The function can return as many variables as required. If the function specified by MiniBatchFcn returns a different number of outputs than inputs, specify numOutputs as the number of outputs of the function.

The following actions are not recommended inside the custom function. To reproduce the desired behavior, instead, set the corresponding property when you create the minibatchqueue.

<table>
<thead>
<tr>
<th>Action</th>
<th>Recommended Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cast variable to different data type</td>
<td>OutputCast</td>
</tr>
<tr>
<td>Move data to GPU</td>
<td>OutputEnvironment</td>
</tr>
<tr>
<td>Convert data to dlarray</td>
<td>OutputAsDlarray</td>
</tr>
<tr>
<td>Apply data format to dlarray variable</td>
<td>MiniBatchFormat</td>
</tr>
</tbody>
</table>

Example: @myCustomFunction

Data Types: char | string | function_handle

DispatchInBackground — Preprocess mini-batches in the background in a parallel pool
false or 0 (default) | true or 1

Preprocess mini-batches in the background in a parallel pool, specified as a numeric or logical 1 (true) or 0 (false).

Using this option requires Parallel Computing Toolbox The input datastore ds must be partitionable. Custom datastores must implement the matlab.io.datastore.Partitionable class.

Use this option when your mini-batches require heavy preprocessing. This option uses a parallel pool to prepare mini-batches in the background while you use mini-batches during training.

Workers in the pool process mini-batches by applying the function specified by MiniBatchFcn. Further processing including applying the effects of the OutputCast, OutputEnvironment, OutputAsDlarray, and MiniBatchFormat does not occur on the workers.

When DispatchInBackground is set to true, the software opens a local parallel pool using the current settings, if a local pool is not currently open. Non-local pools are not supported. The pool is opened the first time you call next.

Example: true

Data Types: logical

OutputCast — Data type of each mini-batch variable
'single' (default) | 'double' | 'int8' | 'int16' | 'int32' | 'int64' | 'uint8' | 'uint16' | 'uint32' | 'uint64' | 'logical' | 'char' | cell array

This property is read-only.
Data type of each mini-batch variable, specified as 'single', 'double', 'int8', 'int16', '
int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64', 'logical', or 'char', or a cell
array of these values, or an empty vector.

If you specify OutputCast as an empty vector, the data type of each mini-batch variable is
unchanged. To specify a different data type for each mini-batch variable, specify a cell array
containing an entry for each mini-batch variable. The order of the elements of this cell array must
match the order the mini-batch variables are returned. This order is the same order as the variables
are returned from the function specified by MiniBatchFcn. If you do not specify a custom
MiniBatchFcn, it is the same order as the variables returned by the underlying datastore.

You must make sure that the value of OutputCast does not conflict with the values of the
OutputAsDlarray or OutputEnvironment properties. If you specify OutputAsDlarray as true or 1,
check that the data type specified by OutputCast is supported by dlarray. If you specify
OutputEnvironment as "gpu" or "auto" and a supported GPU is available, check that the data type
specified by OutputCast is supported by gpuArray.

Example: {'single','single','logical'}

Data Types: char | string

OutputAsDlarray — Convert mini-batch variable to dlarray

true or 1 (default) | false or 0 | vector of logical values

This property is read-only.

Convert mini-batch variable to dlarray, specified as a numeric or logical 1 (true) or 0 (false) or as
a vector of numeric or logical values.

To specify a different value for each output, specify a vector containing an entry for each mini-batch
variable. The order of the elements of this vector must match the order the mini-batch variable are
returned. This order is the same order as the variables are returned from the function specified by
MiniBatchFcn. If you do not specify a custom MiniBatchFcn, it is the same order as the variables
are returned by the underlying datastore.

Variables that are converted to dlarray have underlying data type as specified by the OutputCast
property.

Example: [1,1,0]

Data Types: logical

MiniBatchFormat — Data format of mini-batch variables

' ' (default) | char array | cell array

This property is read-only.

Data format of mini-batch variables, specified as a char array or a cell array of char arrays.

The mini-batch format is applied to dlarray variables only. Non-dlarray mini-batch variables must
have a MiniBatchFormat of ' '.

To avoid an error when you have a mix of dlarray and non-dlarray variables, you must specify a
value for each output by providing a cell array containing an entry for each mini-batch variable. The
order of the elements of this cell array must match the order the mini-batch variables are returned.
This is the same order as the variables are returned from the function specified by MiniBatchFcn. If

1-728
you do not specify a custom `MiniBatchFcn`, it is the same order as the variables are returned by the underlying datastore.

Example: `{'SSCB', ''}`

Data Types: `char` | `string`

OutputEnvironment — Hardware resource for mini-batch variables

`'auto'` (default) | `'gpu'` | `'cpu'` | cell array

Hardware resource for mini-batch variables returned using the `next` function, specified as one of the following values:

- `'auto'` — Mini-batch variables are returned on the GPU if one is available. Otherwise, mini-batch variables are returned on the CPU.
- `'gpu'` — Mini-batch variables are returned on the GPU.
- `'cpu'` — Mini-batch variables are returned on the CPU

To return only specific variables on the GPU, specify `OutputEnvironment` as a cell array containing an entry for each mini-batch variable. The order of the elements of this cell array must match the order the mini-batch variable are returned. This order is the same order as the variables are returned from the function specified by `MiniBatchFcn`. If you do not specify a custom `MiniBatchFcn`, it is the same order as the variables are returned by the underlying datastore.

Using a GPU requires Parallel Computing Toolbox. To use a GPU for deep learning, you must also have a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If you choose the `'gpu'` option and Parallel Computing Toolbox or a suitable GPU is not available, then the software returns an error.

Example: `{'gpu','cpu'}`

Data Types: `char` | `string`

Object Functions

- `hasdata` Determine if minibatchqueue can return a mini-batch
- `next` Obtain next mini-batch of data from minibatchqueue
- `partition` Partition a minibatchqueue
- `reset` Reset minibatchqueue to start of data
- `shuffle` Shuffle data in minibatchqueue

Examples

Prepare Mini-Batches for Custom Training Loop

Use a `minibatchqueue` to automatically prepare mini-batches of images and classification labels for training in a custom training loop.

Create a datastore. Calling `read` on `auimds` produces a table with two variables: `input`, containing the image data, and `response`, containing the corresponding classification labels.

```matlab
auimds = augmentedImageDatastore([100 100],digitDatastore);
A = read(auimds);
head(A,2)
```
Create a minibatchqueue from auimds. Set the MiniBatchSize property to 256.

The minibatchqueue has two output variables: the images and classification labels from the input and response variables of auimds, respectively. Set the minibatchqueue to return the images as a formatted dlarray on the GPU. The images are single channel black and white images. Add a singleton channel dimension by applying the format 'SSBC' to the batch. Return the labels as a non-dlarray on the CPU.

\[
\text{mbq} = \text{minibatchqueue}(\text{auimds},... \\nonumber \\nonumber \nonumber \nonumber
\quad \text{'}MiniBatchSize',256,... \nonumber \nonumber \nonumber \nonumber
\quad \text{'}OutputAsDlarray',[1,0],... \nonumber \nonumber \nonumber \nonumber
\quad \text{'}MiniBatchFormat},{\text{'}SSBC',''},..., \nonumber \nonumber \nonumber \nonumber
\quad \text{'}OutputEnvironment',{\text{'}gpu','cpu'}) \nonumber \nonumber \nonumber \nonumber
\]

Use the next function to obtain mini-batches from mbq.

\[
[X,Y] = \text{next}(\text{mbq}); \nonumber \nonumber \nonumber \nonumber
\]

Create Mini-Batches Using Custom Preprocessing Function

Preprocess data using a minibatchqueue with a custom mini-batch preprocessing function. The custom function rescales the incoming image data between 0 and 1 and calculates the average image.

Unzip the data and create a datastore.

\[
\text{unzip}("\text{MerchData.zip}"); \nonumber \nonumber \nonumber \nonumber
\text{imds} = \text{imageDatastore}("\text{MerchData}", ... \nonumber \nonumber \nonumber \nonumber
\quad \text{'}IncludeSubfolders',true,... \nonumber \nonumber \nonumber \nonumber
\quad \text{'}LabelSource','foldernames'); \nonumber \nonumber \nonumber \nonumber
\]

Create a minibatchqueue that preprocesses data using the custom function preprocessMiniBatch defined at the end of this example. The custom function concatenates the image data into a numeric array, rescales the image between 0 and 1, and calculates the average of the batch of images. The function returns the rescaled batch of images and the average image. Set the number of outputs to 2, to match the number of outputs of the function.

\[
\text{mbq} = \text{minibatchqueue}(\text{imds},2,... \nonumber \nonumber \nonumber \nonumber
\quad \text{'}MiniBatchSize',16,... \nonumber \nonumber \nonumber \nonumber
\quad \text{'}MiniBatchFcn',@\text{preprocessMiniBatch},... \nonumber \nonumber \nonumber \nonumber
\quad \text{'}OutputAsDlarray',0) \nonumber \nonumber \nonumber \nonumber
\]

\[
\text{mbq} = \text{minibatchqueue} \text{ with 2 outputs and properties:} \nonumber \nonumber \nonumber \nonumber
\]

\[
\text{Mini-batch creation:} \nonumber \nonumber \nonumber \nonumber
\quad \text{MiniBatchSize: 16} \nonumber \nonumber \nonumber \nonumber
\quad \text{PartialMiniBatch: 'return'} \nonumber \nonumber \nonumber \nonumber
\quad \text{MiniBatchFcn: @preprocessMiniBatch} \nonumber \nonumber \nonumber \nonumber
\]
Obtain a mini-batch and display the average of the images in the mini-batch.

```matlab
[X,averageImage] = next(mbq);
imshow(averageImage)
```

```matlab
function [X,averageImage] = preprocessMiniBatch(XCell)
    X = cat(4,XCell{:});
    X = rescale(X,"InputMin",0,"InputMax",255);
    averageImage = mean(X,4);
end
```

Use minibatchqueue in a Custom Training Loop

Train a network using minibatchqueue to manage the processing of mini-batches.

Load Training Data

Load the digits training data and store the data in a datastore. Create a datastore for the images and one for the labels using `arrayDatastore`. Then, combine the datastores to produce a single datastore to use with `minibatchqueue`.
[XTrain,YTrain] = digitTrain4DArrayData;
dsX = arrayDatastore(XTrain,'IterationDimension',4);
dsY = arrayDatastore(YTrain);

dsTrain = combine(dsX,dsY);

Determine the number of unique classes in the label data.

classes = categories(YTrain);
umClasses = numel(classes);

Define Network

Define the network and specify the average image value using the 'Mean' option in the image input layer:

```
layers = [
    imageInputLayer([28 28 1], 'Name','input','Mean',mean(XTrain,4))
    convolution2dLayer(5,20,'Name','conv1')
    reluLayer('Name', 'relu1')
    convolution2dLayer(3,20,'Padding',1,'Name','conv2')
    reluLayer('Name','relu2')
    convolution2dLayer(3,20,'Padding',1,'Name','conv3')
    reluLayer('Name','relu3')
    fullyConnectedLayer(numClasses,'Name','fc')
    softmaxLayer('Name','softmax')
];
lgraph = layerGraph(layers);
```

Create a dlnetwork object from the layer graph.

dlnet = dlnetwork(lgraph);

Define Model Gradients Function

Create the helper function `modelGradients`, listed at the end of the example. The function takes a dlnetwork object `dlnet` and a mini-batch of input data `dlX` with corresponding labels `Y`, and returns the loss and the gradients of the loss with respect to the learnable parameters in `dlnet`.

Specify Training Options

Specify the options to use during training.

```
numEpochs = 10;
miniBatchSize = 128;
```

Visualize the training progress in a plot.

```
plots = "training-progress";
```

Create the minibatchqueue

Use minibatchqueue to process and manage the mini-batches of images. For each mini-batch:

- Discard partial mini-batches.
- Use the custom mini-batch preprocessing function `preprocessMiniBatch` (defined at the end of this example) to one-hot encode the class labels.
• Format the image data with the dimension labels 'SSCB' (spatial, spatial, channel, batch). By default, the minibatchqueue object converts the data to dlarray objects with underlying type single. Do not add a format to the class labels.

• Train on a GPU if one is available. By default, the minibatchqueue object converts each output to a gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA® enabled NVIDIA® GPU with compute capability 3.0 or higher.

mbq = minibatchqueue(dsTrain,...
'MiniBatchSize',miniBatchSize,...
'PartialMiniBatch','discard',...
'MiniBatchFcn',@preprocessMiniBatch,...
'MiniBatchFormat',{['SSCB',''])

Train Network

Train the model using a custom training loop. For each epoch, shuffle the data and loop over mini-batches while data is still available in the minibatchqueue. Update the network parameters using the adamupdate function. At the end of each epoch, display the training progress.

Initialize the training progress plot.

if plots == "training-progress"
 figure
 lineLossTrain = animatedline('Color',[0.85 0.325 0.098]);
 ylim([0 inf])
 xlabel("Iteration")
 ylabel("Loss")
 grid on
end

Initialize the average gradients and squared average gradients.

averageGrad = [];
averageSqGrad = [];

Train the network.

iteration = 0;
start = tic;
for epoch = 1:numEpochs
 % Shuffle data.
 shuffle (mbq);

 while hasdata(mbq) % Read mini-batch of data
 iteration = iteration + 1;

 [dlX,Y] = next(mbq);

 % Evaluate the model gradients and loss using dlfeval and the % modelGradients helper function.
 [grad,loss] = dlfeval(@modelGradients,dlnet,dlX,Y);

 % Update the network parameters using the Adam optimizer.
 [dlnet,averageGrad,averageSqGrad] = adamupdate(dlnet,grad,averageGrad,averageSqGrad,iteration);
% Display the training progress.
if plots == "training-progress"
 D = duration(0,0,toc(start),'Format','hh:mm:ss');
 addpoints(lineLossTrain,iteration,double(gather(extractdata(loss))))
 title("Epoch: " + epoch + ", Elapsed: " + string(D))
 drawnow
end
end
end

Epoch: 10, Elapsed: 00:00:55

Model Gradients Function

The modelGradients helper function takes a dlnetwork object dlnet and a mini-batch of input data dlX with corresponding labels Y, and returns the loss and the gradients of the loss with respect to the learnable parameters in dlnet. To compute the gradients automatically, use the dlgradient function.

function [gradients,loss] = modelGradients(dlnet,dlX,Y)
 dlYPred = forward(dlnet,dlX);
 loss = crossentropy(dlYPred,Y);
 gradients = dlgradient(loss,dlnet.Learnables);
end

Mini-Batch Preprocessing Function

The preprocessMiniBatch function preprocesses the data using the following steps:
1 Extract the image data from the incoming cell array and concatenate into a numeric array. Concatenating the image data over the fourth dimension adds a third dimension to each image, to be used as a singleton channel dimension.

2 Extract the label data from the incoming cell array and concatenate along the second dimension into a categorical array.

3 One-hot encode the categorical labels into numeric arrays. Encoding into the first dimension produces an encoded array that matches the shape of the network output.

```matlab
function [X,Y] = preprocessMiniBatch(XCell,YCell)
    % Extract image data from cell and concatenate over 4th dimension to adds a
    % singleton dimension 3 for channel dimension
    X = cat(4,XCell{:});
    % Extract label data from cell and concatenate
    Y = cat(2,YCell{:});
    % One-hot encode labels
    Y = onehotencode(Y,1);
end
```

See Also
datastore | dlarray | dlfeval | dlnetwork

Topics
“Training Deep Learning Models in MATLAB”
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Custom Training Loop”
“Train Generative Adversarial Network (GAN)”
“Sequence-to-Sequence Classification Using 1-D Convolutions”

Introduced in R2020a
mobilenetv2

MobileNet-v2 convolutional neural network

Syntax

```matlab
net = mobilenetv2
net = mobilenetv2('Weights','imagenet')
lgraph = mobilenetv2('Weights','none')
```

Description

MobileNet-v2 is a convolutional neural network that is 53 layers deep. You can load a pretrained version of the network trained on more than a million images from the ImageNet database [1]. The pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many animals. As a result, the network has learned rich feature representations for a wide range of images. The network has an image input size of 224-by-224. For more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

You can use `classify` to classify new images using the MobileNet-v2 model. Follow the steps of “Classify Image Using GoogLeNet” and replace GoogLeNet with MobileNet-v2.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network to Classify New Images” and load MobileNet-v2 instead of GoogLeNet.

This function requires the Deep Learning Toolbox Model for MobileNet-v2 Network support package. If this support package is not installed, then the function provides a download link.

`net = mobilenetv2('Weights','imagenet')` returns a MobileNet-v2 network trained on the ImageNet data set. This syntax is equivalent to `net = mobilenetv2`.

`lgraph = mobilenetv2('Weights','none')` returns the untrained MobileNet-v2 network architecture. The untrained model does not require the support package.

Examples

Download MobileNet-v2 Support Package

Type `mobilenetv2` at the command line.

`mobilenetv2`

If the Deep Learning Toolbox Model for MobileNet-v2 Network support package is not installed, then the function provides a link to the required support package in the Add-On Explorer. To install the support package, click the link, and then click **Install**. Check that the installation is successful by
typing \texttt{mobilenetv2} at the command line. If the required support package is installed, then the function returns a \texttt{DAGNetwork} object.

\begin{verbatim}
ans =
DAGNetwork with properties:
 Layers: [155×1 nnet.cnn.layer.Layer]
 Connections: [164×2 table]
\end{verbatim}

Output Arguments

- \texttt{net} — Pretrained MobileNet-v2 convolutional neural network
 \texttt{DAGNetwork} object

 Pretrained MobileNet-v2 convolutional neural network, returned as a \texttt{DAGNetwork} object.

- \texttt{lgraph} — Untrained MobileNet-v2 convolutional neural network architecture
 \texttt{LayerGraph} object

 Untrained MobileNet-v2 convolutional neural network architecture, returned as a \texttt{LayerGraph} object.

References

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax \texttt{net = mobilenetv2} or by passing the \texttt{mobilenetv2} function to \texttt{coder.loadDeepLearningNetwork}. For example: \texttt{net = coder.loadDeepLearningNetwork('mobilenetv2')}

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax \texttt{mobilenetv2('Weights','none')} is not supported for code generation.

GPU Code Generation

Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

- For code generation, you can load the network by using the syntax \texttt{net = mobilenetv2} or by passing the \texttt{mobilenetv2} function to \texttt{coder.loadDeepLearningNetwork}. For example: \texttt{net = coder.loadDeepLearningNetwork('mobilenetv2')}
For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).

- The syntax `mobilenetv2('Weights','none')` is not supported for GPU code generation.

See Also
DAGNetwork | densenet201 | googlenet | inceptionresnetv2 | layerGraph | plot | resnet101 | resnet50 | squeezenet | trainNetwork | vgg16 | vgg19

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

Introduced in R2019a
mse

Half mean squared error

Syntax

\[
dlY = \text{mse}(dlX, \text{targets})
\]

\[
dlY = \text{mse}(dlX, \text{targets}, '\text{DataFormat}', \text{FMT})
\]

Description

The half mean squared error operation computes the half mean squared error loss between network predictions and target values for regression tasks.

The loss is calculated using the following formula

\[
\text{loss} = \frac{1}{2N} \sum_{i=1}^{M} (X_i - T_i)^2
\]

where \(X_i\) is the network response, \(T_i\) is the target value, \(M\) is the total number of responses in \(X\) (across all observations), and \(N\) is the total number of observations in \(X\).

Note This function computes the half mean squared error loss between predictions and targets stored as `dlarray` data. If you want to calculate the half mean squared error loss within a `layerGraph` object or `Layer` array for use with `trainNetwork`, use the following layer:

* `regressionLayer`

\[
dlY = \text{mse}(\text{dlX}, \text{targets})
\]

computes the half mean squared error loss between the predictions `dlX` and the target values `targets` for regression problems. The input `dlX` is a formatted `dlarray` with dimension labels. The output `dlY` is an unformatted scalar `dlarray` with no dimension labels.

\[
dlY = \text{mse}(\text{dlX}, \text{targets}, '\text{DataFormat}', \text{FMT})
\] also specifies the dimension format `FMT` when `dlX` is not a formatted `dlarray`.

Examples

Find Half Mean Squared Error Between Predicted and Target Values

The half mean squared error evaluates how well the network predictions correspond to the target values.

Create the input predictions as a single observation of random values with a height and width of six and a single channel.

```matlab
height = 6;
width = 6;
```
channels = 1;
observations = 1;
X = rand(height,width,channels,observations);
dlX = dlarray(X,'SSCB')

Create the target values as a numeric array with the same dimension order as the input data dlX.

targets = ones(height,width,channels,observations);

Compute the half mean squared error between the predictions and the targets.

dlY = mse(dlX,targets)
dlY =
 1x1 dlarray
 5.2061

Input Arguments

dlX — Predictions
dlarray | numeric array

Predictions, specified as a dlarray with or without dimension labels or a numeric array. When dlX is not a formatted dlarray, you must specify the dimension label format using 'DataFormat',FMT. If dlX is a numeric array, targets must be a dlarray.

Data Types: single | double

targets — Target values
dlarray | numeric array

Target values, specified as a formatted or unformatted dlarray or a numeric array.

If targets is a formatted dlarray, its dimension format must be the same as the format of X, or the same as 'DataFormat' if X is unformatted.

If targets is an unformatted dlarray or a numeric array, the size of targets must exactly match the size of X. The format of X or the value of 'DataFormat' is implicitly applied to targets.

Data Types: single | double

FMT — Dimension order of unformatted data
char array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of 'DataFormat' and a character array or string FMT that provides a label for each dimension of the data. Each character in FMT must be one of the following:

- 'S' — Spatial
- 'C' — Channel
- 'B' — Batch (for example, samples and observations)
- 'T' — Time (for example, sequences)
• 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at most once.

You must specify 'DataFormat', FMT when the input data dlX is not a formatted dlarray.

Example: 'DataFormat', 'SSCB'

Data Types: char | string

Output Arguments

dlY — Half mean squared error loss

dlarray scalar

Half mean squared error loss, returned as a dlarray scalar without dimension labels. The output dlY has the same underlying data type as the input dlX.

More About

Half Mean Squared Error Loss

The mse function computes the half-mean-squared-error loss for regression problems. For more information, see the definition of “Regression Output Layer” on page 1-827 on the RegressionOutputLayer reference page.

Extended Capabilities

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• When at least one of the following input arguments is a gpuArray or a dlarray with underlying data of type gpuArray, this function runs on the GPU:
 • dlX
 • targets

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
crossentropy | dlarray | dlfeval | dlgradient | sigmoid

Topics

“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network with Multiple Outputs”

Introduced in R2019b
multiplicationLayer

Multiplication layer

Description

A multiplication layer multiplies inputs from multiple neural network layers element-wise.

Specify the number of inputs to the layer when you create it. The inputs to the layer have the names 'in1', 'in2', ..., 'inN', where N is the number of inputs. Use the input names when connecting or disconnecting the layer by using `connectLayers` or `disconnectLayers`. The size of the inputs to the multiplication layer must be either same across all dimensions or same across at least one dimension with other dimensions as singleton dimensions.

Creation

Syntax

```matlab
layer = multiplicationLayer(numInputs)
layer = multiplicationLayer(numInputs,'Name',Name)
```

Description

`layer = multiplicationLayer(numInputs)` creates a multiplication layer that multiplies `numInputs` inputs element-wise. This function also sets the `NumInputs` property.

`layer = multiplicationLayer(numInputs,'Name',Name)` also sets the `Name` property. To create a network containing a multiplication layer, you must specify a layer name.

Properties

NumInputs — Number of inputs

- **Type**: positive integer
- **Description**: Number of inputs to the layer, specified as a positive integer.

The inputs have the names 'in1', 'in2', ..., 'inN', where N equals `NumInputs`. For example, if `NumInputs` equals 3, then the inputs have the names 'in1', 'in2', and 'in3'. Use the input names when connecting or disconnecting the layer by using `connectLayers` or `disconnectLayers`.

Name — Layer name

- **Type**: character vector | string scalar
- **Description**: Layer name, specified as a character vector or a string scalar. To include this layer in a layer graph, you must specify a layer name.

Data Types: char | string
InputNames — Input Names

{`in1`, `in2`, ..., `inN`} (default)

Input names, specified as `{`in1`, `in2`, ..., `inN`}`, where N is the number of inputs of the layer.

Data Types: `cell`

NumOutputs — Number of outputs

1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: `double`

OutputNames — Output names

{`out`} (default)

Output names of the layer. This layer has a single output only.

Data Types: `cell`

Examples

Create and Connect Multiplication Layer

Create a multiplication layer with two inputs and the name `'mul_1'`.

```matlab
g = multiplicationLayer(2, 'Name', 'mul_1')```

```
g =
 MultiplicationLayer with properties:
 Name: 'mul_1'
 NumInputs: 2
 InputNames: {'in1' 'in2'}
```

Create two ReLU layers and connect them to the multiplication layer. The multiplication layer multiplies the outputs from the ReLU layers.

```matlab
relu_1 = reluLayer('Name', 'relu_1');
relu_2 = reluLayer('Name', 'relu_2');
lgraph = layerGraph();
lgraph = addLayers(lgraph, relu_1);
lgraph = addLayers(lgraph, relu_2);
lgraph = addLayers(lgraph, g);
lgraph = connectLayers(lgraph, 'relu_1', 'mul_1/in1');
lgraph = connectLayers(lgraph, 'relu_2', 'mul_1/in2');
plot(lgraph);```
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
additionLayer | concatenationLayer | layerGraph | trainNetwork

Topics
“Deep Learning in MATLAB”
“List of Deep Learning Layers”

Introduced in R2020b
nasnetlarge
Pretrained NASNet-Large convolutional neural network

Syntax
net = nasnetlarge

Description
NASNet-Large is a convolutional neural network that is trained on more than a million images from the ImageNet database [1]. The network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many animals. As a result, the network has learned rich feature representations for a wide range of images. The network has an image input size of 331-by-331. For more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the NASNet-Large model. Follow the steps of “Classify Image Using GoogLeNet” and replace GoogLeNet with NASNet-Large.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network to Classify New Images” and load NASNet-Large instead of GoogLeNet.

net = nasnetlarge returns a pretrained NASNet-Large convolutional neural network.

This function requires the Deep Learning Toolbox Model for NASNet-Large Network support package. If this support package is not installed, then the function provides a download link.

Examples

Download NASNet-Large Support Package
Download and install the Deep Learning Toolbox Model for NASNet-Large Network support package.

Type nasnetlarge at the command line.

nasnetlarge

If the Deep Learning Toolbox Model for NASNet-Large Network support package is not installed, then the function provides a link to the required support package in the Add-On Explorer. To install the support package, click the link, and then click Install. Check that the installation is successful by typing nasnetlarge at the command line. If the required support package is installed, then the function returns a DAGNetwork object.

nasnetlarge

ans =

DAGNetwork with properties:
Transfer Learning with NASNet-Large

You can use transfer learning to retrain the network to classify a new set of images.

Open the example “Train Deep Learning Network to Classify New Images”. The original example uses the GoogLeNet pretrained network. To perform transfer learning using a different network, load your desired pretrained network and follow the steps in the example.

Load the NASNet-Large network instead of GoogLeNet.

```matlab
net = nasnetlarge
```

Follow the remaining steps in the example to retrain your network. You must replace the last learnable layer and the classification layer in your network with new layers for training. The example shows you how to find which layers to replace.

Output Arguments

net — Pretrained NASNet-Large convolutional neural network

DAGNetwork object

Pretrained NASNet-Large convolutional neural network, returned as a **DAGNetwork** object.

References

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax `net = nasnetlarge` or by passing the `nasnetlarge` function to `coder.loadDeepLearningNetwork`. For example: `net = coder.loadDeepLearningNetwork('nasnetlarge')`

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

GPU Code Generation

Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:
For code generation, you can load the network by using the syntax `net = nasnetlarge` or by passing the `nasnetlarge` function to `coder.loadDeepLearningNetwork`. For example: `net = coder.loadDeepLearningNetwork('nasnetlarge')`

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).

See Also

DAGNetwork | densenet201 | googlenet | inceptionresnetv2 | layerGraph | nasnetmobile | plot | resnet101 | resnet50 | shufflenet | squeezenet | trainNetwork | vgg16 | vgg19

Topics

“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

Introduced in R2019a
nasnetmobile

Pretrained NASNet-Mobile convolutional neural network

Syntax

net = nasnetmobile

Description

NASNet-Mobile is a convolutional neural network that is trained on more than a million images from the ImageNet database [1]. The network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many animals. As a result, the network has learned rich feature representations for a wide range of images. The network has an image input size of 224-by-224. For more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the NASNet-Mobile model. Follow the steps of “Classify Image Using GoogLeNet” and replace GoogLeNet with NASNet-Mobile.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network to Classify New Images” and load NASNet-Mobile instead of GoogLeNet.

net = nasnetmobile returns a pretrained NASNet-Mobile convolutional neural network.

This function requires the Deep Learning Toolbox Model for NASNet-Mobile Network support package. If this support package is not installed, then the function provides a download link.

Examples

Download NASNet-Mobile Support Package

Download and install the Deep Learning Toolbox Model for NASNet-Mobile Network support package.

Type nasnetmobile at the command line.

nasnetmobile

If the Deep Learning Toolbox Model for NASNet-Mobile Network support package is not installed, then the function provides a link to the required support package in the Add-On Explorer. To install the support package, click the link, and then click Install. Check that the installation is successful by typing nasnetmobile at the command line. If the required support package is installed, then the function returns a DAGNetwork object.

nasnetmobile

ans =

DAGNetwork with properties:
Transfer Learning with NASNet-Mobile

You can use transfer learning to retrain the network to classify a new set of images.

Open the example “Train Deep Learning Network to Classify New Images”. The original example uses the GoogLeNet pretrained network. To perform transfer learning using a different network, load your desired pretrained network and follow the steps in the example.

Load the NASNet-Mobile network instead of GoogLeNet.

```matlab
net = nasnetmobile
```

Follow the remaining steps in the example to retrain your network. You must replace the last learnable layer and the classification layer in your network with new layers for training. The example shows you how to find which layers to replace.

Output Arguments

- `net` — Pretrained NASNet-Mobile convolutional neural network
 DAGNetwork object

 Pretrained NASNet-Mobile convolutional neural network, returned as a DAGNetwork object.

References

Extended Capabilities

- **C/C++ Code Generation**
 Generate C and C++ code using MATLAB® Coder™.

 For code generation, you can load the network by using the syntax `net = nasnetmobile` or by passing the `nasnetmobile` function to `coder.loadDeepLearningNetwork`. For example: `net = coder.loadDeepLearningNetwork('nasnetmobile')`

 For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

- **GPU Code Generation**
 Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

 Usage notes and limitations:
For code generation, you can load the network by using the syntax `net = nasnetmobile` or by passing the `nasnetmobile` function to `coder.loadDeepLearningNetwork`. For example: `net = coder.loadDeepLearningNetwork('nasnetmobile')`

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).

See Also

DAGNetwork | densenet201 | googlenet | inceptionresnetv2 | layerGraph | nasnetlarge | plot | resnet101 | resnet50 | shufflenet | squeezenet | trainNetwork | vgg16 | vgg19

Topics

“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

Introduced in R2019a
next

Obtain next mini-batch of data from minibatchqueue

Syntax

\[x_1,\ldots,x_N] = \text{next}(\text{mbq})\]

Description

\[x_1,\ldots,x_N] = \text{next}(\text{mbq})\] returns a mini-batch of data prepared using the minibatchqueue object \text{mbq}. The function returns as many variables as the number of outputs of \text{mbq}.

Examples

Obtain a Mini-Batch

Create a minibatchqueue and obtain a mini-batch.

Create a minibatchqueue from a datastore. Set the MiniBatchSize property to 2.

```matlab
auimds = augmentedImageDatastore([100 100],digitDatastore);
mbq = minibatchqueue(auimds,'MiniBatchSize',2,'MiniBatchFormat',{'SSBC','BC'})
```

```markdown
mbq =
minibatchqueue with 2 outputs and properties:

- Mini-batch creation:
  - MiniBatchSize: 2
  - PartialMiniBatch: 'return'
  - MiniBatchFcn: 'collate'
  - DispatchInBackground: 0

- Outputs:
  - OutputCast: {'single' 'single'}
  - OutputAsDlarray: [1 1]
  - MiniBatchFormat: {'SSBC' 'BC'}
  - OutputEnvironment: {'auto' 'auto'}
```

Use `next` to obtain a mini-batch. \text{mbq} has a two outputs.

```matlab
[X,Y] = \text{next}(\text{mbq});
```

\text{X} is a mini-batch containing two images from the datastore. \text{Y} contains the classification labels of those images. Check the size and data format of the mini-batch variables.

```matlab
size(X)
dims(X)
size(Y)
dims(Y)
```

```markdown
ans = 1x4
     100   100     1     2
```
ans = 'SSCB'
ans = 1x2
 1 2
ans = 'CB'

Input Arguments

`mbq` — Queue of mini-batches
`minibatchqueue`

Queue of mini-batches, specified as a `minibatchqueue` object.

Output Arguments

`[x1,...,xN]` — Mini-batch
`numeric array | cell array`

Mini-batch, returned as a numeric array or cell array.

The number and type of variables returned by `next` depends on the configuration of `mbq`. The function returns as many variables as the number of outputs of `mbq`.

See Also

`hasdata` | `minibatchqueue` | `reset`

Topics

“Training Deep Learning Models in MATLAB”
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Custom Training Loop”
“Train Generative Adversarial Network (GAN)”
“Sequence-to-Sequence Classification Using 1-D Convolutions”

Introduced in R2020b
occlusionSensitivity

Determine how input data affects output activations by occluding input.

Syntax

scoreMap = occlusionSensitivity(net,X,label)
activationMap = occlusionSensitivity(net,X,layer,channel)
___ = occlusionSensitivity(___,Name,Value)

Description

scoreMap = occlusionSensitivity(net,X,label) computes a map of the change in classification score for the classes specified by label when parts of the input data X are occluded with a mask. The change in classification score is relative to the original data without occlusion. The occluding mask is moved across the input data, giving a change in classification score for each mask location. Use an occlusion map to identify the parts of your input data that most impact the classification score. Areas in the map with higher positive values correspond to regions of input data that contribute positively to the specified classification label. The network must contain a softmaxLayer followed by a classificationLayer.

activationMap = occlusionSensitivity(net,X,layer,channel) computes a map of the change in total activation for the specified layer and channel when parts of the input data X are occluded with a mask. The change in activation score is relative to the original data without occlusion. Areas in the map with higher positive values correspond to regions of input data that contribute positively to the specified channel activation, obtained by summing over all spatial dimensions for that channel.

___ = occlusionSensitivity(___,Name,Value) specifies options using one or more name-value pair arguments in addition to the input arguments in previous syntaxes. For example, 'Stride',50 sets the stride of the occluding mask to 50 pixels.

Examples

Visualize Which Parts of an Image Influence Classification Score

Import the pretrained network GoogLeNet.
net = googlenet;

Import the image and resize to match the input size for the network.
X = imread("sherlock.jpg");
inputSize = net.Layers(1).InputSize(1:2);
X = imresize(X,inputSize);

Display the image.
imshow(X)
Classify the image to get the class label.

```matlab
label = classify(net,X)
label = categorical
    golden retriever
```

Use `occlusionSensitivity` to determine which parts of the image positively influence the classification result.

```matlab
scoreMap = occlusionSensitivity(net,X,label);
```

Plot the result over the original image with transparency to see which areas of the image affect the classification score.

```matlab
figure
imshow(X)
hold on
imagesc(scoreMap,'AlphaData',0.5);
colormap jet
The red parts of the map show the areas which have a positive contribution to the specified label. The dog's left eye and ear strongly influence the network's prediction of golden retriever.

You can get similar results using the gradient class activation mapping (Grad-CAM) technique. Grad-CAM uses the gradient of the classification score with respect to the last convolutional layer in a network in order to understand which parts of the image are most important for classification. For an example, see “Grad-CAM Reveals the Why Behind Deep Learning Decisions”.

**Input Arguments**

net — Trained network

SeriesNetwork object | DAGNetwork object

Trained network, specified as a SeriesNetwork object or a DAGNetwork object. You can get a trained network by importing a pretrained network or by training your own network using the trainNetwork function. For more information about pretrained networks, see “Pretrained Deep Neural Networks”.

net must contain a single input layer. The input layer must be an imageInputLayer.

X — Observation to occlude

d numeric array

Observation to occlude, specified as a numeric array. You can calculate the occlusion map of one observation at a time. For example, specify a single image to understand which parts of that image affect classification results.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

label — Class label used to calculate change in classification score
categorical array | character array | string array
Class label used to calculate change in classification score, specified as a categorical, a character array, or a string array.

If you specify `label` as a vector, the software calculates the change in classification score for each class label independently. In that case, `scoreMap(:,:,i)` corresponds to the occlusion map for the `i`th element in `label`.

Data Types: `char` | `string` | `categorical`

`layer` — Layer used to calculate change in activation
character vector | string scalar

Layer used to calculate change in activation, specified as a character vector or a string scalar. Specify `layer` as the name of the layer in `net` for which you want to compute the change in activations.

Data Types: `char` | `string`

`channel` — Channel used to calculate change in activation
numeric index | vector of numeric indices

Channel used to calculate change in activation, specified as scalar or vector of channel indices. The possible choices for `channel` depend on the selected layer. For example, for convolutional layers, the `NumFilters` property specifies the number of output channels. You can use `analyzeNetwork` to inspect the network and find out the number of output channels for each layer.

If `channel` is specified as a vector, the change in total activation for each specified channel is calculated independently. In that case, `activationMap(:,:,i)` corresponds to the occlusion map for the `i`th element in `channel`.

The function computes the change in total activation due to occlusion. The total activation is computed by summing over all spatial dimensions of the activation of that channel. The occlusion map corresponds to the difference between the total activation of the original data with no occlusion and the total activation for the occluded data. Areas in the map with higher positive values correspond to regions of input data that contribute positively to the specified channel activation.

Data Types: `single` | `double` | `int8` | `int16` | `int32` | `int64` | `uint8` | `uint16` | `uint32` | `uint64`

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `'MaskSize',75,'OutputUpsampling','nearest'` uses an occluding mask with size 75 pixels along each side, and uses nearest-neighbor interpolation to upsample the output to the same size as the input data.

`MaskSize` — Size of occluding mask
`'auto'` (default) | vector | scalar

Size of occluding mask, specified as the comma-separated pair consisting of `MaskSize` and one of the following.

- `'auto'` — Use a mask size of 20% of the input size, rounded to the nearest integer.
- A vector of the form `[h w]`— Use a rectangular mask with height `h` and width `w`. 

1-756
• A scalar — Use a square mask with height and width equal to the specified value.

Example: ‘MaskSize’,[50 60]

**Stride — Step size for traversing mask across input data**

‘auto’ (default) | vector | scalar

Step size for traversing the mask across the input data, specified as the comma-separated pair consisting of 'Stride' and one of the following.

• 'auto' — Use a stride of 10% of the input size, rounded to the nearest integer.
• A vector of the form [a b]— Use a vertical stride of a and a horizontal stride of b.
• A scalar — Use a stride of the specified value in both the vertical and horizontal directions.

Example: ‘Stride’,30

**MaskValue — Replacement value of occluded region**

‘auto’ (default) | scalar | vector

Replacement value of occluded region, specified as the comma-separated pair consisting of 'MaskValue' and one of the following.

• 'auto' — Replace occluded pixels with the channel-wise mean of the input data.
• A scalar — Replace occluded pixels with the specified value.
• A vector — Replace occluded pixels with the value specified for each channel. The vector must contain the same number of elements as the number of output channels of the layer.

Example: ‘MaskValue’,0.5

**OutputUpsampling — Output upsampling method**

‘bicubic’ (default) | 'nearest' | 'none'

Output upsampling method, specified as the comma-separated pair consisting of 'OutputUpsampling' and one of the following.

• 'bicubic' — Use bicubic interpolation to produce a smooth map the same size as the input data.
• 'nearest' — Use nearest-neighbor interpolation expand the map to the same size as the input data. The map indicates the resolution of the occlusion computation with respect to the size of the input data.
• 'none' — Use no upsampling. The map can be smaller than the input data.

If 'OutputUpsampling' is 'bicubic' or 'nearest', the computed map is upsampled to the size of the input data using the imresize function.

Example: ‘OutputUpsampling’, 'nearest'

**MaskClipping — Edge handling of the occluding mask**

‘on’ (default) | ‘off’

Edge handling of the occluding mask, specified as the comma-separated pair consisting of 'MaskClipping' and one of the following.

• 'on' — Place the center of the first mask at the top-left corner of the input data. Masks at the edges of the data are not full size.
• 'off' — Place the top-left corner of the first mask at the top-left corner of the input data. Masks are always full size. If the values of the MaskSize and Stride options mean that some masks extend past the boundaries of the data, those masks are excluded.

For non-image input data, you can ensure you always occlude the same amount of input data using the option 'MaskClipping','off'. For example, for word embeddings data, you can ensure the same number of words are occluded at each point.

Example: 'MaskClipping','off'

**MiniBatchSize — Size of mini-batch**

128 (default) | positive integer

Size of the mini-batch to use to compute the map of change in classification score, specified as the comma-separated pair consisting of 'MiniBatchSize' and a positive integer.

A mini-batch is a subset of the set of occluded images as the mask is moved across the input image. All occluded images are used to calculate the map; the mini-batch determines the number of images that are passed to the network at once. Larger mini-batch sizes lead to faster computation, at the cost of more memory.

Example: 'MiniBatchSize',256

**ExecutionEnvironment — Hardware resource**

'auto' (default) | 'cpu' | 'gpu'

Hardware resource for computing map, specified as the comma-separated pair consisting of 'ExecutionEnvironment' and one of the following.

• 'auto' — Use a GPU if one is available. Otherwise, use the CPU.
• 'cpu' — Use the CPU.
• 'gpu' — Use the GPU.

The GPU option requires Parallel Computing Toolbox. To use a GPU for deep learning, you must also have a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If you choose the 'ExecutionEnvironment','gpu' option and Parallel Computing Toolbox or a suitable GPU is not available, then the software returns an error.

Example: 'ExecutionEnvironment','gpu'

**Output Arguments**

**scoreMap — Map of change of classification score**

numeric matrix | numeric array

Map of change of classification score, returned as a numeric matrix or a numeric array. The change in classification score is calculated relative to the original input data without occlusion. Areas in the map with higher positive values correspond to regions of input data that contribute positively to the specified classification label.

If label is specified as a vector, the change in classification score for each class label is calculated independently. In that case, scoreMap(:,;,:,i) corresponds to the occlusion map for the ith element in label.
activationMap — Map of change of total activation
numeric matrix | numeric array

Map of change of total activation, returned as a numeric matrix or a numeric array.

The function computes the change in total activation due to occlusion. The total activation is computed by summing over all spatial dimensions of the activation of that channel. The occlusion map corresponds to the difference between the total activation of the original data with no occlusion and the total activation for the occluded data. Areas in the map with higher positive values correspond to regions of input data that contribute positively to the specified channel activation.

If channels is specified as a vector, the change in total activation for each specified channel is calculated independently. In that case, activationMap(:,:,i) corresponds to the occlusion map for the ith element in channel.

See Also
activations | classify | imageLIME

Topics
“Understand Network Predictions Using Occlusion”
“Grad-CAM Reveals the Why Behind Deep Learning Decisions”
“Understand Network Predictions Using LIME”
“Investigate Network Predictions Using Class Activation Mapping”
“Visualize Features of a Convolutional Neural Network”
“Visualize Activations of a Convolutional Neural Network”

Introduced in R2019b
**onehotdecode**

Decode probability vectors into class labels

**Syntax**

A = onehotdecode(B,classes,featureDim)
A = onehotdecode(B,classes,featureDim,typename)

**Description**

A = onehotdecode(B,classes,featureDim) decodes probability vectors in B to the most probable class label from the labels specified by classes. featureDim specifies the dimension along which the probability vectors are defined. The probability vectors are decoded into class labels by matching the position of the highest value in the vector with the class label in the corresponding position in classes. Each probability vector in A is replaced with the value of classes that corresponds to the highest value in the probability vector.

A = onehotdecode(B,classes,featureDim,typename) decodes the probabilities into class labels of data type typename.

**Examples**

**Encode and Decode Labels**

Use the onehotencode and onehotdecode functions to encode a set of labels into probability vectors and decode them back into labels.

Create a vector of categorical labels.

```matlab
colorsOriginal = ["red"; "blue"; "red"; "green"; "yellow"; "blue"];
colorsOriginal = categorical(colorsOriginal)
colorsOriginal = 1×6 categorical
red blue red green yellow blue
```

Determine the classes in the categorical vector.

```matlab
classes = categories(colorsOriginal);
```

One-hot encode the labels into probability vectors, using the onehotencode function. Encode the probability vectors into the first dimension.

```matlab
colorsEncoded = onehotencode(colorsOriginal,1)
colorsEncoded = 4×6
0 1 0 0 0 1
0 0 1 0 0 0
1 0 1 0 0 0
0 0 0 1 0 0
```

Use onehotdecode to decode the probability vectors.
colorsDecoded = onehotdecode(colorsEncoded,classes,1)

colorsDecoded = 1×6 categorical
red          blue         red          green        yellow       blue

The decoded labels match the original labels.

**Decode Probability Vectors into Most-Probable Classes**

Use `onehotdecode` to decode a set of probability vectors into the most probable class for each observation.

Create a set of ten random probability vectors. The vectors express the probability that an observation belongs to one of five classes.

```matlab
numObs = 10;
numClasses = 5;
prob = rand(numObs,numClasses);
tot = sum(prob,2);
prob = prob./tot;
```

Define the set of five classes.

```matlab
classes = ["Red" "Yellow" "Green" "Blue" "Purple"];```

Decode the probabilities into the most-probable classes. The probability vectors are encoded into the second dimension, so specify the dimension containing encoded probabilities as 2. Obtain the most probable classes as a vector of strings.

```matlab
result = onehotdecode(prob,classes,2,"string")
```

Input Arguments

B — Probability vectors
numeric array

Probability vectors to decode, specified as a numeric array.

Values in B must be between 0 and 1. If a probability vector in B contains NaN values, then that observation is decoded to the class that has the largest probability that is not NaN. If an observation contains only NaN values, then that observation is decoded to the first class label in classes.
Data Types: single | double

classes — Classes
cell array | string vector | numeric vector | character matrix

Classes, specified as a cell array of character vectors, a string vector, a numeric vector, or a two-dimensional char array.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | string | cell

featureDim — Dimension containing probability vectors
positive integer

Dimension containing probability vectors, specified as a positive integer.

Use `featureDim` to specify the dimension in `B` that contains the probability vectors. Each vector in `B` along the specified dimension is replaced by the element of `classes` in the same position as the highest value along the vector.

The dimension of `B` specified by `featureDim` must have length equal to the number of classes specified by `classes`.

typename — Data type of decoded labels
'categorical' (default) | character vector | string scalar

Data type of decoded labels, specified as a character vector or a string scalar.

Valid values of `typename` are 'categorical', 'string' and numeric types such as 'single' and 'int64'. If you specify a numeric type, `classes` must be a numeric vector.

Example: 'double'
Data Types: char | string

Output Arguments

A — Decoded class labels
categorical array (default) | string array | numeric array

Decoded class labels, returned as a categorical array, a string array, or a numeric array.

See Also
categories | onehotencode

Topics
“Train Network Using Custom Training Loop”
“Sequence-to-Sequence Classification Using 1-D Convolutions”

Introduced in R2020b
onehotencode

Encode data labels into one-hot vectors

Syntax

\[
\begin{align*}
B &= \text{onehotencode}(A, \text{featureDim}) \\
tblB &= \text{onehotencode}(\text{tblA}) \\
_ &= \text{onehotencode}(_, \text{typename}) \\
_ &= \text{onehotencode}(_, \text{'}ClassNames\', \text{classes})
\end{align*}
\]

Description

\[
B = \text{onehotencode}(A, \text{featureDim}) \text{ encodes data labels in categorical array } A \text{ into a one-hot encoded array } B. \text{ Each element of } A \text{ is replaced with a numeric vector of length equal to the number of unique classes in } A \text{ along the dimension specified by } \text{featureDim}. \text{ The vector contains a 1 in the position corresponding to the class of the label in } A, \text{ and 0 in every other position. Any } <\text{undefined}> \text{ values are encoded to NaN values.}
\]

\[
tblB = \text{onehotencode}(\text{tblA}) \text{ encodes categorical data labels in table } tblA \text{ into a table of one-hot encoded numeric values. The single variable of } tblA \text{ is replaced with as many variables as the number of unique classes in } tblA. \text{ Each row in } tblB \text{ contains a 1 in the variable corresponding to the class of the label in } tblA \text{ and a 0 in all other variables.}
\]

\[
_ = \text{onehotencode}(_, \text{typename}) \text{ encodes the labels into numeric values of data type } \text{typename}.
\]

\[
_ = \text{onehotencode}(_, \text{'}ClassNames\', \text{classes}) \text{ also specifies the names of the classes to use for encoding. Use this syntax when } A \text{ or } tblA \text{ do not contain categorical values, when you want to exclude any class labels from being encoded, or when you want to encode the vector elements in a specific order. Any label in } A \text{ or } tblA \text{ of a class that does not exist in } \text{classes} \text{ is encoded to a vector of NaN values.}
\]

Examples

One-Hot Encode a Vector of Labels

Encode a categorical vector of class labels into one-hot vectors representing the labels.

Create a column vector of labels, where each row of the vector represents a single observation. Convert the labels to a categorical array.

\[
\begin{align*}
\text{labels} &= \text{’\text{red}'}; \text{’\text{blue}'}; \text{’\text{red}'}; \text{’\text{green}'}; \text{’\text{yellow}'}; \text{’\text{blue}'}; \\
\text{labels} &= \text{categorical(labels)};
\end{align*}
\]

View the order of the categories.

\[
\text{categories(classes)}
\]

\[
\text{ans} = 4\times1 \text{ cell} \\
\text{’blue'}
\]
'green'
'red'
'yellow'

Encode the labels into one-hot vectors. Expand the labels into vectors in the second dimension to encode the classes.

```matlab
labels = onehotencode(color,2)
labels = 6×4
0     0     1     0
1     0     0     0
0     0     1     0
0     1     0     0
0     0     0     1
1     0     0     0
```

Each observation in `labels` is now a row vector with a 1 in the position corresponding to the category of the class label and 0 in all other positions. The categories are encoded in the same order as the categories, such that a 1 in position 1 represents the first category in the list, in this case, 'blue'.

One-Hot Encode a Table

One-hot encode a table of categorical values.

Create a table of categorical data labels. Each row in the table holds a single observation.

```matlab
color = ["blue"; "red"; "blue"; "green"; "yellow"; "red"];
color = categorical(color);
color = table (color);
```

```matlab
color =
    color
    ______
   blue
   red
   blue
   green
   yellow
   red
```

One-hot encode the table of class labels.

```matlab
color = onehotencode(color)
color =
    blue    green    red    yellow
    _____    _____    ___    ______
    1        0       0       0
    0        0       1       0
    1        0       0       0
    0        1       0       0
    0        0       0       1
    0        0       1       0
```
Each column of the table represents a class. The data labels are encoded with a 1 in the column of the corresponding class, and 0 everywhere else.

One-Hot Encode a Subset of Classes

If not all classes in the data are relevant, encode the data labels using only a subset of the classes.

Create a row vector of data labels, where each column of the vector represents a single observation.

```matlab
pets = ["dog" "fish" "cat" "dog" "cat" "bird"];
```

Define the list of classes to encode. These classes are a subset of those present in the observations.

```matlab
animalClasses = ["bird"; "cat"; "dog"];
```

One-hot encode the observations into the first dimension. Specify the classes to encode.

```matlab
encPets = onehotencode(pets,1,"ClassNames",animalClasses)
```

```
encPets = 3×6
1   NaN     0     1     0     0
0   NaN     1     0     1     0
0   NaN     0     0     0     1
```

Observations of a class not present in the list of classes to encode are encoded to a vector of NaN values.

One-Hot Encode an Image for Semantic Segmentation

Use `onehotencode` to encode a matrix of class labels, such as a semantic segmentation of an image.

Define a simple 15-by-15 pixel segmentation matrix of class labels.

```matlab
A = "blue";
B = "green";
C = "black";
A = repmat(A,8,15);
B = repmat(B,7,5);
C = repmat(C,7,5);
seg = [A;B C B];
```

Convert the segmentation matrix into a categorical array.

```matlab
seg = categorical(seg);
```

One-hot encode the segmentation matrix into an array of type single. Expand the encoded labels into the third dimension.

```matlab
encSeg = onehotencode(seg,3,"single");
```

Check the size of the encoded segmentation.

```matlab
size(encSeg)
```

1-765
ans = 1×3
 15 15 3

The three possible classes of the pixels in the segmentation matrix are encoded as vectors in the third dimension.

One-Hot Encode a Table with Several Variables

If your data is a table that contains several types of class variables, you can encode each variable separately.

Create a table of observations of several types of categorical data.

```matlab
color = ["blue"; "red"; "blue"; "green"; "yellow"; "red"];
color = categorical(color);
pets = ["dog"; "fish"; "cat"; "dog"; "cat"; "bird"];
pets = categorical(pets);
location = ["USA"; "CAN"; "CAN"; "USA"; "AUS"; "USA"];
location = categorical(location);
data = table(color,pets,location)
```

```matlab
data =
color     pets    location
______    ____    ________
blue      dog       USA
red       fish      CAN
blue      cat       CAN
green     dog       USA
yellow    cat       USA
red       bird      USA
```

Use a `for`-loop to one-hot encode each table variable and append it to a new table containing the encoded data.

```matlab
encData = table();
for i=1:width(data)
    encData = [encData onehotencode(data(:,i))];
end
```

```matlab
encData =
```

```matlab
encData =
```

```matlab
blue    green    red    yellow    bird    cat    dog    fish    CAN    USA
____    _____    ___    ______    ___    ___    ___    ____    ___    ___
1        0       0       0        0      1      0      0       0      1
0        0       1       0        0      0      1      1      0      0
1        0       0       0        1      0      0      1      0      0
0        1       0       0        0      1      0      0      1      0
0        0       0       1        0      1      0      0      0      1
```

Deep Learning Functions

1-766
Each row of `encdata` encodes the three different categorical classes for each observation.

Input Arguments

A — Array of data labels
categorical array | numeric array | string array

Array of data labels to encode, specified as a categorical array, a numeric array, or a string array.

If `A` is a categorical array, the elements of the one-hot encoded vectors match the same order as that given by `categories(A)`.

If `A` is not a categorical array, you must specify the classes to encode using the `'ClassNames'` name-value pair. The vectors are encoded in the order that the classes appear in `classes`.

If `A` contains undefined values or values not present in `classes`, those values are encoded as a vector of NaN values. `typename` must be `'double'` or `'single'`.

Data Types: `categorical`

tblA — Table of data labels
table

Table of data labels to encode, specified as a table. The table must contain a single variable and one row for each observation. Each entry must contain a categorical scalar, a numeric scalar, or a string scalar.

If `tblA` contains categorical values, the elements of the one-hot encoded vectors match the same order as the categories; for example, that given by `categories(tbl(1,n))`.

If `tblA` does not contain categorical values, you must specify the classes to encode using the `'ClassNames'` name-value pair. The vectors are encoded in the order that the classes appear in `classes`.

If `tblA` contains undefined values or values not present in `classes`, those values are encoded as NaN values. `typename` must be `'double'` or `'single'`.

Data Types: `table`

featureDim — Dimension to expand
positive integer

Dimension to expand to encode the labels, specified as a positive integer.

`featureDim` must specify a singleton dimension of `A`, or be larger than `n` where `n` is the number of dimensions of `A`.

typename — Data type of encoded labels
'double' (default) | character vector | string scalar

Data type of the encoded labels, specified as a character vector or a string scalar.
If the classification label input is a categorical array, a numeric array, or a string array, then the encoded labels are returned as an array of data type `typename`.

If the classification label input is a table, then the encoded labels are returned as a table where each entry has data type `typename`.

Valid values of `typename` are floating point, signed and unsigned integer, and logical types.

Example: `'int64'`

Data Types: `char` | `string`

`classes — Classes to encode`
`cell array | string vector | numeric vector | character matrix`

Classes to encode, specified as a cell array of character vectors, a string vector, a numeric vector, or a two-dimensional char array.

If the input `A` or `tblA` does not contain categorical values, then you must specify `classes`. You can also use the `classes` argument to exclude any class labels from being encoded, or to encode the vector elements in a specific order.

If `A` or `tblA` contains undefined values or values not present in `classes`, those values are encoded to a vector of NaN values. `typename` must be `'double'` or `'single'`.

Data Types: `single` | `double` | `int8` | `int16` | `int32` | `int64` | `uint8` | `uint16` | `uint32` | `uint64` | `string` | `cell`

Output Arguments

`B — Encoded labels`
`numeric array`

Encoded labels, returned as a numeric array.

`tblB — Encoded labels`
`table`

Encoded labels, returned as a table.

Each row of `tblB` contains the one-hot encoded label for a single observation, in the same order as that provided in `tblA`. Each row contains a 1 in the variable corresponding to the class of the label in `tblA` and a 0 in all other variables.

See Also

`categorical` | `minibatchqueue` | `onehotdecode`

Topics

“Train Network Using Custom Training Loop”
“Sequence-to-Sequence Classification Using 1-D Convolutions”

Introduced in R2020b
ONNXParameters

Parameters of an imported ONNX network for deep learning

Description

ONNXParameters contains the parameters (such as weights and bias) of an imported ONNX (Open Neural Network Exchange) network. Use ONNXParameters to perform tasks such as transfer learning.

Creation

Create an ONNXParameters object by using importONNXFunction.

Properties

Learnables — Parameters updated during network training

Parameters updated during network training, specified as a structure. For example, the weights of convolution and fully connected layers are parameters that the network learns during training. To prevent Learnables parameters from being updated during training, convert them to Nonlearnables by using freezeParameters. Convert frozen parameters back to Learnables by using unfreezeParameters.

Add a new parameter to params.Learnables by using addParameter. Remove a parameter from params.Learnables by using removeParameter.

Access the fields of the structure Learnables by using dot notation. For example, params.Learnables.conv1_W could display the weights of the first convolution layer. Initialize the weights for transfer learning by entering params.Learnables.conv1_W = rand([1000,4096]). For more details about assigning a new value and parameter naming, see “Tips” on page 1-779.

Nonlearnables — Parameters unchanged during network training

Parameters unchanged during network training, specified as a structure. For example, padding and stride are parameters that stay constant during training.

Access the fields of the structure Nonlearnables by using dot notation. For example, params.Nonlearnables.conv1_Padding could display the padding of the first convolution layer. For more details about parameter naming, see “Tips” on page 1-779.

State — Network state

Structure
Network state, specified as a structure. The network State contains information remembered by the network between iterations and updated across multiple training batches. For example, the states of LSTM and batch normalization layers are State parameters.

Add a new parameter to params.State by using addParameter. Remove a parameter from params.State by using removeParameter.

Access the fields of the structure State by using dot notation. For example, params.State.bn1_var could display the variance of the first batch normalization layer. For more details about parameter naming, see “Tips” on page 1-779.

NumDimensions — Number of dimensions for every parameter

structure

This property is read-only.

Number of dimensions for every parameter, specified as a structure. NumDimensions includes trailing singleton dimensions.

Access the fields of the structure NumDimensions by using dot notation. For example, params.NumDimensions.conv1_W could display the number of dimensions for the weights parameter of the first convolution layer.

NetworkFunctionName — Name of model function

character vector | string scalar

This property is read-only.

Name of the model function, specified as a character vector or string scalar. The property NetworkFunctionName contains the name of the function NetworkFunctionName, which you specify in importONNXFunction. The function NetworkFunctionName contains the architecture of the imported ONNX network.

Example: ‘shufflenetFcn'

Object Functions

- **addParameter** Add parameter to ONNXParameters object
- **freezeParameters** Convert learnable network parameters in ONNXParameters to nonlearnable
- **removeParameter** Remove parameter from ONNXParameters object
- **unfreezeParameters** Convert nonlearnable network parameters in ONNXParameters to learnable

Examples

Train Imported ONNX Function Using Custom Training Loop

Import the alexnet convolution neural network as a function and fine-tune the pretrained network with transfer learning to perform classification on a new collection of images.

This example uses several helper functions. To view the code for these functions, see Helper Functions on page 1-0.

Unzip and load the new images as an image datastore. imageDatastore automatically labels the images based on folder names and stores the data as an ImageDatastore object. An image
datastore enables you to store large image data, including data that does not fit in memory, and efficiently read batches of images during training of a convolutional neural network. Specify the mini-batch size.

```matlab
unzip('MerchData.zip');
miniBatchSize = 8;
imds = imageDatastore('MerchData', ...'
    'IncludeSubfolders',true,...
    'LabelSource','foldernames',... 
    'ReadSize', miniBatchSize);
```

This data set is small, containing 75 training images. Display some sample images.

```matlab
numImages = numel(imds.Labels);
idx = randperm(numImages,16);
figure
for i = 1:16
    subplot(4,4,i)
    I = readimage(imds,idx(i));
    imshow(I)
end
```

Extract the training set and one-hot encode the categorical classification labels.

```matlab
XTrain = readall(imds);
XTrain = single(cat(4,XTrain{:}));
YTrain_categ = categorical(imds.Labels);
YTrain = onehotencode(YTrain_categ,2);
```
Determine the number of classes in the data.

```matlab
classes = categories(YTrain_categ);
numClasses = numel(classes)
```

```
numClasses = 5
```

AlexNet is a convolutional neural network that is trained on more than a million images from the ImageNet database. As a result, the network has learned rich feature representations for a wide range of images. The network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many animals.

Import the pretrained `alexnet` network as a function.

```matlab
alexnetONNX()
params = importONNXFunction('alexnet.onnx','alexnetFcn')
```

A function containing the imported ONNX network has been saved to the file `alexnetFcn.m`. To learn how to use this function, type: help `alexnetFcn`.

```
params =
  ONNXParameters with properties:
    Learnables: [1x1 struct]
    Nonlearnables: [1x1 struct]
    State: [1x1 struct]
    NumDimensions: [1x1 struct]
    NetworkFunctionName: 'alexnetFcn'
```

`params` is an `ONNXParameters` object that contains the network parameters. `alexnetFcn` is a model function that contains the network architecture. `importONNXFunction` saves `alexnetFcn` in the current folder.

Calculate the classification accuracy of the pretrained network on the new training set.

```matlab
accuracyBeforeTraining = getNetworkAccuracy(XTrain,YTrain,params);
fprintf('%.2f accuracy before transfer learning\n',accuracyBeforeTraining);
```

```
0.01 accuracy before transfer learning
```

The accuracy is very low.

Display the learnable parameters of the network. These parameters, for example the weights (W) and bias (B) of convolution and fully connected layers, are updated by the network during training. Nonlearnable parameters remain constant during training.

```matlab
params.Learnables
```

```
ans = struct with fields:
    data_Mean: [227×227×3 dlarray]
    conv1_W: [11×11×3×96 dlarray]
    conv1_B: [96×1 dlarray]
    conv2_W: [5×5×48×256 dlarray]
    conv2_B: [256×1 dlarray]
    conv3_W: [3×3×256×384 dlarray]
    conv3_B: [384×1 dlarray]
    conv4_W: [3×3×192×384 dlarray]
```
The last two learnable parameters of the pretrained network are configured for 1000 classes. The parameters `fc8_W` and `fc8_B` must be fine-tuned for the new classification problem. Transfer the parameters to classify 5 classes by initializing them.

```matlab
params.Learnables.fc8_B = rand(5,1);
params.Learnables.fc8_W = rand(1,1,4096,5);
```

Freeze all the parameters of the network to convert them to nonlearnable parameters. Because you do not need to compute the gradients of the frozen layers, freezing the weights of many initial layers can significantly speed up network training.

```matlab
params = freezeParameters(params,'all');
```

Unfreeze the last two parameters of the network to convert them to learnable parameters.

```matlab
params = unfreezeParameters(params,'fc8_W');
params = unfreezeParameters(params,'fc8_B');
```

Now the network is ready for training. Initialize the training progress plot.

```matlab
plots = "training-progress";
if plots == "training-progress"
    figure
    lineLossTrain = animatedline;
    xlabel("Iteration")
    ylabel("Loss")
end
```

Specify the training options.

```matlab
velocity = [];
numEpochs = 5;
miniBatchSize = 16;
numObservations = size(YTrain,2);
umIterationsPerEpoch = floor(numObservations./miniBatchSize);
initialLearnRate = 0.01;
momentum = 0.9;
decay = 0.01;
```

Train the network.

```matlab
iteration = 0;
start = tic;
executionEnvironment = "cpu"; % Change to "gpu" to train on a GPU.

% Loop over epochs.
for epoch = 1:numEpochs
```
% Shuffle data.
idx = randperm(numObservations);
XTrain = XTrain(:,:,:,idx);
YTrain = YTrain(:,idx);

% Loop over mini-batches.
for i = 1:numIterationsPerEpoch
 iteration = iteration + 1;

 % Read mini-batch of data.
 idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
 X = XTrain(:,,:,:,idx);
 Y = YTrain(:,idx);

 % If training on a GPU, then convert data to gpuArray.
 if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
 X = gpuArray(X);
 end

 % Evaluate the model gradients and loss using dlfeval and the
 % modelGradients function.
 [gradients,loss,state] = dlfeval(@modelGradients,X,Y,params);
 params.State = state;

 % Determine learning rate for time-based decay learning rate schedule.
 learnRate = initialLearnRate/(1 + decay*iteration);

 % Update the network parameters using the SGDM optimizer.
 [params.Learnables,velocity] = sgdmupdate(params.Learnables,gradients,velocity);

 % Display the training progress.
 if plots == "training-progress"
 D = duration(0,0,toc(start),"Format","hh:mm:ss");
 addpoints(lineLossTrain,iteration,double(gather(extractdata(loss))))
 title("Epoch: " + epoch + ", Elapsed: " + string(D))
 drawnow
 end
end
end
Calculate the classification accuracy of the network after fine-tuning.

accuracyAfterTraining = getNetworkAccuracy(XTrain,YTrain,params);
fprintf(’%.2f accuracy after transfer learning\n’,accuracyAfterTraining);

0.99 accuracy after transfer learning

Helper Functions

This section provides the code of the helper functions used in this example.

The `getNetworkAccuracy` function evaluates the network performance by calculating the classification accuracy.

```matlab
function accuracy = getNetworkAccuracy(X,Y,onnxParams)

N = size(X,4);
Ypred = alexnetFcn(X,onnxParams,’Training’,false);

[-,YIdx] = max(Y,[],1);
[-,YpredIdx] = max(Ypred,[],1);
umIncorrect = sum(abs(YIdx-YpredIdx) > 0);
accuracy = 1 - numIncorrect/N;
end
```

The `modelGradients` function calculates the loss and gradients.
function [grad, loss, state] = modelGradients(X,Y,onnxParams)

[y,state] = alexnetFcn(X,onnxParams,'Training',true);
loss = crossentropy(y,Y,'DataFormat','CB');
grad = dlgradient(loss,onnxParams.Learnables);
end

The alexnetONNX function generates an ONNX model of the alexnet network. You need Deep Learning Toolbox Model for AlexNet Network support to access this model.

function alexnetONNX()
exportONNXNetwork(alexnet,'alexnet.onnx');
end

Move Parameters Mislabeled by ONNX Functional Importer

Import a network saved in the ONNX format as a function, and move the mislabeled parameters by using freeze or unfreeze.

Create an ONNX model from the pretrained alexnet network. Then import alexnet.onnx as a function. Import the pretrained ONNX network using importONNXFunction, which returns an ONNXParameters object that contains the network parameters. The function also creates a new model function in the current folder that contains the network architecture. Specify the name of the model function as alexnetFcn.

net = alexnet;
exportONNXNetwork(net,'alexnet.onnx');
params = importONNXFunction('alexnet.onnx','alexnetFcn');

A function containing the imported ONNX network has been saved to the file alexnetFcn.m. To learn how to use this function, type: help alexnetFcn.

importONNXFunction labels the parameters of the imported network as Learnables (parameters that are updated during training) or Nonlearnables (parameters that remain unchanged during training). The labeling is not always accurate. A recommended practice is to check if the parameters are assigned to the correct structure params.Learnables or params.Nonlearnables. Display the learnable and nonlearnable parameters of the imported network.

params.Learnables
ans = struct with fields:
 data_Mean: [227×227×3 dlarray]
 conv1_W: [11×11×3×96 dlarray]
 conv1_B: [96×1 dlarray]
 conv2_W: [5×5×48×256 dlarray]
 conv2_B: [256×1 dlarray]
 conv3_W: [3×3×256×384 dlarray]
 conv3_B: [384×1 dlarray]
 conv4_W: [3×3×192×384 dlarray]
 conv4_B: [384×1 dlarray]
 conv5_W: [3×3×192×256 dlarray]
 conv5_B: [256×1 dlarray]
 fc6_W: [6×6×256×4096 dlarray]
fc6 B: [4096×1 dlarray]
f7 W: [1×1×4096×4096 dlarray]
fc7 B: [4096×1 dlarray]
f8 W: [1×1×4096×1000 dlarray]
fc8 B: [1000×1 dlarray]

params.Nonlearnables

ans = struct with fields:
 conv1_Stride: [1×2 dlarray]
 conv1_DilationFactor: [1×2 dlarray]
 conv1_Padding: [1×1 dlarray]
 pool1_PoolSize: [1×2 dlarray]
 pool1_Stride: [1×2 dlarray]
 pool1_Padding: [1×1 dlarray]
 conv2_Stride: [1×2 dlarray]
 conv2_DilationFactor: [1×2 dlarray]
 conv2_Padding: [2×2 dlarray]
 pool2_PoolSize: [1×2 dlarray]
 pool2_Stride: [1×2 dlarray]
 pool2_Padding: [1×1 dlarray]
 conv3_Stride: [1×2 dlarray]
 conv3_DilationFactor: [1×2 dlarray]
 conv3_Padding: [2×2 dlarray]
 conv4_Stride: [1×2 dlarray]
 conv4_DilationFactor: [1×2 dlarray]
 conv4_Padding: [2×2 dlarray]
 conv5_Stride: [1×2 dlarray]
 conv5_DilationFactor: [1×2 dlarray]
 conv5_Padding: [2×2 dlarray]
 pool5_PoolSize: [1×2 dlarray]
 pool5_Stride: [1×2 dlarray]
 pool5_Padding: [1×1 dlarray]
 fc6_Stride: [1×2 dlarray]
 fc6_DilationFactor: [1×2 dlarray]
 fc6_Padding: [1×1 dlarray]
 fc7_Stride: [1×2 dlarray]
 fc7_DilationFactor: [1×2 dlarray]
 fc7_Padding: [1×1 dlarray]
 fc8_Stride: [1×2 dlarray]
 fc8_DilationFactor: [1×2 dlarray]
 fc8_Padding: [1×1 dlarray]

Note that params.Learnables contains the parameter data_Mean, which should remain unchanged during training. Convert data_Mean to a nonlearnable parameter. The freezeParameters function removes the parameter data_Mean from param.Learnables and adds it to params.Nonlearnables sequentially.

params = freezeParameters(params,'data_Mean');

Display the updated learnable and nonlearnable parameters.

params.Learnables

ans = struct with fields:
 conv1_W: [11×11×3×96 dlarray]
conv1 B: [96×1 dlarray]
conv2 W: [5×5×48×256 dlarray]
conv2 B: [256×1 dlarray]
conv3 W: [3×3×256×384 dlarray]
conv3 B: [384×1 dlarray]
conv4 W: [3×3×192×384 dlarray]
conv4 B: [384×1 dlarray]
conv5 W: [3×3×192×256 dlarray]
conv5 B: [256×1 dlarray]
fc6 W: [6×6×256×4096 dlarray]
fc6 B: [4096×1 dlarray]
fc7 W: [1×1×4096×4096 dlarray]
fc7 B: [4096×1 dlarray]
fc8 W: [1×1×4096×1000 dlarray]
fc8 B: [1000×1 dlarray]

params.Nonlearnables
ans = struct with fields:
 conv1_Stride: [1×2 dlarray]
 conv1_DilationFactor: [1×2 dlarray]
 conv1_Padding: [1×1 dlarray]
 pool1_PoolSize: [1×2 dlarray]
 pool1_Stride: [1×2 dlarray]
 pool1_Padding: [1×1 dlarray]
 conv2_Stride: [1×2 dlarray]
 conv2_DilationFactor: [1×2 dlarray]
 conv2_Padding: [2×2 dlarray]
 pool2_PoolSize: [1×2 dlarray]
 pool2_Stride: [1×2 dlarray]
 pool2_Padding: [1×1 dlarray]
 conv3_Stride: [1×2 dlarray]
 conv3_DilationFactor: [1×2 dlarray]
 conv3_Padding: [2×2 dlarray]
 conv4_Stride: [1×2 dlarray]
 conv4_DilationFactor: [1×2 dlarray]
 conv4_Padding: [2×2 dlarray]
 conv5_Stride: [1×2 dlarray]
 conv5_DilationFactor: [1×2 dlarray]
 conv5_Padding: [2×2 dlarray]
 pool5_PoolSize: [1×2 dlarray]
 pool5_Stride: [1×2 dlarray]
 pool5_Padding: [1×1 dlarray]
 fc6_Stride: [1×2 dlarray]
 fc6_DilationFactor: [1×2 dlarray]
 fc6_Padding: [1×1 dlarray]
 fc7_Stride: [1×2 dlarray]
 fc7_DilationFactor: [1×2 dlarray]
 fc7_Padding: [1×1 dlarray]
 fc8_Stride: [1×2 dlarray]
 fc8_DilationFactor: [1×2 dlarray]
 fc8_Padding: [1×1 dlarray]
 data_Mean: [227×227×3 dlarray]

1 Deep Learning Functions
Tips

- The following rules apply when you assign a new value to a `params.Learnables` parameter:
 - The software automatically converts the new value to a `dlarray`.
 - The new value must be compatible with the existing value of `params.NumDimensions`.
 - `importONNXFunction` derives the field names of the structures `Learnables`, `Nonlearnables`, and `State` from the names in the imported ONNX model file. The field names might differ between imported networks.

See Also

`importONNXFunction`

Topics

“Make Predictions Using Model Function”
“Train Network Using Custom Training Loop”

Introduced in R2020b
partition

Partition a minibatchqueue

Syntax

\[\text{submbq} = \text{partition}(\text{mbq}, \text{numParts}, \text{indx}) \]

Description

\[\text{submbq} = \text{partition}(\text{mbq}, \text{numParts}, \text{indx}) \] partitions minibatchqueue \(\text{mbq} \) into \(\text{numParts} \) parts and returns the partition corresponding to the index \(\text{indx} \). The properties of \(\text{submbq} \) are the same as the properties of \(\text{mbq} \).

The output minibatchqueue only has access to the partition of data it is given when it is created. Using \text{reset} with \(\text{submbq} \) resets the minibatchqueue to the start of the data partition. Using \text{shuffle} with \(\text{submbq} \) shuffles only the partitioned data. If you want to shuffle the data across multiple partitions, you must shuffle the original minibatchqueue and then re-partition.

Examples

Partition minibatchqueue

Use the partition function to divide a minibatchqueue into three parts.

Create a minibatchqueue from a datastore.

\[\text{ds} = \text{digitDatastore}; \]
\[\text{mbq} = \text{minibatchqueue}(\text{ds}) \]

\(\text{mbq} = \) minibatchqueue with 1 output and properties:

- Mini-batch creation:
 - MiniBatchSize: 128
 - PartialMiniBatch: 'return'
 - MiniBatchFcn: 'collate'
 - DispatchInBackground: 0

- Outputs:
 - OutputCast: {'single'}
 - OutputAsDlarray: 1
 - MiniBatchFormat: {''}
 - OutputEnvironment: {'auto'}

Partition the minibatchqueue into three parts and return the first partition.

\[\text{sub1} = \text{partition}(\text{mbq}, 3, 1) \]

\(\text{sub1} = \) minibatchqueue with 1 output and properties:
Mini-batch creation:
 MiniBatchSize: 128
 PartialMiniBatch: 'return'
 MiniBatchFcn: 'collate'
 DispatchInBackground: 0

Outputs:
 OutputCast: {'single'}
 OutputAsDlarray: 1
 MiniBatchFormat: {''}
 OutputEnvironment: {'auto'}

sub1 contains approximately the first third of the data in mbq.

Partition a minibatchqueue in Parallel

Use the partition function to divide a minibatchqueue into three parts.

Create a minibatchqueue from a datastore.

```matlab
ds = digitDatastore;
mbq = minibatchqueue(ds)
```

```matlab
mbq = minibatchqueue with 1 output and properties:
    Mini-batch creation:
        MiniBatchSize: 128
        PartialMiniBatch: 'return'
        MiniBatchFcn: 'collate'
        DispatchInBackground: 0
    Outputs:
        OutputCast: {'single'}
        OutputAsDlarray: 1
        MiniBatchFormat: {''}
        OutputEnvironment: {'auto'}
```

Partition the minibatchqueue into three parts on three workers in a parallel pool. Iterate over the data on each worker.

```matlab
numWorkers = 3;
p = parpool('local',numWorkers);
parfor i=1:3
    submbq = partition(mbq,3,i);
    while hasdata(submbq)
        data = next(submbq);
    end
end
```

Each worker has access to a subset of the data in the original minibatchqueue.

Input Arguments

mbq — Queue of mini-batches

minibatchqueue
Queue of mini-batches, specified as a `minibatchqueue` object.

`numParts` — Number of partitions
numeric scalar

Number of partitions, specified as a numeric scalar.

`indx` — Partition index
numeric scalar

Partition index, specified as a numeric scalar.

Output Arguments

`submbq` — Output `minibatchqueue`
`minibatchqueue`

Output `minibatchqueue`. `submbq` contains subset of the data in `mbq` The properties of `submbq` are the same as the properties of `mbq`.

See Also
`minibatchqueue` | `next` | `reset` | `shuffle`

Topics
“Training Deep Learning Models in MATLAB”
“Define Custom Training Loops, Loss Functions, and Networks”

Introduced in R2020b
partitionByIndex

Partition augmentedImageDatastore according to indices

Syntax

auimds2 = partitionByIndex(auimds,ind)

Description

auimds2 = partitionByIndex(auimds,ind) partitions a subset of observations in an augmented image datastore, auimds, into a new datastore, auimds2. The desired observations are specified by indices, ind.

Input Arguments

auimds — Augmented image datastore
augmentedImageDatastore

Augmented image datastore, specified as an augmentedImageDatastore object.

ind — Indices
vector of positive integers

Indices of observations, specified as a vector of positive integers.

Output Arguments

auimds2 — Output datastore
augmentedImageDatastore object

Output datastore, returned as an augmentedImageDatastore object containing a subset of files from auimds.

See Also

read | readByIndex | readall

Introduced in R2018a
PlaceholderLayer

Layer replacing an unsupported Keras layer, ONNX layer, or unsupported functionality from `functionToLayerGraph`

Description

`PlaceholderLayer` is a layer that `importKerasLayers` and `importONNXLayers` insert into a layer array or layer graph in place of an unsupported Keras or ONNX layer. It can also represent unsupported functionality from `functionToLayerGraph`.

Creation

Importing layers from a Keras or ONNX network that has layers that are not supported by Deep Learning Toolbox creates `PlaceholderLayer` objects. Also, when you create a layer graph using `functionToLayerGraph`, unsupported functionality leads to `PlaceholderLayer` objects.

Properties

- **Name — Layer name**
 character vector | string scalar

 Layer name, specified as a character vector or a string scalar.
 Data Types: `char` | `string`

- **Description — Layer description**
 character vector | string scalar

 Layer description, specified as a character vector or a string scalar.
 Data Types: `char` | `string`

- **Type — Layer type**
 character vector | string scalar

 Layer type, specified as a character vector or a string scalar.
 Data Types: `char` | `string`

- **KerasConfiguration — Keras configuration of layer**
 structure

 Keras configuration of a layer, specified as a structure. The fields of the structure depend on the layer type.

 Note This property only exists if the layer was created when importing a Keras network.

 Data Types: `struct`
ONNX configuration of layer
structure

ONNX configuration of a layer, specified as a structure. The fields of the structure depend on the layer type.

Note This property only exists if the layer was created when importing an ONNX network.

Data Types: struct

Weights — Imported weights
structure

Imported weights, specified as a structure.
Data Types: struct

Examples

Find and Explore Placeholder Layers

Specify the Keras network file to import layers from.

modelfile = 'digitsDAGnetwithnoise.h5';

Import the network architecture. The network includes some layer types that are not supported by Deep Learning Toolbox. The importKerasLayers function replaces each unsupported layer with a placeholder layer and returns a warning message.

lgraph = importKerasLayers(modelfile)

Warning: Unable to import some Keras layers, because they are not yet supported by the Deep Learning Toolbox. They have been replaced by placeholder layers. To find these layers, call the function findPlaceholderLayers on the returned object.

Display the imported layers of the network. Two placeholder layers replace the Gaussian noise layers in the Keras network.

lgraph.Layers

ans =
15x1 Layer array with layers:
1 'input_1' Image Input 28x28x1 images
2 'conv2d_1' Convolution 20 7x7 convolutions with stride [1 1] and padding 'same'
3 'conv2d_1_relu' ReLU ReLU
4 'conv2d_2' Convolution 20 3x3 convolutions with stride [1 1] and padding 'same'
5 'conv2d_2_relu' ReLU ReLU
6 'gaussian_noise_1' PLACEHOLDER LAYER Placeholder for 'GaussianNoise' Keras layer
7 'gaussian_noise_2' PLACEHOLDER LAYER Placeholder for 'GaussianNoise' Keras layer
8 'max_pooling2d_1' Max Pooling 2x2 max pooling with stride [2 2] and padding 'same'
Find the placeholder layers using `findPlaceholderLayers`. The output argument contains the two placeholder layers that `importKerasLayers` inserted in place of the Gaussian noise layers of the Keras network.

```matlab
placeholders = findPlaceholderLayers(lgraph)
```

```plaintext
placeholders = 2x1 PlaceholderLayer array with layers:
1   'gaussian_noise_1'   PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer
2   'gaussian_noise_2'   PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer
```

Display the configuration of each placeholder layer.

```matlab
gaussian1.KerasConfiguration
```

```matlab
ans =
struct with fields:
   trainable: 1
             name: 'gaussian_noise_1'
            stddev: 1.5000
```

```matlab
ans =
struct with fields:
   trainable: 1
             name: 'gaussian_noise_2'
            stddev: 0.7000
```

Assemble Network from Pretrained Keras Layers

This example shows how to import the layers from a pretrained Keras network, replace the unsupported layers with custom layers, and assemble the layers into a network ready for prediction.

Import Keras Network

Import the layers from a Keras network model. The network in `'digitsDAGnetwithnoise.h5'` classifies images of digits.

```matlab
filename = 'digitsDAGnetwithnoise.h5';
lgraph = importKerasLayers(filename,'ImportWeights',true);
```

Warning: Unable to import some Keras layers, because they are not supported by the Deep Learning...
The Keras network contains some layers that are not supported by Deep Learning Toolbox. The `importKerasLayers` function displays a warning and replaces the unsupported layers with placeholder layers.

Plot the layer graph using `plot`.

```matlab
figure
plot(lgraph)
title("Imported Network")
```

![Imported Network](image)

Replace Placeholder Layers

To replace the placeholder layers, first identify the names of the layers to replace. Find the placeholder layers using `findPlaceholderLayers`.

```matlab
placeholderLayers = findPlaceholderLayers(lgraph)
```

```matlab
placeholderLayers = 2x1 PlaceholderLayer array with layers:
1   'gaussian_noise_1'  PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer
2   'gaussian_noise_2'  PLACEHOLDER LAYER   Placeholder for 'GaussianNoise' Keras layer
```

Display the Keras configurations of these layers.

```matlab
placeholderLayers.KerasConfiguration
```

```matlab
ans = struct with fields:
   trainable: 1
```
name: 'gaussian_noise_1'
stddev: 1.5000

ans = struct with fields:
 trainable: 1
 name: 'gaussian_noise_2'
 stddev: 0.7000

Define a custom Gaussian noise layer. To create this layer, save the file `gaussianNoiseLayer.m` in the current folder. Then, create two Gaussian noise layers with the same configurations as the imported Keras layers.

gnLayer1 = gaussianNoiseLayer(1.5,'new_gaussian_noise_1');
gnLayer2 = gaussianNoiseLayer(0.7,'new_gaussian_noise_2');

Replace the placeholder layers with the custom layers using `replaceLayer`.

lgraph = replaceLayer(lgraph,'gaussian_noise_1',gnLayer1);
lgraph = replaceLayer(lgraph,'gaussian_noise_2',gnLayer2);

Plot the updated layer graph using `plot`.

figure
plot(lgraph)
title("Network with Replaced Layers")
Specify Class Names

If the imported classification layer does not contain the classes, then you must specify these before prediction. If you do not specify the classes, then the software automatically sets the classes to 1, 2, ..., N, where N is the number of classes.

Find the index of the classification layer by viewing the Layers property of the layer graph.

lgraph.Layers

ans =
15x1 Layer array with layers:
1 'input_1' Image Input 28x28x1 images
2 'conv2d_1' Convolution 20 7x7x1 convolutions with stride [1 1] and padding 'same'
3 'conv2d_1_relu' ReLU ReLU
4 'conv2d_2' Convolution 20 3x3x1 convolutions with stride [1 1] and padding 'same'
5 'conv2d_2_relu' ReLU ReLU
6 'new_gaussian_noise_1' Gaussian Noise Gaussian noise with standard deviation 1.5
7 'new_gaussian_noise_2' Gaussian Noise Gaussian noise with standard deviation 0.7
8 'max_pooling2d_1' Max Pooling 2x2 max pooling with stride [2 2] and padding 'same'
9 'max_pooling2d_2' Max Pooling 2x2 max pooling with stride [2 2] and padding 'same'
10 'flatten_1' Keras Flatten Flatten activations into 1-D assuming C-style (row-major) order
11 'flatten_2' Keras Flatten Flatten activations into 1-D assuming C-style (row-major) order
12 'concatenate_1' Depth concatenation Depth concatenation of 2 inputs
13 'dense_1' Fully Connected 10 fully connected layer
14 'activation_1' Softmax softmax
15 'ClassificationLayer_activation_1' Classification Output crossentropyex

The classification layer has the name 'ClassificationLayer_activation_1'. View the classification layer and check the Classes property.

cLayer = lgraph.Layers(end)

cLayer =
ClassificationOutputLayer with properties:

 Name: 'ClassificationLayer_activation_1'
 Classes: 'auto'
 OutputSize: 'auto'

Hyperparameters
 LossFunction: 'crossentropyex'

Because the Classes property of the layer is 'auto', you must specify the classes manually. Set the classes to 0, 1, ..., 9, and then replace the imported classification layer with the new one.

cLayer.Calsses = string(0:9)

cLayer =
ClassificationOutputLayer with properties:

 Name: 'ClassificationLayer_activation_1'
 Classes: [0 1 2 3 4 5 6 7 8 9]
 OutputSize: 10

Hyperparameters
LossFunction: 'crossentropyex'

lgraph = replaceLayer(lgraph,'ClassificationLayer_activation_1',cLayer);

Assemble Network

Assemble the layer graph using assembleNetwork. The function returns a DAGNetwork object that is ready to use for prediction.

net = assembleNetwork(lgraph)

net = DAGNetwork with properties:

- Layers: [15x1 nnet.cnn.layer.Layer]
- Connections: [15x2 table]
- InputNames: {'input_1'}
- OutputNames: {'ClassificationLayer_activation_1'}

See Also

assembleNetwork | findPlaceholderLayers | functionToLayerGraph | importKerasLayers | importONNXLayers

Topics

“List of Deep Learning Layers”
“Define Custom Deep Learning Layers”
“Define Custom Deep Learning Layer with Learnable Parameters”
“Check Custom Layer Validity”
“Assemble Network from Pretrained Keras Layers”

Introduced in R2017b
plot

Plot neural network layer graph

Syntax

plot(lgraph)
plot(net)

Description

plot(lgraph) plots a diagram of the layer graph lgraph. The plot function labels each layer by its name and displays all layer connections.

Tip To analyze the network architecture and create an interactive network visualization, use analyzeNetwork.

plot(net) plots a diagram of the network net.

Examples

Plot Layer Graph

Create a layer graph from an array of layers. Connect the 'relu_1' layer to the 'add' layer.

layers = [
 imageInputLayer([32 32 3], 'Name', 'input')
 convolution2dLayer(3,16, 'Padding', 'same', 'Name', 'conv_1')
 batchNormalizationLayer('Name', 'BN_1')
 reluLayer('Name', 'relu_1')
 convolution2dLayer(3,16, 'Padding', 'same', 'Stride', 2, 'Name', 'conv_2')
 batchNormalizationLayer('Name', 'BN_2')
 reluLayer('Name', 'relu_2')
 additionLayer(2, 'Name', 'add')
];

lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph, 'relu_1', 'add/in2');

Plot the layer graph.

figure
plot(lgraph);
Plot DAG Network

Load a pretrained GoogLeNet convolutional neural network as a DAGNetwork object. If the Deep Learning Toolbox™ Model for GoogLeNet Network support package is not installed, then the software provides a download link.

```matlab
net = googlenet
net = DAGNetwork with properties:
    Layers: [144×1 nnet.cnn.layer.Layer]
    Connections: [170×2 table]
```

Plot the network.

```matlab
figure('Units','normalized','Position',[0.1 0.1 0.8 0.8]);
plot(net)
```
Plot Series Network

Load a pretrained AlexNet convolutional neural network as a SeriesNetwork object. If the Deep Learning Toolbox™ Model for AlexNet Network support package is not installed, then the software provides a download link.

```matlab
net = alexnet

net = SeriesNetwork with properties:
    Layers: [25x1 nnet.cnn.layer.Layer]
    InputNames: {'data'}
    OutputNames: {'output'}
```

Plot the network.

```matlab
plot(net)
```
Input Arguments

`lgraph` — Layer graph
LayerGraph object

Layer graph, specified as a `LayerGraph` object. To create a layer graph, use `layerGraph`.

`net` — Network architecture
SeriesNetwork object | DagNetwork object

Network architecture, specified as a `SeriesNetwork` or a `DAGNetwork` object.

See Also
`addLayers` | `analyzeNetwork` | `connectLayers` | `disconnectLayers` | `layerGraph` | `removeLayers` | `replaceLayer`

Topics
“Train Residual Network for Image Classification”
“Train Deep Learning Network to Classify New Images”

Introduced in R2017b
predict

Predict responses using a trained deep learning neural network.

Syntax

YPred = predict(net,imds)
YPred = predict(net,ds)
YPred = predict(net,tbl)
YPred = predict(net,X)
YPred = predict(net,X1,...,XN)
YPred = predict(net,sequences)
YPred = predict(net,sequences)
___ = predict(___,Name,Value)

Description

You can make predictions using a trained neural network for deep learning on either a CPU or GPU. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. Specify the hardware requirements using the ExecutionEnvironment name-value pair argument.

YPred = predict(net,imds) predicts responses for the image data in imds using the trained SeriesNetwork or DAGNetwork object net. For dlnetwork input, see predict.

YPred = predict(net,ds) predicts responses for the data in the datastore ds.

YPred = predict(net,tbl) predicts responses for the data in the table tbl.

YPred = predict(net,X) predicts responses for the image or feature data in the numeric array X.

YPred = predict(net,X1,...,XN) predicts responses for the data in the numeric arrays X1,...,XN for the multi-input network net. The input Xi corresponds to the network input net.InputNames(i).

[YPred1,...,YPredM] = predict(____) predicts responses for the M outputs of a multi-output network using any of the previous syntaxes. The output YPredj corresponds to the network output net.OutputNames(j). To return categorical outputs for the classification output layers, set the 'ReturnCategorical' option to true.

YPred = predict(net,sequences) predicts responses for the sequence or time series data in sequences using the trained recurrent network (for example, an LSTM or GRU network) net.

___ = predict(___,Name,Value) predicts responses with additional options specified by one or more name-value pair arguments.

Tip When making predictions with sequences of different lengths, the mini-batch size can impact the amount of padding added to the input data which can result in different predicted values. Try using
different values to see which works best with your network. To specify mini-batch size and padding options, use the 'MiniBatchSize' and 'SequenceLength' options, respectively.

Examples

Predict Output Scores Using a Trained ConvNet

Load the sample data.

[XTrain,YTrain] = digitTrain4DArrayData;

digitTrain4DArrayData loads the digit training set as 4-D array data. XTrain is a 28-by-28-by-1-by-5000 array, where 28 is the height and 28 is the width of the images. 1 is the number of channels and 5000 is the number of synthetic images of handwritten digits. YTrain is a categorical vector containing the labels for each observation.

Construct the convolutional neural network architecture.

layers = [...
 imageInputLayer([28 28 1])
 convolution2dLayer(5,20)
 reluLayer
 maxPooling2dLayer(2,'Stride',2)
 fullyConnectedLayer(10)
 softmaxLayer
 classificationLayer];

Set the options to default settings for the stochastic gradient descent with momentum.

options = trainingOptions('sgdm');

Train the network.

rng('default')
net = trainNetwork(XTrain,YTrain,layers,options);

<table>
<thead>
<tr>
<th>Epoch</th>
<th>Iteration</th>
<th>Time Elapsed (hh:mm:ss)</th>
<th>Mini-batch Accuracy</th>
<th>Mini-batch Loss</th>
<th>Base Learning Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>00:00:00</td>
<td>10.16%</td>
<td>2.3195</td>
<td>0.0100</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>00:00:04</td>
<td>50.78%</td>
<td>1.7102</td>
<td>0.0100</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>00:00:10</td>
<td>63.28%</td>
<td>1.1632</td>
<td>0.0100</td>
</tr>
<tr>
<td>4</td>
<td>150</td>
<td>00:00:19</td>
<td>60.16%</td>
<td>1.0859</td>
<td>0.0100</td>
</tr>
<tr>
<td>6</td>
<td>200</td>
<td>00:00:28</td>
<td>68.75%</td>
<td>0.8997</td>
<td>0.0100</td>
</tr>
<tr>
<td>7</td>
<td>250</td>
<td>00:00:42</td>
<td>76.56%</td>
<td>0.7920</td>
<td>0.0100</td>
</tr>
<tr>
<td>8</td>
<td>300</td>
<td>00:00:52</td>
<td>73.44%</td>
<td>0.8410</td>
<td>0.0100</td>
</tr>
<tr>
<td>9</td>
<td>350</td>
<td>00:01:02</td>
<td>81.25%</td>
<td>0.5512</td>
<td>0.0100</td>
</tr>
<tr>
<td>11</td>
<td>400</td>
<td>00:01:12</td>
<td>90.63%</td>
<td>0.4742</td>
<td>0.0100</td>
</tr>
<tr>
<td>12</td>
<td>450</td>
<td>00:01:22</td>
<td>92.19%</td>
<td>0.3615</td>
<td>0.0100</td>
</tr>
<tr>
<td>13</td>
<td>500</td>
<td>00:01:31</td>
<td>94.53%</td>
<td>0.3160</td>
<td>0.0100</td>
</tr>
<tr>
<td>15</td>
<td>550</td>
<td>00:01:46</td>
<td>96.09%</td>
<td>0.2545</td>
<td>0.0100</td>
</tr>
<tr>
<td>16</td>
<td>600</td>
<td>00:02:00</td>
<td>92.19%</td>
<td>0.2765</td>
<td>0.0100</td>
</tr>
<tr>
<td>17</td>
<td>650</td>
<td>00:02:12</td>
<td>95.31%</td>
<td>0.2461</td>
<td>0.0100</td>
</tr>
</tbody>
</table>
Run the trained network on a test set and predict the scores.

```matlab
[XTest,YTest] = digitTest4DArrayData;
YPred = predict(net,XTest);
```

`predict`, by default, uses a CUDA® enabled GPU with compute capability 3.0, when available. You can also choose to run `predict` on a CPU using the 'ExecutionEnvironment','cpu' name-value pair argument.

Display the first 10 images in the test data and compare to the predictions from `predict`.

```matlab
YTest(1:10,:)                                                                
ans = 10x1 categorical
0
0
0
0
0
0
0
0
0
0
YPred(1:10,:)
ans = 10x10 single matrix
0.9978    0.0001    0.0008    0.0002    0.0003    0.0000    0.0004    0.0000    0.0002    0.0000
0.8881    0.0000    0.0473    0.0001    0.0000    0.0000    0.0002    0.0000    0.0000    0.0007
0.9998    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000
0.9814    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000
0.9748    0.0000    0.0133    0.0003    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000
0.9873    0.0000    0.0001    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000
0.9981    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000
1.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000
0.9266    0.0000    0.0046    0.0000    0.0006    0.0000    0.0000    0.0000    0.0000    0.0000
0.9328    0.0000    0.0139    0.0012    0.0001    0.0000    0.0001    0.0018    0.0000    0.0010
```

`YTest` contains the digits corresponding to the images in `XTest`. The columns of `YPred` contain `predict`'s estimation of a probability that an image contains a particular digit. That is, the first column contains the probability estimate that the given image is digit 0, the second column contains
the probability estimate that the image is digit 1, the third column contains the probability estimate that the image is digit 2, and so on. You can see that predict's estimation of probabilities for the correct digits are almost 1 and the probability for any other digit is almost 0. predict correctly estimates the first 10 observations as digit 0.

Predict Output Scores Using a Trained LSTM Network

Load pretrained network. JapaneseVowelsNet is a pretrained LSTM network trained on the Japanese Vowels dataset as described in [1] and [2]. It was trained on the sequences sorted by sequence length with a mini-batch size of 27.

load JapaneseVowelsNet

View the network architecture.

```
net.Layers
ans =
5x1 Layer array with layers:
1   'sequenceinput'   Sequence Input          Sequence input with 12 dimensions
2   'lstm'            LSTM                    LSTM with 100 hidden units
3   'fc'              Fully Connected         9 fully connected layer
4   'softmax'         Softmax                 softmax
5   'classoutput'     Classification Output   crossentropyex with '1' and 8 other classes
```

Load the test data.

```
[XTest,YTest] = japaneseVowelsTestData;
```

Make predictions on the test data.

```
YPred = predict(net,XTest);
```

View the prediction scores for the first 10 sequences.

```
YPred(1:10,:) 
ans = 10x9 single matrix
 0.9918  0.0000  0.0000  0.0000  0.0006  0.0010  0.0001  0.0006  0.0059
 0.9868  0.0000  0.0000  0.0000  0.0006  0.0010  0.0001  0.0006  0.0105
 0.9924  0.0000  0.0000  0.0000  0.0006  0.0010  0.0001  0.0006  0.0054
 0.9896  0.0000  0.0000  0.0000  0.0006  0.0009  0.0000  0.0003  0.0080
 0.9965  0.0000  0.0000  0.0000  0.0006  0.0009  0.0000  0.0003  0.0080
 0.9888  0.0000  0.0000  0.0000  0.0006  0.0010  0.0001  0.0008  0.0087
 0.9886  0.0000  0.0000  0.0000  0.0006  0.0010  0.0001  0.0008  0.0089
 0.9982  0.0000  0.0000  0.0000  0.0006  0.0007  0.0000  0.0001  0.0004
 0.9883  0.0000  0.0000  0.0000  0.0006  0.0010  0.0001  0.0008  0.0093
 0.9959  0.0000  0.0000  0.0000  0.0007  0.0011  0.0000  0.0004  0.0019
```

Compare these prediction scores to the labels of these sequences. The function assigns high prediction scores to the correct class.

```
YTest(1:10)
```
ans = 10x1 categorical
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Input Arguments

net — Trained network
SeriesNetwork object | DAGNetwork object

Trained network, specified as a SeriesNetwork or a DAGNetwork object. You can get a trained network by importing a pretrained network (for example, by using the googlenet function) or by training your own network using trainNetwork.

imds — Image datastore
ImageDatastore object

Image datastore, specified as an ImageDatastore object.

ImageDatastore allows batch reading of JPG or PNG image files using prefetching. If you use a custom function for reading the images, then ImageDatastore does not prefetch.

Tip Use augmentedImageDatastore for efficient preprocessing of images for deep learning including image resizing.

Do not use the readFcn option of imageDatastore for preprocessing or resizing as this option is usually significantly slower.

ds — Datastore
datastore

Datastore for out-of-memory data and preprocessing. The datastore must return data in a table or a cell array. The format of the datastore output depends on the network architecture.
Network Architecture

Single input
- Table or cell array, where the first column specifies the predictors.
- Table elements must be scalars, row vectors, or 1-by-1 cell arrays containing a numeric array.
- Custom datastores must output tables.

```matlab
data = read(ds)
data =
4×1 table
Predictors
{224×224×3 double}
{224×224×3 double}
{224×224×3 double}
{224×224×3 double}
data = read(ds)
data =
4×1 cell array
{224×224×3 double}
{224×224×3 double}
{224×224×3 double}
{224×224×3 double}
```

Multiple input
- Cell array with at least `numInputs` columns, where `numInputs` is the number of network inputs.
- The first `numInputs` columns specify the predictors for each input.
- The order of inputs is given by the `InputNames` property of the network.

```matlab
data = read(ds)
data =
4×2 cell array
{224×224×3 double}    {128×128×3 double}
{224×224×3 double}    {128×128×3 double}
{224×224×3 double}    {128×128×3 double}
{224×224×3 double}    {128×128×3 double}
```

The format of the predictors depend on the type of data.

<table>
<thead>
<tr>
<th>Data</th>
<th>Format of Predictors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-D image</td>
<td><code>h</code>-by-<code>w</code>-by-<code>c</code> numeric array, where <code>h</code>, <code>w</code>, and <code>c</code> are the height, width, and number of channels of the image, respectively.</td>
</tr>
<tr>
<td>3-D image</td>
<td><code>h</code>-by-<code>w</code>-by-<code>d</code>-by-<code>c</code> numeric array, where <code>h</code>, <code>w</code>, <code>d</code>, and <code>c</code> are the height, width, depth, and number of channels of the image, respectively.</td>
</tr>
<tr>
<td>Vector sequence</td>
<td><code>c</code>-by-<code>s</code> matrix, where <code>c</code> is the number of features of the sequence and <code>s</code> is the sequence length.</td>
</tr>
</tbody>
</table>
Data | **Format of Predictors**
--- | ---
2-D image sequence | h-by-w-by-c-by-s array, where h, w, and c correspond to the height, width, and number of channels of the image, respectively, and s is the sequence length. Each sequence in the mini-batch must have the same sequence length.
3-D image sequence | h-by-w-by-d-by-c-by-s array, where h, w, d, and c correspond to the height, width, depth, and number of channels of the image, respectively, and s is the sequence length. Each sequence in the mini-batch must have the same sequence length.
Features | c-by-1 column vector, where c is the number of features.

For more information, see “Datastores for Deep Learning”.

X — Image or feature data

numeric array

Image or feature data, specified as a numeric array. The size of the array depends on the type of input:

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-D images</td>
<td>A h-by-w-by-c-by-N numeric array, where h, w, and c are the height, width, and number of channels of the images, respectively, and N is the number of images.</td>
</tr>
<tr>
<td>3-D images</td>
<td>A h-by-w-by-d-by-c-by-N numeric array, where h, w, d, and c are the height, width, depth, and number of channels of the images, respectively, and N is the number of images.</td>
</tr>
<tr>
<td>Features</td>
<td>A N-by-numFeatures numeric array, where N is the number of observations and numFeatures is the number of features of the input data.</td>
</tr>
</tbody>
</table>

If the array contains NaNs, then they are propagated through the network.

For networks with multiple inputs, you can specify multiple arrays X1, ..., XN, where N is the number of network inputs and the input Xi corresponds to the network input net.InputNames(i).

sequences — Sequence or time series data

cell array of numeric arrays | numeric array | datastore

Sequence or time series data, specified as an N-by-1 cell array of numeric arrays, where N is the number of observations, a numeric array representing a single sequence, or a datastore.

For cell array or numeric array input, the dimensions of the numeric arrays containing the sequences depend on the type of data.
Input sequences

Vector sequences

- c-by-s matrices, where c is the number of features of the sequences and s is the sequence length.

2-D image sequences

- h-by-w-by-c-by-s arrays, where h, w, and c correspond to the height, width, and number of channels of the images, respectively, and s is the sequence length.

3-D image sequences

- h-by-w-by-d-by-c-by-s, where h, w, d, and c correspond to the height, width, depth, and number of channels of the 3-D images, respectively, and s is the sequence length.

For datastore input, the datastore must return data as a cell array of sequences or a table whose first column contains sequences. The dimensions of the sequence data must correspond to the table above.

tbl — Table of image or feature data

`table`

Table of image or feature data. Each row in the table corresponds to an observation.

The arrangement of predictors in the table columns depend on the type of input data.

Input

<table>
<thead>
<tr>
<th>Input</th>
<th>Predictors</th>
</tr>
</thead>
</table>
| Image data | • Absolute or relative file path to an image, specified as a character vector in a single column
| | • Image specified as a 3-D numeric array
| | Specify predictors in a single column. |
| Feature data | Numeric scalar.
| | Specify predictors in `numFeatures` columns of the table, where `numFeatures` is the number of features of the input data. |

This argument supports networks with a single input only.

Data Types: `table`

Name-Value Pair Arguments

Specify optional comma-separated pair of `Name,Value` argument. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside single quotes (`' '`).

Example: `'MiniBatchSize',256` specifies the mini-batch size as 256.

MiniBatchSize — Size of mini-batches

128 (default) | positive integer

Size of mini-batches to use for prediction, specified as a positive integer. Larger mini-batch sizes require more memory, but can lead to faster predictions.
When making predictions with sequences of different lengths, the mini-batch size can impact the amount of padding added to the input data which can result in different predicted values. Try using different values to see which works best with your network. To specify mini-batch size and padding options, use the 'MiniBatchSize' and 'SequenceLength' options, respectively.

Example: `MiniBatchSize`, 256

Acceleration — Performance optimization

`'auto'` (default) | `'mex'` | `'none'`

Performance optimization, specified as the comma-separated pair consisting of 'Acceleration' and one of the following:

- `'auto'` — Automatically apply a number of optimizations suitable for the input network and hardware resource.
- `'mex'` — Compile and execute a MEX function. This option is available when using a GPU only. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If Parallel Computing Toolbox or a suitable GPU is not available, then the software returns an error.
- `'none'` — Disable all acceleration.

The default option is `'auto'`. If `'auto'` is specified, MATLAB will apply a number of compatible optimizations. If you use the `'auto'` option, MATLAB does not ever generate a MEX function.

Using the 'Acceleration' options 'auto' and 'mex' can offer performance benefits, but at the expense of an increased initial run time. Subsequent calls with compatible parameters are faster. Use performance optimization when you plan to call the function multiple times using new input data.

The 'mex' option generates and executes a MEX function based on the network and parameters used in the function call. You can have several MEX functions associated with a single network at one time. Clearing the network variable also clears any MEX functions associated with that network.

The 'mex' option is only available when you are using a GPU. You must have a C/C++ compiler installed and the GPU Coder Interface for Deep Learning Libraries support package. Install the support package using the Add-On Explorer in MATLAB. For setup instructions, see “MEX Setup” (GPU Coder). GPU Coder is not required.

The 'mex' option does not support all layers. For a list of supported layers, see “Supported Layers” (GPU Coder). Recurrent neural networks (RNNs) containing a `sequenceInputLayer` are not supported.

The 'mex' option does not support networks with multiple input layers or multiple output layers.

You cannot use MATLAB Compiler to deploy your network when using the 'mex' option.

Example: `Acceleration', 'mex'`

ExecutionEnvironment — Hardware resource

`'auto'` (default) | `'gpu'` | `'cpu'`

Hardware resource, specified as the comma-separated pair consisting of 'ExecutionEnvironment' and one of the following:

- `'auto'` — Use a GPU if one is available; otherwise, use the CPU.
• 'gpu' — Use the GPU. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If Parallel Computing Toolbox or a suitable GPU is not available, then the software returns an error.
• 'cpu' — Use the CPU.

Example: 'ExecutionEnvironment','cpu'

ReturnCategorical — Option to return categorical labels
false (default) | true

Option to return categorical labels, specified as true or false.

If ReturnCategorical is true, then the function returns categorical labels for classification output layers. Otherwise, the function returns the prediction scores for classification output layers.

SequenceLength — Option to pad, truncate, or split input sequences
'longest' (default) | 'shortest' | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

• 'longest' — Pad sequences in each mini-batch to have the same length as the longest sequence. This option does not discard any data, though padding can introduce noise to the network.
• 'shortest' — Truncate sequences in each mini-batch to have the same length as the shortest sequence. This option ensures that no padding is added, at the cost of discarding data.
• Positive integer — For each mini-batch, pad the sequences to the nearest multiple of the specified length that is greater than the longest sequence length in the mini-batch, and then split the sequences into smaller sequences of the specified length. If splitting occurs, then the software creates extra mini-batches. Use this option if the full sequences do not fit in memory. Alternatively, try reducing the number of sequences per mini-batch by setting the 'MiniBatchSize' option to a lower value.

To learn more about the effect of padding, truncating, and splitting the input sequences, see “Sequence Padding, Truncation, and Splitting”.

Example: 'SequenceLength','shortest'

SequencePaddingDirection — Direction of padding or truncation
'right' (default) | 'left'

Direction of padding or truncation, specified as one of the following:

• 'right' — Pad or truncate sequences on the right. The sequences start at the same time step and the software truncates or adds padding to the end of the sequences.
• 'left' — Pad or truncate sequences on the left. The software truncates or adds padding to the start of the sequences so that the sequences end at the same time step.

Because LSTM layers process sequence data one time step at a time, when the layer OutputMode property is 'last', any padding in the final time steps can negatively influence the layer output. To pad or truncate sequence data on the left, set the 'SequencePaddingDirection' option to 'left'.

For sequence-to-sequence networks (when the OutputMode property is 'sequence' for each LSTM layer), any padding in the first time steps can negatively influence the predictions for the earlier time
steps. To pad or truncate sequence data on the right, set the 'SequencePaddingDirection' option to 'right'.

To learn more about the effect of padding, truncating, and splitting the input sequences, see “Sequence Padding, Truncation, and Splitting”.

SequencePaddingValue — Value to pad input sequences

0 (default) | scalar

Value by which to pad input sequences, specified as a scalar. The option is valid only when SequenceLength is 'longest' or a positive integer. Do not pad sequences with NaN, because doing so can propagate errors throughout the network.

Example: 'SequencePaddingValue',-1

Output Arguments

YPred — Predicted scores or responses

matrix | 4-D numeric array | cell array of matrices

Predicted scores or responses, returned as a matrix, a 4-D numeric array, or a cell array of matrices. The format of YPred depends on the type of problem.

The following table describes the format for classification problems.

<table>
<thead>
<tr>
<th>Task</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image classification</td>
<td>N-by-K matrix, where N is the number of observations, and K is the number of classes</td>
</tr>
<tr>
<td>Sequence-to-label classification</td>
<td></td>
</tr>
<tr>
<td>Feature classification</td>
<td>N-by-1 cell array of matrices, where N is the number of observations. The sequences are matrices with K rows, where K is the number of classes. Each sequence has the same number of time steps as the corresponding input sequence after applying the SequenceLength option to each mini-batch independently.</td>
</tr>
<tr>
<td>Sequence-to-sequence classification</td>
<td></td>
</tr>
</tbody>
</table>

The following table describes the format for regression problems.

<table>
<thead>
<tr>
<th>Task</th>
<th>Format</th>
</tr>
</thead>
</table>
| 2-D image regression | • N-by-R matrix, where N is the number of images and R is the number of responses.
 | • h-by-w-by-c-by-N numeric array, where h, w, and c are the height, width, and number of channels of the images, respectively, and N is the number of images. |
Task

<table>
<thead>
<tr>
<th>Task</th>
<th>Format</th>
</tr>
</thead>
</table>
| 3-D image regression | • N-by-R matrix, where N is the number of images and R is the number of responses.
• h-by-w-by-d-by-c-by-N numeric array, where h, w, d, and c are the height, width, depth, and number of channels of the images, respectively, and N is the number of images. |
| Sequence-to-one regression | N-by-R matrix, where N is the number of sequences and R is the number of responses. |
| Sequence-to-sequence regression | N-by-1 cell array of numeric sequences, where N is the number of sequences. The sequences are matrices with R rows, where R is the number of responses. Each sequence has the same number of time steps as the corresponding input sequence after applying the SequenceLength option to each mini-batch independently. For sequence-to-sequence regression tasks with one observation, sequences can be a matrix. In this case, YPred is a matrix of responses. |
| Feature regression | N-by-R matrix, where N is the number of observations and R is the number of responses. |

For sequence-to-sequence regression problems with one observation, sequences can be a matrix. In this case, YPred is a matrix of responses.

Algorithms

If the image data contains NaNs, predict propagates them through the network. If the network has ReLU layers, these layers ignore NaNs. However, if the network does not have a ReLU layer, then predict returns NaNs as predictions.

All functions for deep learning training, prediction, and validation in Deep Learning Toolbox perform computations using single-precision, floating-point arithmetic. Functions for deep learning include trainNetwork, predict, classify, and activations. The software uses single-precision arithmetic when you train networks using both CPUs and GPUs.

Alternatives

You can compute the predicted scores and the predicted classes from a trained network using classify.

You can also compute the activations from a network layer using activations.

For sequence-to-label and sequence-to-sequence classification networks (for example, LSTM networks), you can make predictions and update the network state using classifyAndUpdateState and predictAndUpdateState.
References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- Only the syntax `YPred = predict(net,X)` is supported.
- The input `X` must not have a variable size. The size must be fixed at code generation time.

For more information about generating code for deep learning neural networks, see “Workflow for Deep Learning Code Generation with MATLAB Coder” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

- GPU code generation supports the following syntaxes:
 - `YPred = predict(net,X)`
 - `[YPred1,...,YPredM] = predict(__)`
 - `YPred = predict(net,sequences)`
 - `___ = predict(__,Name,Value)`
- The input `X` must not have variable size. The size must be fixed at code generation time.
- The cuDNN library supports vector and 2-D image sequences. The TensorRT library support only vector input sequences. The ARM Compute Library for GPU does not support recurrent networks.
- For vector sequence inputs, the number of features must be a constant during code generation. The sequence length can be variable sized.
- For image sequence inputs, the height, width, and the number of channels must be a constant during code generation.
- Only the 'MiniBatchSize', 'ReturnCategorical', 'SequenceLength', 'SequencePaddingDirection', and 'SequencePaddingValue' name-value pair arguments are supported for code generation. All name-value pairs must be compile-time constants.
- Only the 'longest' and 'shortest' option of the 'SequenceLength' name-value pair is supported for code generation.
- GPU code generation for the predict function supports inputs that are defined as half-precision floating point data types. For more information, see `half`.
See Also
activations | classify | classifyAndUpdateState | predictAndUpdateState

Introduced in R2016a
predictAndUpdateState

Predict responses using a trained recurrent neural network and update the network state

Syntax

```matlab
[updatedNet, YPred] = predictAndUpdateState(recNet, sequences)
[updatedNet, YPred] = predictAndUpdateState(___, Name, Value)
```

Description

You can make predictions using a trained deep learning network on either a CPU or GPU. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. Specify the hardware requirements using the `'ExecutionEnvironment'` on page 1-0 name-value pair argument.

`[updatedNet, YPred] = predictAndUpdateState(recNet, sequences)` predicts responses for data in `sequences` using the trained recurrent neural network `recNet` and updates the network state.

This function supports recurrent neural networks only. The input `recNet` must have at least one recurrent layer.

`[updatedNet, YPred] = predictAndUpdateState(___, Name, Value)` uses any of the arguments in the previous syntaxes and additional options specified by one or more `Name, Value` pair arguments. For example, `'MiniBatchSize', 27` makes predictions using mini-batches of size 27.

Tip When making predictions with sequences of different lengths, the mini-batch size can impact the amount of padding added to the input data which can result in different predicted values. Try using different values to see which works best with your network. To specify mini-batch size and padding options, use the `'MiniBatchSize'` and `'SequenceLength'` options, respectively.

Examples

Predict and Update Network State

Predict responses using a trained recurrent neural network and update the network state.

Load `JapaneseVowelsNet`, a pretrained long short-term memory (LSTM) network trained on the Japanese Vowels data set as described in [1] and [2]. This network was trained on the sequences sorted by sequence length with a mini-batch size of 27.

```matlab
load JapaneseVowelsNet
```

View the network architecture.

```matlab
net.Layers
```

```matlab
ans =
5x1 Layer array with layers:
```
Load the test data.

[XTest,YTest] = japaneseVowelsTestData;

Loop over the time steps in a sequence. Predict the scores of each time step and update the network state.

X = XTest{94};
numTimeSteps = size(X,2);
for i = 1:numTimeSteps
 v = X(:,i);
 [net,score] = predictAndUpdateState(net,v);
 scores(:,i) = score;
end

Plot the prediction scores. The plot shows how the prediction scores change between time steps.

classNames = string(net.Layers(end).Classes);
figure
lines = plot(scores');
xlim([1 numTimeSteps])
legend(“Class “ + classNames,'Location','northwest')
xlabel(“Time Step”)
ylabel(“Score”)
title("Prediction Scores Over Time Steps")

Highlight the prediction scores over time steps for the correct class.

trueLabel = YTest(94)

trueLabel = categorical

lines(trueLabel).LineWidth = 3;
Display the final time step prediction in a bar chart.

```matlab
figure
bar(score)
title("Final Prediction Scores")
xlabel("Class")
ylabel("Score")
```
Input Arguments

recNet — Trained recurrent neural network
SeriesNetwork object | DAGNetwork object

Trained recurrent neural network, specified as a SeriesNetwork or a DAGNetwork object. You can get a trained network by importing a pretrained network or by training your own network using the `trainNetwork` function.

sequences — Sequence or time series data
cell array of numeric arrays | numeric array | datastore

Sequence or time series data, specified as an N-by-1 cell array of numeric arrays, where N is the number of observations, a numeric array representing a single sequence, or a datastore.

For cell array or numeric array input, the dimensions of the numeric arrays containing the sequences depend on the type of data.
<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector sequences</td>
<td>c-by-s matrices, where c is the number of features of the sequences and s is the sequence length.</td>
</tr>
<tr>
<td>2-D image sequences</td>
<td>h-by-w-by-c-by-s arrays, where h, w, and c correspond to the height, width, and number of channels of the images, respectively, and s is the sequence length.</td>
</tr>
<tr>
<td>3-D image sequences</td>
<td>h-by-w-by-d-by-c-by-s, where h, w, d, and c correspond to the height, width, depth, and number of channels of the 3-D images, respectively, and s is the sequence length.</td>
</tr>
</tbody>
</table>

For datastore input, the datastore must return data as a cell array of sequences or a table whose first column contains sequences. The dimensions of the sequence data must correspond to the table above.

Name-Value Pair Arguments

Specify optional comma-separated pairs of **Name**, **Value** arguments. **Name** is the argument name and **Value** is the corresponding value. **Name** must appear inside quotes. You can specify several name and value pair arguments in any order as **Name1,Value1,...,NameN,ValueN**.

Example: `[updatedNet, YPred] = predictAndUpdateState(recNet,C,'MiniBatchSize',27)` makes predictions using mini-batches of size 27.

MiniBatchSize — Size of mini-batches

128 (default) | positive integer

Size of mini-batches to use for prediction, specified as a positive integer. Larger mini-batch sizes require more memory, but can lead to faster predictions.

When making predictions with sequences of different lengths, the mini-batch size can impact the amount of padding added to the input data which can result in different predicted values. Try using different values to see which works best with your network. To specify mini-batch size and padding options, use the 'MiniBatchSize' and 'SequenceLength' options, respectively.

Example: 'MiniBatchSize',256

Acceleration — Performance optimization

'auto' (default) | 'none'

Performance optimization, specified as the comma-separated pair consisting of 'Acceleration' and one of the following:

- 'auto' — Automatically apply a number of optimizations suitable for the input network and hardware resource.
- 'none' — Disable all acceleration.

The default option is 'auto'.

1-813
Using the `'Acceleration'` option `'auto'` can offer performance benefits, but at the expense of an increased initial run time. Subsequent calls with compatible parameters are faster. Use performance optimization when you plan to call the function multiple times using new input data.

Example: `'Acceleration','auto'

ExecutionEnvironment — Hardware resource

 `'auto'` (default) | `'gpu'` | `'cpu'`

Hardware resource, specified as the comma-separated pair consisting of `'ExecutionEnvironment'` and one of the following:

- `'auto'` — Use a GPU if one is available; otherwise, use the CPU.
- `'gpu'` — Use the GPU. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If Parallel Computing Toolbox or a suitable GPU is not available, then the software returns an error.
- `'cpu'` — Use the CPU.

Example: `'ExecutionEnvironment','cpu'

SequenceLength — Option to pad, truncate, or split input sequences

 `'longest'` (default) | `'shortest'` | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

- `'longest'` — Pad sequences in each mini-batch to have the same length as the longest sequence. This option does not discard any data, though padding can introduce noise to the network.
- `'shortest'` — Truncate sequences in each mini-batch to have the same length as the shortest sequence. This option ensures that no padding is added, at the cost of discarding data.
- Positive integer — For each mini-batch, pad the sequences to the nearest multiple of the specified length that is greater than the longest sequence length in the mini-batch, and then split the sequences into smaller sequences of the specified length. If splitting occurs, then the software creates extra mini-batches. Use this option if the full sequences do not fit in memory. Alternatively, try reducing the number of sequences per mini-batch by setting the `'MiniBatchSize'` option to a lower value.

To learn more about the effect of padding, truncating, and splitting the input sequences, see “Sequence Padding, Truncation, and Splitting”.

Example: `'SequenceLength','shortest'

SequencePaddingDirection — Direction of padding or truncation

 `'right'` (default) | `'left'`

Direction of padding or truncation, specified as one of the following:

- `'right'` — Pad or truncate sequences on the right. The sequences start at the same time step and the software truncates or adds padding to the end of the sequences.
- `'left'` — Pad or truncate sequences on the left. The software truncates or adds padding to the start of the sequences so that the sequences end at the same time step.

Because LSTM layers process sequence data one time step at a time, when the layer `OutputMode` property is `'last'`, any padding in the final time steps can negatively influence the layer output. To
pad or truncate sequence data on the left, set the 'SequencePaddingDirection' option to 'left'.

For sequence-to-sequence networks (when the OutputMode property is 'sequence' for each LSTM layer), any padding in the first time steps can negatively influence the predictions for the earlier time steps. To pad or truncate sequence data on the right, set the 'SequencePaddingDirection' option to 'right'.

To learn more about the effect of padding, truncating, and splitting the input sequences, see “Sequence Padding, Truncation, and Splitting”.

SequencePaddingValue — Value to pad input sequences
0 (default) | scalar

Value by which to pad input sequences, specified as a scalar. The option is valid only when SequenceLength is 'longest' or a positive integer. Do not pad sequences with NaN, because doing so can propagate errors throughout the network.

Example: 'SequencePaddingValue', -1

Output Arguments

updatedNet — Updated network
SeriesNetwork object | DAGNetwork object

Updated network. updatedNet is the same type of network as the input network.

YPred — Predicted scores or responses
matrix | cell array of matrices

Predicted scores or responses, returned as a matrix or a cell array of matrices. The format of YPred depends on the type of problem.

The following table describes the format for classification problems.

<table>
<thead>
<tr>
<th>Task</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence-to-label classification</td>
<td>N-by-K matrix, where N is the number of observations, and K is the number of classes.</td>
</tr>
<tr>
<td>Sequence-to-sequence classification</td>
<td>N-by-1 cell array of matrices, where N is the number of observations. The sequences are matrices with K rows, where K is the number of classes. Each sequence has the same number of time steps as the corresponding input sequence after applying the SequenceLength option to each mini-batch independently.</td>
</tr>
</tbody>
</table>

For sequence-to-sequence classification problems with one observation, sequences can be a matrix. In this case, YPred is a K-by-S matrix of scores, where K is the number of classes, and S is the total number of time steps in the corresponding input sequence.

The following table describes the format for regression problems.
Algorithms

All functions for deep learning training, prediction, and validation in Deep Learning Toolbox perform computations using single-precision, floating-point arithmetic. Functions for deep learning include `trainNetwork`, `predict`, `classify`, and `activations`. The software uses single-precision arithmetic when you train networks using both CPUs and GPUs.

References

Extended Capabilities

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

- GPU code generation supports the following syntaxes:
 - `[updatedNet,YPred] = predictAndUpdateState(recNet,sequences)`
 - `[updatedNet,YPred] = predictAndUpdateState(__,Name,Value)`
 - GPU code generation for the `predictAndUpdateState` function is only supported for recurrent neural networks and cuDNN target library.
 - The cuDNN library supports vector and 2-D image sequences.
 - For vector sequence inputs, the number of features must be a constant during code generation. The sequence length can be variable sized.
 - For image sequence inputs, the height, width, and the number of channels must be a constant during code generation.
- Only the 'MiniBatchSize', 'SequenceLength', 'SequencePaddingDirection', and 'SequencePaddingValue' name-value pair arguments are supported for code generation. All name-value pairs must be compile-time constants.
- Only the 'longest' and 'shortest' option of the 'SequenceLength' name-value pair is supported for code generation.

See Also
bilstmLayer | classify | classifyAndUpdateState | gruLayer | lstmLayer | predict | resetState | sequenceInputLayer

Topics
"Sequence Classification Using Deep Learning"
"Time Series Forecasting Using Deep Learning"
"Sequence-to-Sequence Classification Using Deep Learning"
"Sequence-to-Sequence Regression Using Deep Learning"
"Visualize Activations of LSTM Network"
"Long Short-Term Memory Networks"
"Deep Learning in MATLAB"

Introduced in R2017b
read

Read data from augmentedImageDatastore

Syntax

```matlab
data = read(auimds)
[data,info] = read(auimds)
```

Description

`data = read(auimds)` returns a batch of data from an augmented image datastore, `auimds`. Subsequent calls to the `read` function continue reading from the endpoint of the previous call.

`[data,info] = read(auimds)` also returns information about the extracted data, including metadata, in `info`.

Input Arguments

`auimds` — Augmented image datastore

`augmentedImageDatastore`

Augmented image datastore, specified as an `augmentedImageDatastore` object. The datastore specifies a `MiniBatchSize` number of observations in each batch, and a `numObservations` total number of observations.

Output Arguments

`data` — Output data

`table`

Output data, returned as a table with `MiniBatchSize` number of rows.

For the last batch of data in the datastore `auimds`, if `numObservations` is not cleanly divisible by `MiniBatchSize`, then `read` returns a partial batch containing all the remaining observations in the datastore.

`info` — Information about read data

`structure array`

Information about read data, returned as a structure array. The structure array can contain the following fields.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Filename</code></td>
<td>Filename is a fully resolved path containing the path string, name of the file, and file extension.</td>
</tr>
<tr>
<td><code>FileSize</code></td>
<td>Total file size, in bytes. For MAT-files, <code>FileSize</code> is the total number of key-value pairs in the file.</td>
</tr>
</tbody>
</table>
See Also
read (Datastore) | readByIndex | readall

Introduced in R2018a
readByIndex

Read data specified by index from augmentedImageDatastore

Syntax

data = readByIndex(auimds,ind)
[data,info] = readByIndex(auimds,ind)

Description

data = readByIndex(auimds,ind) returns a subset of observations from an augmented image datastore, auimds. The desired observations are specified by indices, ind.

[data,info] = readByIndex(auimds,ind) also returns information about the observations, including metadata, in info.

Input Arguments

auimds — Augmented image datastore
augmentedImageDatastore

Augmented image datastore, specified as an augmentedImageDatastore object.

ind — Indices
vector of positive integers

Indices of observations, specified as a vector of positive integers.

Output Arguments

data — Observations from datastore
table

Observations from the datastore, returned as a table with length(ind) number of rows.

info — Information about read data
structure array

Information about read data, returned as a structure array with the following fields.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MiniBatchIndices</td>
<td>Numeric vector of indices.</td>
</tr>
</tbody>
</table>

See Also

partitionByIndex | read | readall

Introduced in R2018a
regressionLayer

Create a regression output layer

Syntax

layer = regressionLayer
layer = regressionLayer(Name,Value)

Description

A regression layer computes the half-mean-squared-error loss for regression problems.

layer = regressionLayer returns a regression output layer for a neural network as a RegressionOutputLayer object.

Predict responses of a trained regression network using predict. Normalizing the responses often helps stabilizing and speeding up training of neural networks for regression. For more information, see “Train Convolutional Neural Network for Regression”.

layer = regressionLayer(Name,Value) sets the optional Name and ResponseNames properties using name-value pairs. For example, regressionLayer('Name','output') creates a regression layer with the name 'output'. Enclose each property name in single quotes.

Examples

Create Regression Output Layer

Create a regression output layer with the name 'routput'.

layer = regressionLayer('Name','routput')

layer = RegressionOutputLayer with properties:
 Name: 'routput'
 ResponseNames: {}
 Hyperparameters
 LossFunction: 'mean-squared-error'

The default loss function for regression is mean-squared-error.

Include a regression output layer in a Layer array.

layers = [... imageInputLayer([28 28 1])
 convolution2dLayer(12,25)
 reluLayer
 fullyConnectedLayer(1)
 regressionLayer]
layers =
5x1 Layer array with layers:
 1 '' Image Input 28x28x1 images with 'zerocenter' normalization
 2 '' Convolution 25 12x12 convolutions with stride [1 1] and padding [0 0 0 0]
 3 '' ReLU ReLU
 4 '' Fully Connected 1 fully connected layer
 5 '' Regression Output mean-squared-error

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: regressionLayer('Name','output') creates a regression layer with the name 'output'

Name — Layer name
 '' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to '', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

ResponseNames — Names of responses
 {} (default) | cell array of character vectors | string array

Names of the responses, specified as a cell array of character vectors or a string array. At training time, the software automatically sets the response names according to the training data. The default is {}.

Data Types: cell

Output Arguments

layer — Regression output layer
 RegressionOutputLayer object

Regression output layer, returned as a RegressionOutputLayer object.

More About

Regression Output Layer

A regression layer computes the half-mean-squared-error loss for regression problems. For typical regression problems, a regression layer must follow the final fully connected layer.

For a single observation, the mean-squared-error is given by:
MSE = \[\sum_{i=1}^{R} \left(\frac{(t_i - y_i)^2}{R} \right) \],

where \(R \) is the number of responses, \(t_i \) is the target output, and \(y_i \) is the network’s prediction for response \(i \).

For image and sequence-to-one regression networks, the loss function of the regression layer is the half-mean-squared-error of the predicted responses, not normalized by \(R \):

\[
\text{loss} = \frac{1}{2} \sum_{i=1}^{R} (t_i - y_i)^2.
\]

For image-to-image regression networks, the loss function of the regression layer is the half-mean-squared-error of the predicted responses for each pixel, not normalized by \(R \):

\[
\text{loss} = \frac{1}{2} \sum_{p=1}^{HWC} (t_p - y_p)^2,
\]

where \(H \), \(W \), and \(C \) denote the height, width, and number of channels of the output respectively, and \(p \) indexes into each element (pixel) of \(t \) and \(y \) linearly.

For sequence-to-sequence regression networks, the loss function of the regression layer is the half-mean-squared-error of the predicted responses for each time step, not normalized by \(R \):

\[
\text{loss} = \frac{1}{2S} \sum_{i=1}^{S} \sum_{j=1}^{R} (t_{ij} - y_{ij})^2,
\]

where \(S \) is the sequence length.

When training, the software calculates the mean loss over the observations in the mini-batch.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
RegressionOutputLayer | classificationLayer | fullyConnectedLayer

Topics
“Deep Learning in MATLAB”
“Train Convolutional Neural Network for Regression”
Introduced in R2017a
RegressionOutputLayer

Regression output layer

Description

A regression layer computes the half-mean-squared-error loss for regression problems.

Creation

Create a regression output layer using `regressionLayer`.

Properties

Regression Output

`ResponseNames — Names of responses`

```
{} (default) | cell array of character vectors | string array
```

Names of the responses, specified as a cell array of character vectors or a string array. At training time, the software automatically sets the response names according to the training data. The default is `{}`.

Data Types: `cell`

`LossFunction — Loss function for training`

```
'mean-squared-error'
```

Loss function the software uses for training, specified as `'mean-squared-error'`.

Layer

`Name — Layer name`

```
'' (default) | character vector | string scalar
```

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and `Name` is set to `' '`, then the software automatically assigns a name to the layer at training time.

Data Types: `char` | `string`

`NumInputs — Number of inputs`

```
1 (default)
```

Number of inputs of the layer. This layer accepts a single input only.

Data Types: `double`

`InputNames — Input names`

```
{'in'} (default)
```

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs

0 (default)

Number of outputs of the layer. The layer has no outputs.
Data Types: double

OutputNames — Output names

{} (default)

Output names of the layer. The layer has no outputs.
Data Types: cell

Examples

Create Regression Output Layer

Create a regression output layer with the name 'routput'.

```matlab
layer = regressionLayer('Name','routput')
```

```
layer = RegressionOutputLayer with properties:
  Name: 'routput'
  ResponseNames: {}

  Hyperparameters
    LossFunction: 'mean-squared-error'
```

The default loss function for regression is mean-squared-error.

Include a regression output layer in a Layer array.

```matlab
layers = [
    ...]
    imageInputLayer([28 28 1])
    convolution2dLayer(12,25)
    reluLayer
    fullyConnectedLayer(1)
    regressionLayer
]
```

```
layers = 5x1 Layer array with layers:
  1   ''  Image Input  28x28x1 images with 'zerocenter' normalization
  2   ''  Convolution  25 12x12 convolutions with stride [1 1] and padding [0 0 0 0]
  3   ''  ReLU
  4   ''  Fully Connected  1 fully connected layer
  5   ''  Regression Output  mean-squared-error
```
More About

Regression Output Layer

A regression layer computes the half-mean-squared-error loss for regression problems. For typical regression problems, a regression layer must follow the final fully connected layer.

For a single observation, the mean-squared-error is given by:

\[
\text{MSE} = \sum_{i=1}^{R} \frac{(t_i - y_i)^2}{R},
\]

where \(R \) is the number of responses, \(t_i \) is the target output, and \(y_i \) is the network’s prediction for response \(i \).

For image and sequence-to-one regression networks, the loss function of the regression layer is the half-mean-squared-error of the predicted responses, not normalized by \(R \):

\[
\text{loss} = \frac{1}{2} \sum_{i=1}^{R} (t_i - y_i)^2.
\]

For image-to-image regression networks, the loss function of the regression layer is the half-mean-squared-error of the predicted responses for each pixel, not normalized by \(R \):

\[
\text{loss} = \frac{1}{2} \sum_{p=1}^{HWC} (t_p - y_p)^2,
\]

where \(H, W, \) and \(C \) denote the height, width, and number of channels of the output respectively, and \(p \) indexes into each element (pixel) of \(t \) and \(y \) linearly.

For sequence-to-sequence regression networks, the loss function of the regression layer is the half-mean-squared-error of the predicted responses for each time step, not normalized by \(R \):

\[
\text{loss} = \frac{1}{2S} \sum_{i=1}^{S} \sum_{j=1}^{R} (t_{ij} - y_{ij})^2,
\]

where \(S \) is the sequence length.

When training, the software calculates the mean loss over the observations in the mini-batch.

See Also
classificationLayer | fullyConnectedLayer | regressionLayer | trainNetwork

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
"Specify Layers of Convolutional Neural Network"
"List of Deep Learning Layers"

Introduced in R2017a
reset

Reset minibatchqueue to start of data

Syntax
reset(mbq)

Description
reset(mbq) resets mbq back to the start of the underlying datastore.

Examples

Reset minibatchqueue and Obtain More Mini-Batches

You can call next on a minibatchqueue until all data is returned. When you reach the end of the data, use reset to reset the minibatchqueue and continue obtaining mini-batches with next.

Create a minibatchqueue from a datastore.

ds = digitDatastore;
mbq = minibatchqueue(ds,'MinibatchSize',256)

mbq = minibatchqueue with 1 output and properties:

 Mini-batch creation:
 MiniBatchSize: 256
 PartialMiniBatch: 'return'
 MiniBatchFcn: 'collate'
 DispatchInBackground: 0

 Outputs:
 OutputCast: {'single'}
 OutputAsDlarray: 1
 MiniBatchFormat: {''}
 OutputEnvironment: {'auto'}

Iterate over all data in the minibatchqueue. Use hasdata to check if data is still available.

while hasdata(mbq)
 [~,X] = next(mbq);
end

When hasdata returns false, you cannot collect a mini-batch using next.

hasdata(mbq)
ans =
 0

X = next(mbq);
Error using minibatchqueue/next (line 353)
Unable to provide a mini-batch because end of data reached. Use reset or shuffle to continue generating mini-batches.
Reset the minibatchqueue. Now, hasdata returns true, and you can continue to obtain data using next.

\[\text{reset(mbq)};\]
\[\text{hasdata(mbq)}\]
\[\text{ans = 1}\]
\[\text{X = next(mbq)};\]

Input Arguments

- **mbq** — Queue of mini-batches
 minibatchqueue

 Queue of mini-batches, specified as a minibatchqueue object.

See Also

- hasdata | minibatchqueue | next | shuffle

Topics

- “Training Deep Learning Models in MATLAB”
- “Define Custom Training Loops, Loss Functions, and Networks”

Introduced in R2020b
resetState

Reset the state of a recurrent neural network

Syntax

updatedNet = resetState(recNet)

Description

updatedNet = resetState(recNet) resets the state of a recurrent neural network (for example, an LSTM network) to the initial state.

Examples

Reset Network State

Reset the network state between sequence predictions.

Load JapaneseVowelsNet, a pretrained long short-term memory (LSTM) network trained on the Japanese Vowels data set as described in [1] and [2]. This network was trained on the sequences sorted by sequence length with a mini-batch size of 27.

load JapaneseVowelsNet

View the network architecture.

net.Layers

ans =
5x1 Layer array with layers:

1 'sequenceinput' Sequence Input Sequence input with 12 dimensions
2 'lstm' LSTM LSTM with 100 hidden units
3 'fc' Fully Connected 9 fully connected layer
4 'softmax' Softmax softmax
5 'classoutput' Classification Output crossentropyex with '1' and 8 other classes

Load the test data.

[XTest,YTest] = japaneseVowelsTestData;

Classify a sequence and update the network state. For reproducibility, set rng to 'shuffle'.

rng('shuffle')
X = XTest{94};
[net,label] = classifyAndUpdateState(net,X);
label

label = categorical
 3
Classify another sequence using the updated network.

\[\text{X} = \text{XTest}\{1\}; \]
\[\text{label} = \text{classify} (\text{net}, \text{X}) \]
\[\text{label} = \text{categorical} \]
\[7 \]

Compare the final prediction with the true label.

\[\text{trueLabel} = \text{YTest}(1) \]
\[\text{trueLabel} = \text{categorical} \]
\[1 \]

The updated state of the network may have negatively influenced the classification. Reset the network state and predict on the sequence again.

\[\text{net} = \text{resetState}(\text{net}); \]
\[\text{label} = \text{classify} (\text{net}, \text{XTest}\{1\}) \]
\[\text{label} = \text{categorical} \]
\[1 \]

Input Arguments

\textit{recNet} — Trained recurrent neural network
SeriesNetwork object | DAGNetwork object

Trained recurrent neural network, specified as a SeriesNetwork or a DAGNetwork object. You can get a trained network by importing a pretrained network or by training your own network using the \texttt{trainNetwork} function.

\textit{recNet} is a recurrent neural network. It must have at least one recurrent layer (for example, an LSTM network). If the input network is not a recurrent network, then the function has no effect and returns the input network.

Output Arguments

\textit{updatedNet} — Updated network
SeriesNetowrk object | DAGNetwork object

Updated network. \textit{updatedNet} is the same type of network as the input network.

If the input network is not a recurrent network, then the function has no effect and returns the input network.

References

Extended Capabilities

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

- GPU code generation for the `resetState` function is only supported for recurrent neural networks and cuDNN target library.

See Also
`bilstmLayer` | `classifyAndUpdateState` | `gruLayer` | `lstmLayer` | `predictAndUpdateState` | `sequenceInputLayer`

Topics
“Sequence Classification Using Deep Learning”
“Visualize Activations of LSTM Network”
“Long Short-Term Memory Networks”
“Specify Layers of Convolutional Neural Network”
“Set Up Parameters and Train Convolutional Neural Network”
“Deep Learning in MATLAB”

Introduced in R2017b
rmspropupdate

Update parameters using root mean squared propagation (RMSProp)

Syntax

```plaintext
[dlnet,averageSqGrad] = rmspropupdate(dlnet,grad,averageSqGrad)
[params,averageSqGrad] = rmspropupdate(params,grad,averageSqGrad)
[___] = rmspropupdate(___ learnRate,sqGradDecay,epsilon)
```

Description

Update the network learnable parameters in a custom training loop using the root mean squared propagation (RMSProp) algorithm.

Note This function applies the RMSProp optimization algorithm to update network parameters in custom training loops that use networks defined as `dlnetwork` objects or model functions. If you want to train a network defined as a `Layer` array or as a `LayerGraph`, use the following functions:

- Create a `TrainingOptionsRMSProp` object using the `trainingOptions` function.
- Use the `TrainingOptionsRMSProp` object with the `trainNetwork` function.

Examples

Update Learnable Parameters Using rmspropupdate

Perform a single root mean squared propagation update step with a global learning rate of 0.05 and squared gradient decay factor of 0.95.

Create the parameters and parameter gradients as numeric arrays.

```plaintext
params = rand(3,3,4);
grad = ones(3,3,4);
```

Initialize the average squared gradient for the first iteration.
averageSqGrad = [];

Specify custom values for the global learning rate and squared gradient decay factor.

learnRate = 0.05;
sqGradDecay = 0.95;

Update the learnable parameters using \texttt{rmspropupdate}.

\[
\text{[params,averageSqGrad]} = \text{rmspropupdate(params,grad,averageSqGrad,learnRate,sqGradDecay)};
\]

\textbf{Train a Network Using \texttt{rmspropupdate}}

Use \texttt{rmspropupdate} to train a network using the root mean squared propagation (RMSProp) algorithm.

\textbf{Load Training Data}

Load the digits training data.

\[
\text{[XTrain,YTrain]} = \text{digitTrain4DArrayData};
\text{classes} = \text{categories(YTrain)};
\text{numClasses} = \text{numel(classes)};
\]

\textbf{Define the Network}

Define the network architecture and specify the average image value using the 'Mean' option in the image input layer.

\[
\text{layers} = [
\quad \text{imageInputLayer([28 28 1], 'Name','input','Mean',mean(XTrain,4))}
\quad \text{convolution2dLayer(5,20,'Name','conv1')}
\quad \text{reluLayer('Name','relu1')}
\quad \text{convolution2dLayer(3,20,'Padding',1,'Name','conv2')}
\quad \text{reluLayer('Name','relu2')}
\quad \text{convolution2dLayer(3,20,'Padding',1,'Name','conv3')}
\quad \text{reluLayer('Name','relu3')}
\quad \text{fullyConnectedLayer(numClasses,'Name','fc')}
\quad \text{softmaxLayer('Name','softmax')}
\];
\]

Create a \texttt{dlnetwork} object from the layer graph.

\[
\text{dlnet} = \text{dlnetwork(lgraph)};
\]

\textbf{Define Model Gradients Function}

Create the helper function \texttt{modelGradients}, listed at the end of the example. The function takes a \texttt{dlnetwork} object \texttt{dlnet} and a mini-batch of input data \texttt{dLX} with corresponding labels \texttt{Y}, and returns the loss and the gradients of the loss with respect to the learnable parameters in \texttt{dlnet}.

\textbf{Specify Training Options}

Specify the options to use during training.

\[
\text{miniBatchSize} = 128;
\text{numEpochs} = 20;
\]
numObservations = numel(YTrain);
umIterPerEpoch = floor(numObservations./miniBatchSize);

Train on a GPU, if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA® enabled NVIDIA® GPU with compute capability 3.0 or higher.

executionEnvironment = "auto";

Visualize the training progress in a plot.

plots = "training-progress";

Train Network

Train the model using a custom training loop. For each epoch, shuffle the data and loop over mini-batches of data. Update the network parameters using the `rmspropupdate` function. At the end of each epoch, display the training progress.

Initialize the training progress plot.

```matlab
if plots == "training-progress"
    figure
    lineLossTrain = animatedline('Color',[0.85 0.325 0.098]);
    ylim([0 inf])
    xlabel("Iteration")
    ylabel("Loss")
    grid on
end
```

Initialize the squared average gradients.

```
averageSqGrad = [];
```

Train the network.

```
iteration = 0;
start = tic;

for epoch = 1:numEpochs
    % Shuffle data.
    idx = randperm(numel(YTrain));
    XTrain = XTrain(:,:,,:,idx);
    YTrain = YTrain(idx);
    
    for i = 1:numIterPerEpoch
        iteration = iteration + 1;
        
        % Read mini-batch of data and convert the labels to dummy variables.
        idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
        X = XTrain(:,:,,:,idx);
        Y = zeros(numClasses, miniBatchSize, 'single');
        for c = 1:numClasses
            Y(c,YTrain(idx)==classes(c)) = 1;
        end
        
        % Convert mini-batch of data to a dlarray.
```

dlX = dlarray(single(X),'SSCB');

% If training on a GPU, then convert data to a gpuArray.
if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
 dlX = gpuArray(dlX);
end

% Evaluate the model gradients and loss using dlfeval and the
% modelGradients helper function.
[gradients,loss] = dlfeval(@modelGradients,dlnet,dlX,Y);

% Update the network parameters using the RMSProp optimizer.
[dlnet,averageSqGrad] = rmspropupdate(dlnet,gradients,averageSqGrad);

% Display the training progress.
if plots == "training-progress"
 D = duration(0,0,toc(start),'Format','hh:mm:ss');
 addpoints(lineLossTrain,iteration,double(gather(extractdata(loss))))
 title("Epoch: " + epoch + ", Elapsed: " + string(D))
 drawnow
end
end
end

Epoch: 20, Elapsed: 00:01:04
Test the Network

Test the classification accuracy of the model by comparing the predictions on a test set with the true labels.

```matlab
[XTest, YTest] = digitTest4DArrayData;
```

Convert the data to a `dlarray` with dimension format 'SSCB'. For GPU prediction, also convert the data to a `gpuArray`.

```matlab
dlXTest = dlarray(XTest,'SSCB');
if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
dlXTest = gpuArray(dlXTest);
end
```

To classify images using a `dlnetwork` object, use the `predict` function and find the classes with the highest scores.

```matlab
dlYPred = predict(dlnet,dlXTest);
[~,idx] = max(extractdata(dlYPred),[],1);
YPred = classes(idx);
```

Evaluate the classification accuracy.

```matlab
accuracy = mean(YPred==YTest)
accuracy = 0.9860
```

Model Gradients Function

The helper function `modelGradients` takes a `dlnetwork` object `dlnet` and a mini-batch of input data `dlX` with corresponding labels `Y`, and returns the loss and the gradients of the loss with respect to the learnable parameters in `dlnet`. To compute the gradients automatically, use the `dlgradient` function.

```matlab
function [gradients,loss] = modelGradients(dlnet,dlX,Y)
dlYPred = forward(dlnet,dlX);
loss = crossentropy(dlYPred,Y);
gradients = dlgradient(loss,dlnet.Learnables);
end
```

Input Arguments

- **dlnet — Network**
 - `dlnetwork` object

 Network, specified as a `dlnetwork` object.

 The function updates the `dlnet.Learnables` property of the `dlnetwork` object. `dlnet.Learnables` is a table with three variables:
 - **Layer** — Layer name, specified as a string scalar.
• **Parameter** — Parameter name, specified as a string scalar.
• **Value** — Value of parameter, specified as a cell array containing a dlarray.

The input argument grad must be a table of the same form as dlnet.Learnables.

params — Network learnable parameters
dlarray | numeric array | cell array | structure | table

Network learnable parameters, specified as a dlarray, a numeric array, a cell array, a structure, or a table.

If you specify params as a table, it must contain the following three variables.

• **Layer** — Layer name, specified as a string scalar.
• **Parameter** — Parameter name, specified as a string scalar.
• **Value** — Value of parameter, specified as a cell array containing a dlarray.

You can specify params as a container of learnable parameters for your network using a cell array, structure, or table, or nested cell arrays or structures. The learnable parameters inside the cell array, structure, or table must be dlarray or numeric values of data type double or single.

The input argument grad must be provided with exactly the same data type, ordering, and fields (for structures) or variables (for tables) as params.

Data Types: single | double | struct | table | cell

grad — Gradients of loss
dlarray | numeric array | cell array | structure | table

Gradients of the loss, specified as a dlarray, a numeric array, a cell array, a structure, or a table.

The exact form of grad depends on the input network or learnable parameters. The following table shows the required format for grad for possible inputs to rmspropupdate.

<table>
<thead>
<tr>
<th>Input</th>
<th>Learnable Parameters</th>
<th>Gradients</th>
</tr>
</thead>
<tbody>
<tr>
<td>dlnet</td>
<td>Table dlnet.Learnables containing Layer, Parameter, and Value variables. The Value variable consists of cell arrays that contain each learnable parameter as a dlarray.</td>
<td>Table with the same data type, variables, and ordering as dlnet.Learnables. grad must have a Value variable consisting of cell arrays that contain the gradient of each learnable parameter.</td>
</tr>
<tr>
<td>params</td>
<td>dlarray</td>
<td>dlarray with the same data type and ordering as params</td>
</tr>
<tr>
<td></td>
<td>Numeric array</td>
<td>Numeric array with the same data type and ordering as params</td>
</tr>
<tr>
<td></td>
<td>Cell array</td>
<td>Cell array with the same data types, structure, and ordering as params</td>
</tr>
<tr>
<td>Input</td>
<td>Learnable Parameters</td>
<td>Gradients</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>Structure with the same data types, fields, and ordering as params</td>
</tr>
<tr>
<td></td>
<td>Table with Layer, Parameter, and Value variables. The Value variable must consist of cell arrays that contain each learnable parameter as a dlarray.</td>
<td>Table with the same data types, variables, and ordering as params. grad must have a Value variable consisting of cell arrays that contain the gradient of each learnable parameter.</td>
</tr>
</tbody>
</table>

You can obtain grad from a call to dlfeval that evaluates a function that contains a call to dlgradient. For more information, see “Use Automatic Differentiation In Deep Learning Toolbox”.

averageSqGrad — Moving average of squared parameter gradients

```markdown
[] | dlarray | numeric array | cell array | structure | table
```

Moving average of squared parameter gradients, specified as an empty array, a dlarray, a numeric array, a cell array, a structure, or a table.

The exact form of averageSqGrad depends on the input network or learnable parameters. The following table shows the required format for averageSqGrad for possible inputs to rmspropupdate.

<table>
<thead>
<tr>
<th>Input</th>
<th>Learnable Parameters</th>
<th>Average Squared Gradients</th>
</tr>
</thead>
<tbody>
<tr>
<td>dlnet</td>
<td>Table dlnet.Learnables containing Layer, Parameter, and Value variables. The Value variable consists of cell arrays that contain each learnable parameter as a dlarray.</td>
<td>Table with the same data type, variables, and ordering as dlnet.Learnables. averageSqGrad must have a Value variable consisting of cell arrays that contain the average squared gradient of each learnable parameter.</td>
</tr>
<tr>
<td>params</td>
<td>dlarray</td>
<td>dlarray with the same data type and ordering as params</td>
</tr>
<tr>
<td></td>
<td>Numeric array</td>
<td>Numeric array with the same data type and ordering as params</td>
</tr>
<tr>
<td></td>
<td>Cell array</td>
<td>Cell array with the same data types, structure, and ordering as params</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>Structure with the same data types, fields, and ordering as params</td>
</tr>
</tbody>
</table>
Learnable Parameters | Average Squared Gradients
---|---
Table with Layer, Parameter, and Value variables. The Value variable must consist of cell arrays that contain each learnable parameter as a dlarray. | Table with the same data types, variables, and ordering as params. averageSqGrad must have a Value variable consisting of cell arrays that contain the average squared gradient of each learnable parameter.

If you specify averageSqGrad as an empty array, the function assumes no previous gradients and runs in the same way as for the first update in a series of iterations. To update the learnable parameters iteratively, use the averageSqGrad output of a previous call to rmspropupdate as the averageSqGrad input.

learnRate — Global learning rate
0.001 (default) | positive scalar

Global learning rate, specified as a positive scalar. The default value of learnRate is 0.001.

If you specify the network parameters as a dlnetwork, the learning rate for each parameter is the global learning rate multiplied by the corresponding learning rate factor property defined in the network layers.

sqGradDecay — Squared gradient decay factor
0.9 (default) | positive scalar between 0 and 1.

Squared gradient decay factor, specified as a positive scalar between 0 and 1. The default value of sqGradDecay is 0.9.

epsilon — Small constant
1e-8 (default) | positive scalar

Small constant for preventing divide-by-zero errors, specified as a positive scalar. The default value of epsilon is 1e-8.

Output Arguments

dlnet — Updated network
dlnetwork object

Network, returned as a dlnetwork object.

The function updates the dlnet.Learnables property of the dlnetwork object.

params — Updated network learnable parameters
dlarray | numeric array | cell array | structure | table

Updated network learnable parameters, returned as a dlarray, a numeric array, a cell array, a structure, or a table with a Value variable containing the updated learnable parameters of the network.

averageSqGrad — Updated moving average of squared parameter gradients
dlarray | numeric array | cell array | structure | table

Updated moving average of squared parameter gradients, returned as a `dlarray`, a numeric array, a cell array, a structure, or a table.

More About

RMSProp

The function uses the root mean squared propagation algorithm to update the learnable parameters. For more information, see the definition of the RMSProp algorithm under “Stochastic Gradient Descent” on page 1-992 on the `trainingOptions` reference page.

Compatibility Considerations

`rmspropupdate squared gradient decay factor default is 0.9`

Behavior changed in R2020a

Starting in R2020a, the default value of the squared gradient decay factor in `rmspropupdate` is 0.9. In previous versions, the default value was 0.999. To reproduce the previous default behavior, use one of the following syntaxes:

```matlab
[dlnet,averageSqGrad] = rmspropupdate(dlnet,grad,averageSqGrad,0.001,0.999)
[params,averageSqGrad] = rmspropupdate(params,grad,averageSqGrad,0.001,0.999)
```

Extended Capabilities

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

- When at least one of the following input arguments is a `gpuArray` or a `dlarray` with underlying data of type `gpuArray`, this function runs on the GPU.
 - `grad`
 - `averageSqGrad`
 - `params`

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also

`adamupdate` | `dlarray` | `dlfeval` | `dlgradient` | `dlnetwork` | `dlupdate` | `forward` | `sgdmupdate`

Topics

“Define Custom Training Loops, Loss Functions, and Networks”

“Specify Training Options in Custom Training Loop”

“Train Network Using Custom Training Loop”

Introduced in R2019b
relu

Apply rectified linear unit activation

Syntax

dlY = relu(dlX)

Description

The rectified linear unit (ReLU) activation operation performs a nonlinear threshold operation, where any input value less than zero is set to zero.

This operation is equivalent to

\[f(x) = \begin{cases} x, & x > 0 \\ 0, & x \leq 0. \end{cases} \]

Note This function applies the ReLU operation to dlarray data. If you want to apply ReLU activation within a layerGraph object or Layer array, use the following layer:

- reluLayer

\[dlY = relu(dlX) \] computes the ReLU activation of the input dlX by applying a threshold operation. All values in dlX that are less than zero are set to zero.

Examples

Apply ReLU Activation

Use the relu function to set negative values in the input data to zero.

Create the input data as a single observation of random values with a height and width of 12 and 32 channels.

\[
\begin{align*}
\text{height} &= 12; \\
\text{width} &= 12; \\
\text{channels} &= 32; \\
\text{observations} &= 1; \\
X &= \text{randn(height,width,channels,observations)}; \\
dlX &= \text{dlarray}(X,'SSCB'); \\
dlY &= \text{relu}(dlX);
\end{align*}
\]
All negative values in dlX are now set to 0.

Input Arguments

dlX — Input data
dlarray

Input data, specified as a dlarray with or without dimension labels.

Data Types: single | double

Output Arguments

dlY — ReLU activations
dlarray

ReLU activations, returned as a dlarray. The output dlY has the same underlying data type as the input dlX.

If the input data dlX is a formatted dlarray, dlY has the same dimension labels as dlX. If the input data is not a formatted dlarray, dlY is an unformatted dlarray with the same dimension order as the input data.

Extended Capabilities

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

- When the input argument dlX is a dlarray with underlying data of type gpuArray, this function runs on the GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also

batchnorm | dlarray | dlconv | dlfeval | dlgradient | leakyrelu

Topics

“Define Custom Training Loops, Loss Functions, and Networks”

“Train Network Using Model Function”

Introduced in R2019b
ReLU

Rectified Linear Unit (ReLU) layer

Description

A ReLU layer performs a threshold operation to each element of the input, where any value less than zero is set to zero.

This operation is equivalent to

\[f(x) = \begin{cases}
 x, & x \geq 0 \\
 0, & x < 0
\end{cases} \]

Creation

Syntax

layer = reluLayer
layer = reluLayer('Name',Name)

Description

layer = reluLayer creates a ReLU layer.

layer = reluLayer('Name',Name) creates a ReLU layer and sets the optional Name property using a name-value pair. For example, reluLayer('Name','relu1') creates a ReLU layer with the name 'relu1'. Enclose the property name in single quotes.

Properties

Name — Layer name
' ' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to ' ', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

Num Inputs — Number of inputs

1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

Input Names — Input names

{ 'in' } (default)
Input names of the layer. This layer accepts a single input only.

Data Types: cell

NumOutputs — Number of outputs

1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames — Output names

{'out'} (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Create ReLU Layer

Create a ReLU layer with the name 'relu1'.

```matlab
layer = reluLayer('Name','relu1')

layer =
  ReLULayer with properties:
    Name: 'relu1'
```

Include a ReLU layer in a Layer array.

```matlab
layers = [ ...
  imageInputLayer([28 28 1])
  convolution2dLayer(5,20)
  reluLayer
  maxPooling2dLayer(2,'Stride',2)
  fullyConnectedLayer(10)
  softmaxLayer
  classificationLayer]

layers =
  7x1 Layer array with layers:
    1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
    2   ''   Convolution             20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
    3   ''   ReLU                    ReLU
    4   ''   Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
    5   ''   Fully Connected         10 fully connected layer
    6   ''   Softmax                 softmax
    7   ''   Classification Output   crossentropyex
More About

ReLU Layer

A ReLU layer performs a threshold operation to each element of the input, where any value less than zero is set to zero.

Convolutional and batch normalization layers are usually followed by a nonlinear activation function such as a rectified linear unit (ReLU), specified by a ReLU layer. A ReLU layer performs a threshold operation to each element, where any input value less than zero is set to zero, that is,

\[ f(x) = \begin{cases} x, & x \geq 0 \\ 0, & x < 0 \end{cases}. \]

The ReLU layer does not change the size of its input.

There are other nonlinear activation layers that perform different operations and can improve the network accuracy for some applications. For a list of activation layers, see “Activation Layers”.

References


Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also

Deep Network Designer | batchNormalizationLayer | clippedReluLayer | leakyReluLayer | trainNetwork

Topics

“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2016a
removeLayers

Remove layers from layer graph

Syntax

newlgraph = removeLayers(lgraph,layerNames)

Description

newlgraph = removeLayers(lgraph,layerNames) removes the layers specified by layerNames from the layer graph lgraph. The function also removes any connections to the removed layers.

Examples

Remove Layer from Layer Graph

Create a layer graph from an array of layers.

layers = [
    imageInputLayer([28 28 1],'Name','input')
    convolution2dLayer(3,16,'Padding','same','Name','conv_1')
    batchNormalizationLayer('Name','BN_1')
    reluLayer('Name','relu_1')
];

lgraph = layerGraph(layers);
figure
plot(lgraph)
Remove the 'BN_1' layer and its connections.

lgraph = removeLayers(lgraph,'BN_1');
figure
plot(lgraph)
Input Arguments

lgraph — Layer graph
LayerGraph object

Layer graph, specified as a LayerGraph object. To create a layer graph, use layerGraph.

layerNames — Names of layers to remove
character vector | cell array of character vectors | string array

Names of layers to remove, specified as a character vector, a cell array of character vectors, or a string array.

To remove a single layer from the layer graph, specify the name of the layer.

To remove multiple layers, specify the layer names in an array, where each element of the array is a layer name.

Example: 'conv1'
Example: {'conv1','add1'}
Output Arguments

newlgraph — Output layer graph
    LayerGraph object

Output layer graph, returned as a LayerGraph object.

See Also

addLayers | assembleNetwork | connectLayers | disconnectLayers | layerGraph | plot | replaceLayer

Topics

"Train Residual Network for Image Classification"
"Train Deep Learning Network to Classify New Images"

Introduced in R2017b
**removeParameter**

Remove parameter from ONNXParameters object

**Syntax**

```matlab
params = removeParameter(params, name)
```

**Description**

`params = removeParameter(params, name)` removes the parameter specified by `name` from the ONNXParameters object `params`.

**Examples**

**Remove Parameters from Imported ONNX Model Function**

Import a network saved in the ONNX format as a function and modify the network parameters.

Create an ONNX model from the pretrained `alexnet` network. Then import `alexnet.onnx` as a function. Import the pretrained ONNX network using `importONNXFunction`, which returns an ONNXParameters object that contains the network parameters. The function also creates a new model function in the current folder that contains the network architecture. Specify the name of the model function as `alexnetFcn`.

```matlab
net = alexnet;
exportONNXNetwork(net,'alexnet.onnx');
params = importONNXFunction('alexnet.onnx','alexnetFcn');
```

A function containing the imported ONNX network has been saved to the file `alexnetFcn.m`. To learn how to use this function, type: `help alexnetFcn`.

Display the parameters that are updated during training (params.Learnables) and the parameters that remain unchanged during training (params.Nonlearnables).

```matlab
params.Learnables
```

```matlab
ans = struct with fields:
 data_Mean: [227x227x3 dlarray]
 conv1 W: [11x11x3x96 dlarray]
 conv1 B: [96x1 dlarray]
 conv2 W: [5x5x48x256 dlarray]
 conv2 B: [256x1 dlarray]
 conv3 W: [3x3x256x384 dlarray]
 conv3 B: [384x1 dlarray]
 conv4 W: [3x3x192x384 dlarray]
 conv4 B: [384x1 dlarray]
 conv5 W: [3x3x192x256 dlarray]
 conv5 B: [256x1 dlarray]
 fc6 W: [6x6x256x4096 dlarray]
 fc6 B: [4096x1 dlarray]
 fc7 W: [1x1x4096x4096 dlarray]
```
The network has parameters that represent three fully connected layers. You can remove the parameters of the fully connected layer fc7 to reduce computational complexity. Check the output dimensions of the previous layer and the input dimensions of the subsequent layer before removing a middle layer from params.

Remove the parameters of layer fc7 by using removeParameter.

```plaintext
params = removeParameter(params,'fc7_B');
params = removeParameter(params,'fc7_W');
params = removeParameter(params,'fc7_Stride');
params = removeParameter(params,'fc7_DilationFactor');
params = removeParameter(params,'fc7_Padding');
```

Display the updated learnable and nonlearnable parameters.

```plaintext
params.Learnables
```

```plaintext
params.Nonlearnables
```
ans = struct with fields:
    data_Mean: [227x227x3 dlarray]
    conv1_W: [11x11x3x96 dlarray]
    conv1_B: [96x1 dlarray]
    conv2_W: [5x5x48x256 dlarray]
    conv2_B: [256x1 dlarray]
    conv3_W: [3x3x256x384 dlarray]
    conv3_B: [384x1 dlarray]
    conv4_W: [3x3x192x384 dlarray]
    conv4_B: [384x1 dlarray]
    conv5_W: [3x3x192x256 dlarray]
    conv5_B: [256x1 dlarray]
    fc6_W: [6x6x256x4096 dlarray]
    fc6_B: [4096x1 dlarray]
    fc8_W: [1x1x4096x1000 dlarray]
    fc8_B: [1000x1 dlarray]

params.Nonlearnables
ans = struct with fields:
    conv1_Stride: [1x2 dlarray]
    conv1_DilationFactor: [1x2 dlarray]
    conv1_Padding: [1x1 dlarray]
    pool1_PoolSize: [1x2 dlarray]
    pool1_Stride: [1x2 dlarray]
    pool1_Padding: [1x1 dlarray]
    conv2_Stride: [1x2 dlarray]
    conv2_DilationFactor: [1x2 dlarray]
    conv2_Padding: [2x2 dlarray]
    pool2_PoolSize: [1x2 dlarray]
    pool2_Stride: [1x2 dlarray]
    pool2_Padding: [1x1 dlarray]
    conv3_Stride: [1x2 dlarray]
    conv3_DilationFactor: [1x2 dlarray]
    conv3_Padding: [2x2 dlarray]
    conv4_Stride: [1x2 dlarray]
    conv4_DilationFactor: [1x2 dlarray]
    conv4_Padding: [2x2 dlarray]
    conv5_Stride: [1x2 dlarray]
    conv5_DilationFactor: [1x2 dlarray]
    conv5_Padding: [2x2 dlarray]
    pool5_PoolSize: [1x2 dlarray]
    pool5_Stride: [1x2 dlarray]
    pool5_Padding: [1x1 dlarray]
    fc6_Stride: [1x2 dlarray]
    fc6_DilationFactor: [1x2 dlarray]
    fc6_Padding: [1x1 dlarray]
    fc8_Stride: [1x2 dlarray]
    fc8_DilationFactor: [1x2 dlarray]
    fc8_Padding: [1x1 dlarray]

Modify the architecture of the model function to reflect the changes in params so you can use the network for prediction with the new parameters or retrain the network. Open the model function by using open alexnetFcn and remove the fully connected layer fc7.
Input Arguments

- **params** — Network parameters
  ONNXParameters object
  
  Network parameters, specified as an ONNXParameters object. `params` contains the network parameters of the imported ONNX model.

- **name** — Name of parameter
  character vector | string scalar
  
  Name of the parameter, specified as a character vector or string scalar.
  
  Example: `'conv2_W'`
  
  Example: `'conv2_Padding'`

Output Arguments

- **params** — Network parameters
  ONNXParameters object
  
  Network parameters, returned as an ONNXParameters object. `params` contains the network parameters updated by removeParameter.

See Also

- ONNXParameters | addParameter | importONNXFunction

Introduced in R2020b
**replaceLayer**

Replace layer in layer graph

**Syntax**

```matlab
newlgraph = replaceLayer(lgraph,layerName,larray)
newlgraph = replaceLayer(lgraph,layerName,larray,'ReconnectBy',mode)
```

**Description**

`newlgraph = replaceLayer(lgraph,layerName,larray)` replaces the layer `layerName` in the layer graph `lgraph` with the layers in `larray`. replaceLayer connects the layers in `larray` sequentially and connects `larray` into the layer graph.

`newlgraph = replaceLayer(lgraph,layerName,larray,'ReconnectBy',mode)` additionally specifies the method of reconnecting layers.

**Examples**

**Replace Layer in Layer Graph**

Define a simple network architecture and plot it.

```matlab
layers = [
 imageInputLayer([28 28 1],'Name','input')
 convolution2dLayer(3,16,'Padding','same','Name','conv_1')
 reluLayer('Name','relu_1')
 additionLayer(2,'Name','add')
 fullyConnectedLayer(10,'Name','fc')
 softmaxLayer('Name','softmax')
 classificationLayer('Name','classoutput')];
lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph,'input','add/in2');
figure
plot(lgraph)
```
Replace the ReLU layer in the network with a batch normalization layer followed by a leaky ReLU layer.

larray = [batchNormalizationLayer('Name','BN1')
          leakyReluLayer('Name','leakyRelu_1','Scale',0.1)];
lgraph = replaceLayer(lgraph,'relu_1',larray);
plot(lgraph)
Assemble Network from Pretrained Keras Layers

This example shows how to import the layers from a pretrained Keras network, replace the unsupported layers with custom layers, and assemble the layers into a network ready for prediction.

Import Keras Network

Import the layers from a Keras network model. The network in 'digitsDAGnetwithnoise.h5' classifies images of digits.

```matlab
filename = 'digitsDAGnetwithnoise.h5';
lgraph = importKerasLayers(filename,'ImportWeights',true);
```

Warning: Unable to import some Keras layers, because they are not supported by the Deep Learning Toolbox.

The Keras network contains some layers that are not supported by Deep Learning Toolbox. The `importKerasLayers` function displays a warning and replaces the unsupported layers with placeholder layers.

Plot the layer graph using `plot`.

```matlab
figure
plot(lgraph)
title("Imported Network")
```
Replace Placeholder Layers

To replace the placeholder layers, first identify the names of the layers to replace. Find the placeholder layers using `findPlaceholderLayers`.

```matlab
placeholderLayers = findPlaceholderLayers(lgraph)
```

```matlab
placeholderLayers = 2x1 PlaceholderLayer array with layers:

1 'gaussian_noise_1' PLACEHOLDER LAYER Placeholder for 'GaussianNoise' Keras layer
2 'gaussian_noise_2' PLACEHOLDER LAYER Placeholder for 'GaussianNoise' Keras layer
```

Display the Keras configurations of these layers.

```matlab
placeholderLayers.KerasConfiguration
```

```matlab
ans = struct with fields:
 trainable: 1
 name: 'gaussian_noise_1'
 stddev: 1.5000

ans = struct with fields:
 trainable: 1
 name: 'gaussian_noise_2'
 stddev: 0.7000
```
Define a custom Gaussian noise layer. To create this layer, save the file `gaussianNoiseLayer.m` in the current folder. Then, create two Gaussian noise layers with the same configurations as the imported Keras layers.

```matlab
gnLayer1 = gaussianNoiseLayer(1.5,'new_gaussian_noise_1');
gnLayer2 = gaussianNoiseLayer(0.7,'new_gaussian_noise_2');
```

Replace the placeholder layers with the custom layers using `replaceLayer`.

```matlab
lgraph = replaceLayer(lgraph,'gaussian_noise_1',gnLayer1);
lgraph = replaceLayer(lgraph,'gaussian_noise_2',gnLayer2);
```

Plot the updated layer graph using `plot`.

```matlab
figure
plot(lgraph)
title("Network with Replaced Layers")
```

**Specify Class Names**

If the imported classification layer does not contain the classes, then you must specify these before prediction. If you do not specify the classes, then the software automatically sets the classes to 1, 2, ..., N, where N is the number of classes.

Find the index of the classification layer by viewing the `Layers` property of the layer graph.

```matlab
lgraph.Layers
```
ans =  
15x1 Layer array with layers:

1   'input_1'                            Image Input             28x28x1 images
2   'conv2d_1'                           Convolution             20 7x7x1 convolutions with stride [1 1] and padding 'same'
3   'conv2d_1_relu'                      ReLU                    ReLU
4   'conv2d_2'                           Convolution             20 3x3x1 convolutions with stride [1 1] and padding 'same'
5   'conv2d_2_relu'                      ReLU                    ReLU
6   'new_gaussian_noise_1'               Gaussian Noise          Gaussian noise with standard deviation 1.5
7   'new_gaussian_noise_2'               Gaussian Noise          Gaussian noise with standard deviation 0.7
8   'max_pooling2d_1'                    Max Pooling             2x2 max pooling with stride [2 2] and padding 'same'
9   'max_pooling2d_2'                    Max Pooling             2x2 max pooling with stride [2 2] and padding 'same'
10  'flatten_1'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
11  'flatten_2'                          Keras Flatten           Flatten activations into 1-D assuming C-style (row-major) order
12  'concatenate_1'                      Depth concatenation     Depth concatenation of 2 inputs
13  'dense_1'                            Fully Connected         10 fully connected layer
14  'activation_1'                       Softmax                 softmax
15  'ClassificationLayer_activation_1'   Classification Output   crossentropyex

The classification layer has the name 'ClassificationLayer_activation_1'. View the classification layer and check the Classes property.

cLayer = lgraph.Layers(end)

cLayer = ClassificationOutputLayer with properties:

    Name: 'ClassificationLayer_activation_1'
    Classes: 'auto'
    OutputSize: 'auto'

Hyperparameters
    LossFunction: 'crossentropyex'

Because the Classes property of the layer is 'auto', you must specify the classes manually. Set the classes to 0, 1, ..., 9, and then replace the imported classification layer with the new one.

cLayer.Classes = string(0:9)

cLayer = ClassificationOutputLayer with properties:

    Name: 'ClassificationLayer_activation_1'
    Classes: [0 1 2 3 4 5 6 7 8 9]
    OutputSize: 10

Hyperparameters
    LossFunction: 'crossentropyex'

lgraph = replaceLayer(lgraph,'ClassificationLayer_activation_1',cLayer);

**Assemble Network**

Assemble the layer graph using assembleNetwork. The function returns a DAGNetwork object that is ready to use for prediction.

net = assembleNetwork(lgraph)
net = DAGNetwork with properties:
   Layers: [15x1 nnet.cnn.layer.Layer]
   Connections: [15x2 table]
   InputNames: {'input_1'}
   OutputNames: {'ClassificationLayer_activation_1'}

### Input Arguments

**lgraph** — Layer graph
LayerGraph object

Layer graph, specified as a LayerGraph object. To create a layer graph, use `layerGraph`.

**layerName** — Name of layer to replace
string scalar | character vector

Name of the layer to replace, specified as a string scalar or a character vector.

**larray** — Network layers
Layer array

Network layers, specified as a Layer array.

For a list of built-in layers, see “List of Deep Learning Layers”.

**mode** — Method to reconnect layers
'name' (default) | 'order'

Method to reconnect layers specified as one of the following:

- 'name' – Reconnect `larray` using the input and output names of the replaced layer. For each layer connected to an input of the replaced layer, reconnect the layer to the input of the same input name of `larray(1)`. For each layer connected to an output of the replaced layer, reconnect the layer to the output of the same output name of `larray(end)`.

- 'order' – Reconnect `larray` using the order of the input names of `larray(1)` and the output names of `larray(end)`. Reconnect the layer connected to the ith input of the replaced layer to the ith input of `larray(1)`. Reconnect the layer connected to the jth output of the replaced layer to the jth output of `larray(end)`.

Data Types: char | string

### Output Arguments

**newlgraph** — Output layer graph
LayerGraph object

Output layer graph, returned as a LayerGraph object.

### See Also

`PlaceholderLayer`, `addLayers`, `assembleNetwork`, `connectLayers`, `disconnectLayers`, `findPlaceholderLayers`, `layerGraph`, `removeLayers`
Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Train Residual Network for Image Classification”
“Train Deep Learning Network to Classify New Images”

Introduced in R2018b
resnet18

ResNet-18 convolutional neural network

Syntax

net = resnet18
net = resnet18('Weights','imagenet')
lgraph = resnet18('Weights','none')

Description

ResNet-18 is a convolutional neural network that is 18 layers deep. You can load a pretrained version of the network trained on more than a million images from the ImageNet database [1]. The pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many animals. As a result, the network has learned rich feature representations for a wide range of images. The network has an image input size of 224-by-224. For more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the ResNet-18 model. Follow the steps of “Classify Image Using GoogLeNet” and replace GoogLeNet with ResNet-18.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network to Classify New Images” and load ResNet-18 instead of GoogLeNet.


This function requires the Deep Learning Toolbox Model for ResNet-18 Network support package. If this support package is not installed, then the function provides a download link.

net = resnet18('Weights','imagenet') returns a ResNet-18 network trained on the ImageNet data set. This syntax is equivalent to net = resnet18.

lgraph = resnet18('Weights','none') returns the untrained ResNet-18 network architecture. The untrained model does not require the support package.

Examples

Download ResNet-18 Support Package

Download and install the Deep Learning Toolbox Model for ResNet-18 Network support package. Type resnet18 at the command line.

resnet18

If the Deep Learning Toolbox Model for ResNet-18 Network support package is not installed, then the function provides a link to the required support package in the Add-On Explorer. To install the support package, click the link, and then click Install. Check that the installation is successful by
typing `resnet18` at the command line. If the required support package is installed, then the function returns a `DAGNetwork` object.

```matlab
code
resnet18
ans =
 DAGNetwork with properties:
 Layers: [72×1 nnet.cnn.layer.Layer]
 Connections: [79×2 table]
```

**Output Arguments**

- `net` — Pretrained ResNet-18 convolutional neural network
  `DAGNetwork` object

Pretrained ResNet-18 convolutional neural network, returned as a `DAGNetwork` object.

- `lgraph` — Untrained ResNet-18 convolutional neural network architecture
  `LayerGraph` object

Untrained ResNet-18 convolutional neural network architecture, returned as a `LayerGraph` object.

**References**


**Extended Capabilities**

**C/C++ Code Generation**
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax `net = resnet18` or by passing the `resnet18` function to `coder.loadDeepLearningNetwork`. For example:

```matlab
code
net = coder.loadDeepLearningNetwork('resnet18')
```

Usage notes and limitations:

- For code generation, you can load the network by using the syntax `net = resnet18` or by passing the `resnet18` function to `coder.loadDeepLearningNetwork`. For example:

```matlab
code
net = coder.loadDeepLearningNetwork('resnet18')
```
For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).

- The syntax `resnet18('Weights','none')` is not supported for GPU code generation.

**See Also**

DAGNetwork | densenet201 | googlenet | inceptionresnetv2 | layerGraph | plot | resnet101 | resnet50 | squeezenet | trainNetwork | vgg16 | vgg19

**Topics**

“Deep Learning in MATLAB”

“Pretrained Deep Neural Networks”

“Classify Image Using GoogLeNet”

“Train Deep Learning Network to Classify New Images”

“Train Residual Network for Image Classification”

**Introduced in R2018a**
**resnet50**

ResNet-50 convolutional neural network

**Syntax**

```matlab
net = resnet50
net = resnet50('Weights','imagenet')
lgraph = resnet50('Weights','none')
```

**Description**

ResNet-50 is a convolutional neural network that is 50 layers deep. You can load a pretrained version of the network trained on more than a million images from the ImageNet database [1]. The pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many animals. As a result, the network has learned rich feature representations for a wide range of images. The network has an image input size of 224-by-224. For more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

You can use `classify` to classify new images using the ResNet-50 model. Follow the steps of “Classify Image Using GoogLeNet” and replace GoogLeNet with ResNet-50.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network to Classify New Images” and load ResNet-50 instead of GoogLeNet.


This function requires the Deep Learning Toolbox Model for ResNet-50 Network support package. If this support package is not installed, then the function provides a download link.

`net = resnet50('Weights','imagenet')` returns a ResNet-50 network trained on the ImageNet data set. This syntax is equivalent to `net = resnet50`.

`lgraph = resnet50('Weights','none')` returns the untrained ResNet-50 network architecture. The untrained model does not require the support package.

**Examples**

**Download ResNet-50 Support Package**


Type `resnet50` at the command line.

```
resnet50
```

If the Deep Learning Toolbox Model for ResNet-50 Network support package is not installed, then the function provides a link to the required support package in the Add-On Explorer. To install the support package, click the link, and then click **Install**. Check that the installation is successful by
typing `resnet50` at the command line. If the required support package is installed, then the function returns a `DAGNetwork` object.

```matlab
resnet50
ans =

DAGNetwork with properties:

 Layers: [177×1 nnet.cnn.layer.Layer]
 Connections: [192×2 table]
```

**Output Arguments**

- `net` — Pretrained ResNet-50 convolutional neural network
  DAGNetwork object
  Pretrained ResNet-50 convolutional neural network, returned as a `DAGNetwork` object.

- `lgraph` — Untrained ResNet-50 convolutional neural network architecture
  LayerGraph object
  Untrained ResNet-50 convolutional neural network architecture, returned as a `LayerGraph` object.

**References**


[3] https://keras.io/api/applications/resnet/#resnet50-function

**Extended Capabilities**

**C/C++ Code Generation**

Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax `net = resnet50` or by passing the `resnet50` function to `coder.loadDeepLearningNetwork`. For example: `net = coder.loadDeepLearningNetwork('resnet50')`

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax `resnet50('Weights','none')` is not supported for code generation.

**GPU Code Generation**

Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:
For code generation, you can load the network by using the syntax `net = resnet50` or by passing the `resnet50` function to `coder.loadDeepLearningNetwork`. For example: `net = coder.loadDeepLearningNetwork('resnet50')`

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).

The syntax `resnet50('Weights','none')` is not supported for GPU code generation.

See Also

DAGNetwork | densenet201 | googlenet | inceptionresnetv2 | layerGraph | plot | resnet101 | resnet18 | squeezenet | trainNetwork | vgg16 | vgg19

Topics

“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

Introduced in R2017b
resnet101

ResNet-101 convolutional neural network

Syntax

net = resnet101

net = resnet101('Weights','imagenet')

lgraph = resnet101('Weights','none')

Description

ResNet-101 is a convolutional neural network that is 101 layers deep. You can load a pretrained version of the network trained on more than a million images from the ImageNet database [1]. The pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many animals. As a result, the network has learned rich feature representations for a wide range of images. The network has an image input size of 224-by-224. For more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.


To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network to Classify New Images” and load ResNet-101 instead of GoogLeNet.


This function requires the Deep Learning Toolbox Model for ResNet-101 Network support package. If this support package is not installed, then the function provides a download link.

net = resnet101('Weights','imagenet') returns a ResNet-101 network trained on the ImageNet data set. This syntax is equivalent to net = resnet101.

lgraph = resnet101('Weights','none') returns the untrained ResNet-101 network architecture. The untrained model does not require the support package.

Examples

Download ResNet-101 Support Package


resnet101

If the Deep Learning Toolbox Model for ResNet-101 Network support package is not installed, then the function provides a link to the required support package in the Add-On Explorer. To install the support package, click the link, and then click Install. Check that the installation is successful by...
typing resnet101 at the command line. If the required support package is installed, then the function returns a DAGNetwork object.

resnet101

ans =

    DAGNetwork with properties:
        Layers: [347×1 nnet.cnn.layer.Layer]
        Connections: [379×2 table]

Output Arguments

net — Pretrained ResNet-101 convolutional neural network
DAGNetwork object

Pretrained ResNet-101 convolutional neural network, returned as a DAGNetwork object.

lgraph — Untrained ResNet-101 convolutional neural network architecture
LayerGraph object

Untrained ResNet-101 convolutional neural network architecture, returned as a LayerGraph object.

References


Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = resnet101 or by passing the resnet101 function to coder.loadDeepLearningNetwork. For example: net = coder.loadDeepLearningNetwork('resnet101')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax resnet101('Weights','none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:
For code generation, you can load the network by using the syntax `net = resnet101` or by passing the `resnet101` function to `coder.loadDeepLearningNetwork`. For example: `net = coder.loadDeepLearningNetwork('resnet101')`

For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).

- The syntax `resnet101('Weights','none')` is not supported for GPU code generation.

See Also
DAGNetwork | densenet201 | googlenet | inceptionresnetv2 | inceptionv3 | layerGraph | plot | resnet18 | resnet50 | squeezenet | trainNetwork | vgg16 | vgg19

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

Introduced in R2017b
**sequenceFoldingLayer**

Sequence folding layer

**Description**

A sequence folding layer converts a batch of image sequences to a batch of images. Use a sequence folding layer to perform convolution operations on time steps of image sequences independently.

To use a sequence folding layer, you must connect the miniBatchSize output to the miniBatchSize input of the corresponding sequence unfolding layer. For an example, see “Create Network for Video Classification” on page 1-874.

**Creation**

**Syntax**

```matlab
layer = sequenceFoldingLayer
layer = sequenceFoldingLayer('Name',Name)
```

**Description**

`layer = sequenceFoldingLayer` creates a sequence folding layer.

`layer = sequenceFoldingLayer('Name',Name)` creates a sequence folding layer and sets the optional `Name` property using a name-value pair. For example, `sequenceFoldingLayer('Name','fold1')` creates a sequence folding layer with the name 'fold1'. Enclose the property name in single quotes.

**Properties**

- **Name — Layer name**
  - ‘’ (default) | character vector | string scalar

  Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and `Name` is set to ‘’, then the software automatically assigns a name to the layer at training time.

  Data Types: char | string

- **NumInputs — Number of inputs**
  - 1 (default)

  Number of inputs of the layer. This layer accepts a single input only.

  Data Types: double

- **InputNames — Input names**
  - {'in'} (default)
Input names of the layer. This layer accepts a single input only.

Data Types: cell

**NumOutputs — Number of outputs**

2 (default)

Number of outputs of the layer.

The layer has two outputs:

- 'out' – Output feature map corresponding to reshaped input.
- 'miniBatchSize' – Size of the mini-batch passed into the layer. This output must be connected to the 'miniBatchSize' input of the corresponding sequence unfolding layer.

Data Types: double

**OutputNames — Output names**

{'out','miniBatchSize'} (default)

Output names of the layer.

The layer has two outputs:

- 'out' – Output feature map corresponding to reshaped input.
- 'miniBatchSize' – Size of the mini-batch passed into the layer. This output must be connected to the 'miniBatchSize' input of the corresponding sequence unfolding layer.

Data Types: cell

**Examples**

**Create Sequence Folding Layer**

Create a sequence folding layer with name the 'fold1'.

```matlab
layer = sequenceFoldingLayer('Name','fold1')
```

Layer properties:

- **Name**: 'fold1'
- **NumOutputs**: 2
- **OutputNames**: {'out' 'miniBatchSize'}

**Create Network for Video Classification**

Create a deep learning network for data containing sequences of images, such as video and medical image data.

- To input sequences of images into a network, use a sequence input layer.
To apply convolutional operations independently to each time step, first convert the sequences of images to an array of images using a sequence folding layer.

To restore the sequence structure after performing these operations, convert this array of images back to image sequences using a sequence unfolding layer.

To convert images to feature vectors, use a `flatten` layer.

You can then input vector sequences into LSTM and BiLSTM layers.

**Define Network Architecture**

Create a classification LSTM network that classifies sequences of 28-by-28 grayscale images into 10 classes.

Define the following network architecture:

- A sequence input layer with an input size of `[28 28 1]`.
- A convolution, batch normalization, and ReLU layer block with 20 5-by-5 filters.
- An LSTM layer with 200 hidden units that outputs the last time step only.
- A fully connected layer of size 10 (the number of classes) followed by a softmax layer and a classification layer.

To perform the convolutional operations on each time step independently, include a sequence folding layer before the convolutional layers. LSTM layers expect vector sequence input. To restore the sequence structure and reshape the output of the convolutional layers to sequences of feature vectors, insert a sequence unfolding layer and a `flatten` layer between the convolutional layers and the LSTM layer.

```matlab
classificationLayer('Name','classification')
```

Convert the layers to a layer graph and connect the `miniBatchSize` output of the sequence folding layer to the corresponding input of the sequence unfolding layer.
lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph,'fold/miniBatchSize','unfold/miniBatchSize');

View the final network architecture using the plot function.
figure
plot(lgraph)

Extended Capabilities

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
bilstmLayer | classifyAndUpdateState | flattenLayer | gruLayer | lstmLayer | predictAndUpdateState | resetState | sequenceInputLayer | sequenceUnfoldingLayer

Topics
“Classify Videos Using Deep Learning”
“Sequence Classification Using Deep Learning”
“Time Series Forecasting Using Deep Learning”
“Sequence-to-Sequence Classification Using Deep Learning”
“Visualize Activations of LSTM Network”
“Long Short-Term Memory Networks”
“Specify Layers of Convolutional Neural Network”
“Set Up Parameters and Train Convolutional Neural Network”
“Deep Learning in MATLAB”
“List of Deep Learning Layers”

**Introduced in R2019a**
**sequenceInputLayer**

Sequence input layer

**Description**

A sequence input layer inputs sequence data to a network.

**Creation**

**Syntax**

`layer = sequenceInputLayer(inputSize)`  
`layer = sequenceInputLayer(inputSize,Name,Value)`  

**Description**

`layer = sequenceInputLayer(inputSize)` creates a sequence input layer and sets the `InputSize` property.

`layer = sequenceInputLayer(inputSize,Name,Value)` sets the optional `Normalization`, `Mean`, and `Name` properties using name-value pairs. You can specify multiple name-value pairs. Enclose each property name in single quotes.

**Properties**

**Image Input**

**InputSize — Size of input**  
positive integer | vector of positive integers

Size of the input, specified as a positive integer or a vector of positive integers.

- For vector sequence input, `InputSize` is a scalar corresponding to the number of features.
- For 2-D image sequence input, `InputSize` is vector of three elements `[h w c]`, where `h` is the image height, `w` is the image width, and `c` is the number of channels of the image.
- For 3-D image sequence input, `InputSize` is vector of four elements `[h w d c]`, where `h` is the image height, `w` is the image width, `d` is the image depth, and `c` is the number of channels of the image.

Example: 100

**Normalization — Data normalization**

'none' (default) | 'zerocenter' | 'zscore' | 'rescale-symmetric' | 'rescale-zero-one' | function handle

Data normalization to apply every time data is forward propagated through the input layer, specified as one of the following:
• 'zerocenter' — Subtract the mean specified by Mean.
• 'zscore' — Subtract the mean specified by Mean and divide by StandardDeviation.
• 'rescale-symmetric' — Rescale the input to be in the range [-1, 1] using the minimum and maximum values specified by Min and Max, respectively.
• 'rescale-zero-one' — Rescale the input to be in the range [0, 1] using the minimum and maximum values specified by Min and Max, respectively.
• 'none' — Do not normalize the input data.
• function handle — Normalize the data using the specified function. The function must be of the form \( Y = \text{func}(X) \), where \( X \) is the input data, and the output \( Y \) is the normalized data.

**Tip** The software, by default, automatically calculates the normalization statistics at training time. To save time when training, specify the required statistics for normalization and set the 'ResetInputNormalization' option in trainingOptions to false.

If the input data contains padding, then the layer ignored padding values when normalizing the input data.

**NormalizationDimension** — Normalization dimension

'auto' (default) | 'channel' | 'element' | 'all'

Normalization dimension, specified as one of the following:

• 'auto' — If the training option is false and you specify any of the normalization statistics (Mean, StandardDeviation, Min, or Max), then normalize over the dimensions matching the statistics. Otherwise, recalculate the statistics at training time and apply channel-wise normalization.
• 'channel' — Channel-wise normalization.
• 'element' — Element-wise normalization.
• 'all' — Normalize all values using scalar statistics.

**Mean** — Mean for zero-center and z-score normalization

[] (default) | numeric array | numeric scalar

Mean for zero-center and z-score normalization, specified as a numeric array, or empty.

• For vector sequence input, Mean must be a InputSize-by-1 vector of means per channel, a numeric scalar, or [].
• For 2-D image sequence input, Mean must be a numeric array of the same size as InputSize, a 1-by-1-by-InputSize(3) array of means per channel, a numeric scalar, or [].
• For 3-D image sequence input, Mean must be a numeric array of the same size as InputSize, a 1-by-1-by-1-by-InputSize(4) array of means per channel, a numeric scalar, or [].

If you specify the Mean property, then Normalization must be 'zerocenter' or 'zscore'. If Mean is [], then the software calculates the mean at training time.

You can set this property when creating networks without training (for example, when assembling networks using assembleNetwork).

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
**StandardDeviation — Standard deviation**

([] (default) | numeric array | numeric scalar)

Standard deviation used for z-score normalization, specified as a numeric array, a numeric scalar, or empty.

- For vector sequence input, `StandardDeviation` must be a `InputSize`-by-1 vector of standard deviations per channel, a numeric scalar, or [].
- For 2-D image sequence input, `StandardDeviation` must be a numeric array of the same size as `InputSize`, a 1-by-1-by-`InputSize(3)` array of standard deviations per channel, a numeric scalar, or [].
- For 3-D image sequence input, `StandardDeviation` must be a numeric array of the same size as `InputSize`, a 1-by-1-by-1-by-`InputSize(4)` array of standard deviations per channel, or a numeric scalar.

If you specify the `StandardDeviation` property, then `Normalization` must be `'zscore'`. If `StandardDeviation` is [], then the software calculates the standard deviation at training time.

You can set this property when creating networks without training (for example, when assembling networks using `assembleNetwork`).

Data Types: `single` | `double` | `int8` | `int16` | `int32` | `int64` | `uint8` | `uint16` | `uint32` | `uint64`

**Min — Minimum value for rescaling**

([] (default) | numeric array | numeric scalar)

Minimum value for rescaling, specified as a numeric array, or empty.

- For vector sequence input, `Min` must be a `InputSize`-by-1 vector of means per channel or a numeric scalar.
- For 2-D image sequence input, `Min` must be a numeric array of the same size as `InputSize`, a 1-by-1-by-`InputSize(3)` array of minima per channel, or a numeric scalar.
- For 3-D image sequence input, `Min` must be a numeric array of the same size as `InputSize`, a 1-by-1-by-1-by-`InputSize(4)` array of minima per channel, or a numeric scalar.

If you specify the `Min` property, then `Normalization` must be `'rescale-symmetric'` or `'rescale-zero-one'`. If `Min` is [], then the software calculates the minima at training time.

You can set this property when creating networks without training (for example, when assembling networks using `assembleNetwork`).

Data Types: `single` | `double` | `int8` | `int16` | `int32` | `int64` | `uint8` | `uint16` | `uint32` | `uint64`

**Max — Maximum value for rescaling**

([] (default) | numeric array | numeric scalar)

Maximum value for rescaling, specified as a numeric array, or empty.

- For vector sequence input, `Max` must be a `InputSize`-by-1 vector of means per channel or a numeric scalar.
- For 2-D image sequence input, `Max` must be a numeric array of the same size as `InputSize`, a 1-by-1-by-`InputSize(3)` array of maxima per channel, a numeric scalar, or [].
- For 3-D image sequence input, `Max` must be a numeric array of the same size as `InputSize`, a 1-by-1-by-1-by-`InputSize(4)` array of maxima per channel, a numeric scalar, or [].
If you specify the Max property, then Normalization must be 'rescale-symmetric' or 'rescale-zero-one'. If Max is [], then the software calculates the maxima at training time.

You can set this property when creating networks without training (for example, when assembling networks using assembleNetwork).

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Layer

Name — Layer name

' ' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to ' ', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

NumInputs — Number of inputs

0 (default)

Number of inputs of the layer. The layer has no inputs.

Data Types: double

InputNames — Input names

{} (default)

Input names of the layer. The layer has no inputs.

Data Types: cell

NumOutputs — Number of outputs

1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames — Output names

{'out'} (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Create Sequence Input Layer

Create a sequence input layer with the name 'seq1' and an input size of 12.

layer = sequenceInputLayer(12,'Name','seq1')

layer =
SequenceInputLayer with properties:
Include a sequence input layer in a Layer array.

```matlab
inputSize = 12;
numHiddenUnits = 100;
numClasses = 9;

layers = [...
 sequenceInputLayer(inputSize)
 lstmLayer(numHiddenUnits,'OutputMode','last')
 fullyConnectedLayer(numClasses)
 softmaxLayer
 classificationLayer]
```

Create Sequence Input Layer for Image Sequences

Create a sequence input layer for sequences of 224-224 RGB images with the name 'seq1'.

```matlab
layer = sequenceInputLayer([224 224 3], 'Name', 'seq1')
```

Train Network for Sequence Classification

Train a deep learning LSTM network for sequence-to-label classification.

Load the Japanese Vowels data set as described in [1] and [2]. XTrain is a cell array containing 270 sequences of varying length with 12 features corresponding to LPC cepstrum coefficients. Y is a
categorical vector of labels 1,2,...,9. The entries in XTrain are matrices with 12 rows (one row for each feature) and a varying number of columns (one column for each time step).

[XTrain,YTrain] = japaneseVowelsTrainData;

Visualize the first time series in a plot. Each line corresponds to a feature.

```matlab
figure
plot(XTrain{1}')
title("Training Observation 1")
numFeatures = size(XTrain{1},1);
legend("Feature " + string(1:numFeatures), 'Location', 'northeastoutside')
```

Define the LSTM network architecture. Specify the input size as 12 (the number of features of the input data). Specify an LSTM layer to have 100 hidden units and to output the last element of the sequence. Finally, specify nine classes by including a fully connected layer of size 9, followed by a softmax layer and a classification layer.

```matlab
inputSize = 12;
numHiddenUnits = 100;
numClasses = 9;

layers = [...
 sequenceInputLayer(inputSize)
 lstmLayer(numHiddenUnits,'OutputMode','last')
 fullyConnectedLayer(numClasses)
 softmaxLayer
 classificationLayer
]```
layers =
 5×1 Layer array with layers:
 1 '' Sequence Input Sequence input with 12 dimensions
 2 '' LSTM LSTM with 100 hidden units
 3 '' Fully Connected 9 fully connected layer
 4 '' Softmax softmax
 5 '' Classification Output crossentropyex

Specify the training options. Specify the solver as 'adam' and 'GradientThreshold' as 1. Set the mini-batch size to 27 and set the maximum number of epochs to 70.

Because the mini-batches are small with short sequences, the CPU is better suited for training. Set 'ExecutionEnvironment' to 'cpu'. To train on a GPU, if available, set 'ExecutionEnvironment' to 'auto' (the default value).

maxEpochs = 70;
miniBatchSize = 27;

options = trainingOptions('adam', ...
 'ExecutionEnvironment','cpu', ...
 'MaxEpochs',maxEpochs, ...
 'MiniBatchSize',miniBatchSize, ...
 'GradientThreshold',1, ...
 'Verbose',false, ...
 'Plots','training-progress');

Train the LSTM network with the specified training options.

net = trainNetwork(XTrain,YTrain,layers,options);

Load the test set and classify the sequences into speakers.
Classify the test data. Specify the same mini-batch size used for training.

\[
YPred = \text{classify}(\text{net}, \text{XTest}, '\text{MiniBatchSize}', \text{miniBatchSize});
\]

Calculate the classification accuracy of the predictions.

\[
\text{acc} = \frac{\text{sum}(\text{YPred} == \text{YTest})}{\text{numel}(\text{YTest})}
\]

\[
\text{acc} = 0.9514
\]

Classification LSTM Networks

To create an LSTM network for sequence-to-label classification, create a layer array containing a sequence input layer, an LSTM layer, a fully connected layer, a softmax layer, and a classification output layer.

Set the size of the sequence input layer to the number of features of the input data. Set the size of the fully connected layer to the number of classes. You do not need to specify the sequence length.

For the LSTM layer, specify the number of hidden units and the output mode `'last'`.

\[
\text{numFeatures} = 12;
\]

\[
\text{numHiddenUnits} = 100;
\]

\[
\text{numClasses} = 9;
\]

\[
\text{layers} = [\ldots
 \text{sequenceInputLayer}(\text{numFeatures})
 \text{lstmLayer}(\text{numHiddenUnits}, '\text{OutputMode}', 'last')
 \text{fullyConnectedLayer}(\text{numClasses})
 \text{softmaxLayer}
 \text{classificationLayer}];
\]

For an example showing how to train an LSTM network for sequence-to-label classification and classify new data, see “Sequence Classification Using Deep Learning”.

To create an LSTM network for sequence-to-sequence classification, use the same architecture as for sequence-to-label classification, but set the output mode of the LSTM layer to `'sequence'`.

\[
\text{numFeatures} = 12;
\]

\[
\text{numHiddenUnits} = 100;
\]

\[
\text{numClasses} = 9;
\]

\[
\text{layers} = [\ldots
 \text{sequenceInputLayer}(\text{numFeatures})
 \text{lstmLayer}(\text{numHiddenUnits}, '\text{OutputMode}', 'sequence')
 \text{fullyConnectedLayer}(\text{numClasses})
 \text{softmaxLayer}
 \text{classificationLayer}];
\]

Regression LSTM Networks

To create an LSTM network for sequence-to-one regression, create a layer array containing a sequence input layer, an LSTM layer, a fully connected layer, and a regression output layer.

Set the size of the sequence input layer to the number of features of the input data. Set the size of the fully connected layer to the number of responses. You do not need to specify the sequence length.
For the LSTM layer, specify the number of hidden units and the output mode 'last'.

```matlab
text = numFeatures = 12;
numHiddenUnits = 125;
numResponses = 1;
layers = ... sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numResponses)
    regressionLayer;
```

To create an LSTM network for sequence-to-sequence regression, use the same architecture as for sequence-to-one regression, but set the output mode of the LSTM layer to 'sequence'.

```matlab
text = numFeatures = 12;
numHiddenUnits = 125;
numResponses = 1;
layers = ... sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits,'OutputMode','sequence')
    fullyConnectedLayer(numResponses)
    regressionLayer;
```

For an example showing how to train an LSTM network for sequence-to-sequence regression and predict on new data, see “Sequence-to-Sequence Regression Using Deep Learning”.

Deeper LSTM Networks

You can make LSTM networks deeper by inserting extra LSTM layers with the output mode 'sequence' before the LSTM layer. To prevent overfitting, you can insert dropout layers after the LSTM layers.

For sequence-to-label classification networks, the output mode of the last LSTM layer must be 'last'.

```matlab
text = numFeatures = 12;
numHiddenUnits1 = 125;
numHiddenUnits2 = 100;
numClasses = 9;
layers = [... sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits1,'OutputMode','sequence')
dropoutLayer(0.2)
lstmLayer(numHiddenUnits2,'OutputMode','last')
dropoutLayer(0.2)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];
```

For sequence-to-sequence classification networks, the output mode of the last LSTM layer must be 'sequence'.

```matlab
text = numFeatures = 12;
numHiddenUnits1 = 125;
numHiddenUnits2 = 100;
```
Create Network for Video Classification

Create a deep learning network for data containing sequences of images, such as video and medical image data.

- To input sequences of images into a network, use a sequence input layer.
- To apply convolutional operations independently to each time step, first convert the sequences of images to an array of images using a sequence folding layer.
- To restore the sequence structure after performing these operations, convert this array of images back to image sequences using a sequence unfolding layer.
- To convert images to feature vectors, use a flatten layer.

You can then input vector sequences into LSTM and BiLSTM layers.

Define Network Architecture

Create a classification LSTM network that classifies sequences of 28-by-28 grayscale images into 10 classes.

Define the following network architecture:

- A sequence input layer with an input size of \([28 \ 28 \ 1]\).
- A convolution, batch normalization, and ReLU layer block with 20 5-by-5 filters.
- An LSTM layer with 200 hidden units that outputs the last time step only.
- A fully connected layer of size 10 (the number of classes) followed by a softmax layer and a classification layer.

To perform the convolutional operations on each time step independently, include a sequence folding layer before the convolutional layers. LSTM layers expect vector sequence input. To restore the sequence structure and reshape the output of the convolutional layers to sequences of feature vectors, insert a sequence unfolding layer and a flatten layer between the convolutional layers and the LSTM layer.

```matlab
inputSize = [28 28 1];
filterSize = 5;
numFilters = 20;
numHiddenUnits = 200;
numClasses = 10;
layers = [...
    sequenceInputLayer(inputSize)
    convolutionLayer(filterSize)
    batchNormalizationLayer
    reluLayer
    lstmLayer(numHiddenUnits,'OutputMode','last')
    flattenLayer
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];
```
sequenceInputLayer(inputSize,'Name','input')

sequenceFoldingLayer('Name','fold')

convolution2dLayer(filterSize,numFilters,'Name','conv')
batchNormalizationLayer('Name','bn')
reluLayer('Name','relu')

sequenceUnfoldingLayer('Name','unfold')
flattenLayer('Name','flatten')

lstmLayer(numHiddenUnits,'OutputMode','last','Name','lstm')

fullyConnectedLayer(numClasses, 'Name','fc')
softmaxLayer('Name','softmax')
classificationLayer('Name','classification')];

Convert the layers to a layer graph and connect the miniBatchSize output of the sequence folding layer to the corresponding input of the sequence unfolding layer.

lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph,'fold/miniBatchSize','unfold/miniBatchSize');

View the final network architecture using the plot function.

figure
plot(lgraph)
Compatibility Considerations

sequenceInputLayer, by default, uses channel-wise normalization for zero-center normalization

Behavior change in future release

Starting in R2019b, sequenceInputLayer, by default, uses channel-wise normalization for zero-center normalization. In previous versions, this layer uses element-wise normalization. To reproduce this behavior, set the NormalizationDimension option of this layer to 'element'.

sequenceInputLayer ignores padding values when normalizing

Behavior changed in R2020a

Starting in R2020a, sequenceInputLayer objects ignore padding values in the input data when normalizing. This means that the Normalization option in the sequenceInputLayer now makes training invariant to data operations, for example, 'zerocenter' normalization now implies that the training results are invariant to the mean of the data.

If you train on padded sequences, then the calculated normalization factors may be different in earlier versions and can produce different results.

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

- For code generation, only vector input types are supported.
- For vector sequence inputs, the number of features must be a constant during code generation.
- Code generation does not support 'Normalization' specified using a function handle.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

To generate CUDA or C++ code by using GPU Coder, you must first construct and train a deep neural network. Once the network is trained and evaluated, you can configure the code generator to generate code and deploy the convolutional neural network on platforms that use NVIDIA or ARM GPU processors. For more information, see “Deep Learning with GPU Coder” (GPU Coder).

For this layer, you can generate code that takes advantage of the NVIDIA CUDA deep neural network library (cuDNN), or the NVIDIA TensorRT high performance inference library.

- The cuDNN library supports vector and 2-D image sequences. The TensorRT library support only vector input sequences.
- For vector sequence inputs, the number of features must be a constant during code generation.
- For image sequence inputs, the height, width, and the number of channels must be a constant during code generation.
- Code generation does not support 'Normalization' specified using a function handle.

See Also

Deep Network Designer | bilstmLayer | classifyAndUpdateState | featureInputLayer | flattenLayer | gruLayer | lstmLayer | predictAndUpdateState | resetState | sequenceFoldingLayer | sequenceUnfoldingLayer

Topics

“Sequence Classification Using Deep Learning”
“Time Series Forecasting Using Deep Learning”
“Sequence-to-Sequence Classification Using Deep Learning”
“Classify Videos Using Deep Learning”
“Visualize Activations of LSTM Network”
“Long Short-Term Memory Networks”
“Specify Layers of Convolutional Neural Network”
“Set Up Parameters and Train Convolutional Neural Network”
“Deep Learning in MATLAB”
“List of Deep Learning Layers”

Introduced in R2017b
sequenceUnfoldingLayer

Sequence unfolding layer

Description

A sequence unfolding layer restores the sequence structure of the input data after sequence folding.

To use a sequence unfolding layer, you must connect the miniBatchSize output of the corresponding sequence folding layer to the miniBatchSize input of the sequence unfolding layer. For an example, see "Create Network for Video Classification" on page 1-892.

Creation

Syntax

layer = sequenceUnfoldingLayer
layer = sequenceUnfoldingLayer('Name',Name)

Description

layer = sequenceUnfoldingLayer creates a sequence unfolding layer.

layer = sequenceUnfoldingLayer('Name',Name) creates a sequence unfolding layer and sets the optional Name property using a name-value pair. For example, sequenceUnfoldingLayer('Name','unfold1') creates a sequence unfolding layer with the name 'unfold1'. Enclose the property name in single quotes.

Properties

Name — Layer name

' ' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to ' ', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

NumInputs — Number of inputs

2 (default)

Number of inputs of the layer.

This layer has two inputs:

- 'in' - Input feature map.
• 'miniBatchSize' - Size of the mini-batch from the corresponding sequence folding layer. This output must be connected to the 'miniBatchSize' output of the corresponding sequence folding layer.

Data Types: double

InputNames — Input names

`{'in','miniBatchSize'}` (default)

Input names of the layer. This layer has two inputs:

• 'in' - Input feature map.
• 'miniBatchSize' - Size of the mini-batch from the corresponding sequence folding layer. This output must be connected to the 'miniBatchSize' output of the corresponding sequence folding layer.

Data Types: cell

NumOutputs — Number of outputs

1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames — Output names

`{'out'}` (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Create Sequence Unfolding Layer

Create a sequence unfolding layer with the name 'unfold1'.

```matlab
layer = sequenceUnfoldingLayer('Name','unfold1')
```

```
layer = SequenceUnfoldingLayer with properties:
    Name: 'unfold1'
    NumInputs: 2
    InputNames: {'in' 'miniBatchSize'}
```
Create Network for Video Classification

Create a deep learning network for data containing sequences of images, such as video and medical image data.

- To input sequences of images into a network, use a sequence input layer.
- To apply convolutional operations independently to each time step, first convert the sequences of images to an array of images using a sequence folding layer.
- To restore the sequence structure after performing these operations, convert this array of images back to image sequences using a sequence unfolding layer.
- To convert images to feature vectors, use a flatten layer.

You can then input vector sequences into LSTM and BiLSTM layers.

Define Network Architecture

Create a classification LSTM network that classifies sequences of 28-by-28 grayscale images into 10 classes.

Define the following network architecture:

- A sequence input layer with an input size of \([28 \ 28 \ 1]\).
- A convolution, batch normalization, and ReLU layer block with 20 5-by-5 filters.
- An LSTM layer with 200 hidden units that outputs the last time step only.
- A fully connected layer of size 10 (the number of classes) followed by a softmax layer and a classification layer.

To perform the convolutional operations on each time step independently, include a sequence folding layer before the convolutional layers. LSTM layers expect vector sequence input. To restore the sequence structure and reshape the output of the convolutional layers to sequences of feature vectors, insert a sequence unfolding layer and a flatten layer between the convolutional layers and the LSTM layer.

```matlab
inputSize = [28 28 1];
filterSize = 5;
umFilters = 20;
numHiddenUnits = 200;
numClasses = 10;
layers = [
    sequenceInputLayer(inputSize,'Name','input')
    sequenceFoldingLayer('Name','fold')
    convolution2dLayer(filterSize,numFilters,'Name','conv')
    batchNormalizationLayer('Name','bn')
    reluLayer('Name','relu')
    sequenceUnfoldingLayer('Name','unfold')
    flattenLayer('Name','flatten')
    lstmLayer(numHiddenUnits,'OutputMode','last','Name','lstm')
    fullyConnectedLayer(numClasses, 'Name','fc')
];
```
softmaxLayer('Name','softmax')
classificationLayer('Name','classification')];

Convert the layers to a layer graph and connect the miniBatchSize output of the sequence folding layer to the corresponding input of the sequence unfolding layer:

lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph,'fold/miniBatchSize','unfold/miniBatchSize');

View the final network architecture using the plot function.

figure
plot(lgraph)
“Classify Videos Using Deep Learning”
“Sequence Classification Using Deep Learning”
“Time Series Forecasting Using Deep Learning”
“Sequence-to-Sequence Classification Using Deep Learning”
“Long Short-Term Memory Networks”
“Visualize Activations of LSTM Network”
“Specify Layers of Convolutional Neural Network”
“Set Up Parameters and Train Convolutional Neural Network”
“Deep Learning in MATLAB”
“List of Deep Learning Layers”

Introduced in R2019a
SeriesNetwork
Series network for deep learning

Description
A series network is a neural network for deep learning with layers arranged one after the other. It has a single input layer and a single output layer.

Creation
There are several ways to create a SeriesNetwork object:

• Load a pretrained network using alexnet, darknet19, vgg16, or vgg19. For an example, see “Load Pretrained AlexNet Convolutional Neural Network” on page 1-897.
• Train or fine-tune a network using trainNetwork. For an example, see “Train Network for Image Classification” on page 1-898.
• Import a pretrained network from TensorFlow-Keras, Caffe, or the ONNX (Open Neural Network Exchange) model format.
 • For a Keras model, use importKerasNetwork. For an example, see “Import and Plot Keras Network” on page 1-606.
 • For a Caffe model, use importCaffeNetwork. For an example, see “Import Caffe Network” on page 1-586.
 • For an ONNX model, use importONNXNetwork. For an example, see “Import ONNX Network” on page 1-639.

Note To learn about other pretrained networks, such as googlenet and resnet50, see “Pretrained Deep Neural Networks”.

Properties

Layers — Network layers
Layer array

Network layers, specified as a Layer array.

InputNames — Network input layer names
cell array

Network input layer names, specified as a cell array of character vectors.

Data Types: cell

OutputNames — Network output layer names
cell array

Data Types: cell
Network output layer names, specified as a cell array of character vectors.

Data Types: cell

Object Functions

- **activations**
 Compute deep learning network layer activations
- **classify**
 Classify data using a trained deep learning neural network
- **predict**
 Predict responses using a trained deep learning neural network
- **predictAndUpdateState**
 Predict responses using a trained recurrent neural network and update the network state
- **classifyAndUpdateState**
 Classify data using a trained recurrent neural network and update the network state
- **resetState**
 Reset the state of a recurrent neural network
- **plot**
 Plot neural network layer graph

Examples

Load Pretrained AlexNet Convolutional Neural Network

Load a pretrained AlexNet convolutional neural network and examine the layers and classes.

Load the pretrained AlexNet network using `alexnet`. The output `net` is a `SeriesNetwork` object.

```matlab
net = alexnet
```

```matlab
net =
SeriesNetwork with properties:
    Layers: [25x1 nnet.cnn.layer.Layer]
```

Using the `Layers` property, view the network architecture. The network comprises of 25 layers.
There are 8 layers with learnable weights: 5 convolutional layers, and 3 fully connected layers.

```matlab
net.Layers
ans =
25x1 Layer array with layers:
```

<table>
<thead>
<tr>
<th></th>
<th>'data'</th>
<th>Image Input</th>
<th>227x227x3 images with 'zerocenter' normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>'conv1'</td>
<td>Convolution</td>
<td>96 11x11x3 convolutions with stride [4 4] and padding [0 0 0 0]</td>
</tr>
<tr>
<td>3</td>
<td>'relu1'</td>
<td>ReLU</td>
<td>ReLU</td>
</tr>
<tr>
<td>4</td>
<td>'norm1'</td>
<td>Cross Channel Normalization</td>
<td>cross channel normalization with 5 channels per element</td>
</tr>
<tr>
<td>5</td>
<td>'pool1'</td>
<td>Max Pooling</td>
<td>3x3 max pooling with stride [2 2] and padding [0 0 0 0]</td>
</tr>
<tr>
<td>6</td>
<td>'conv2'</td>
<td>Grouped Convolution</td>
<td>2 groups of 128 5x5x48 convolutions with stride [1 1] and padding [2 2]</td>
</tr>
<tr>
<td>7</td>
<td>'relu2'</td>
<td>ReLU</td>
<td>ReLU</td>
</tr>
<tr>
<td>8</td>
<td>'norm2'</td>
<td>Cross Channel Normalization</td>
<td>cross channel normalization with 5 channels per element</td>
</tr>
<tr>
<td>9</td>
<td>'pool2'</td>
<td>Max Pooling</td>
<td>3x3 max pooling with stride [2 2] and padding [0 0 0 0]</td>
</tr>
<tr>
<td>10</td>
<td>'conv3'</td>
<td>Convolution</td>
<td>384 3x3x256 convolutions with stride [1 1] and padding [1 1]</td>
</tr>
<tr>
<td>11</td>
<td>'relu3'</td>
<td>ReLU</td>
<td>ReLU</td>
</tr>
<tr>
<td>12</td>
<td>'conv4'</td>
<td>Grouped Convolution</td>
<td>2 groups of 192 3x3x192 convolutions with stride [1 1] and padding [1 1]</td>
</tr>
<tr>
<td>13</td>
<td>'relu4'</td>
<td>ReLU</td>
<td>ReLU</td>
</tr>
<tr>
<td>14</td>
<td>'conv5'</td>
<td>Grouped Convolution</td>
<td>2 groups of 128 3x3x192 convolutions with stride [1 1] and padding [1 1]</td>
</tr>
<tr>
<td>15</td>
<td>'relu5'</td>
<td>ReLU</td>
<td>ReLU</td>
</tr>
<tr>
<td>16</td>
<td>'pool5'</td>
<td>Max Pooling</td>
<td>3x3 max pooling with stride [2 2] and padding [2 2] and padding [2 2]</td>
</tr>
</tbody>
</table>
17 'fc6' Fully Connected 4096 fully connected layer
18 'relu6' ReLU ReLU
19 'drop6' Dropout 50% dropout
20 'fc7' Fully Connected 4096 fully connected layer
21 'relu7' ReLU ReLU
22 'drop7' Dropout 50% dropout
23 'fc8' Fully Connected 1000 fully connected layer
24 'prob' Softmax softmax
25 'output' Classification Output crossentropyex with 'tench' and 999 other classes

You can view the names of the classes learned by the network by viewing the Classes property of the classification output layer (the final layer). View the first 10 classes by selecting the first 10 elements.

net.Layers(end).Classes(1:10)

ans = 10x1 categorical array
tench
goldfish
great white shark
tiger shark
hammerhead
electric ray
stingray
cock
hen
ostrich

Import Layers from Caffe Network

Specify the example file 'digitsnet.prototxt' to import.

protofile = 'digitsnet.prototxt';

Import the network layers.

layers = importCaffeLayers(protofile)

layers =

1x7 Layer array with layers:
1 'testdata' Image Input 28x28x1 images
2 'conv1' Convolution 20 5x5x1 convolutions with stride [1 1] and padding [0 0]
3 'relu1' ReLU ReLU
4 'pool1' Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0]
5 'ip1' Fully Connected 10 fully connected layer
6 'loss' Softmax softmax
7 'output' Classification Output crossentropyex with 'class1', 'class2', and 8 other classes

Train Network for Image Classification

Load the data as an ImageDatastore object.

digitDatasetPath = fullfile(matlabroot,'toolbox','nnet', 'nndemos', 'nndatasets','DigitDataset');
The datastore contains 10,000 synthetic images of digits from 0 to 9. The images are generated by applying random transformations to digit images created with different fonts. Each digit image is 28-by-28 pixels. The datastore contains an equal number of images per category.

Display some of the images in the datastore.

Divide the datastore so that each category in the training set has 750 images and the testing set has the remaining images from each label.
Define the convolutional neural network architecture.

```matlab
define the convolutional neural network architecture.

layers = [
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];
```

Set the options to the default settings for the stochastic gradient descent with momentum. Set the maximum number of epochs at 20, and start the training with an initial learning rate of 0.0001.

```matlab
options = trainingOptions('sgdm', ...
    'MaxEpochs',20,...
    'InitialLearnRate',1e-4,...
    'Verbose',false,...
    'Plots','training-progress');
```

Train the network.

```matlab
net = trainNetwork(imdsTrain,layers,options);
```

Run the trained network on the test set, which was not used to train the network, and predict the image labels (digits).

```matlab
YPred = classify(net,imdsTest);
YTest = imdsTest.Labels;
```

Calculate the accuracy. The accuracy is the ratio of the number of true labels in the test data matching the classifications from classify to the number of images in the test data.
accuracy = sum(YPred == YTest)/numel(YTest)
accuracy = 0.9420

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
- Only the activations and predict object functions are supported.
- To create a SeriesNetwork object for code generation, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:
- Only the activations, classify, predict, predictAndUpdateState, classifyAndUpdateState, and resetState object functions are supported.
- To create a SeriesNetwork object for code generation, see “Load Pretrained Networks for Code Generation” (GPU Coder).

See Also
DAGNetwork | alexnet | analyzeNetwork | assembleNetwork | classify | darknet19 | importCaffeNetwork | plot | predict | trainNetwork | trainingOptions | vgg16 | vgg19

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Sequence Classification Using Deep Learning”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Define Custom Deep Learning Layers”
“Long Short-Term Memory Networks”

Introduced in R2016a
setL2Factor

Package: nnet.cnn.layer

Set L2 regularization factor of layer learnable parameter

Syntax

\[
\text{layer} = \text{setL2Factor(}\text{layer, parameterName, factor)}
\]

\[
\text{layerUpdated} = \text{setL2Factor(}\text{layer, parameterPath, factor)}
\]

\[
\text{dlnetUpdated} = \text{setL2Factor(}\text{dlnet, layerName, parameterName, factor)}
\]

\[
\text{dlnetUpdated} = \text{setL2Factor(}\text{dlnet, parameterPath, factor)}
\]

Description

\[
\text{layer} = \text{setL2Factor(}\text{layer, parameterName, factor)}\]

sets the L2 regularization factor of the parameter with the name `parameterName` in `layer` to `factor`.

For built-in layers, you can set the L2 regularization factor directly by using the corresponding property. For example, for a `convolution2dLayer` layer, the syntax `layer = setL2Factor(layer, 'Weights', factor)` is equivalent to `layer.WeightL2Factor = factor`.

\[
\text{layerUpdated} = \text{setL2Factor(}\text{layer, parameterPath, factor)}\]

sets the L2 regularization factor of the parameter specified by the path `parameterPath`. Use this syntax when the parameter is in a `dlnetwork` object in a custom layer.

\[
\text{dlnetUpdated} = \text{setL2Factor(}\text{dlnet, layerName, parameterName, factor)}\]

sets the L2 regularization factor of the parameter with the name `parameterName` in the layer with name `layerName` for the specified `dlnetwork` object.

\[
\text{dlnetUpdated} = \text{setL2Factor(}\text{dlnet, parameterPath, factor)}\]

sets the L2 regularization factor of the parameter specified by the path `parameterPath`. Use this syntax when the parameter is in a nested layer.

Examples

Set and Get L2 Regularization Factor of Learnable Parameter

Set and get the L2 regularization factor of a learnable parameter of a layer.

Define a custom PReLU layer. To create this layer, save the file `preluLayer.m` in the current folder.

Create a layer array including a custom layer `preluLayer`.

```matlab
layers = [...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    batchNormalizationLayer
    preluLayer(20,'prelu')
    fullyConnectedLayer(10)
];
```
softmaxLayer
classificationLayer;

Set the L2 regularization factor of the 'Alpha' learnable parameter of the preluLayer to 2.

layers(4) = setL2Factor(layers(4), 'Alpha', 2);

View the updated L2 regularization factor.

factor = getL2Factor(layers(4), 'Alpha')

factor = 2

Set and Get L2 Regularization Factor of Nested Layer Learnable Parameter

Set and get the L2 regularization factor of a learnable parameter of a nested layer.

Create a residual block layer using the custom layer residualBlockLayer attached to this example as a supporting file. To access this file, open this example as a Live Script.

inputSize = [224 224 64];
numFilters = 64;
layer = residualBlockLayer(inputSize, numFilters)

layer =
residualBlockLayer with properties:

 Name: ''

 Learnable Parameters
 Network: [1x1 dlnetwork]

Show all properties

View the layers of the nested network.

layer.Network.Layers

ans =
8x1 Layer array with layers:

 1 'in' Image Input 224x224x64 images
 2 'conv1' Convolution 64 3x3x64 convolutions with stride [1 1] and padding 'same'
 3 'gn1' Group Normalization Group normalization with 64 channels split into 1 groups
 4 'relu1' ReLU ReLU
 5 'conv2' Convolution 64 3x3x64 convolutions with stride [1 1] and padding 'same'
 6 'gn2' Group Normalization Group normalization with 64 channels split into 64 groups
 7 'add' Addition Element-wise addition of 2 inputs
 8 'relu2' ReLU ReLU

Set the L2 regularization factor of the learnable parameter 'Weights' of the layer 'conv1' to 2 using the setL2Factor function.

factor = 2;
layer = setL2Factor(layer, 'Network/conv1/Weights', factor);
Get the updated L2 regularization factor using the `getL2Factor` function.

```matlab
factor = getL2Factor(layer,'Network/conv1/Weights')
factor = 2
```

Set and Get L2 Regularization Factor of dlnetwork Learnable Parameter

Set and get the L2 regularization factor of a learnable parameter of a dlnetwork object.

Create a dlnetwork object.

```matlab
layers = [
    imageInputLayer([28 28 1],'Normalization','none','Name','in')
    convolution2dLayer(5,20,'Name','conv')
    batchNormalizationLayer('Name','bn')
    reluLayer('Name','relu')
    fullyConnectedLayer(10,'Name','fc')
    softmaxLayer('Name','sm')];

lgraph = layerGraph(layers);
dlnet = dlnetwork(lgraph);

Set the L2 regularization factor of the 'Weights' learnable parameter of the convolution layer to 2 using the `setL2Factor` function.

```matlab
factor = 2;
dlnet = setL2Factor(dlnet,'conv','Weights',factor);
```

Get the updated L2 regularization factor using the `getL2Factor` function.

```matlab
factor = getL2Factor(dlnet,'conv','Weights')
factor = 2
```

**Set and Get L2 Regularization Factor of Nested dlnetwork Learnable Parameter**

Set and get the L2 regularization factor of a learnable parameter of a nested layer in a dlnetwork object.

Create a dlnetwork object containing the custom layer `residualBlockLayer` attached to this example as a supporting file. To access this file, open this example as a Live Script.

```matlab
inputSize = [224 224 3];
umFilters = 32;
numClasses = 5;

layers = [
 imageInputLayer(inputSize,'Normalization','none','Name','in')
 convolution2dLayer(7,numFilters,'Stride',2,'Padding','same','Name','conv')
 groupNormalizationLayer('all-channels','Name','gn')
 reluLayer('Name','relu')
];
```
maxPooling2dLayer(3, 'Stride', 2, 'Name', 'max')
residualBlockLayer([56 56 numFilters], numFilters, 'Name', 'res1')
residualBlockLayer([56 56 numFilters], numFilters, 'Name', 'res2')
residualBlockLayer([56 56 numFilters], 2*numFilters, 'Name', 'res3')
residualBlockLayer([28 28 2*numFilters], 2*numFilters, 'Name', 'res4')
residualBlockLayer([28 28 2*numFilters], 4*numFilters, 'Name', 'res5')
residualBlockLayer([14 14 4*numFilters], 4*numFilters, 'Name', 'res6')
globalAveragePooling2dLayer('Name', 'gap')
fullyConnectedLayer(numClasses, 'Name', 'fc')
softmaxLayer('Name', 'sm'))

lgraph = layerGraph(layers);
dlnet = dlnetwork(lgraph);

The Learnables property of the dlnetwork object is a table that contains the learnable parameters of the network. The table includes parameters of nested layers in separate rows. View the learnable parameters of the layer "res1".

learnables = dlnet.Learnables;
idx = learnables.Layer == "res1";
learnables(idx, :)

ans=8×3 table
Layer            Parameter                  Value
________    _______________________    ___________________
"res1"    "Network/conv1/Weights"    {3x3x32x32 dlarray}
"res1"    "Network/conv1/Bias"       {1x1x32    dlarray}
"res1"    "Network/gn1/Offset"       {1x1x32    dlarray}
"res1"    "Network/gn1/Scale"        {1x1x32    dlarray}
"res1"    "Network/conv2/Weights"    {3x3x32x32 dlarray}
"res1"    "Network/conv2/Bias"       {1x1x32    dlarray}
"res1"    "Network/gn2/Offset"       {1x1x32    dlarray}
"res1"    "Network/gn2/Scale"        {1x1x32    dlarray}

For the layer "res1", set the L2 regularization factor of the learnable parameter 'Weights' of the layer 'conv1' to 2 using the setL2Factor function.

factor = 2;
dlnet = setL2Factor(dlnet, 'res1/Network/conv1/Weights', factor);

Get the updated L2 regularization factor using the getL2Factor function.

factor = getL2Factor(dlnet, 'res1/Network/conv1/Weights')
factor = 2

Input Arguments

layer — Input layer
scalar Layer object

Input layer, specified as a scalar Layer object.

parameterName — Parameter name
character vector | string scalar
Parameter name, specified as a character vector or a string scalar.

**factor — L2 regularization factor**  
nonnegative scalar

L2 regularization factor for the parameter, specified as a nonnegative scalar.

The software multiplies this factor with the global L2 regularization factor to determine the L2 regularization factor for the specified parameter. For example, if `factor` is 2, then the L2 regularization for the specified parameter is twice the global L2 regularization factor. You can specify the global L2 regularization factor using the `trainingOptions` function.

Example: 2

**parameterPath — Path to parameter in nested layer**  
string scalar | character vector

Path to parameter in nested layer, specified as a string scalar or a character vector. A nested layer is a custom layer that itself defines a layer graph as a learnable parameter.

If the input to `setL2Factor` is a nested layer, then the parameter path has the form  
"propertyName/layerName/parameterName", where:

- `propertyName` is the name of the property containing a `dlnetwork` object
- `layerName` is the name of the layer in the `dlnetwork` object
- `parameterName` is the name of the parameter

If there are multiple levels of nested layers, then specify each level using the form  
"propertyName1/layerName1/.../propertyNameN/layerNameN/parameterName", where `propertyName1` and `layerName1` correspond to the layer in the input to the `setL2Factor` function, and the subsequent parts correspond to the deeper levels.

Example: For layer input to `setL2Factor`, the path "Network/conv1/Weights" specifies the "Weights" parameter of the layer with name "conv1" in the `dlnetwork` object given by `layer.Network`.

If the input to `setL2Factor` is a `dlnetwork` object and the desired parameter is in a nested layer, then the parameter path has the form "layerName1/propertyName/layerName/parameterName", where:

- `layerName1` is the name of the layer in the input `dlnetwork` object
- `propertyName` is the property of the layer containing a `dlnetwork` object
- `layerName` is the name of the layer in the `dlnetwork` object
- `parameterName` is the name of the parameter

If there are multiple levels of nested layers, then specify each level using the form "layerName1/propertyName1/.../layerNameN/propertyNameN/layerName/parameterName", where `layerName1` and `propertyName1` correspond to the layer in the input to the `setL2Factor` function, and the subsequent parts correspond to the deeper levels.

Example: For `dlnetwork` input to `setL2Factor`, the path "res1/Network/conv1/Weights" specifies the "Weights" parameter of the layer with name "conv1" in the `dlnetwork` object given by `layer.Network`, where `layer` is the layer with name "res1" in the input network `dlnet`.

Data Types: `char` | `string`
dlnet — Network for custom training loops
dlnetwork object

Network for custom training loops, specified as a dlnetwork object.

layerName — Layer name
string scalar | character vector

Layer name, specified as a string scalar or a character vector.

Data Types: char | string

Output Arguments

layerUpdated — Updated layer
Layer object

Updated layer, returned as a Layer.

dlnetUpdated — Updated network
dlnetwork object

Updated network, returned as a dlnetwork.

See Also

getL2Factor | getLearnRateFactor | setLearnRateFactor | trainNetwork | trainingOptions

Topics

“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Define Custom Deep Learning Layers”

Introduced in R2017b
**setLearnRateFactor**

**Package:** nnet.cnn.layer

Set learn rate factor of layer learnable parameter

**Syntax**

```matlab
layerUpdated = setLearnRateFactor(layer,parameterName,factor)
layerUpdated = setLearnRateFactor(layer,parameterPath,factor)

dlnetUpdated = setLearnRateFactor(dlnet,layerName,parameterName,factor)
dlnetUpdated = setLearnRateFactor(dlnet,parameterPath,factor)
```

**Description**

`layerUpdated = setLearnRateFactor(layer,parameterName,factor)` sets the learn rate factor of the parameter with the name `parameterName` in `layer` to `factor`. For built-in layers, you can set the learn rate factor directly by using the corresponding property. For example, for a `convolution2dLayer` layer, the syntax `layer = setLearnRateFactor(layer,'Weights',factor)` is equivalent to `layer.WeightLearnRateFactor = factor.`

`layerUpdated = setLearnRateFactor(layer,parameterPath,factor)` sets the learn rate factor of the parameter specified by the path `parameterPath`. Use this syntax when the parameter is in a `dlnetwork` object in a custom layer.

`dlnetUpdated = setLearnRateFactor(dlnet,layerName,parameterName,factor)` sets the learn rate factor of the parameter with the name `parameterName` in the layer with name `layerName` for the specified `dlnetwork` object.

`dlnetUpdated = setLearnRateFactor(dlnet,parameterPath,factor)` sets the learn rate factor of the parameter specified by the path `parameterPath`. Use this syntax when the parameter is in a nested layer.

**Examples**

**Set and Get Learning Rate Factor of Learnable Parameter**

Set and get the learning rate factor of a learnable parameter of a custom PReLU layer.

Define a custom PReLU layer. To create this layer, save the file `preluLayer.m` in the current folder.

Create a layer array including the custom layer `preluLayer`.

```matlab
layers = [...
 imageInputLayer([28 28 1])
 convolution2dLayer(5,20)
 batchNormalizationLayer
 preluLayer
];
```
preluLayer(20,'prelu')
fullyConnectedLayer(10)
softmaxLayer
classificationLayer;

Set the learn rate factor of the 'Alpha' learnable parameter of the preluLayer to 2.

layers(4) = setLearnRateFactor(layers(4),'Alpha',2);

View the updated learn rate factor:

factor = getLearnRateFactor(layers(4),'Alpha')
factor = 2

Set and Get Learning Rate Factor of Nested Layer Learnable Parameter

Set and get the learning rate factor of a learnable parameter of a nested layer.

Create a residual block layer using the custom layer residualBlockLayer attached to this example as a supporting file. To access this file, open this example as a Live Script.

inputSize = [224 224 64];
numFilters = 64;
layer = residualBlockLayer(inputSize,numFilters)

layer =
residualBlockLayer with properties:
   Name: ''
Learnable Parameters
   Network: [1x1 dlnetwork]

Show all properties

View the layers of the nested network.

layer.Network.Layers

ans =
8x1 Layer array with layers:
   1  'in'    Image Input    224x224x64 images
   2  'conv1' Convolution    64 3x3x64 convolutions with stride [1  1] and padding 'same'
   3  'gn1'   Group Normalization
               Group normalization with 64 channels split into 1 groups
   4  'relu1' ReLU
   5  'conv2' Convolution    64 3x3x64 convolutions with stride [1  1] and padding 'same'
   6  'gn2'   Group Normalization
               Group normalization with 64 channels split into 64 groups
   7  'add'   Addition
               Element-wise addition of 2 inputs
   8  'relu2' ReLU

Set the learning rate factor of the learnable parameter 'Weights' of the layer 'conv1' to 2 using the setLearnRateFactor function.
factor = 2;
layer = setLearnRateFactor(layer,'Network/conv1/Weights',factor);

Get the updated learning rate factor using the \texttt{getLearnRateFactor} function.
factor = getLearnRateFactor(layer,'Network/conv1/Weights')
factor = 2

\section*{Set and Get Learn Rate Factor of \texttt{dlnetwork} Learnable Parameter}

Set and get the learning rate factor of a learnable parameter of a \texttt{dlnetwork} object.

Create a \texttt{dlnetwork} object.

\begin{verbatim}
layers = [
    imageInputLayer([28 28 1],'Normalization','none','Name','in')
    convolution2dLayer(5,20,'Name','conv')
    batchNormalizationLayer('Name','bn')
    reluLayer('Name','relu')
    fullyConnectedLayer(10,'Name','fc')
    softmaxLayer('Name','sm')];
\end{verbatim}

lgraph = layerGraph(layers);
dlnet = dlnetwork(lgraph);

Set the learn rate factor of the \texttt{Weights} learnable parameter of the convolution layer to 2 using the \texttt{setLearnRateFactor} function.

factor = 2;
dlnet = setLearnRateFactor(dlnet,'conv','Weights',factor);

Get the updated learn rate factor using the \texttt{getLearnRateFactor} function.

factor = getLearnRateFactor(dlnet,'conv','Weights')
factor = 2

\section*{Set and Get Learning Rate Factor of Nested \texttt{dlnetwork} Learnable Parameter}

Set and get the learning rate factor of a learnable parameter of a nested layer in a \texttt{dlnetwork} object.

Create a \texttt{dlnetwork} object containing the custom layer \texttt{residualBlockLayer} attached to this example as a supporting file. To access this file, open this example as a Live Script.

\begin{verbatim}
inputSize = [224 224 3];
numFilters = 32;
numClasses = 5;

layers = [
    imageInputLayer(inputSize,'Normalization','none','Name','in')
    ...];
\end{verbatim}
convolution2dLayer(7,numFilters,'Stride',2,'Padding','same','Name','conv')
groupNormalizationLayer('all-channels','Name','gn')
reluLayer('Name','relu')
maxPooling2dLayer(3,'Stride',2,'Name','max')
residualBlockLayer([56 56 numFilters],numFilters,'Name','res1')
residualBlockLayer([56 56 numFilters],numFilters,'Name','res2')
residualBlockLayer([56 56 numFilters],2*numFilters,'Stride',2,'IncludeSkipConvolution',true,'Name','res3')
residualBlockLayer([28 28 2*numFilters],2*numFilters,'Name','res4')
residualBlockLayer([28 28 2*numFilters],4*numFilters,'Stride',2,'IncludeSkipConvolution',true,'Name','res5')
residualBlockLayer([14 14 4*numFilters],4*numFilters,'Name','res6')
globalAveragePooling2dLayer('Name','gap')
fullyConnectedLayer(numClasses,'Name','fc')
softmaxLayer('Name','sm')

lgraph = layerGraph(layers);
dlnet = dlnetwork(lgraph);

View the layers of the nested network in the layer 'res1'.

dlnet.Layers(6).Network.Layers

ans =
 8x1 Layer array with layers:
  1  'in'      Image Input           56x56x32 images
  2  'conv1'   Convolution           32 3x3x32 convolutions with stride [1 1] and padding 'same'
  3  'gn1'     Group Normalization   Group normalization with 32 channels split into 1 groups
  4  'relu1'   ReLU                  ReLU
  5  'conv2'   Convolution           32 3x3x32 convolutions with stride [1 1] and padding 'same'
  6  'gn2'     Group Normalization   Group normalization with 32 channels split into 32 groups
  7  'add'     Addition              Element-wise addition of 2 inputs
  8  'relu2'   ReLU                  ReLU

Set the learning rate factor of the learnable parameter 'Weights' of the layer 'conv1' to 2 using the setLearnRateFactor function.

factor = 2;
dlnet = setLearnRateFactor(dlnet,'res1/Network/conv1/Weights',factor);

Get the updated learning rate factor using the getLearnRateFactor function.

factor = getLearnRateFactor(dlnet,'res1/Network/conv1/Weights')

factor = 2

Freeze Learnable Parameters of dlnetwork Object

Load a pretrained network.

net = squeezenet;

Convert the network to a layer graph, remove the output layer, and convert it to a dlnetwork object.

lgraph = layerGraph(net);
lgraph = removeLayers(lgraph,'ClassificationLayer_predictions');
dlnet = dlnetwork(lgraph);
The `Learnables` property of the `dlnetwork` object is a table that contains the learnable parameters of the network. The table includes parameters of nested layers in separate rows. View the first few rows of the learnables table.

```matlab
classNames = dlnet.Learnables;
head(classNames)
```

<table>
<thead>
<tr>
<th>Layer</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;conv1&quot;</td>
<td>&quot;Weights&quot;</td>
<td>{3x3x3x64 dlarray}</td>
</tr>
<tr>
<td>&quot;conv1&quot;</td>
<td>&quot;Bias&quot;</td>
<td>{1x1x64 dlarray}</td>
</tr>
<tr>
<td>&quot;fire2-squeeze1x1&quot;</td>
<td>&quot;Weights&quot;</td>
<td>{1x1x64x16 dlarray}</td>
</tr>
<tr>
<td>&quot;fire2-squeeze1x1&quot;</td>
<td>&quot;Bias&quot;</td>
<td>{1x1x16 dlarray}</td>
</tr>
<tr>
<td>&quot;fire2-expand1x1&quot;</td>
<td>&quot;Weights&quot;</td>
<td>{1x1x16x64 dlarray}</td>
</tr>
<tr>
<td>&quot;fire2-expand1x1&quot;</td>
<td>&quot;Bias&quot;</td>
<td>{1x1x64 dlarray}</td>
</tr>
<tr>
<td>&quot;fire2-expand3x3&quot;</td>
<td>&quot;Weights&quot;</td>
<td>{3x3x16x64 dlarray}</td>
</tr>
<tr>
<td>&quot;fire2-expand3x3&quot;</td>
<td>&quot;Bias&quot;</td>
<td>{1x1x64 dlarray}</td>
</tr>
</tbody>
</table>

To freeze the learnable parameters of the network, loop over the learnable parameters and set the learn rate to 0 using the `setLearnRateFactor` function.

```matlab
factor = 0;
numLearnables = size(classNames,1);
for i = 1:numLearnables
 layerName = classNames.Layer(i);
 parameterName = classNames.Parameter(i);
 dlnet = setLearnRateFactor(dlnet,layerName,parameterName,factor);
end
```

To use the updated learn rate factors when training, you must pass the `dlnetwork` object to the update function in the custom training loop. For example, use the command

```matlab
[dlnet,velocity] = sgdupdate(dlnet,gradients,velocity);
```

### Input Arguments

- **layer** — Input layer  
  
  Scalar `Layer` object  

  Input layer, specified as a scalar `Layer` object.

- **parameterName** — Parameter name  
  
  Character vector | string scalar  

  Parameter name, specified as a character vector or a string scalar.

- **factor** — Learning rate factor  
  
  Nonnegative scalar  

  Learning rate factor for the parameter, specified as a nonnegative scalar.
The software multiplies this factor by the global learning rate to determine the learning rate for the specified parameter. For example, if factor is 2, then the learning rate for the specified parameter is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the trainingOptions function.

Example: 2

**parameterPath — Path to parameter in nested layer**

string scalar | character vector

Path to parameter in nested layer, specified as a string scalar or a character vector. A nested layer is a custom layer that itself defines a layer graph as a learnable parameter.

If the input to setLearnRateFactor is a nested layer, then the parameter path has the form "propertyName/layerName/parameterName", where:

- propertyName is the name of the property containing a dlnetwork object
- layerName is the name of the layer in the dlnetwork object
- parameterName is the name of the parameter

If there are multiple levels of nested layers, then specify each level using the form "propertyName1/layerName1/.../propertyNameN/layerNameN/parameterName", where propertyName1 and layerName1 correspond to the layer in the input to the setLearnRateFactor function, and the subsequent parts correspond to the deeper levels.

Example: For layer input to setLearnRateFactor, the path "Network/conv1/Weights" specifies the "Weights" parameter of the layer with name "conv1" in the dlnetwork object given by layer.Network.

If the input to setLearnRateFactor is a dlnetwork object and the desired parameter is in a nested layer, then the parameter path has the form "layerName1/propertyName/layerName/parameterName", where:

- layerName1 is the name of the layer in the input dlnetwork object
- propertyName is the property of the layer containing a dlnetwork object
- layerName is the name of the layer in the dlnetwork object
- parameterName is the name of the parameter

If there are multiple levels of nested layers, then specify each level using the form "layerName1/propertyName1/layerName1/.../layerNameN/propertyNameN/layerName/parameterName", where layerName1 and propertyName1 correspond to the layer in the input to the setLearnRateFactor function, and the subsequent parts correspond to the deeper levels.

Example: For dlnetwork input to setLearnRateFactor, the path "res1/Network/conv1/Weights" specifies the "Weights" parameter of the layer with name "conv1" in the dlnetwork object given by layer.Network, where layer is the layer with name "res1" in the input network dlnet.

Data Types: char | string

**dlnet — Network for custom training loops**

dlnetwork object

Network for custom training loops, specified as a dlnetwork object.
layerName — Layer name
string scalar | character vector

Layer name, specified as a string scalar or a character vector.
Data Types: char | string

Output Arguments

layerUpdated — Updated layer
Layer object

Updated layer, returned as a Layer.

dlnetUpdated — Updated network
dlnetwork object

Updated network, returned as a dlnetwork.

See Also
getL2Factor | getLearnRateFactor | setL2Factor | trainNetwork | trainingOptions

Topics
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“Define Custom Deep Learning Layers”

Introduced in R2017b
sgdmupdate

Update parameters using stochastic gradient descent with momentum (SGDM)

Syntax

[dlnet, vel] = sgdmupdate(dlnet, grad, vel)
[params, vel] = sgdmupdate(params, grad, vel)
[___] = sgdmupdate(___ learnRate, momentum)

Description

Update the network learnable parameters in a custom training loop using the stochastic gradient
descent with momentum (SGDM) algorithm.

Note

This function applies the SGDM optimization algorithm to update network parameters in
custom training loops that use networks defined as dlnetwork objects or model functions. If you
want to train a network defined as a Layer array or as a LayerGraph, use the following functions:

• Create a TrainingOptionsSGDM object using the trainingOptions function.
• Use the TrainingOptionsSGDM object with the trainNetwork function.

[dlnet, vel] = sgdmupdate(dlnet, grad, vel) updates the learnable parameters of the
network dlnet using the SGDM algorithm. Use this syntax in a training loop to iteratively update a
network defined as a dlnetwork object.

[params, vel] = sgdmupdate(params, grad, vel) updates the learnable parameters in params
using the SGDM algorithm. Use this syntax in a training loop to iteratively update the learnable
parameters of a network defined using functions.

[___] = sgdmupdate(___ learnRate, momentum) also specifies values to use for the global
learning rate and momentum, in addition to the input arguments in previous syntaxes.

Examples

Update Learnable Parameters Using sgdmupdate

Perform a single SGDM update step with a global learning rate of 0.05 and momentum of 0.95.

Create the parameters and parameter gradients as numeric arrays.

params = rand(3,3,4);
grad = ones(3,3,4);

Initialize the parameter velocities for the first iteration.

vel = [];

1-915
Specify custom values for the global learning rate and momentum.

\[
\text{learnRate} = 0.05; \\
\text{momentum} = 0.95;
\]

Update the learnable parameters using \texttt{sgdmupdate}.

\[
[\text{params}, \text{vel}] = \text{sgdmupdate}(\text{params}, \text{grad}, \text{vel}, \text{learnRate}, \text{momentum});
\]

**Train Network Using \texttt{sgdmupdate}**

Use \texttt{sgdmupdate} to train a network using the SGDM algorithm.

**Load Training Data**

Load the digits training data.

\[
[\text{XTrain}, \text{YTrain}] = \text{digitTrain4DArrayData}; \\
\text{classes} = \text{categories}(\text{YTrain}); \\
\text{numClasses} = \text{numel}(\text{classes});
\]

**Define Network**

Define the network architecture and specify the average image value using the 'Mean' option in the image input layer.

\[
\text{layers} = \begin{bmatrix}
\text{imageInputLayer}([28 28 1], 'Name','input','Mean',\text{mean}(	ext{XTrain},4)) \\
\text{convolution2dLayer}(5,20, 'Name','conv1') \\
\text{reluLayer}('Name','relu1') \\
\text{convolution2dLayer}(3,20, 'Padding',1, 'Name','conv2') \\
\text{reluLayer}('Name','relu2') \\
\text{convolution2dLayer}(3,20, 'Padding',1, 'Name','conv3') \\
\text{reluLayer}('Name','relu3') \\
\text{fullyConnectedLayer}(\text{numClasses}, 'Name','fc') \\
\text{softmaxLayer}(\text{numClasses}, 'softmax')
\end{bmatrix};
\]

\text{\texttt{lgraph} = layerGraph(\text{layers});}

Create a \texttt{dlnetwork} object from the layer graph.

\[
\text{dlnet} = \text{dlnetwork}(\text{lgraph});
\]

**Define Model Gradients Function**

Create the helper function \texttt{modelGradients}, listed at the end of the example. The function takes a \texttt{dlnetwork} object \texttt{dlnet} and a mini-batch of input data \texttt{dlX} with corresponding labels \texttt{Y}, and returns the loss and the gradients of the loss with respect to the learnable parameters in \texttt{dlnet}.

**Specify Training Options**

Specify the options to use during training.

\[
\text{miniBatchSize} = 128; \\
\text{numEpochs} = 20; \\
\text{numObservations} = \text{numel}(\text{YTrain}); \\
\text{numIterationsPerEpoch} = \text{floor}(\text{numObservations}/\text{miniBatchSize});
\]
Train on a GPU, if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA® enabled NVIDIA® GPU with compute capability 3.0 or higher.

```matlab
executionEnvironment = "auto";
```

Visualize the training progress in a plot.

```matlab
plots = "training-progress";
```

**Train Network**

Train the model using a custom training loop. For each epoch, shuffle the data and loop over mini-batches of data. Update the network parameters using the `sgdmupdate` function. At the end of each epoch, display the training progress.

Initialize the training progress plot.

```matlab
if plots == "training-progress"
 figure
 lineLossTrain = animatedline('Color',[0.85 0.325 0.098]);
 ylim([0 inf])
 xlabel("Iteration")
 ylabel("Loss")
 grid on
end
```

Initialize the velocity parameter.

```matlab
vel = [];
```

Train the network.

```matlab
iteration = 0;
start = tic;
for epoch = 1:numEpochs
 % Shuffle data.
 idx = randperm(numel(YTrain));
 XTrain = XTrain(:,:,:,idx);
 YTrain = YTrain(idx);
 for i = 1:numIterationsPerEpoch
 iteration = iteration + 1;

 % Read mini-batch of data and convert the labels to dummy variables.
 idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
 X = XTrain(:,:,:,idx);
 Y = zeros(numClasses, miniBatchSize, 'single');
 for c = 1:numClasses
 Y(c,YTrain(idx)==classes(c)) = 1;
 end

 % Convert mini-batch of data to a dlarray.
 dlX = dlarray(single(X),'SSCB');

 % If training on a GPU, then convert data to a gpuArray.
```
if executionEnvironment == "auto" && canUseGPU || executionEnvironment == "gpu"
    dlX = gpuArray(dlX);
end

% Evaluate the model gradients and loss using dlfeval and the
% modelGradients helper function.
[gradients,loss] = dlfeval(@modelGradients,dlnet,dlX,Y);

% Update the network parameters using the SGDM optimizer.
[dlnet,vel] = sgdupdate(dlnet,gradients,vel);

% Display the training progress.
if plots == "training-progress"
    D = duration(0,0,toc(start),'Format','hh:mm:ss');
    addpoints(lineLossTrain,iteration,double(gather(extractdata(loss))))
    title("Epoch: " + epoch + ", Elapsed: " + string(D))
    drawnow
end
end

Epoch: 20, Elapsed: 00:01:00

Test the Network

Test the classification accuracy of the model by comparing the predictions on a test set with the true labels.

[XTest, YTest] = digitTest4DArrayData;
Convert the data to a dlarray with the dimension format 'SSCB'. For GPU prediction, also convert the data to a gpuArray.

dlXTest = dlarray(XTest,'SSCB');
if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
    dlXTest = gpuArray(dlXTest);
end

To classify images using a dlnetwork object, use the predict function and find the classes with the highest scores.

dlYPred = predict(dlnet,dlXTest);
[~,idx] = max(extractdata(dlYPred),[],1);
YPred = classes(idx);

Evaluate the classification accuracy.

accuracy = mean(YPred==YTest)

accuracy = 0.9916

Model Gradients Function

The modelGradients helper function takes a dlnetwork object dlnet and a mini-batch of input data dlX with corresponding labels Y, and returns the loss and the gradients of the loss with respect to the learnable parameters in dlnet. To compute the gradients automatically, use the dlgradient function.

function [gradients,loss] = modelGradients(dlnet,dlX,Y)
    dlYPred = forward(dlnet,dlX);
    loss = crossentropy(dlYPred,Y);
    gradients = dlgradient(loss,dlnet.Learnables);
end

Input Arguments

dlnet — Network
dlnetwork object

Network, specified as a dlnetwork object.

The function updates the dlnet.Learnables property of the dlnetwork object. dlnet.Learnables is a table with three variables:

• Layer — Layer name, specified as a string scalar.
• Parameter — Parameter name, specified as a string scalar.
• Value — Value of parameter, specified as a cell array containing a dlarray.

The input argument grad must be a table of the same form as dlnet.Learnables.

params — Network learnable parameters
dlarray | numeric array | cell array | structure | table
Network learnable parameters, specified as a `dlarray`, a numeric array, a cell array, a structure, or a table.

If you specify `params` as a table, it must contain the following three variables.

- **Layer** — Layer name, specified as a string scalar.
- **Parameter** — Parameter name, specified as a string scalar.
- **Value** — Value of parameter, specified as a cell array containing a `dlarray`.

You can specify `params` as a container of learnable parameters for your network using a cell array, structure, or table, or nested cell arrays or structures. The learnable parameters inside the cell array, structure, or table must be `dlarray` or numeric values of data type `double` or `single`.

The input argument `grad` must be provided with exactly the same data type, ordering, and fields (for structures) or variables (for tables) as `params`.

Data Types: `single` | `double` | `struct` | `table` | `cell`

**`grad` — Gradients of the loss**

dlarray | numeric array | cell array | structure | table

Gradients of the loss, specified as a `dlarray`, a numeric array, a cell array, a structure, or a table.

The exact form of `grad` depends on the input network or learnable parameters. The following table shows the required format for `grad` for possible inputs to `sgdmupdate`.

<table>
<thead>
<tr>
<th>Input</th>
<th>Learnable Parameters</th>
<th>Gradients</th>
</tr>
</thead>
<tbody>
<tr>
<td>dlnet</td>
<td>Table <code>dlnet.Learnables</code> containing <strong>Layer</strong>, <strong>Parameter</strong>, and <strong>Value</strong> variables. The <strong>Value</strong> variable consists of cell arrays that contain each learnable parameter as a <code>dlarray</code></td>
<td>Table with the same data type, variables, and ordering as <code>dlnet.Learnables.grad</code> must have a <strong>Value</strong> variable consisting of cell arrays that contain the gradient of each learnable parameter.</td>
</tr>
<tr>
<td>params</td>
<td><code>dlarray</code></td>
<td><code>dlarray</code> with the same data type and ordering as <code>params</code></td>
</tr>
<tr>
<td></td>
<td>Numeric array</td>
<td>Numeric array with the same data type and ordering as <code>params</code></td>
</tr>
<tr>
<td></td>
<td>Cell array</td>
<td>Cell array with the same data types, structure, and ordering as <code>params</code></td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>Structure with the same data types, fields, and ordering as <code>params</code></td>
</tr>
</tbody>
</table>
You can obtain \texttt{grad} from a call to \texttt{dlfeval} that evaluates a function that contains a call to \texttt{dlgradient}. For more information, see “Use Automatic Differentiation In Deep Learning Toolbox”.

\textbf{vel — Parameter velocities}

\texttt{[]} | \texttt{dlarray} | \texttt{numeric array} | \texttt{cell array} | \texttt{structure} | \texttt{table}

Parameter velocities, specified as an empty array, a \texttt{dlarray}, a numeric array, a cell array, a structure, or a table.

The exact form of \texttt{vel} depends on the input network or learnable parameters. The following table shows the required format for \texttt{vel} for possible inputs to \texttt{sgdmupdate}.

<table>
<thead>
<tr>
<th>Input</th>
<th>Learnable Parameters</th>
<th>Velocities</th>
</tr>
</thead>
<tbody>
<tr>
<td>dlnet</td>
<td>Table \texttt{dlnet.Learnables} containing Layer, Parameter, and Value variables. The Value variable consists of cell arrays that contain each learnable parameter as a \texttt{dlarray}.</td>
<td>Table with the same data type, variables, and ordering as \texttt{dlnet.Learnables}. \texttt{vel} must have a Value variable consisting of cell arrays that contain the velocity of each learnable parameter.</td>
</tr>
<tr>
<td>params</td>
<td>\texttt{dlarray}</td>
<td>\texttt{dlarray} with the same data type and ordering as \texttt{params}</td>
</tr>
<tr>
<td></td>
<td>Numeric array</td>
<td>Numeric array with the same data type and ordering as \texttt{params}</td>
</tr>
<tr>
<td></td>
<td>Cell array</td>
<td>Cell array with the same data types, structure, and ordering as \texttt{params}</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>Structure with the same data types, fields, and ordering as \texttt{params}</td>
</tr>
<tr>
<td></td>
<td>Table with Layer, Parameter, and Value variables. The Value variable must consist of cell arrays that contain each learnable parameter as a \texttt{dlarray}.</td>
<td>Table with the same data types, variables, and ordering as \texttt{params}. \texttt{vel} must have a Value variable consisting of cell arrays that contain the velocity of each learnable parameter.</td>
</tr>
</tbody>
</table>

If you specify \texttt{vel} as an empty array, the function assumes no previous velocities and runs in the same way as for the first update in a series of iterations. To update the learnable parameters iteratively, use the \texttt{vel} output of a previous call to \texttt{sgdmupdate} as the \texttt{vel} input.
**learnRate — Global learning rate**

0.01 (default) | positive scalar

Learning rate, specified as a positive scalar. The default value of learnRate is 0.01.

If you specify the network parameters as a dlnetwork object, the learning rate for each parameter is the global learning rate multiplied by the corresponding learning rate factor property defined in the network layers.

**momentum — Momentum**

0.9 (default) | positive scalar between 0 and 1

Momentum, specified as a positive scalar between 0 and 1. The default value of momentum is 0.9.

**Output Arguments**

**dlnet — Updated network**

dlnetwork object

Network, returned as a dlnetwork object.

The function updates the dlnet.Learnables property of the dlnetwork object.

**params — Updated network learnable parameters**

dlarray | numeric array | cell array | structure | table

Updated network learnable parameters, returned as a dlarray, a numeric array, a cell array, a structure, or a table with a Value variable containing the updated learnable parameters of the network.

**vel — Updated parameter velocities**

dlarray | numeric array | cell array | structure | table

Updated parameter velocities, returned as a dlarray, a numeric array, a cell array, a structure, or a table.

**More About**

**Stochastic Gradient Descent with Momentum**

The function uses the stochastic gradient descent with momentum algorithm to update the learnable parameters. For more information, see the definition of the stochastic gradient descent with momentum algorithm under “Stochastic Gradient Descent” on page 1-992 on the trainingOptions reference page.

**Extended Capabilities**

**GPU Arrays**

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

- When at least one of the following input arguments is a gpuArray or a dlarray with underlying data of type gpuArray, this function runs on the GPU.
For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
adamupdate | dlarray | dlfeval | dlgradient | dlnetwork | dlupdate | forward |
rmspropupdate

Topics
“Define Custom Training Loops, Loss Functions, and Networks”
“Specify Training Options in Custom Training Loop”
“Train Network Using Custom Training Loop”

Introduced in R2019b
shuffle
Shuffle data in augmentedImageDatastore

Syntax
auimds2 = shuffle(auimds)

Description
auimds2 = shuffle(auimds) returns an augmentedImageDatastore object containing a random ordering of the data from augmented image datastore auimds.

Input Arguments
auimds — Augmented image datastore
augmentedImageDatastore
Augmented image datastore, specified as an augmentedImageDatastore object.

Output Arguments
auimds2 — Output datastore
augmentedImageDatastore object
Output datastore, returned as an augmentedImageDatastore object containing randomly ordered files from auimds.

See Also
read | readByIndex | readall

Introduced in R2018a
shuffle

Shuffle data in minibatchqueue

Syntax

shuffle(mbq)

Description

shuffle(mbq) resets the data held in mbq and shuffles it into a random order. After shuffling, the next function returns different mini-batches. Use this syntax to reset and shuffle your data after each training epoch in a custom training loop.

Examples

Differences Between shuffle and reset

The shuffle function resets and shuffles the minibatchqueue so that you can obtain data from it in a random order. By contrast, the reset function resets the minibatchqueue to the start of the underlying datastore.

Create a minibatchqueue from a datastore.

ds = digitDatastore;
mbq = minibatchqueue(ds,'MinibatchSize',256)

mbq = minibatchqueue with 1 output and properties:

Mini-batch creation:
    MiniBatchSize: 256
    PartialMiniBatch: 'return'
    MiniBatchFcn: 'collate'
    DispatchInBackground: 0

Outputs:
    OutputCast: {'single'}
    OutputAsDlarray: 1
    MiniBatchFormat: {''}
    OutputEnvironment: {'auto'}

Obtain the first mini-batch of data.

X1 = next(mbq);

Iterate over the rest of the data in the minibatchqueue. Use hasdata to check if data is still available.

while hasdata(mbq)
    next(mbq);
end
Shuffle the minibatchqueue and obtain the first mini-batch after the queue is shuffled.

\[
\text{shuffle(mbq);}
\]

\[
X2 = \text{next(mbq)};
\]

Iterate over the remaining data again.

\[
\text{while hasdata(mbq)}
\]

\[
\text{next(mbq)};
\]

\[
\text{end}
\]

Reset the minibatchqueue and obtain the first mini-batch after the queue is reset.

\[
\text{reset(mbq);}
\]

\[
X3 = \text{next(mbq)};
\]

Check whether the mini-batches obtained after resetting or shuffling the minibatchqueue are the same as the first mini-batch after the minibatchqueue is created.

\[
\text{isequal(X1,X2)}
\]

\[
\text{isequal(X1,X3)}
\]

\[
\text{ans} = 0
\]

\[
\text{ans} = 1
\]

The \text{reset} function returns the minibatchqueue to the start of the underlying data, so that the \text{next} function returns mini-batches in the same order each time. By contrast, the \text{shuffle} function shuffles the underlying data and produces randomized mini-batches.

**Input Arguments**

\text{mbq} — Queue of mini-batches

\text{minibatchqueue}

Queue of mini-batches, specified as a \text{minibatchqueue} object.

**See Also**

\text{hasdata} | \text{minibatchqueue} | \text{next} | \text{reset}

**Topics**

“Training Deep Learning Models in MATLAB”
“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Custom Training Loop”
“Train Generative Adversarial Network (GAN)”
“Sequence-to-Sequence Classification Using 1-D Convolutions”

**Introduced in R2020b**
**shufflenet**

Pretrained ShuffleNet convolutional neural network

**Syntax**

```matlab
net = shufflenet
```

**Description**

ShuffleNet is a convolutional neural network that is trained on more than a million images from the ImageNet database [1]. The network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many animals. As a result, the network has learned rich feature representations for a wide range of images. The network has an image input size of 224-by-224. For more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

You can use `classify` to classify new images using the ShuffleNet model. Follow the steps of “Classify Image Using GoogLeNet” and replace GoogLeNet with ShuffleNet.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network to Classify New Images” and load ShuffleNet instead of GoogLeNet.

**Examples**

**Download ShuffleNet Support Package**

Download and install the Deep Learning Toolbox Model for ShuffleNet Network support package. If this support package is not installed, then the function provides a download link.

Type `shufflenet` at the command line.

```matlab
shufflenet
```

If the Deep Learning Toolbox Model for ShuffleNet Network support package is not installed, then the function provides a link to the required support package in the Add-On Explorer. To install the support package, click the link, and then click **Install**. Check that the installation is successful by typing `shufflenet` at the command line. If the required support package is installed, then the function returns a `DAGNetwork` object.

```matlab
shufflenet
```

```matlab
ans =

DAGNetwork with properties:
```
Transfer Learning with ShuffleNet

You can use transfer learning to retrain the network to classify a new set of images.

Open the example “Train Deep Learning Network to Classify New Images”. The original example uses the GoogLeNet pretrained network. To perform transfer learning using a different network, load your desired pretrained network and follow the steps in the example.

Load the ShuffleNet network instead of GoogLeNet.

```matlab
net = shufflenet
```

Follow the remaining steps in the example to retrain your network. You must replace the last learnable layer and the classification layer in your network with new layers for training. The example shows you how to find which layers to replace.

Output Arguments

```matlab
net — Pretrained ShuffleNet convolutional neural network
DAGNetwork object
```

Pretrained ShuffleNet convolutional neural network, returned as a `DAGNetwork` object.

References


See Also

`DAGNetwork` | `densenet201` | `googlenet` | `inceptionresnetv2` | `layerGraph` | `nasnetlarge` | `nasnetmobile` | `plot` | `resnet101` | `resnet50` | `squeezenet` | `trainNetwork` | `vgg16` | `vgg19`

Topics

“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

Introduced in R2019a
sigmoid

Apply sigmoid activation

Syntax

dlY = sigmoid(dlX)

Description

The sigmoid activation operation applies the sigmoid function to the input data.

This operation is equivalent to

\[
    f(x) = \frac{1}{1 + e^{-x}}.
\]

**Note** This function applies the sigmoid operation to dlarray data. If you want to apply sigmoid within a layerGraph object or Layer array, use the following layer:

- sigmoidLayer


dlY = sigmoid(dlX) computes the sigmoid activation of the input dlX by applying the sigmoid transfer function. All values in dlY are between 0 and 1.

Examples

Apply Sigmoid Activation

Use the sigmoid function to set all values in the input data to a value between 0 and 1.

Create the input data as a single observation of random values with a height and width of seven and 32 channels.

```matlab
height = 7;
width = 7;
channels = 32;
observations = 1;

X = randn(height,width,channels,observations);
dlX = dlarray(X,'SSCB');

Compute the sigmoid activation.

dlY = sigmoid(dlX);
```
All values in \( \text{dlY} \) now range between 0 and 1.

**Input Arguments**

**dlX — Input data**

dlarray

Input data, specified as a dlarray with or without dimension labels.

Data Types: single | double

**Output Arguments**

**dlY — Sigmoid activations**

dlarray

Sigmoid activations, returned as a dlarray. All values in \( \text{dlY} \) are between 0 and 1. The output \( \text{dlY} \) has the same underlying data type as the input \( \text{dlX} \).

If the input data \( \text{dlX} \) is a formatted dlarray, \( \text{dlY} \) has the same dimension labels as \( \text{dlX} \). If the input data is not a formatted dlarray, \( \text{dlY} \) is an unformatted dlarray with the same dimension order as the input data.

**Extended Capabilities**

**GPU Arrays**

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

- When the input argument \( \text{dlX} \) is a dlarray with underlying data of type gpuArray, this function runs on the GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

**See Also**

batchnorm | dlarray | dlfeval | dlgradient | leakyrelu | relu

**Topics**

“Define Custom Training Loops, Loss Functions, and Networks”

“Train Network Using Model Function”

**Introduced in R2019b**
sigmoidLayer

Sigmoid layer

Description

A sigmoid layer applies a sigmoid function to the input such that the output is bounded in the interval (0,1).

Tip  To use the sigmoid layer for binary or multilabel classification problems, create a custom binary cross-entropy loss output layer or use a custom training loop.

Creation

Syntax

layer = sigmoidLayer
layer = sigmoidLayer('Name',Name)

Description

layer = sigmoidLayer creates a sigmoid layer.

layer = sigmoidLayer('Name',Name) creates a sigmoid layer and sets the optional Name property using a name-value pair argument. For example, sigmoidLayer('Name','sig1') creates a sigmoid layer with the name 'sig1'. Enclose the property name in single quotes.

Properties

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to '', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.
Data Types: cell

**NumOutputs — Number of outputs**

1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: double

**OutputNames — Output names**

{‘out’} (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

**Examples**

**Create Sigmoid Layer**

Create a sigmoid layer with the name ‘sig1’.

```matlab
layer = sigmoidLayer('Name', 'sig1')
```

```matlab
layer =
 SigmoidLayer with properties:
 Name: 'sig1'

Show all properties
```

**More About**

**Sigmoid Layer**

A sigmoid layer applies a sigmoid function to the input such that the output is bounded in the interval (0,1).

This operation is equivalent to

\[ f(x) = \frac{1}{1 + e^{-x}}. \]

A multilabel classification problem can be thought of as a binary classification problem, where each class is considered independently of other classes as either present or not present. Solving this type of problem requires the sigmoid activation function, where for any sample \( x_n \) the posterior probability of class \( C_k \) is

\[ P(C_k|x_n) = \frac{1}{1 + e^{-a_k}}. \]

The value \( a_k \) is the weighted sum of all the units that are connected to class \( k \). Performing multilabel classification requires a sigmoid layer followed by a custom binary cross-entropy loss layer.
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
convolution2dLayer | softmaxLayer | tanhLayer | trainNetwork

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2020b
**softmax**

Apply softmax activation to channel dimension

**Syntax**

\[ \text{dlY} = \text{softmax}(\text{dlX}) \]

\[ \text{dlY} = \text{softmax}(\text{dlX},'\text{DataFormat}',\text{FMT}) \]

**Description**

The softmax activation operation applies the softmax function to the channel dimension of the input data.

The softmax function normalizes the value of the input data across the channel dimension such that it sums to one. You can regard the output of the softmax function as a probability distribution.

**Note**  This function applies the softmax operation to **dlarray** data. If you want to apply softmax within a **layerGraph** object or **Layer** array, use the following layer:

- **softmaxLayer**

\[ \text{dlY} = \text{softmax}(\text{dlX}) \]

computes the softmax activation of the input \( \text{dlX} \) by applying the softmax transfer function to the channel dimension of the input data. All values in \( \text{dlY} \) are between 0 and 1, and sum to 1. The input \( \text{dlX} \) is a formatted **dlarray** with dimension labels. The output \( \text{dlY} \) is a formatted **dlarray** with the same dimension labels as \( \text{dlX} \).

\[ \text{dlY} = \text{softmax}(\text{dlX},'\text{DataFormat}',\text{FMT}) \]

also specifies dimension format \( \text{FMT} \) when \( \text{dlX} \) is not a formatted **dlarray**. The output \( \text{dlY} \) is an unformatted **dlarray** with the same dimension order as \( \text{dlX} \).

**Examples**

**Apply Softmax Activation**

Use the **softmax** function to set all values in the input data to values between 0 and 1 that sum to 1 over all channels.

Create the input classification data as two observations of random variables. The data can be in any of 10 categories.

\[ \text{numCategories} = 10; \]
\[ \text{observations} = 2; \]

\[ \text{X} = \text{rand}(\text{numCategories},\text{observations}); \]
\[ \text{dlX} = \text{dlarray}(\text{X},'\text{CB}'); \]

Compute the **softmax** activation.
dlY = softmax(dlX);
totalProb = sum(dlY,1)

dlY =

10(C) x 2(B) dlarray
0.1151    0.0578
0.1261    0.1303
0.0579    0.1285
0.1270    0.0802
0.0959    0.1099
0.0562    0.0569
0.0673    0.0753
0.0880    0.1233
0.1328    0.1090
0.1337    0.1288

totalProb =

1(C) x 2(B) dlarray
1.0000    1.0000

All values in dlY range between 0 and 1. The values over all channels sum to 1 for each observation.

**Input Arguments**

**dlX** — Input data

dlarray

Input data, specified as a dlarray with or without dimension labels. When dlX is not a formatted dlarray, you must specify the dimension label format using 'DataFormat',FMT.

dlX must contain a 'C' channel dimension.

Data Types: single | double

**FMT** — Dimension order of unformatted data

cchar array | string

Dimension order of unformatted input data, specified as the comma-separated pair consisting of 'DataFormat',FMT that provides a label for each dimension of the data. Each character in FMT must be one of the following:

- 'S' — Spatial
- 'C' — Channel
- 'B' — Batch (for example, samples and observations)
- 'T' — Time (for example, sequences)
- 'U' — Unspecified

You can specify multiple dimensions labeled 'S' or 'U'. You can use the labels 'C', 'B', and 'T' at most once.

You must specify 'DataFormat',FMT when the input data dlX is not a formatted dlarray.

Example: 'DataFormat','SSCB'

1-935
Output Arguments

dlY — Softmax activations
    dlarray

Softmax activations, returned as a dlarray. All values in dlY are between 0 and 1. The output dlY has the same underlying data type as the input dlX.

If the input data dlX is a formatted dlarray, dlY has the same dimension labels as dlX. If the input data is not a formatted dlarray, dlY is an unformatted dlarray with the same dimension order as the input data.

More About

Softmax Activation

The softmax function normalizes the input across the channel dimension, such that it sums to one. For more information, see the definition of “Softmax Layer” on page 1-938 on the softmaxLayer reference page.

Extended Capabilities

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

- When the input argument dlX is a dlarray with underlying data of type gpuArray, this function runs on the GPU.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also

batchnorm | crossentropy | dlarray | dlfeval | dlgradient | fullyconnect | relu

Topics

“Define Custom Training Loops, Loss Functions, and Networks”
“Train Network Using Model Function”
“Make Predictions Using Model Function”
“Train Network with Multiple Outputs”

Introduced in R2019b
softmaxLayer

Softmax layer

Description

A softmax layer applies a softmax function to the input.

Creation

Syntax

layer = softmaxLayer
layer = softmaxLayer('Name',Name)

Description

layer = softmaxLayer creates a softmax layer.

layer = softmaxLayer('Name',Name) creates a softmax layer and sets the optional Name property using a name-value pair. For example, softmaxLayer('Name','sm1') creates a softmax layer with the name 'sm1'. Enclose the property name in single quotes.

Properties

Name — Layer name

' ' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to ' ', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

NumInputs — Number of inputs

1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames — Input names

{'in'} (default)

Input names of the layer. This layer accepts a single input only.

Data Types: cell

NumOutputs — Number of outputs

1 (default)
Number of outputs of the layer. This layer has a single output only.

Data Types: double

**OutputNames — Output names**

`{'out'}` (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

**Examples**

**Create Softmax Layer**

Create a softmax layer with the name ‘sm1’.

```matlab
layer = softmaxLayer('Name','sm1')
```

```matlab
deploy(layer)
```

Include a softmax layer in a `Layer` array.

```matlab
layers = [...
 imageInputLayer([28 28 1])
 convolution2dLayer(5,20)
 reluLayer
 maxPooling2dLayer(2,'Stride',2)
 fullyConnectedLayer(10)
 softmaxLayer
 classificationLayer]
```

**More About**

**Softmax Layer**

A softmax layer applies a softmax function to the input.

For classification problems, a softmax layer and then a classification layer must follow the final fully connected layer.
The output unit activation function is the softmax function:

\[ y_r(x) = \frac{\exp(a_r(x))}{\sum_{j=1}^{k} \exp(a_j(x))}, \]

where \( 0 \leq y_r \leq 1 \) and \( \sum_{j=1}^{k} y_j = 1 \).

The softmax function is the output unit activation function after the last fully connected layer for multi-class classification problems:

\[ P(c_r|x, \theta) = \frac{P(x, \theta|c_r)P(c_r)}{\sum_{j=1}^{k} P(x, \theta|c_j)P(c_j)} = \frac{\exp(a_r(x, \theta))}{\sum_{j=1}^{k} \exp(a_j(x, \theta))}, \]

where \( 0 \leq P(c_r|x, \theta) \leq 1 \) and \( \sum_{j=1}^{k} P(c_j|x, \theta) = 1 \). Moreover, \( a_r = \ln(P(x, \theta|c_r)P(c_r)) \), \( P(x, \theta|c_r) \) is the conditional probability of the sample given class \( r \), and \( P(c_r) \) is the class prior probability.

The softmax function is also known as the normalized exponential and can be considered the multi-class generalization of the logistic sigmoid function [1].

**References**


**Extended Capabilities**

**C/C++ Code Generation**
Generate C and C++ code using MATLAB® Coder™.

**GPU Code Generation**
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

**See Also**
classificationLayer | convolution2dLayer | fullyConnectedLayer | trainNetwork

**Topics**
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

**Introduced in R2016a**
sortClasses

Package: mlearnlib.graphics.chart

Sort classes of confusion matrix chart

Syntax

sortClasses(cm,order)

Description

sortClasses(cm,order) sorts the classes of the confusion matrix chart cm in the order specified by order. You can sort the classes in their natural order, by the values along the diagonal of the confusion matrix, or in fixed order that you specify.

Examples

Sort Classes in a Fixed Order

Load a sample of predicted and true labels for a classification problem. trueLabels are the true labels for an image classification problem and predictedLabels are the predictions of a convolutional neural network. Create a confusion matrix chart.

load('Cifar10Labels.mat','trueLabels','predictedLabels');
figure
cm = confusionchart(trueLabels,predictedLabels);
Reorder the classes of the confusion matrix chart so that the classes are in a fixed order.

```
sortClasses(cm, ...
 ["cat" "dog" "horse" "deer" "bird" "frog", ...
 "airplane" "ship" "automobile" "truck"]
```

<table>
<thead>
<tr>
<th></th>
<th>airplane</th>
<th>automobile</th>
<th>bird</th>
<th>cat</th>
<th>deer</th>
<th>dog</th>
<th>frog</th>
<th>horse</th>
<th>ship</th>
<th>truck</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>airplane</strong></td>
<td>923</td>
<td>4</td>
<td>21</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>23</td>
<td>6</td>
</tr>
<tr>
<td><strong>automobile</strong></td>
<td>5</td>
<td>972</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td><strong>bird</strong></td>
<td>26</td>
<td>2</td>
<td>892</td>
<td>30</td>
<td>13</td>
<td>8</td>
<td>17</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td><strong>cat</strong></td>
<td>12</td>
<td>4</td>
<td>32</td>
<td>826</td>
<td>24</td>
<td>48</td>
<td>30</td>
<td>12</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td><strong>deer</strong></td>
<td>5</td>
<td>1</td>
<td>28</td>
<td>24</td>
<td>898</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td><strong>dog</strong></td>
<td>7</td>
<td>2</td>
<td>28</td>
<td>111</td>
<td>18</td>
<td>801</td>
<td>13</td>
<td>17</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td><strong>frog</strong></td>
<td>5</td>
<td>16</td>
<td>27</td>
<td>3</td>
<td>4</td>
<td>943</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>horse</strong></td>
<td>9</td>
<td>1</td>
<td>14</td>
<td>22</td>
<td>17</td>
<td>3</td>
<td>915</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td><strong>ship</strong></td>
<td>37</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>931</td>
<td>10</td>
</tr>
<tr>
<td><strong>truck</strong></td>
<td>20</td>
<td>39</td>
<td>3</td>
<td>3</td>
<td></td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>923</td>
<td></td>
</tr>
</tbody>
</table>

Predicted Class
Sort Classes by Precision or Recall

Load a sample of predicted and true labels for a classification problem. `trueLabels` are the true labels for an image classification problem and `predictedLabels` are the predictions of a convolutional neural network. Create a confusion matrix chart with column and row summaries.

```matlab
load('Cifar10Labels.mat','trueLabels','predictedLabels');
figure
cm = confusionchart(trueLabels,predictedLabels, ...'
'ColumnSummary','column-normalized', ...'
'RowSummary','row-normalized');
```
To sort the classes of the confusion matrix by class-wise recall (true positive rate), normalize the cell values across each row, that is, by the number of observations that have the same true class. Sort the classes by the corresponding diagonal cell values and reset the normalization of the cell values. The classes are now sorted such that the percentages in the blue cells in the row summaries to the right are decreasing.

```matlab
cm.Normalization = 'row-normalized';
sortClasses(cm,'descending-diagonal');
cm.Normalization = 'absolute';
```
To sort the classes by class-wise precision (positive predictive value), normalize the cell values across each column, that is, by the number of observations that have the same predicted class. Sort the classes by the corresponding diagonal cell values and reset the normalization of the cell values. The classes are now sorted such that the percentages in the blue cells in the column summaries at the bottom are decreasing.

```matlab
cm.Normalization = 'column-normalized';
sortClasses(cm,'descending-diagonal');
cm.Normalization = 'absolute';
```
### Input Arguments

**cm** — Confusion matrix chart
ConfusionMatrixChart object

Confusion matrix chart, specified as a `ConfusionMatrixChart` object. To create a confusion matrix chart, use `confusionchart`.

**order** — Order in which to sort classes
'auto' | 'ascending-diagonal' | 'descending-diagonal' | array

Order in which to sort the classes of the confusion matrix chart, specified as one of these values:

- 'auto' — Sorts the classes into their natural order as defined by the `sort` function. For example, if the class labels of the confusion matrix chart are a string vector, then sort alphabetically. If the class labels are an ordinal categorical vector, then use the order of the class labels.
- 'ascending-diagonal' — Sort the classes so that the values along the diagonal of the confusion matrix increase from top left to bottom right.
- 'descending-diagonal' — Sort the classes so that the values along the diagonal of the confusion matrix decrease from top left to bottom right.
- 'cluster' (Requires Statistics and Machine Learning Toolbox) — Sort the classes to cluster similar classes. You can customize clustering by using the `pdist`, `linkage`, and `optimalleaforder` functions. For details, see “Sort Classes to Cluster Similar Classes” (Statistics and Machine Learning Toolbox).

### Table

<table>
<thead>
<tr>
<th>True Class</th>
<th>Predicted Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>truck</td>
<td>923 9 1 39 2 20 3 3</td>
</tr>
<tr>
<td>ship</td>
<td>10 931 1 10 2 1 37 4 4</td>
</tr>
<tr>
<td>horse</td>
<td>4 2 915 1 3 22 17 9 14 13</td>
</tr>
<tr>
<td>automobile</td>
<td>15 5 1 972 5 2</td>
</tr>
<tr>
<td>frog</td>
<td>1 1 943 3 4 5 16 27</td>
</tr>
<tr>
<td>deer</td>
<td>1 2 14 1 14 898 13 5 28 24</td>
</tr>
<tr>
<td>dog</td>
<td>3 17 2 13 18 801 7 28 111</td>
</tr>
<tr>
<td>airplane</td>
<td>6 23 5 4 5 4 1 923 21 8</td>
</tr>
<tr>
<td>bird</td>
<td>3 4 5 2 17 13 8 26 892 30</td>
</tr>
<tr>
<td>cat</td>
<td>7 5 12 4 30 24 48 12 32 826</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>95.0%</th>
<th>94.9%</th>
<th>94.1%</th>
<th>93.0%</th>
<th>91.6%</th>
<th>91.4%</th>
<th>89.7%</th>
<th>88.0%</th>
<th>85.8%</th>
<th>79.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0%</td>
<td>5.2%</td>
<td>5.5%</td>
<td>6.1%</td>
<td>8.4%</td>
<td>8.6%</td>
<td>10.3%</td>
<td>12.0%</td>
<td>14.2%</td>
<td>21.0%</td>
</tr>
</tbody>
</table>

1-945
• Array — Sort the classes in a unique order specified by a categorical vector, numeric vector, string vector, character array, cell array of character vectors, or logical vector. The array must be a permutation of the `ClassLabels` property of the confusion matrix chart.

Example: `sortClasses(cm,'ascending-diagonal')`
Example: `sortClasses(cm,["owl","cat","toad"])

See Also

**Functions**
categorical | confusionchart

**Properties**
ConfusionMatrixChart Properties

**Topics**
“Deep Learning in MATLAB”

**Introduced in R2018b**
squeezenet

SqueezeNet convolutional neural network

Syntax

net = squeezenet
net = squeezenet('Weights','imagenet')
lgraph = squeezenet('Weights','none')

Description

SqueezeNet is a convolutional neural network that is 18 layers deep. You can load a pretrained version of the network trained on more than a million images from the ImageNet database [1]. The pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many animals. As a result, the network has learned rich feature representations for a wide range of images. This function returns a SqueezeNet v1.1 network, which has similar accuracy to SqueezeNet v1.0 but requires fewer floating-point operations per prediction [3]. The network has an image input size of 227-by-227. For more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the SqueezeNet network. For an example, see “Classify Image Using SqueezeNet” on page 1-963.

You can retrain a SqueezeNet network to perform a new task using transfer learning. For an example, see “Interactive Transfer Learning Using SqueezeNet” on page 1-948.

net = squeezenet returns a SqueezeNet network trained on the ImageNet data set.

net = squeezenet('Weights','imagenet') returns a SqueezeNet network trained on the ImageNet data set. This syntax is equivalent to net = squeezenet.

lgraph = squeezenet('Weights','none') returns the untrained SqueezeNet network architecture.

Examples

Load SqueezeNet Network

Load a pretrained SqueezeNet network.

net = squeezenet
net = squeezenet

DAGNetwork with properties:

Layers: [68x1 nnet.cnn.layer.Layer]
Connections: [75x2 table]
This function returns a `DAGNetwork` object.

SqueezeNet is included within Deep Learning Toolbox. To load other networks, use functions such as `googlenet` to get links to download pretrained networks from the Add-On Explorer.

**Interactive Transfer Learning Using SqueezeNet**

This example shows how to fine-tune a pretrained SqueezeNet network to classify a new collection of images. This process is called transfer learning and is usually much faster and easier than training a new network, because you can apply learned features to a new task using a smaller number of training images. To prepare a network for transfer learning interactively, use Deep Network Designer.

**Extract Data**

In the workspace, extract the MathWorks Merch data set. This is a small data set containing 75 images of MathWorks merchandise, belonging to five different classes (`cap`, `cube`, `playing cards`, `screwdriver`, and `torch`).

```matlab
unzip("MerchData.zip");
```

**Open SqueezeNet in Deep Network Designer**

Open Deep Network Designer with SqueezeNet.

```matlab
deepNetworkDesigner(squeezenet);
```

Deep Network Designer displays a zoomed-out view of the whole network in the Designer pane.
Explore the network plot. To zoom in with the mouse, use Ctrl+scroll wheel. To pan, use the arrow keys, or hold down the scroll wheel and drag the mouse. Select a layer to view its properties. Deselect all layers to view the network summary in the Properties pane.

**Import Data**

To load the data into Deep Network Designer, on the Data tab, click Import Data > Import Image Data. The Import Image Data dialog box opens.

In the Data source list, select Folder. Click Browse and select the extracted MerchData folder.

Divide the data into 70% training data and 30% validation data.

Specify augmentation operations to perform on the training images. For this example, apply a random reflection in the x-axis, a random rotation from the range [-90,90] degrees, and a random rescaling from the range [1,2]. Data augmentation helps prevent the network from overfitting and memorizing the exact details of the training images.

Click Import to import the data into Deep Network Designer.

**Visualize Data**

Using Deep Network Designer, you can visually inspect the distribution of the training and validation data in the Data pane. You can also view random observations and their labels as a simple check before training. You can see that, in this example, there are five classes in the data set.
Edit Network for Transfer Learning

The convolutional layers of the network extract image features that the last learnable layer and the final classification layer use to classify the input image. These two layers, ‘conv10’ and ‘ClassificationLayer_predictions’ in SqueezeNet, contain information on how to combine the features that the network extracts into class probabilities, a loss value, and predicted labels. To retrain a pretrained network to classify new images, replace these two layers with new layers adapted to the new data set.

In most networks, the last layer with learnable weights is a fully connected layer. In some networks, such as SqueezeNet, the last learnable layer is the final convolutional layer instead. In this case, replace the convolutional layer with a new convolutional layer with the number of filters equal to the number of classes.

In the Designer pane, drag a new convolution2dLayer onto the canvas. To match the original convolutional layer, set FilterSize to 1,1. Change NumFilters to the number of classes in the new data, in this example, 5.

Change the learning rates so that learning is faster in the new layer than in the transferred layers by setting WeightLearnRateFactor and BiasLearnRateFactor to 10. Delete the last 2-D convolutional layer and connect your new layer instead.
Replace the output layer. Scroll to the end of the Layer Library and drag a new classificationLayer onto the canvas. Delete the original output layer and connect your new layer instead.
Check Network

To make sure your edited network is ready for training, click Analyze, and ensure the Deep Learning Network Analyzer reports zero errors.
Train Network

Specify training options. Select the Training tab and click Training Options.

- Set the initial learn rate to a small value to slow down learning in the transferred layers.
- Specify the validation frequency so that the accuracy on the validation data is calculated once every epoch.
- Specify a small number of epochs. An epoch is a full training cycle on the entire training data set. For transfer learning, you do not need to train for as many epochs.
- Specify the mini-batch size, that is, how many images to use in each iteration. To ensure the whole data set is used during each epoch, set the mini-batch size to evenly divide the number of training samples.

For this example, set InitialLearnRate to 0.0001, ValidationFrequency to 5, and MaxEpochs to 8. As there are 55 observations, set MiniBatchSize to 11.
To train the network with the specified training options, click **Close** and then click **Train**.

Deep Network Designer allows you to visualize and monitor training progress. You can then edit the training options and retrain the network, if required.
Export Results and Generate MATLAB Code

To export the network architecture with the trained weights, on the **Training** tab, select **Export > Export Trained Network and Results**. Deep Network Designer exports the trained network as the variable `trainedNetwork_1` and the training info as the variable `trainInfoStruct_1`.

```matlab
trainInfoStruct_1 = struct with fields:
 TrainingLoss: [1×40 double]
 TrainingAccuracy: [1×40 double]
 ValidationLoss: [3.3420 NaN NaN NaN 2.1187 NaN NaN NaN NaN 1.4291 NaN NaN NaN NaN 0.8527 NaN NaN NaN NaN 0.5849 NaN NaN NaN NaN 0.4678 NaN NaN NaN NaN 0.3967 NaN NaN NaN NaN 0.3875 NaN NaN NaN NaN 0.3749]
 ValidationAccuracy: [20 NaN NaN NaN 30 NaN NaN NaN NaN 55.0000 NaN NaN NaN NaN 65 NaN NaN NaN NaN 85 NaN NaN NaN NaN 95 NaN NaN NaN NaN 95 NaN NaN NaN NaN 95]
 BaseLearnRate: [1×40 double]
 FinalValidationLoss: 0.3749
 FinalValidationAccuracy: 95
```

You can also generate MATLAB code, which recreates the network and the training options used. On the **Training** tab, select **Export > Generate Code for Training**. Examine the MATLAB code to learn how to programmatically prepare the data for training, create the network architecture, and train the network.

**Classify New Image**

Load a new image to classify using the trained network.
I = imread("MerchDataTest.jpg");

Deep Network Designer resizes the images during training to match the network input size. To view the network input size, go to the **Designer** pane and select the **imageInputLayer** (first layer). This network has an input size of 227-by-227.

Resize the test image to match the network input size.

I = imresize(I, [227 227]);

Classify the test image using the trained network.

[YPred,probs] = classify(trainedNetwork_1,I);
imshow(I)
label = YPred;
title(string(label) +", " + num2str(100*max(probs),3) + "/%" );
Programmatic Transfer Learning Using SqueezeNet

This example shows how to fine-tune a pretrained SqueezeNet convolutional neural network to perform classification on a new collection of images.

SqueezeNet has been trained on over a million images and can classify images into 1000 object categories (such as keyboard, coffee mug, pencil, and many animals). The network has learned rich feature representations for a wide range of images. The network takes an image as input and outputs a label for the object in the image together with the probabilities for each of the object categories.

Transfer learning is commonly used in deep learning applications. You can take a pretrained network and use it as a starting point to learn a new task. Fine-tuning a network with transfer learning is usually much faster and easier than training a network with randomly initialized weights from scratch. You can quickly transfer learned features to a new task using a smaller number of training images.
Load Data

Unzip and load the new images as an image datastore. `imageDatastore` automatically labels the images based on folder names and stores the data as an `ImageDatastore` object. An image datastore enables you to store large image data, including data that does not fit in memory, and efficiently read batches of images during training of a convolutional neural network.

```matlab
unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
 'IncludeSubfolders',true, ...
 'LabelSource','foldernames');
```

Divide the data into training and validation data sets. Use 70% of the images for training and 30% for validation. `splitEachLabel` splits the images datastore into two new datastores.

```matlab
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');
```

This very small data set now contains 55 training images and 20 validation images. Display some sample images.

```matlab
numTrainImages = numel(imdsTrain.Labels);
idx = randperm(numTrainImages,16);
I = imtile(imds, 'Frames', idx);
figure
imshow(I)
```
Load Pretrained Network

Load the pretrained SqueezeNet neural network.

```matlab
net = squeezenet;
```

Use `analyzeNetwork` to display an interactive visualization of the network architecture and detailed information about the network layers.

```matlab
analyzeNetwork(net)
```
The first layer, the image input layer, requires input images of size 227-by-227-by-3, where 3 is the number of color channels.

```
inputSize = net.Layers(1).InputSize
inputSize = 1x3
 227 227 3
```

**Replace Final Layers**

The convolutional layers of the network extract image features that the last learnable layer and the final classification layer use to classify the input image. These two layers, 'conv10' and 'ClassificationLayer_predictions' in SqueezeNet, contain information on how to combine the features that the network extracts into class probabilities, a loss value, and predicted labels. To retrain a pretrained network to classify new images, replace these two layers with new layers adapted to the new data set.

Extract the layer graph from the trained network.

```
lgraph = layerGraph(net);
```

Find the names of the two layers to replace. You can do this manually or you can use the supporting function `findLayersToReplace` to find these layers automatically.

```
[learnableLayer, classLayer] = findLayersToReplace(lgraph);
```

```
an = 1x2 Layer array with layers:
```
In most networks, the last layer with learnable weights is a fully connected layer. In some networks, such as SqueezeNet, the last learnable layer is a 1-by-1 convolutional layer instead. In this case, replace the convolutional layer with a new convolutional layer with the number of filters equal to the number of classes. To learn faster in the new layers than in the transferred layers, increase the `WeightLearnRateFactor` and `BiasLearnRateFactor` values of the convolutional layer.

```matlab
numClasses = numel(categories(imdsTrain.Labels))

numClasses = 5

newConvLayer = convolution2dLayer([1, 1], numClasses, 'WeightLearnRateFactor', 10, 'BiasLearnRateFactor', 10, 'Name', 'new_conv');
lgraph = replaceLayer(lgraph, 'conv10', newConvLayer);
```

The classification layer specifies the output classes of the network. Replace the classification layer with a new one without class labels. `trainNetwork` automatically sets the output classes of the layer at training time.

```matlab
newClassificationLayer = classificationLayer('Name', 'new_classoutput');
lgraph = replaceLayer(lgraph, 'ClassificationLayer_predictions', newClassificationLayer);
```

**Train Network**

The network requires input images of size 227-by-227-by-3, but the images in the image datastores have different sizes. Use an augmented image datastore to automatically resize the training images. Specify additional augmentation operations to perform on the training images: randomly flip the training images along the vertical axis, and randomly translate them up to 30 pixels horizontally and vertically. Data augmentation helps prevent the network from overfitting and memorizing the exact details of the training images.

```matlab
pixelRange = [-30 30];
imageAugmenter = imageDataAugmenter(...
 'RandXReflection', true, ...
 'RandXTranslation', pixelRange, ...
 'RandYTranslation', pixelRange);

augimdsTrain = augmentedImageDatastore(inputSize(1:2), imdsTrain, ...
 'DataAugmentation', imageAugmenter);
```

To automatically resize the validation images without performing further data augmentation, use an augmented image datastore without specifying any additional preprocessing operations.

```matlab
augimdsValidation = augmentedImageDatastore(inputSize(1:2), imdsValidation);
```

Specify the training options. For transfer learning, keep the features from the early layers of the pretrained network (the transferred layer weights). To slow down learning in the transferred layers, set the initial learning rate to a small value. In the previous step, you increased the learning rate factors for the convolutional layer to speed up learning in the new final layers. This combination of learning rate settings results in fast learning only in the new layers and slower learning in the other layers. When performing transfer learning, you do not need to train for as many epochs. An epoch is a full training cycle on the entire training data set. Specify the mini-batch size to be 11 so that in each epoch you consider all of the data. The software validates the network every `ValidationFrequency` iterations during training.

```matlab
options = trainingOptions('sgdm', ...
 'MiniBatchSize', 11, ...
Train the network that consists of the transferred and new layers. By default, trainNetwork uses a GPU if one is available (requires Parallel Computing Toolbox™ and a CUDA® enabled GPU with compute capability 3.0 or higher). Otherwise, it uses a CPU. You can also specify the execution environment by using the 'ExecutionEnvironment' name-value pair argument of trainingOptions.

```matlab
netTransfer = trainNetwork(augimdsTrain,lgraph,options);
```

Classify Validation Images

Classify the validation images using the fine-tuned network.

```matlab
[YPred,scores] = classify(netTransfer,augimdsValidation);
```

Display four sample validation images with their predicted labels.

```matlab
idx = randperm(numel(imdsValidation.Files),4);
figure
for i = 1:4
    subplot(2,2,i)
    I = readimage(imdsValidation,idx(i));
    imshow(I)
    label = YPred(idx(i));
    title(string(label));
end
```
Calculate the classification accuracy on the validation set. Accuracy is the fraction of labels that the network predicts correctly.

\[
\text{YValidation} = \text{imdsValidation.Labels};
\text{accuracy} = \text{mean}((\text{YPred} == \text{YValidation}))
\]

\[
\text{accuracy} = 1
\]

For tips on improving classification accuracy, see “Deep Learning Tips and Tricks”.

Classify Image Using SqueezeNet

Read, resize, and classify an image using SqueezeNet.

First, load a pretrained SqueezeNet model.

\[
\text{net} = \text{squeezenet};
\]

Read the image using `imread`.

\[
\text{I} = \text{imread('peppers.png')};
\text{figure}
\text{imshow(I)}
\]
The pretrained model requires the image size to be the same as the input size of the network. Determine the input size of the network using the `InputSize` property of the first layer of the network.

```
sz = net.Layers(1).InputSize
sz = 1×3
    227   227     3
```

Resize the image to the input size of the network.

```
I = imresize(I,sz(1:2));
figure
imshow(I)
```
Classify the image using `classify`.

```matlab
label = classify(net,I)
```

```matlab
label = categorical
   bell pepper
```

Show the image and classification result together.

```matlab
figure
imshow(I)
title(label)
```
Feature Extraction Using SqueezeNet

This example shows how to extract learned image features from a pretrained convolutional neural network, and use those features to train an image classifier. Feature extraction is the easiest and fastest way to use the representational power of pretrained deep networks. For example, you can train a support vector machine (SVM) using fitcecoc (Statistics and Machine Learning Toolbox™) on the extracted features. Because feature extraction only requires a single pass through the data, it is a good starting point if you do not have a GPU to accelerate network training with.

Load Data

Unzip and load the sample images as an image datastore. imageDatastore automatically labels the images based on folder names and stores the data as an ImageDatastore object. An image datastore lets you store large image data, including data that does not fit in memory. Split the data into 70% training and 30% test data.

```matlab
unzip('MerchData.zip');

imds = imageDatastore('MerchData', ...
                      'IncludeSubfolders',true, ...
                      'LabelSource','foldernames');

[imdsTrain,imdsTest] = splitEachLabel(imds,0.7,'randomized');
```

This very small data set now has 55 training images and 20 validation images. Display some sample images.

```matlab
numImagesTrain = numel(imdsTrain.Labels);
idx = randperm(numImagesTrain,16);
I = imtile(imds,'Frames',idx);
```
Load Pretrained Network

Load a pretrained SqueezeNet network. SqueezeNet is trained on more than a million images and can classify images into 1000 object categories, for example, keyboard, mouse, pencil, and many animals. As a result, the model has learned rich feature representations for a wide range of images.

```matlab
net = squeezenet;

Analyze the network architecture.

analyzeNetwork(net)
```
The first layer, the image input layer, requires input images of size 227-by-227-by-3, where 3 is the number of color channels.

\[
\text{inputSize} = \text{net.Layers(1).InputSize}
\]

\[
\text{inputSize} = 1\times3
\]

\[
\begin{array}{ccc}
227 & 227 & 3
\end{array}
\]

Extract Image Features

The network constructs a hierarchical representation of input images. Deeper layers contain higher level features, constructed using the lower level features of earlier layers. To get the feature representations of the training and test images, use activations on the global average pooling layer 'pool10'. To get a lower level representation of the images, use an earlier layer in the network.

The network requires input images of size 227-by-227-by-3, but the images in the image datastores have different sizes. To automatically resize the training and test images before they are input to the network, create augmented image datastores, specify the desired image size, and use these datastores as input arguments to activations.

\[
\text{augimdsTrain} = \text{augmentedImageDatastore(inputSize(1:2),imdsTrain)};
\]

\[
\text{augimdsTest} = \text{augmentedImageDatastore(inputSize(1:2),imdsTest)};
\]

\[
\text{layer} = \text{'pool10'};
\]

\[
\text{featuresTrain} = \text{activations}(\text{net,augimdsTrain,layer,'OutputAs','rows'});
\]

\[
\text{featuresTest} = \text{activations}(\text{net,augimdsTest,layer,'OutputAs','rows'});
\]

Extract the class labels from the training and test data.
YTrain = imdsTrain.Labels;
YTest = imdsTest.Labels;

Fit Image Classifier

Use the features extracted from the training images as predictor variables and fit a multiclass support vector machine (SVM) using `fitcecoc` (Statistics and Machine Learning Toolbox).

mdl = fitcecoc(featuresTrain,YTrain);

Classify Test Images

Classify the test images using the trained SVM model and the features extracted from the test images.

YPred = predict(mdl,featuresTest);

Display four sample test images with their predicted labels.

idx = [1 5 10 15];
figure
for i = 1:numel(idx)
 subplot(2,2,i)
 I = readimage(imdsTest,idx(i));
 label = YPred(idx(i));

 imshow(I)
 title(label)
end
Calculate the classification accuracy on the test set. Accuracy is the fraction of labels that the network predicts correctly.

\[
\text{accuracy} = \frac{\text{mean}(\text{YPred} == \text{YTest})}{\text{accuracy} = 1}
\]

This SVM has high accuracy. If the accuracy is not high enough using feature extraction, then try transfer learning instead.

Output Arguments

- **net** — Pretrained SqueezeNet convolutional neural network

 DAGNetwork object

 Pretrained SqueezeNet convolutional neural network, returned as a DAGNetwork object.

- **lgraph** — Untrained SqueezeNet convolutional neural network architecture

 LayerGraph object

 Untrained SqueezeNet convolutional neural network architecture, returned as a LayerGraph object.

References

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

For code generation, load the network by passing the squeezenet function to coder.loadDeepLearningNetwork. For example:

\[
\text{net} = \text{coder.loadDeepLearningNetwork}('\text{squeezenet}')
\]

For more information, see "Load Pretrained Networks for Code Generation" (MATLAB Coder).

The syntax squeezenet('Weights','none') is not supported for code generation.

GPU Code Generation

Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

- For code generation, you can load the network by using the syntax net = squeezenet or by passing the squeezenet function to coder.loadDeepLearningNetwork. For example:

\[
\text{net} = \text{coder.loadDeepLearningNetwork}('\text{squeezenet}')
\]
For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).

- The syntax \texttt{squeezenet('Weights','none')} is not supported for GPU code generation.

\textbf{See Also}
\texttt{DAGNetwork} | \textbf{Deep Network Designer} | \texttt{densenet201} | \texttt{googlenet} | \texttt{inceptionresnetv2} | \texttt{inceptionv3} | \texttt{layerGraph} | \texttt{plot} | \texttt{resnet101} | \texttt{resnet18} | \texttt{resnet50} | \texttt{trainNetwork} | \texttt{vgg16} | \texttt{vgg19}

\textbf{Topics}
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

\textbf{Introduced in R2018a}
stripdims

Remove dlarray labels

Syntax

\[y = \text{stripdims}(dlX) \]

Description

\(y = \text{stripdims}(dlX) \) returns the dlarray \(dlX \) without any labels.

Examples

Remove Labels from dlarray

Create a labeled dlarray.

\[dlX = \text{dlarray}(\text{randn}(3,2,1,2),'SSTU') \]

\[
\begin{array}{c}
\text{dlX} = \\
3(S) \times 2(S) \times 1(T) \times 2(U) \text{ dlarray} \\
\end{array}
\]

\[
(:,:,1,1) = \\
0.5377 \hspace{1em} 0.8622 \\
1.8339 \hspace{1em} 0.3188 \\
-2.2588 \hspace{1em} -1.3077 \\
\end{array}
\]

\[
(:,:,1,2) = \\
-0.4336 \hspace{1em} 2.7694 \\
0.3426 \hspace{1em} -1.3499 \\
3.5784 \hspace{1em} 3.0349 \\
\end{array}
\]

Create an array that is the same as \(dlX \) but has no labels.

\[y = \text{stripdims}(dlX) \]

\[
y = \\
3x2x1x2 \text{ dlarray} \\
\]

\[
(:,:,1,1) = \\
0.5377 \hspace{1em} 0.8622 \\
1.8339 \hspace{1em} 0.3188 \\
-2.2588 \hspace{1em} -1.3077 \\
\]
Input Arguments

dlX — Input dlarray
dlarray object

Input dlarray, specified as a dlarray object.
Example: dlX = dlarray(randn(3,4),'ST')

Output Arguments

y — Unlabeled dlarray
unlabeled dlarray object

Unlabeled dlarray, returned as an unlabeled dlarray object that is the same as the input array dlX, but without any labels. If dlX is unlabeled, then y = dlX.

Tips

- Use stripdims to ensure that a dlarray behaves like a numeric array of the same size, without any special behavior due to dimension labels.
- ndims(dlX) can decrease after a stripdims call because the function removes trailing singleton labels.

```
dlX = dlarray(ones(3,2), 'SCB');
ndims(dlX)
ans =
   3

dlX = stripdims(dlX);
ndims(dlX)
ans =
   2
```

See Also
dims | dlarray | finddim

Introduced in R2019b
tanhLayer

Hyperbolic tangent (tanh) layer

Description

A hyperbolic tangent (tanh) activation layer applies the tanh function on the layer inputs.

Creation

Syntax

layer = tanhLayer
layer = tanhLayer('Name',Name)

Description

layer = tanhLayer creates a hyperbolic tangent layer.

layer = tanhLayer('Name',Name) additionally specifies the optional Name property. For example, tanhLayer('Name','tanh1') creates a tanh layer with the name 'tanh1'.

Properties

Name — Layer name

' ' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to ' ', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

NumInputs — Number of inputs

1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames — Input names

{'in'} (default)

Input names of the layer. This layer accepts a single input only.

Data Types: cell

NumOutputs — Number of outputs

1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Create Hyperbolic Tangent Layer

Create a hyperbolic tangent (tanh) layer with the name 'tanh1'.

layer = tanhLayer('Name', 'tanh1')

layer =
 TanhLayer with properties:
 Name: 'tanh1'

Show all properties

Include a tanh layer in a Layer array.

layers = [imageInputLayer([28 28 1])
 convolution2dLayer(3,16)
 batchNormalizationLayer
 tanhLayer
 maxPooling2dLayer(2,'Stride',2)
 convolution2dLayer(3,32)
 batchNormalizationLayer
 tanhLayer
 fullyConnectedLayer(10)
 softmaxLayer
 classificationLayer]

layers =
11x1 Layer array with layers:

1 '' Image Input 28x28x1 images with 'zerocenter' normalization
2 '' Convolution 16 3x3 convolutions with stride [1 1] and padding [0 0 0 0]
3 '' Batch Normalization Batch normalization
4 '' Tanh Hyperbolic tangent
5 '' Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]
6 '' Convolution 32 3x3 convolutions with stride [1 1] and padding [0 0 0 0]
7 '' Batch Normalization Batch normalization
8 '' Tanh Hyperbolic tangent
9 '' Fully Connected 10 fully connected layer
10 '' Softmax softmax
11 '' Classification Output crossentropyex
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
batchNormalizationLayer | clippedReluLayer | leakyReluLayer | reluLayer | trainNetwork

Topics
“Create Simple Deep Learning Network for Classification”
“Train Convolutional Neural Network for Regression”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2019a
trainingOptions

Options for training deep learning neural network

Syntax

options = trainingOptions(solverName)
options = trainingOptions(solverName,Name,Value)

Description

options = trainingOptions(solverName) returns training options for the optimizer specified
by solverName. To train a network, use the training options as an input argument to the
trainNetwork function.

options = trainingOptions(solverName,Name,Value) returns training options with
additional options specified by one or more name-value pair arguments.

Examples

Specify Training Options

Create a set of options for training a network using stochastic gradient descent with momentum.
Reduce the learning rate by a factor of 0.2 every 5 epochs. Set the maximum number of epochs for
training to 20, and use a mini-batch with 64 observations at each iteration. Turn on the training
progress plot.

options = trainingOptions('sgdm', ...
 'LearnRateSchedule','piecewise', ...
 'LearnRateDropFactor',0.2, ...
 'LearnRateDropPeriod',5, ...
 'MaxEpochs',20, ...
 'MiniBatchSize',64, ...
 'Plots','training-progress')

options =
TrainingOptionsSGDM with properties:

 Momentum: 0.9000
 InitialLearnRate: 0.0100
 LearnRateSchedule: 'piecewise'
 LearnRateDropFactor: 0.2000
 LearnRateDropPeriod: 5
 L2Regularization: 1.0000e-04
 GradientThresholdMethod: 'l2norm'
 GradientThreshold: Inf
 MaxEpochs: 20
 MiniBatchSize: 64
 Verbose: 1
 VerboseFrequency: 50
 ValidationData: []
Monitor Deep Learning Training Progress

When you train networks for deep learning, it is often useful to monitor the training progress. By plotting various metrics during training, you can learn how the training is progressing. For example, you can determine if and how quickly the network accuracy is improving, and whether the network is starting to overfit the training data.

When you specify 'training-progress' as the 'Plots' value in trainingOptions and start network training, trainNetwork creates a figure and displays training metrics at every iteration. Each iteration is an estimation of the gradient and an update of the network parameters. If you specify validation data in trainingOptions, then the figure shows validation metrics each time trainNetwork validates the network. The figure plots the following:

- **Training accuracy** — Classification accuracy on each individual mini-batch.
- **Smoothed training accuracy** — Smoothed training accuracy, obtained by applying a smoothing algorithm to the training accuracy. It is less noisy than the unsmoothed accuracy, making it easier to spot trends.
- **Validation accuracy** — Classification accuracy on the entire validation set (specified using trainingOptions).
- **Training loss, smoothed training loss, and validation loss** — The loss on each mini-batch, its smoothed version, and the loss on the validation set, respectively. If the final layer of your network is a classificationLayer, then the loss function is the cross entropy loss. For more information about loss functions for classification and regression problems, see “Output Layers”.

For regression networks, the figure plots the root mean square error (RMSE) instead of the accuracy.

The figure marks each training **Epoch** using a shaded background. An epoch is a full pass through the entire data set.

During training, you can stop training and return the current state of the network by clicking the stop button in the top-right corner. For example, you might want to stop training when the accuracy of the network reaches a plateau and it is clear that the accuracy is no longer improving. After you click the stop button, it can take a while for the training to complete. Once training is complete, trainNetwork returns the trained network.

When training finishes, view the **Results** showing the final validation accuracy and the reason that training finished. The final validation metrics are labeled **Final** in the plots. If your network contains
batch normalization layers, then the final validation metrics are often different from the validation metrics evaluated during training. This is because batch normalization layers in the final network perform different operations than during training.

On the right, view information about the training time and settings. To learn more about training options, see “Set Up Parameters and Train Convolutional Neural Network”.

Plot Training Progress During Training

Train a network and plot the training progress during training.

Load the training data, which contains 5000 images of digits. Set aside 1000 of the images for network validation.

```matlab
[XTrain,YTrain] = digitTrain4DArrayData;
idx = randperm(size(XTrain,4),1000);
XValidation = XTrain(:, :, :, idx);
XTrain(:, :, :, idx) = [];
YValidation = YTrain(idx);
YTrain(idx) = [];
```

Construct a network to classify the digit image data.

```matlab
layers = [
    imageInputLayer([28 28 1])
    convolution2dLayer(3,8,'Padding','same')
];
```
Specify options for network training. To validate the network at regular intervals during training, specify validation data. Choose the 'ValidationFrequency' value so that the network is validated about once per epoch. To plot training progress during training, specify 'training-progress' as the 'Plots' value.

options = trainingOptions('sgdm', ...
 'MaxEpochs',8, ...
 'ValidationData',{XValidation,YValidation}, ...
 'ValidationFrequency',30, ...
 'Verbose',false, ...
 'Plots','training-progress');

Train the network.

net = trainNetwork(XTrain,YTrain,layers,options);
Input Arguments

solverName — Solver for training network

'sgdm' | 'rmsprop' | 'adam'

Solver for training network, specified as one of the following:

- 'sgdm' — Use the stochastic gradient descent with momentum (SGDM) optimizer. You can specify the momentum value using the 'Momentum' name-value pair argument.
- 'rmsprop' — Use the RMSProp optimizer. You can specify the decay rate of the squared gradient moving average using the 'SquaredGradientDecayFactor' name-value pair argument.
- 'adam' — Use the Adam optimizer. You can specify the decay rates of the gradient and squared gradient moving averages using the 'GradientDecayFactor' and 'SquaredGradientDecayFactor' name-value pair arguments, respectively.

For more information about the different solvers, see “Stochastic Gradient Descent” on page 1-992.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Example:

'InitialLearnRate',0.03,'L2Regularization',0.0005,'LearnRateSchedule','piecewise' specifies the initial learning rate as 0.03 and the L2 regularization factor as 0.0005, and instructs the software to drop the learning rate every given number of epochs by multiplying with a certain factor.
Plots and Display

Plots — Plots to display during network training

'none' (default) | 'training-progress'

Plots to display during network training, specified as the comma-separated pair consisting of 'Plots' and one of the following:

- 'none' — Do not display plots during training.
- 'training-progress' — Plot training progress. The plot shows mini-batch loss and accuracy, validation loss and accuracy, and additional information on the training progress. The plot has a stop button in the top-right corner. Click the button to stop training and return the current state of the network. For more information on the training progress plot, see “Monitor Deep Learning Training Progress” on page 1-978.

Example: 'Plots','training-progress'

Verbose — Indicator to display training progress information

1 (true) (default) | 0 (false)

Indicator to display training progress information in the command window, specified as the comma-separated pair consisting of 'Verbose' and either 1 (true) or 0 (false).

The verbose output displays the following information:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoch</td>
<td>Epoch number. An epoch corresponds to a full pass of the data.</td>
</tr>
<tr>
<td>Iteration</td>
<td>Iteration number. An iteration corresponds to a mini-batch.</td>
</tr>
<tr>
<td>Time Elapsed</td>
<td>Time elapsed in hours, minutes, and seconds.</td>
</tr>
<tr>
<td>Mini-batch Accuracy</td>
<td>Classification accuracy on the mini-batch.</td>
</tr>
<tr>
<td>Validation Accuracy</td>
<td>Classification accuracy on the validation data. If you do not specify validation data, then the function does not display this field.</td>
</tr>
<tr>
<td>Mini-batch Loss</td>
<td>Loss on the mini-batch. If the output layer is a ClassificationOutputLayer object, then the loss is the cross entropy loss for multi-class classification problems with mutually exclusive classes.</td>
</tr>
<tr>
<td>Validation Loss</td>
<td>Loss on the validation data. If the output layer is a ClassificationOutputLayer object, then the loss is the cross entropy loss for multi-class classification problems with mutually exclusive classes. If you do not specify validation data, then the function does not display this field.</td>
</tr>
<tr>
<td>Base Learning Rate</td>
<td>Base learning rate. The software multiplies the learn rate factors of the layers by this value.</td>
</tr>
</tbody>
</table>
Regression Networks

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoch</td>
<td>Epoch number. An epoch corresponds to a full pass of the data.</td>
</tr>
<tr>
<td>Iteration</td>
<td>Iteration number. An iteration corresponds to a mini-batch.</td>
</tr>
<tr>
<td>Time Elapsed</td>
<td>Time elapsed in hours, minutes, and seconds.</td>
</tr>
<tr>
<td>Mini-batch RMSE</td>
<td>Root-mean-squared-error (RMSE) on the mini-batch.</td>
</tr>
<tr>
<td>Validation RMSE</td>
<td>RMSE on the validation data. If you do not specify validation data, then the software does not display this field.</td>
</tr>
<tr>
<td>Mini-batch Loss</td>
<td>Loss on the mini-batch. If the output layer is a RegressionOutputLayer object, then the loss is the half-mean-squared-error.</td>
</tr>
<tr>
<td>Validation Loss</td>
<td>Loss on the validation data. If the output layer is a RegressionOutputLayer object, then the loss is the half-mean-squared-error. If you do not specify validation data, then the software does not display this field.</td>
</tr>
<tr>
<td>Base Learning Rate</td>
<td>Base learning rate. The software multiplies the learn rate factors of the layers by this value.</td>
</tr>
</tbody>
</table>

To specify validation data, use the 'ValidationData' name-value pair.

Example: 'Verbose',false

VerboseFrequency — Frequency of verbose printing

50 (default) | positive integer

Frequency of verbose printing, which is the number of iterations between printing to the command window, specified as the comma-separated pair consisting of 'VerboseFrequency' and a positive integer. This option only has an effect when the 'Verbose' value equals true.

If you validate the network during training, then trainNetwork also prints to the command window every time validation occurs.

Example: 'VerboseFrequency',100

Mini-Batch Options

MaxEpochs — Maximum number of epochs

30 (default) | positive integer

Maximum number of epochs to use for training, specified as the comma-separated pair consisting of 'MaxEpochs' and a positive integer.

An iteration is one step taken in the gradient descent algorithm towards minimizing the loss function using a mini-batch. An epoch is the full pass of the training algorithm over the entire training set.

Example: 'MaxEpochs',20
MiniBatchSize — Size of mini-batch

128 (default) | positive integer

Size of the mini-batch to use for each training iteration, specified as the comma-separated pair consisting of 'MiniBatchSize' and a positive integer. A mini-batch is a subset of the training set that is used to evaluate the gradient of the loss function and update the weights. See "Stochastic Gradient Descent" on page 1-992.

Example: 'MiniBatchSize',256

Shuffle — Option for data shuffling

'once' (default) | 'never' | 'every-epoch'

Option for data shuffling, specified as the comma-separated pair consisting of 'Shuffle' and one of the following:

- 'once' — Shuffle the training and validation data once before training.
- 'never' — Do not shuffle the data.
- 'every-epoch' — Shuffle the training data before each training epoch, and shuffle the validation data before each network validation. If the mini-batch size does not evenly divide the number of training samples, then trainNetwork discards the training data that does not fit into the final complete mini-batch of each epoch. To avoid discarding the same data every epoch, set the 'Shuffle' value to 'every-epoch'.

Example: 'Shuffle','every-epoch'

Validation

ValidationData — Data to use for validation during training

image datastore | datastore | table | cell array

Data to use for validation during training, specified as an image datastore, a datastore, a table, or a cell array. The format of the validation data depends on the type of task and correspond to valid inputs to the trainNetwork function.

Specify validation data as one of the following:

<table>
<thead>
<tr>
<th>Input</th>
<th>trainNetwork Argument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image datastore</td>
<td>imds</td>
</tr>
<tr>
<td>Datastore</td>
<td>ds</td>
</tr>
<tr>
<td>Table</td>
<td>tbl</td>
</tr>
<tr>
<td>Cell array {X,Y}</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>Cell array {sequences,Y}</td>
<td>sequences</td>
</tr>
<tr>
<td></td>
<td>Y</td>
</tr>
</tbody>
</table>

During training, trainNetwork calculates the validation accuracy and validation loss on the validation data. To specify the validation frequency, use the 'ValidationFrequency' name-value pair argument. You can also use the validation data to stop training automatically when the validation loss stops decreasing. To turn on automatic validation stopping, use the 'ValidationPatience' name-value pair argument.
If your network has layers that behave differently during prediction than during training (for example, dropout layers), then the validation accuracy can be higher than the training (mini-batch) accuracy.

The validation data is shuffled according to the 'Shuffle' value. If the 'Shuffle' value equals 'every-epoch', then the validation data is shuffled before each network validation.

ValidationFrequency — Frequency of network validation

50 (default) | positive integer

Frequency of network validation in number of iterations, specified as the comma-separated pair consisting of 'ValidationFrequency' and a positive integer.

The 'ValidationFrequency' value is the number of iterations between evaluations of validation metrics. To specify validation data, use the 'ValidationData' name-value pair argument.

Example: 'ValidationFrequency', 20

ValidationPatience — Patience of validation stopping

Inf (default) | positive integer

Patience of validation stopping of network training, specified as the comma-separated pair consisting of 'ValidationPatience' and a positive integer or Inf.

The 'ValidationPatience' value is the number of times that the loss on the validation set can be larger than or equal to the previously smallest loss before network training stops. To turn on automatic validation stopping, specify a positive integer as the 'ValidationPatience' value. If you use the default value of Inf, then the training stops after the maximum number of epochs. To specify validation data, use the 'ValidationData' name-value pair argument.

Example: 'ValidationPatience', 5

Solver Options

InitialLearnRate — Initial learning rate

0.001 | 0.01 | positive scalar

Initial learning rate used for training, specified as the comma-separated pair consisting of 'InitialLearnRate' and a positive scalar. The default value is 0.01 for the 'sgdm' solver and 0.001 for the 'rmsprop' and 'adam' solvers. If the learning rate is too low, then training takes a long time. If the learning rate is too high, then training might reach a suboptimal result or diverge.

Example: 'InitialLearnRate', 0.03

Data Types: single | double

LearnRateSchedule — Option for dropping learning rate during training

'none' (default) | 'piecewise'

Option for dropping the learning rate during training, specified as the comma-separated pair consisting of 'LearnRateSchedule' and one of the following:

- 'none' — The learning rate remains constant throughout training.
- 'piecewise' — The software updates the learning rate every certain number of epochs by multiplying with a certain factor. Use the LearnRateDropFactor name-value pair argument to specify the value of this factor. Use the LearnRateDropPeriod name-value pair argument to specify the number of epochs between multiplications.
Example: 'LearnRateSchedule','piecewise'

LearnRateDropPeriod — Number of epochs for dropping the learning rate

10 (default) | positive integer

Number of epochs for dropping the learning rate, specified as the comma-separated pair consisting of 'LearnRateDropPeriod' and a positive integer. This option is valid only when the value of LearnRateSchedule is 'piecewise'.

The software multiplies the global learning rate with the drop factor every time the specified number of epochs passes. Specify the drop factor using the LearnRateDropFactor name-value pair argument.

Example: 'LearnRateDropPeriod',3

LearnRateDropFactor — Factor for dropping the learning rate

0.1 (default) | scalar from 0 to 1

Factor for dropping the learning rate, specified as the comma-separated pair consisting of 'LearnRateDropFactor' and a scalar from 0 to 1. This option is valid only when the value of LearnRateSchedule is 'piecewise'.

LearnRateDropFactor is a multiplicative factor to apply to the learning rate every time a certain number of epochs passes. Specify the number of epochs using the LearnRateDropPeriod name-value pair argument.

Example: 'LearnRateDropFactor',0.1

Data Types: single | double

L2Regularization — Factor for L2 regularization

0.0001 (default) | nonnegative scalar

Factor for L2 regularization (weight decay), specified as the comma-separated pair consisting of 'L2Regularization' and a nonnegative scalar. For more information, see “L2 Regularization” on page 1-995.

You can specify a multiplier for the L2 regularization for network layers with learnable parameters. For more information, see “Set Up Parameters in Convolutional and Fully Connected Layers”.

Example: 'L2Regularization',0.0005

Data Types: single | double

Momentum — Contribution of previous step

0.9 (default) | scalar from 0 to 1

Contribution of the parameter update step of the previous iteration to the current iteration of stochastic gradient descent with momentum, specified as the comma-separated pair consisting of 'Momentum' and a scalar from 0 to 1. A value of 0 means no contribution from the previous step, whereas a value of 1 means maximal contribution from the previous step.

To specify the 'Momentum' value, you must set solverName to be 'sgdm'. The default value works well for most problems. For more information about the different solvers, see “Stochastic Gradient Descent” on page 1-992.

Example: 'Momentum',0.95
Data Types: single | double

GradientDecayFactor — Decay rate of gradient moving average

0.9 (default) | nonnegative scalar less than 1

Decay rate of gradient moving average for the Adam solver, specified as the comma-separated pair consisting of 'GradientDecayFactor' and a nonnegative scalar less than 1. The gradient decay rate is denoted by β_1 in [4].

To specify the 'GradientDecayFactor' value, you must set solverName to be 'adam'. The default value works well for most problems. For more information about the different solvers, see “Stochastic Gradient Descent” on page 1-992.

Example: 'GradientDecayFactor', 0.95

Data Types: single | double

SquaredGradientDecayFactor — Decay rate of squared gradient moving average

0.9 | 0.999 | nonnegative scalar less than 1

Decay rate of squared gradient moving average for the Adam and RMSProp solvers, specified as the comma-separated pair consisting of 'SquaredGradientDecayFactor' and a nonnegative scalar less than 1. The squared gradient decay rate is denoted by β_2 in [4].

To specify the 'SquaredGradientDecayFactor' value, you must set solverName to be 'adam' or 'rmsprop'. Typical values of the decay rate are 0.9, 0.99, and 0.999, corresponding to averaging lengths of 10, 100, and 1000 parameter updates, respectively. The default value is 0.999 for the Adam solver. The default value is 0.9 for the RMSProp solver.

For more information about the different solvers, see “Stochastic Gradient Descent” on page 1-992.

Example: 'SquaredGradientDecayFactor', 0.99

Data Types: single | double

Epsilon — Denominator offset

10^-8 (default) | positive scalar

Denominator offset for Adam and RMSProp solvers, specified as the comma-separated pair consisting of 'Epsilon' and a positive scalar. The solver adds the offset to the denominator in the network parameter updates to avoid division by zero.

To specify the 'Epsilon' value, you must set solverName to be 'adam' or 'rmsprop'. The default value works well for most problems. For more information about the different solvers, see “Stochastic Gradient Descent” on page 1-992.

Example: 'Epsilon', 1e-6

Data Types: single | double

ResetInputNormalization — Option to reset input layer normalization

true (default) | false

Option to reset input layer normalization, specified as one of the following:

- **true** - Reset the input layer normalization statistics and recalculate them at training time.
- **false** - Calculate normalization statistics at training time when they are empty.
Gradient Clipping

GradientThreshold — Gradient threshold

Inf (default) | positive scalar

Gradient threshold, specified as the comma-separated pair consisting of 'GradientThreshold' and Inf or a positive scalar. If the gradient exceeds the value of GradientThreshold, then the gradient is clipped according to GradientThresholdMethod.

Example: 'GradientThreshold',6

GradientThresholdMethod — Gradient threshold method

'\text{l2norm}' (default) | 'global-l2norm' | 'absolute-value'

Gradient threshold method used to clip gradient values that exceed the gradient threshold, specified as the comma-separated pair consisting of 'GradientThresholdMethod' and one of the following:

- 'l2norm' — If the L_2 norm of the gradient of a learnable parameter is larger than GradientThreshold, then scale the gradient so that the L_2 norm equals GradientThreshold.
- 'global-l2norm' — If the global L_2 norm, L, is larger than GradientThreshold, then scale all gradients by a factor of GradientThreshold/L. The global L_2 norm considers all learnable parameters.
- 'absolute-value' — If the absolute value of an individual partial derivative in the gradient of a learnable parameter is larger than GradientThreshold, then scale the partial derivative to have magnitude equal to GradientThreshold and retain the sign of the partial derivative.

For more information, see Gradient Clipping on page 1-994.

Example: 'GradientThresholdMethod','global-l2norm'

Sequence Options

SequenceLength — Option to pad, truncate, or split input sequences

'longest' (default) | 'shortest' | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

- 'longest' — Pad sequences in each mini-batch to have the same length as the longest sequence. This option does not discard any data, though padding can introduce noise to the network.
- 'shortest' — Truncate sequences in each mini-batch to have the same length as the shortest sequence. This option ensures that no padding is added, at the cost of discarding data.
- Positive integer — For each mini-batch, pad the sequences to the nearest multiple of the specified length that is greater than the longest sequence length in the mini-batch, and then split the sequences into smaller sequences of the specified length. If splitting occurs, then the software creates extra mini-batches. Use this option if the full sequences do not fit in memory. Alternatively, try reducing the number of sequences per mini-batch by setting the 'MiniBatchSize' option to a lower value.

To learn more about the effect of padding, truncating, and splitting the input sequences, see “Sequence Padding, Truncation, and Splitting”.

Example: 'SequenceLength','shortest'

SequencePaddingDirection — Direction of padding or truncation

'right' (default) | 'left'

Deep Learning Functions

1-988
Direction of padding or truncation, specified as one of the following:

- **'right'** — Pad or truncate sequences on the right. The sequences start at the same time step and the software truncates or adds padding to the end of the sequences.
- **'left'** — Pad or truncate sequences on the left. The software truncates or adds padding to the start of the sequences so that the sequences end at the same time step.

Because LSTM layers process sequence data one time step at a time, when the layer `OutputMode` property is `'last'`, any padding in the final time steps can negatively influence the layer output. To pad or truncate sequence data on the left, set the `'SequencePaddingDirection'` option to `'left'`.

For sequence-to-sequence networks (when the `OutputMode` property is `'sequence'` for each LSTM layer), any padding in the first time steps can negatively influence the predictions for the earlier time steps. To pad or truncate sequence data on the right, set the `'SequencePaddingDirection'` option to `'right'`.

To learn more about the effect of padding, truncating, and splitting the input sequences, see “Sequence Padding, Truncation, and Splitting”.

SequencePaddingValue — Value to pad input sequences

0 (default) | scalar

Value by which to pad input sequences, specified as a scalar. The option is valid only when `SequenceLength` is `'longest'` or a positive integer. Do not pad sequences with `NaN`, because doing so can propagate errors throughout the network.

Example: `SequencePaddingValue',-1`

Hardware Options

ExecutionEnvironment — Hardware resource for training network

`'auto'` (default) | `'cpu'` | `'gpu'` | `'multi-gpu'` | `'parallel'`

Hardware resource for training network, specified as one of the following:

- **'auto'** — Use a GPU if one is available. Otherwise, use the CPU.
- **'cpu'** — Use the CPU.
- **'gpu'** — Use the GPU.
- **'multi-gpu'** — Use multiple GPUs on one machine, using a local parallel pool based on your default cluster profile. If there is no current parallel pool, the software starts a parallel pool with pool size equal to the number of available GPUs.
- **'parallel'** — Use a local or remote parallel pool based on your default cluster profile. If there is no current parallel pool, the software starts one using the default cluster profile. If the pool has access to GPUs, then only workers with a unique GPU perform training computation. If the pool does not have GPUs, then training takes place on all available CPU workers instead.

For more information on when to use the different execution environments, see “Scale Up Deep Learning in Parallel and in the Cloud”.

GPU, multi-GPU, and parallel options require Parallel Computing Toolbox. To use a GPU for deep learning, you must also have a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If you choose one of these options and Parallel Computing Toolbox or a suitable GPU is not available, then the software returns an error.
To see an improvement in performance when training in parallel, try scaling up the MiniBatchSize and InitialLearnRate training options by the number of GPUs.

Training long short-term memory networks supports single CPU or single GPU training only.

Datastores used for multi-GPU training or parallel training must be partitionable. For more information, see “Use Datastore for Parallel Training and Background Dispatching”.

If you use the 'multi-gpu' option with a partitionable input datastore and the 'DispatchInBackground' option, then the software starts a parallel pool with size equal to the default pool size. Workers with unique GPUs perform training computation. The remaining workers are used for background dispatch.

Example: 'ExecutionEnvironment','cpu'

WorkerLoad — Parallel worker load division

scalar from 0 to 1 | positive integer | numeric vector

Parallel worker load division between GPUs or CPUs, specified as the comma-separated pair consisting of 'WorkerLoad' and one of the following:

- Scalar from 0 to 1 — Fraction of workers on each machine to use for network training computation. If you train the network using data in a mini-batch datastore with background dispatch enabled, then the remaining workers fetch and preprocess data in the background.
- Positive integer — Number of workers on each machine to use for network training computation. If you train the network using data in a mini-batch datastore with background dispatch enabled, then the remaining workers fetch and preprocess data in the background.
- Numeric vector — Network training load for each worker in the parallel pool. For a vector \(W \), worker \(i \) gets a fraction \(W(i)/\sum W \) of the work (number of examples per mini-batch). If you train a network using data in a mini-batch datastore with background dispatch enabled, then you can assign a worker load of 0 to use that worker for fetching data in the background. The specified vector must contain one value per worker in the parallel pool.

If the parallel pool has access to GPUs, then workers without a unique GPU are never used for training computation. The default for pools with GPUs is to use all workers with a unique GPU for training computation, and the remaining workers for background dispatch. If the pool does not have access to GPUs and CPUs are used for training, then the default is to use one worker per machine for background data dispatch.

DispatchInBackground — Use background dispatch

false (default) | true

Use background dispatch (asynchronous prefetch queuing) to read training data from datastores, specified as false or true. Background dispatch requires Parallel Computing Toolbox.

DispatchInBackground is only supported for datastores that are partitionable. For more information, see “Use Datastore for Parallel Training and Background Dispatching”.

Checkpoints

CheckpointPath — Path for saving checkpoint networks

' ' (default) | character vector

Path for saving the checkpoint networks, specified as the comma-separated pair consisting of 'CheckpointPath' and a character vector.
• If you do not specify a path (that is, you use the default ''), then the software does not save any checkpoint networks.

• If you specify a path, then \texttt{trainNetwork} saves checkpoint networks to this path after every epoch and assigns a unique name to each network. You can then load any checkpoint network and resume training from that network.

If the folder does not exist, then you must first create it before specifying the path for saving the checkpoint networks. If the path you specify does not exist, then \texttt{trainingOptions} returns an error.

For more information about saving network checkpoints, see “Save Checkpoint Networks and Resume Training”.

Example: 'CheckpointPath','C:\Temp\checkpoint'

Data Types: char

\textbf{OutputFcn — Output functions}

\begin{itemize}
 \item \texttt{function handle} | \texttt{cell array of function handles}
\end{itemize}

Output functions to call during training, specified as the comma-separated pair consisting of \texttt{'OutputFcn'} and a function handle or cell array of function handles. \texttt{trainNetwork} calls the specified functions once before the start of training, after each iteration, and once after training has finished. \texttt{trainNetwork} passes a structure containing information in the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoch</td>
<td>Current epoch number</td>
</tr>
<tr>
<td>Iteration</td>
<td>Current iteration number</td>
</tr>
<tr>
<td>TimeSinceStart</td>
<td>Time in seconds since the start of training</td>
</tr>
<tr>
<td>TrainingLoss</td>
<td>Current mini-batch loss</td>
</tr>
<tr>
<td>ValidationLoss</td>
<td>Loss on the validation data</td>
</tr>
<tr>
<td>BaseLearnRate</td>
<td>Current base learning rate</td>
</tr>
<tr>
<td>TrainingAccuracy</td>
<td>Accuracy on the current mini-batch (classification networks)</td>
</tr>
<tr>
<td>TrainingRMSE</td>
<td>RMSE on the current mini-batch (regression networks)</td>
</tr>
<tr>
<td>ValidationAccuracy</td>
<td>Accuracy on the validation data (classification networks)</td>
</tr>
<tr>
<td>ValidationRMSE</td>
<td>RMSE on the validation data (regression networks)</td>
</tr>
<tr>
<td>State</td>
<td>Current training state, with a possible value of "start", "iteration", or "done"</td>
</tr>
</tbody>
</table>

If a field is not calculated or relevant for a certain call to the output functions, then that field contains an empty array.

You can use output functions to display or plot progress information, or to stop training. To stop training early, make your output function return \texttt{true}. If any output function returns \texttt{true}, then training finishes and \texttt{trainNetwork} returns the latest network. For an example showing how to use output functions, see “Customize Output During Deep Learning Network Training”.

1-991
Data Types: function_handle | cell

Output Arguments

options — Training options
TrainingOptionsSGDM | TrainingOptionsRMSProp | TrainingOptionsADAM

Training options, returned as a TrainingOptionsSGDM, TrainingOptionsRMSProp, or TrainingOptionsADAM object. To train a neural network, use the training options as an input argument to the trainNetwork function.

If solverName equals 'sgdm', 'rmsprop', or 'adam', then the training options are returned as a TrainingOptionsSGDM, TrainingOptionsRMSProp, or TrainingOptionsADAM object, respectively.

You can edit training option properties of TrainingOptionsSGDM, TrainingOptionsADAM, and TrainingOptionsRMSProp objects directly. For example, to change the mini-batch size after using the trainingOptions function, you can edit the MiniBatchSize property directly:

options = trainingOptions('sgdm');
options.MiniBatchSize = 64;

Tips

• For most deep learning tasks, you can use a pretrained network and adapt it to your own data. For an example showing how to use transfer learning to retrain a convolutional neural network to classify a new set of images, see “Train Deep Learning Network to Classify New Images”. Alternatively, you can create and train networks from scratch using layerGraph objects with the trainNetwork and trainingOptions functions.

If the trainingOptions function does not provide the training options that you need for your task, then you can create a custom training loop using automatic differentiation. To learn more, see “Define Deep Learning Network for Custom Training Loops”.

Algorithms

Initial Weights and Biases

For convolutional and fully connected layers, the initialization for the weights and biases are given by the WeightsInitializer and BiasInitializer properties of the layers, respectively. For examples showing how to change the initialization for the weights and biases, see “Specify Initial Weights and Biases in Convolutional Layer” on page 1-254 and “Specify Initial Weights and Biases in Fully Connected Layer” on page 1-478.

Stochastic Gradient Descent

The standard gradient descent algorithm updates the network parameters (weights and biases) to minimize the loss function by taking small steps at each iteration in the direction of the negative gradient of the loss,

\[\theta_{t+1} = \theta_t - \alpha \nabla E(\theta_t), \]

where \(t \) is the iteration number, \(\alpha > 0 \) is the learning rate, \(\theta \) is the parameter vector, and \(E(\theta) \) is the loss function. In the standard gradient descent algorithm, the gradient of the loss function, \(\nabla E(\theta) \), is
evaluated using the entire training set, and the standard gradient descent algorithm uses the entire data set at once.

By contrast, at each iteration the stochastic gradient descent algorithm evaluates the gradient and updates the parameters using a subset of the training data. A different subset, called a mini-batch, is used at each iteration. The full pass of the training algorithm over the entire training set using mini-batches is one epoch. Stochastic gradient descent is stochastic because the parameter updates computed using a mini-batch is a noisy estimate of the parameter update that would result from using the full data set. You can specify the mini-batch size and the maximum number of epochs by using the 'MiniBatchSize' and 'MaxEpochs' name-value pair arguments, respectively.

Stochastic Gradient Descent with Momentum

The stochastic gradient descent algorithm can oscillate along the path of steepest descent towards the optimum. Adding a momentum term to the parameter update is one way to reduce this oscillation [2]. The stochastic gradient descent with momentum (SGDM) update is

$$\theta_{t+1} = \theta_t - \alpha \nabla E(\theta_t) + \gamma (\theta_t - \theta_{t-1}),$$

where γ determines the contribution of the previous gradient step to the current iteration. You can specify this value using the 'Momentum' name-value pair argument. To train a neural network using the stochastic gradient descent with momentum algorithm, specify solverName as 'sgdm'. To specify the initial value of the learning rate α, use the 'InitialLearnRate' name-value pair argument. You can also specify different learning rates for different layers and parameters. For more information, see “Set Up Parameters in Convolutional and Fully Connected Layers”.

RMSProp

Stochastic gradient descent with momentum uses a single learning rate for all the parameters. Other optimization algorithms seek to improve network training by using learning rates that differ by parameter and can automatically adapt to the loss function being optimized. RMSProp (root mean square propagation) is one such algorithm. It keeps a moving average of the element-wise squares of the parameter gradients,

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2)(\nabla E(\theta_t))^2$$

β_2 is the decay rate of the moving average. Common values of the decay rate are 0.9, 0.99, and 0.999. The corresponding averaging lengths of the squared gradients equal $1/(1-\beta_2)$, that is, 10, 100, and 1000 parameter updates, respectively. You can specify β_2 by using the 'SquaredGradientDecayFactor' name-value pair argument. The RMSProp algorithm uses this moving average to normalize the updates of each parameter individually,

$$\theta_{t+1} = \theta_t - \frac{\alpha \nabla E(\theta_t)}{\sqrt{v_t + \epsilon}}$$

where the division is performed element-wise. Using RMSProp effectively decreases the learning rates of parameters with large gradients and increases the learning rates of parameters with small gradients. ϵ is a small constant added to avoid division by zero. You can specify ϵ by using the 'Epsilon' name-value pair argument, but the default value usually works well. To use RMSProp to train a neural network, specify solverName as 'rmsprop'.
Adam

Adam (derived from *adaptive moment estimation*) [4] uses a parameter update that is similar to RMSProp, but with an added momentum term. It keeps an element-wise moving average of both the parameter gradients and their squared values,

\[m_\ell = \beta_1 m_{\ell - 1} + (1 - \beta_1) \nabla E(\theta_\ell) \]

\[v_\ell = \beta_2 v_{\ell - 1} + (1 - \beta_2) [\nabla E(\theta_\ell)]^2 \]

You can specify the \(\beta_1 \) and \(\beta_2 \) decay rates using the 'GradientDecayFactor' and 'SquaredGradientDecayFactor' name-value pair arguments, respectively. Adam uses the moving averages to update the network parameters as

\[\theta_{\ell + 1} = \theta_\ell - \frac{am_\ell}{\sqrt{v_\ell} + \epsilon} \]

If gradients over many iterations are similar, then using a moving average of the gradient enables the parameter updates to pick up momentum in a certain direction. If the gradients contain mostly noise, then the moving average of the gradient becomes smaller, and so the parameter updates become smaller too. You can specify \(\epsilon \) by using the 'Epsilon' name-value pair argument. The default value usually works well, but for certain problems a value as large as 1 works better. To use Adam to train a neural network, specify solverName as 'adam'. The full Adam update also includes a mechanism to correct a bias that appears in the beginning of training. For more information, see [4].

Specify the learning rate \(\alpha \) for all optimization algorithms using the 'InitialLearnRate' name-value pair argument. The effect of the learning rate is different for the different optimization algorithms, so the optimal learning rates are also different in general. You can also specify learning rates that differ by layers and by parameter. For more information, see “Set Up Parameters in Convolutional and Fully Connected Layers”.

Gradient Clipping

If the gradients increase in magnitude exponentially, then the training is unstable and can diverge within a few iterations. This “gradient explosion” is indicated by a training loss that goes to NaN or Inf. Gradient clipping helps prevent gradient explosion by stabilizing the training at higher learning rates and in the presence of outliers [3]. Gradient clipping enables networks to be trained faster, and does not usually impact the accuracy of the learned task.

There are two types of gradient clipping.

- **Norm-based gradient clipping** rescales the gradient based on a threshold, and does not change the direction of the gradient. The 'l2norm' and 'global-l2norm' values of GradientThresholdMethod are norm-based gradient clipping methods.
- **Value-based gradient clipping** clips any partial derivative greater than the threshold, which can result in the gradient arbitrarily changing direction. Value-based gradient clipping can have unpredictable behavior, but sufficiently small changes do not cause the network to diverge. The 'absolute-value' value of GradientThresholdMethod is a value-based gradient clipping method.

For examples, see “Time Series Forecasting Using Deep Learning” and “Sequence-to-Sequence Classification Using Deep Learning”.

1 Deep Learning Functions
L₂ Regularization

Adding a regularization term for the weights to the loss function $E(\theta)$ is one way to reduce overfitting [1], [2]. The regularization term is also called weight decay. The loss function with the regularization term takes the form

$$E_{R}(\theta) = E(\theta) + \lambda \Omega(w),$$

where w is the weight vector, λ is the regularization factor (coefficient), and the regularization function $\Omega(w)$ is

$$\Omega(w) = \frac{1}{2}w^T w.$$

Note that the biases are not regularized [2]. You can specify the regularization factor λ by using the 'L2Regularization' name-value pair argument. You can also specify different regularization factors for different layers and parameters. For more information, see “Set Up Parameters in Convolutional and Fully Connected Layers”.

The loss function that the software uses for network training includes the regularization term. However, the loss value displayed in the command window and training progress plot during training is the loss on the data only and does not include the regularization term.

Compatibility Considerations

'*ValidationPatience' training option default is Inf*

Behavior changed in R2018b

Starting in R2018b, the default value of the 'ValidationPatience' training option is Inf, which means that automatic stopping via validation is turned off. This behavior prevents the training from stopping before sufficiently learning from the data.

In previous versions, the default value is 5. To reproduce this behavior, set the 'ValidationPatience' option to 5.

Different file name for checkpoint networks

Behavior changed in R2018b

Starting in R2018b, when saving checkpoint networks, the software assigns file names beginning with net_checkpoint_. In previous versions, the software assigns file names beginning with convnet_checkpoint_.

If you have code that saves and loads checkpoint networks, then update your code to load files with the new name.

References

See Also
Deep Network Designer | analyzeNetwork | trainNetwork

Topics
“Create Simple Deep Learning Network for Classification”
“Transfer Learning Using Pretrained Network”
“Resume Training from Checkpoint Network”
“Deep Learning with Big Data on CPUs, GPUs, in Parallel, and on the Cloud”
“Specify Layers of Convolutional Neural Network”
“Set Up Parameters and Train Convolutional Neural Network”
“Define Custom Training Loops, Loss Functions, and Networks”

Introduced in R2016a
TrainingOptionsADAM

Training options for Adam optimizer

Description

Training options for Adam (adaptive moment estimation) optimizer, including learning rate information, L\textsubscript{2} regularization factor, and mini-batch size.

Creation

Create a TrainingOptionsADAM object using trainingOptions and specifying 'adam' as the solverName input argument.

Properties

Plots and Display

Plots — Plots to display during network training

'none' | 'training-progress'

Plots to display during network training, specified as one of the following:

- 'none' — Do not display plots during training.
- 'training-progress' — Plot training progress. The plot shows mini-batch loss and accuracy, validation loss and accuracy, and additional information on the training progress. The plot has a stop button in the top-right corner. Click the button to stop training and return the current state of the network.

Verbose — Indicator to display training progress information

1 | 0

Indicator to display training progress information in the command window, specified as 1 (true) or 0 (false).

The displayed information includes the epoch number, iteration number, time elapsed, mini-batch loss, mini-batch accuracy, and base learning rate. When you train a regression network, root mean square error (RMSE) is shown instead of accuracy. If you validate the network during training, then the displayed information also includes the validation loss and validation accuracy (or RMSE).

Data Types: logical

VerboseFrequency — Frequency of verbose printing

positive integer

Frequency of verbose printing, which is the number of iterations between printing to the command window, specified as a positive integer. This property only has an effect when the Verbose value equals true.
If you validate the network during training, then `trainNetwork` prints to the command window every time validation occurs.

Mini-Batch Options

MaxEpochs — Maximum number of epochs
positive integer

Maximum number of epochs to use for training, specified as a positive integer.

An iteration is one step taken in the gradient descent algorithm towards minimizing the loss function using a mini-batch. An epoch is the full pass of the training algorithm over the entire training set.

MiniBatchSize — Size of mini-batch
positive integer

Size of the mini-batch to use for each training iteration, specified as a positive integer. A mini-batch is a subset of the training set that is used to evaluate the gradient of the loss function and update the weights.

Shuffle — Option for data shuffling
'once' | 'never' | 'every-epoch'

Option for data shuffling, specified as one of the following:

- 'once' — Shuffle the training and validation data once before training.
- 'never' — Do not shuffle the data.
- 'every-epoch' — Shuffle the training data before each training epoch, and shuffle the validation data before each network validation. If the mini-batch size does not evenly divide the number of training samples, then `trainNetwork` discards the training data that does not fit into the final complete mini-batch of each epoch. Set the Shuffle value to 'every-epoch' to avoid discarding the same data every epoch.

Validation

ValidationData — Data to use for validation during training
image datastore | datastore | table | cell array

Data to use for validation during training, specified as an image datastore, a datastore, a table, or a cell array. The format of the validation data depends on the type of task and correspond to valid inputs to the `trainNetwork` function.

Specify validation data as one of the following:

<table>
<thead>
<tr>
<th>Input</th>
<th>trainNetwork Argument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image datastore</td>
<td><code>imds</code></td>
</tr>
<tr>
<td>Datastore</td>
<td><code>ds</code></td>
</tr>
<tr>
<td>Table</td>
<td><code>tbl</code></td>
</tr>
<tr>
<td>Cell array <code>{X,Y}</code></td>
<td><code>X</code> <code>X</code></td>
</tr>
<tr>
<td></td>
<td><code>Y</code> <code>Y</code></td>
</tr>
<tr>
<td>Cell array <code>{sequences,Y}</code></td>
<td><code>sequences</code></td>
</tr>
</tbody>
</table>
During training, `trainNetwork` calculates the validation accuracy and validation loss on the validation data. To specify the validation frequency, use the 'ValidationFrequency' name-value pair argument. You can also use the validation data to stop training automatically when the validation loss stops decreasing. To turn on automatic validation stopping, use the 'ValidationPatience' name-value pair argument.

If your network has layers that behave differently during prediction than during training (for example, dropout layers), then the validation accuracy can be higher than the training (mini-batch) accuracy.

The validation data is shuffled according to the 'Shuffle' value. If the 'Shuffle' value equals 'every-epoch', then the validation data is shuffled before each network validation.

ValidationFrequency — Frequency of network validation

Specify the frequency of network validation in number of iterations, specified as a positive integer.

The ValidationFrequency value is the number of iterations between evaluations of validation metrics.

ValidationPatience — Patience of validation stopping

Specify the patience of validation stopping of network training, specified as a positive integer or Inf.

The ValidationPatience value is the number of times that the loss on the validation set can be larger than or equal to the previously smallest loss before network training stops.

Solver Options

InitialLearnRate — Initial learning rate

Specify the initial learning rate used for training, specified as a positive scalar. If the learning rate is too low, then training takes a long time. If the learning rate is too high, then training can reach a suboptimal result.

LearnRateScheduleSettings — Settings for learning rate schedule

Specify the settings for the learning rate schedule, specified as a structure. LearnRateScheduleSettings contains the field Method, which specifies the type of method for adjusting the learning rate. The possible methods are:

- 'none' — The learning rate is constant throughout training.
- 'piecewise' — The learning rate drops periodically during training.

If Method is 'piecewise', then LearnRateScheduleSettings contains two more fields:

- DropRateFactor — The multiplicative factor by which the learning rate drops during training.

<table>
<thead>
<tr>
<th>Input</th>
<th>trainNetwork Argument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
• **DropPeriod** — The number of epochs that passes between adjustments to the learning rate during training

Specify the settings for the learning schedule rate using trainingOptions.

Data Types: `struct`

L2Regularization — Factor for L\(^2\) regularizer

nonnegative scalar

Factor for L\(^2\) regularizer (weight decay), specified as a nonnegative scalar.

You can specify a multiplier for the L\(^2\) regularizer for network layers with learnable parameters.

GradientDecayFactor — Decay rate of gradient moving average

scalar from 0 to 1

Decay rate of gradient moving average, specified as a scalar from 0 to 1. For more information about the different solvers, see “Stochastic Gradient Descent” on page 1-992.

SquaredGradientDecayFactor — Decay rate of squared gradient moving average

scalar from 0 to 1

Decay rate of squared gradient moving average, specified as a scalar from 0 to 1. For more information about the different solvers, see “Stochastic Gradient Descent” on page 1-992.

Epsilon — Denominator offset

positive scalar

Denominator offset, specified as a positive scalar. The solver adds the offset to the denominator in the network parameter updates to avoid division by zero.

ResetInputNormalization — Option to reset input layer normalization

true (default) | false

Option to reset input layer normalization, specified as one of the following:

- **true** - Reset the input layer normalization statistics and recalculate them at training time.
- **false** - Calculate normalization statistics at training time when they are empty.

Gradient Clipping

GradientThreshold — Gradient threshold

positive scalar | Inf

Positive threshold for the gradient, specified as positive scalar or Inf. When the gradient exceeds the value of GradientThreshold, then the gradient is clipped according to GradientThresholdMethod.

GradientThresholdMethod — Gradient threshold method

'\text{l2norm}' | 'global-l2norm' | 'absolutevalue'

Gradient threshold method used to clip gradient values that exceed the gradient threshold, specified as one of the following:
• 'l2norm' — If the L_2 norm of the gradient of a learnable parameter is larger than GradientThreshold, then scale the gradient so that the L_2 norm equals GradientThreshold.

• 'global-l2norm' — If the global L_2 norm, L, is larger than GradientThreshold, then scale all gradients by a factor of GradientThreshold/L. The global L_2 norm considers all learnable parameters.

• 'absolute-value' — If the absolute value of an individual partial derivative in the gradient of a learnable parameter is larger than GradientThreshold, then scale the partial derivative to have magnitude equal to GradientThreshold and retain the sign of the partial derivative.

For more information, see Gradient Clipping on page 1-994.

Sequence Options

SequenceLength — Option to pad or truncate sequences

'longest' | 'shortest' | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

• 'longest' — Pad sequences in each mini-batch to have the same length as the longest sequence. This option does not discard any data, though padding can introduce noise to the network.

• 'shortest' — Truncate sequences in each mini-batch to have the same length as the shortest sequence. This option ensures that no padding is added, at the cost of discarding data.

• Positive integer — For each mini-batch, pad the sequences to the nearest multiple of the specified length that is greater than the longest sequence length in the mini-batch, and then split the sequences into smaller sequences of the specified length. If splitting occurs, then the software creates extra mini-batches. Use this option if the full sequences do not fit in memory. Alternatively, try reducing the number of sequences per mini-batch by setting the 'MiniBatchSize' option to a lower value.

To learn more about the effect of padding, truncating, and splitting the input sequences, see “Sequence Padding, Truncation, and Splitting”.

SequencePaddingDirection — Direction of padding or truncation

'right' (default) | 'left'

Direction of padding or truncation, specified as one of the following:

• 'right' — Pad or truncate sequences on the right. The sequences start at the same time step and the software truncates or adds padding to the end of the sequences.

• 'left' — Pad or truncate sequences on the left. The software truncates or adds padding to the start of the sequences so that the sequences end at the same time step.

Because LSTM layers process sequence data one time step at a time, when the layer OutputMode property is 'last', any padding in the final time steps can negatively influence the layer output. To pad or truncate sequence data on the left, set the 'SequencePaddingDirection' option to 'left'.

For sequence-to-sequence networks (when the OutputMode property is 'sequence' for each LSTM layer), any padding in the first time steps can negatively influence the predictions for the earlier time steps. To pad or truncate sequence data on the right, set the 'SequencePaddingDirection' option to 'right'.
To learn more about the effect of padding, truncating, and splitting the input sequences, see “Sequence Padding, Truncation, and Splitting”.

SequencePaddingValue — Value to pad sequences

`scalar`

Value by which to pad input sequences, specified as a scalar. The option is valid only when `SequenceLength` is ‘longest’ or a positive integer. Do not pad sequences with NaN, because doing so can propagate errors throughout the network.

Hardware Options

ExecutionEnvironment — Hardware resource for training network

`'auto' | 'cpu' | 'gpu' | 'multi-gpu' | 'parallel'`

Hardware resource for training network, specified as one of the following:

- `'auto'` — Use a GPU if one is available. Otherwise, use the CPU.
- `'cpu'` — Use the CPU.
- `'gpu'` — Use the GPU.
- `'multi-gpu'` — Use multiple GPUs on one machine, using a local parallel pool based on your default cluster profile. If there is no current parallel pool, the software starts a parallel pool with pool size equal to the number of available GPUs.
- `'parallel'` — Use a local or remote parallel pool based on your default cluster profile. If there is no current parallel pool, the software starts one using the default cluster profile. If the pool has access to GPUs, then only workers with a unique GPU perform training computation. If the pool does not have GPUs, then training takes place on all available CPU workers instead.

For more information on when to use the different execution environments, see “Scale Up Deep Learning in Parallel and in the Cloud”.

GPU, multi-GPU, and parallel options require Parallel Computing Toolbox. To use a GPU for deep learning, you must also have a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If you choose one of these options and Parallel Computing Toolbox or a suitable GPU is not available, then the software returns an error.

To see an improvement in performance when training in parallel, try scaling up the `MiniBatchSize` and `InitialLearnRate` training options by the number of GPUs.

Training long short-term memory networks supports single CPU or single GPU training only.

Specify the execution environment using `trainingOptions`.

Data Types: `char` | `string`

WorkerLoad — Parallel worker load division

`scalar from 0 to 1 | positive integer | numeric vector`

Worker load division for GPUs or CPUs, specified as a scalar from 0 to 1, a positive integer, or a numeric vector. This property has an effect only when the `ExecutionEnvironment` value equals ‘multi-gpu’ or ‘parallel’.
Checkpoints

CheckpointPath — Path for saving checkpoint networks
character vector

Path where checkpoint networks are saved, specified as a character vector.

Data Types: char

OutputFcn — Output functions
function handle | cell array of function handles

Output functions to call during training, specified as a function handle or cell array of function handles. `trainNetwork` calls the specified functions once before the start of training, after each iteration, and once after training has finished. `trainNetwork` passes a structure containing information in the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoch</td>
<td>Current epoch number</td>
</tr>
<tr>
<td>Iteration</td>
<td>Current iteration number</td>
</tr>
<tr>
<td>TimeSinceStart</td>
<td>Time in seconds since the start of training</td>
</tr>
<tr>
<td>TrainingLoss</td>
<td>Current mini-batch loss</td>
</tr>
<tr>
<td>ValidationLoss</td>
<td>Loss on the validation data</td>
</tr>
<tr>
<td>BaseLearnRate</td>
<td>Current base learning rate</td>
</tr>
<tr>
<td>TrainingAccuracy</td>
<td>Accuracy on the current mini-batch (classification networks)</td>
</tr>
<tr>
<td>TrainingRMSE</td>
<td>RMSE on the current mini-batch (regression networks)</td>
</tr>
<tr>
<td>ValidationAccuracy</td>
<td>Accuracy on the validation data (classification networks)</td>
</tr>
<tr>
<td>ValidationRMSE</td>
<td>RMSE on the validation data (regression networks)</td>
</tr>
<tr>
<td>State</td>
<td>Current training state, with a possible value of "start", "iteration", or "done".</td>
</tr>
</tbody>
</table>

If a field is not calculated or relevant for a certain call to the output functions, then that field contains an empty array.

You can use output functions to display or plot progress information, or to stop training. To stop training early, make your output function return true. If any output function returns true, then training finishes and `trainNetwork` returns the latest network. For an example showing how to use output functions, see “Customize Output During Deep Learning Network Training”.

Data Types: function_handle | cell

Examples

Create Training Options for the Adam Optimizer

Create a set of options for training a neural network using the Adam optimizer. Set the maximum number of epochs for training to 20, and use a mini-batch with 64 observations at each iteration.
Specify the learning rate and the decay rate of the moving average of the squared gradient. Turn on the training progress plot.

```matlab
options = trainingOptions('adam', ...
    'InitialLearnRate',3e-4, ...)
    'SquaredGradientDecayFactor',0.99, ...
    'MaxEpochs',20, ...
    'MiniBatchSize',64, ...
    'Plots','training-progress')
```

Options:

```
TrainingOptionsADAM with properties:
    GradientDecayFactor: 0.9000
    SquaredGradientDecayFactor: 0.9900
    Epsilon: 1.0000e-08
    InitialLearnRate: 3.0000e-04
    LearnRateSchedule: 'none'
    LearnRateDropFactor: 0.1000
    LearnRateDropPeriod: 10
    L2Regularization: 1.0000e-04
    GradientThresholdMethod: 'l2norm'
    GradientThreshold: Inf
    MaxEpochs: 20
    MiniBatchSize: 64
    Verbosity: 1
    ValidationData: []
    ValidationFrequency: 50
    ValidationPatience: Inf
    Shuffle: 'once'
    CheckpointPath: ''
    ExecutionEnvironment: 'auto'
    WorkerLoad: []
    OutputFcn: []
    Plots: 'training-progress'
    SequenceLength: 'longest'
    SequencePaddingValue: 0
    SequencePaddingDirection: 'right'
    DispatchInBackground: 0
    ResetInputNormalization: 1
```

References

See Also

`trainNetwork` | `trainingOptions`

Topics

“Create Simple Deep Learning Network for Classification”
“Transfer Learning Using Pretrained Network”
“Resume Training from Checkpoint Network”
“Deep Learning with Big Data on CPUs, GPUs, in Parallel, and on the Cloud”
“Specify Layers of Convolutional Neural Network”
“Set Up Parameters and Train Convolutional Neural Network”

Introduced in R2018a
TrainingOptionsRMSProp

Training options for RMSProp optimizer

Description

Training options for RMSProp (root mean square propagation) optimizer, including learning rate information, L\(_2\) regularization factor, and mini-batch size.

Creation

Create a `TrainingOptionsRMSProp` object using `trainingOptions` and specifying `'rmsprop'` as the `solverName` input argument.

Properties

Plots and Display

`Plots` — Plots to display during network training

```
'none' | 'training-progress'
```

Plots to display during network training, specified as one of the following:

- `'none'` — Do not display plots during training.
- `'training-progress'` — Plot training progress. The plot shows mini-batch loss and accuracy, validation loss and accuracy, and additional information on the training progress. The plot has a stop button in the top-right corner. Click the button to stop training and return the current state of the network.

`Verbose` — Indicator to display training progress information

```
1 | 0
```

Indicator to display training progress information in the command window, specified as 1 (true) or 0 (false).

The displayed information includes the epoch number, iteration number, time elapsed, mini-batch loss, mini-batch accuracy, and base learning rate. When you train a regression network, root mean square error (RMSE) is shown instead of accuracy. If you validate the network during training, then the displayed information also includes the validation loss and validation accuracy (or RMSE).

Data Types: `logical`

`VerboseFrequency` — Frequency of verbose printing

```
positive integer
```

Frequency of verbose printing, which is the number of iterations between printing to the command window, specified as a positive integer. This property only has an effect when the `Verbose` value equals `true`.

1-1006
If you validate the network during training, then trainNetwork prints to the command window every time validation occurs.

Mini-Batch Options

MaxEpochs — Maximum number of epochs
positive integer

Maximum number of epochs to use for training, specified as a positive integer.

An iteration is one step taken in the gradient descent algorithm towards minimizing the loss function using a mini-batch. An epoch is the full pass of the training algorithm over the entire training set.

MiniBatchSize — Size of mini-batch
positive integer

Size of the mini-batch to use for each training iteration, specified as a positive integer. A mini-batch is a subset of the training set that is used to evaluate the gradient of the loss function and update the weights.

Shuffle — Option for data shuffling

'once' | 'never' | 'every-epoch'

Option for data shuffling, specified as one of the following:

- 'once' — Shuffle the training and validation data once before training.
- 'never' — Do not shuffle the data.
- 'every-epoch' — Shuffle the training data before each training epoch, and shuffle the validation data before each network validation. If the mini-batch size does not evenly divide the number of training samples, then trainNetwork discards the training data that does not fit into the final complete mini-batch of each epoch. Set the Shuffle value to 'every-epoch' to avoid discarding the same data every epoch.

Validation

ValidationData — Data to use for validation during training

image datastore | datastore | table | cell array

Data to use for validation during training, specified as an image datastore, a datastore, a table, or a cell array. The format of the validation data depends on the type of task and correspond to valid inputs to the trainNetwork function.

Specify validation data as one of the following:

<table>
<thead>
<tr>
<th>Input</th>
<th>trainNetwork Argument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image datastore</td>
<td>imds</td>
</tr>
<tr>
<td>Datastore</td>
<td>ds</td>
</tr>
<tr>
<td>Table</td>
<td>tbl</td>
</tr>
<tr>
<td>Cell array {X,Y}</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>Cell array {sequences,Y}</td>
<td>sequences</td>
</tr>
</tbody>
</table>
During training, `trainNetwork` calculates the validation accuracy and validation loss on the validation data. To specify the validation frequency, use the `'ValidationFrequency'` name-value pair argument. You can also use the validation data to stop training automatically when the validation loss stops decreasing. To turn on automatic validation stopping, use the `'ValidationPatience'` name-value pair argument.

If your network has layers that behave differently during prediction than during training (for example, dropout layers), then the validation accuracy can be higher than the training (mini-batch) accuracy.

The validation data is shuffled according to the `'Shuffle'` value. If the `'Shuffle'` value equals `'every-epoch'`, then the validation data is shuffled before each network validation.

ValidationFrequency — Frequency of network validation

 positive integer

Frequency of network validation in number of iterations, specified as a positive integer.

The `ValidationFrequency` value is the number of iterations between evaluations of validation metrics.

ValidationPatience — Patience of validation stopping

 positive integer | Inf

Patience of validation stopping of network training, specified as a positive integer or Inf.

The `'ValidationPatience'` value is the number of times that the loss on the validation set can be larger than or equal to the previously smallest loss before network training stops.

Solver Options

InitialLearnRate — Initial learning rate

 positive scalar

Initial learning rate used for training, specified as a positive scalar. If the learning rate is too low, then training takes a long time. If the learning rate is too high, then training can reach a suboptimal result.

LearnRateScheduleSettings — Settings for learning rate schedule

 structure

Settings for the learning rate schedule, specified as a structure. `LearnRateScheduleSettings` has the field `Method`, which specifies the type of method for adjusting the learning rate. The possible methods are:

- `'none'` — The learning rate is constant throughout training.
- `'piecewise'` — The learning rate drops periodically during training.

If `Method` is `'piecewise'`, then `LearnRateScheduleSettings` contains two more fields:

- `DropRateFactor` — The multiplicative factor by which the learning rate drops during training.
• **DropPeriod** — The number of epochs that passes between adjustments to the learning rate during training

Specify the settings for the learning schedule rate using `trainingOptions`.

Data Types: `struct`

L2Regularization — Factor for L_2 regularizer

nonnegative scalar

Factor for L_2 regularizer (weight decay), specified as a nonnegative scalar.

You can specify a multiplier for the L_2 regularizer for network layers with learnable parameters.

SquaredGradientDecayFactor — Decay rate of squared gradient moving average

scalar from 0 to 1

Decay rate of squared gradient moving average, specified as a scalar from 0 to 1. For more information about the different solvers, see “Stochastic Gradient Descent” on page 1-992.

Epsilon — Denominator offset

positive scalar

Denominator offset, specified as a positive scalar. The solver adds the offset to the denominator in the network parameter updates to avoid division by zero.

ResetInputNormalization — Option to reset input layer normalization

true (default) | false

Option to reset input layer normalization, specified as one of the following:

- **true** — Reset the input layer normalization statistics and recalculate them at training time.
- **false** — Calculate normalization statistics at training time when they are empty.

Gradient Clipping

GradientThreshold — Gradient threshold

positive scalar | Inf

Positive threshold for the gradient, specified as positive scalar or Inf. When the gradient exceeds the value of `GradientThreshold`, then the gradient is clipped according to `GradientThresholdMethod`.

GradientThresholdMethod — Gradient threshold method

'\text{l2norm}' | 'global-l2norm' | 'absolutevalue'

Gradient threshold method used to clip gradient values that exceed the gradient threshold, specified as one of the following:

- **'l2norm'** — If the L_2 norm of the gradient of a learnable parameter is larger than `GradientThreshold`, then scale the gradient so that the L_2 norm equals `GradientThreshold`.
- **'global-l2norm'** — If the global L_2 norm, L, is larger than `GradientThreshold`, then scale all gradients by a factor of `GradientThreshold/L`. The global L_2 norm considers all learnable parameters.
• 'absolute-value' — If the absolute value of an individual partial derivative in the gradient of a learnable parameter is larger than GradientThreshold, then scale the partial derivative to have magnitude equal to GradientThreshold and retain the sign of the partial derivative.

For more information, see Gradient Clipping on page 1-994.

Sequence Options

SequenceLength — Option to pad or truncate sequences

'longest' | 'shortest' | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

- 'longest' — Pad sequences in each mini-batch to have the same length as the longest sequence. This option does not discard any data, though padding can introduce noise to the network.
- 'shortest' — Truncate sequences in each mini-batch to have the same length as the shortest sequence. This option ensures that no padding is added, at the cost of discarding data.
- Positive integer — For each mini-batch, pad the sequences to the nearest multiple of the specified length that is greater than the longest sequence length in the mini-batch, and then split the sequences into smaller sequences of the specified length. If splitting occurs, then the software creates extra mini-batches. Use this option if the full sequences do not fit in memory. Alternatively, try reducing the number of sequences per mini-batch by setting the 'MiniBatchSize' option to a lower value.

To learn more about the effect of padding, truncating, and splitting the input sequences, see “Sequence Padding, Truncation, and Splitting”.

SequencePaddingDirection — Direction of padding or truncation

'right' (default) | 'left'

Direction of padding or truncation, specified as one of the following:

- 'right' — Pad or truncate sequences on the right. The sequences start at the same time step and the software truncates or adds padding to the end of the sequences.
- 'left' — Pad or truncate sequences on the left. The software truncates or adds padding to the start of the sequences so that the sequences end at the same time step.

Because LSTM layers process sequence data one time step at a time, when the layer OutputMode property is 'last', any padding in the final time steps can negatively influence the layer output. To pad or truncate sequence data on the left, set the 'SequencePaddingDirection' option to 'left'.

For sequence-to-sequence networks (when the OutputMode property is 'sequence' for each LSTM layer), any padding in the first time steps can negatively influence the predictions for the earlier time steps. To pad or truncate sequence data on the right, set the 'SequencePaddingDirection' option to 'right'.

To learn more about the effect of padding, truncating, and splitting the input sequences, see “Sequence Padding, Truncation, and Splitting”.

SequencePaddingValue — Value to pad sequences

scalar
Value by which to pad input sequences, specified as a scalar. The option is valid only when `SequenceLength` is 'longest' or a positive integer. Do not pad sequences with NaN, because doing so can propagate errors throughout the network.

Hardware Options

ExecutionEnvironment — Hardware resource for training network

`'auto'` | `'cpu'` | `'gpu'` | `'multi-gpu'` | `'parallel'`

Hardware resource for training network, specified as one of the following:

- `'auto'` — Use a GPU if one is available. Otherwise, use the CPU.
- `'cpu'` — Use the CPU.
- `'gpu'` — Use the GPU.
- `'multi-gpu'` — Use multiple GPUs on one machine, using a local parallel pool based on your default cluster profile. If there is no current parallel pool, the software starts a parallel pool with pool size equal to the number of available GPUs.
- `'parallel'` — Use a local or remote parallel pool based on your default cluster profile. If there is no current parallel pool, the software starts one using the default cluster profile. If the pool has access to GPUs, then only workers with a unique GPU perform training computation. If the pool does not have GPUs, then training takes place on all available CPU workers instead.

For more information on when to use the different execution environments, see “Scale Up Deep Learning in Parallel and in the Cloud”.

GPU, multi-GPU, and parallel options require Parallel Computing Toolbox. To use a GPU for deep learning, you must also have a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If you choose one of these options and Parallel Computing Toolbox or a suitable GPU is not available, then the software returns an error.

To see an improvement in performance when training in parallel, try scaling up the `MiniBatchSize` and `InitialLearnRate` training options by the number of GPUs.

Training long short-term memory networks supports single CPU or single GPU training only.

Specify the execution environment using `trainingOptions`.

Data Types: `char` | `string`

WorkerLoad — Parallel worker load division

Scalar from 0 to 1 | Positive integer | Numeric vector

Worker load division for GPUs or CPUs, specified as a scalar from 0 to 1, a positive integer, or a numeric vector. This property has an effect only when the `ExecutionEnvironment` value equals `'multi-gpu'` or `'parallel'`.

Checkpoints

CheckpointPath — Path for saving checkpoint networks

Character vector

Path where checkpoint networks are saved, specified as a character vector.

Data Types: `char`
OutputFcn — Output functions

function handle | cell array of function handles

Output functions to call during training, specified as a function handle or cell array of function handles. `trainNetwork` calls the specified functions once before the start of training, after each iteration, and once after training has finished. `trainNetwork` passes a structure containing information in the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoch</td>
<td>Current epoch number</td>
</tr>
<tr>
<td>Iteration</td>
<td>Current iteration number</td>
</tr>
<tr>
<td>TimeSinceStart</td>
<td>Time in seconds since the start of training</td>
</tr>
<tr>
<td>TrainingLoss</td>
<td>Current mini-batch loss</td>
</tr>
<tr>
<td>ValidationLoss</td>
<td>Loss on the validation data</td>
</tr>
<tr>
<td>BaseLearnRate</td>
<td>Current base learning rate</td>
</tr>
<tr>
<td>TrainingAccuracy</td>
<td>Accuracy on the current mini-batch (classification networks)</td>
</tr>
<tr>
<td>TrainingRMSE</td>
<td>RMSE on the current mini-batch (regression networks)</td>
</tr>
<tr>
<td>ValidationAccuracy</td>
<td>Accuracy on the validation data (classification networks)</td>
</tr>
<tr>
<td>ValidationRMSE</td>
<td>RMSE on the validation data (regression networks)</td>
</tr>
<tr>
<td>State</td>
<td>Current training state, with a possible value of "start", "iteration", or "done".</td>
</tr>
</tbody>
</table>

If a field is not calculated or relevant for a certain call to the output functions, then that field contains an empty array.

You can use output functions to display or plot progress information, or to stop training. To stop training early, make your output function return `true`. If any output function returns `true`, then training finishes and `trainNetwork` returns the latest network. For an example showing how to use output functions, see “Customize Output During Deep Learning Network Training”.

Data Types: `function_handle` | `cell`

Examples

Create Training Options for the RMSProp Optimizer

Create a set of options for training a neural network using the RMSProp optimizer. Set the maximum number of epochs for training to 20, and use a mini-batch with 64 observations at each iteration. Specify the learning rate and the decay rate of the moving average of the squared gradient. Turn on the training progress plot.

```matlab
options = trainingOptions('rmsprop', ...  
'InitialLearnRate',3e-4, ...  
'SquaredGradientDecayFactor',0.99, ...  
'MaxEpochs',20, ...)
```
options = TrainingOptionsRMSProp with properties:

 - SquaredGradientDecayFactor: 0.9900
 - Epsilon: 1.0000e-08
 - InitialLearnRate: 3.0000e-04
 - LearnRateSchedule: 'none'
 - LearnRateDropFactor: 0.1000
 - LearnRateDropPeriod: 10
 - L2Regularization: 1.0000e-04
 - GradientThresholdMethod: 'l2norm'
 - GradientThreshold: Inf
 - MaxEpochs: 20
 - MiniBatchSize: 64
 - Verbosity: 1
 - VerbosityFrequency: 50
 - ValidationData: []
 - ValidationFrequency: 50
 - ValidationPatience: Inf
 - Shuffle: 'once'
 - CheckpointPath: ''
 - ExecutionEnvironment: 'auto'
 - WorkerLoad: []
 - OutputFcn: []
 - Plots: 'training-progress'
 - SequenceLength: 'longest'
 - SequencePaddingValue: 0
 - SequencePaddingDirection: 'right'
 - DispatchInBackground: 0
 - ResetInputNormalization: 1

See Also

- trainNetwork
- trainingOptions

Topics

- "Create Simple Deep Learning Network for Classification"
- "Transfer Learning Using Pretrained Network"
- "Resume Training from Checkpoint Network"
- "Deep Learning with Big Data on CPUs, GPUs, in Parallel, and on the Cloud"
- "Specify Layers of Convolutional Neural Network"
- "Set Up Parameters and Train Convolutional Neural Network"

Introduced in R2018a
TrainingOptionsSGDM

Training options for stochastic gradient descent with momentum

Description

Training options for stochastic gradient descent with momentum, including learning rate information, \(L_2 \) regularization factor, and mini-batch size.

Creation

Create a TrainingOptionsSGDM object using trainingOptions and specifying 'sgdm' as the solverName input argument.

Properties

Plots and Display

Plots — Plots to display during network training

'none' | 'training-progress'

Plots to display during network training, specified as one of the following:

- 'none' — Do not display plots during training.
- 'training-progress'— Plot training progress. The plot shows mini-batch loss and accuracy, validation loss and accuracy, and additional information on the training progress. The plot has a stop button in the top-right corner. Click the button to stop training and return the current state of the network.

Verbose — Indicator to display training progress information

1 | 0

Indicator to display training progress information in the command window, specified as 1 (true) or 0 (false).

The displayed information includes the epoch number, iteration number, time elapsed, mini-batch loss, mini-batch accuracy, and base learning rate. When you train a regression network, root mean square error (RMSE) is shown instead of accuracy. If you validate the network during training, then the displayed information also includes the validation loss and validation accuracy (or RMSE).

Data Types: logical

VerboseFrequency — Frequency of verbose printing

positive integer

Frequency of verbose printing, which is the number of iterations between printing to the command window, specified as a positive integer. This property only has an effect when the Verbose value equals true.
If you validate the network during training, then `trainNetwork` prints to the command window every time validation occurs.

Mini-Batch Options

MaxEpochs — Maximum number of epochs

positive integer

Maximum number of epochs to use for training, specified as a positive integer.

An iteration is one step taken in the gradient descent algorithm towards minimizing the loss function using a mini-batch. An epoch is the full pass of the training algorithm over the entire training set.

MiniBatchSize — Size of mini-batch

positive integer

Size of the mini-batch to use for each training iteration, specified as a positive integer. A mini-batch is a subset of the training set that is used to evaluate the gradient of the loss function and update the weights.

Shuffle — Option for data shuffling

'once' | 'never' | 'every-epoch'

Option for data shuffling, specified as one of the following:

- 'once' — Shuffle the training and validation data once before training.
- 'never' — Do not shuffle the data.
- 'every-epoch' — Shuffle the training data before each training epoch, and shuffle the validation data before each network validation. If the mini-batch size does not evenly divide the number of training samples, then `trainNetwork` discards the training data that does not fit into the final complete mini-batch of each epoch. Set the `Shuffle` value to 'every-epoch' to avoid discarding the same data every epoch.

Validation

ValidationData — Data to use for validation during training

image datastore | datastore | table | cell array

Data to use for validation during training, specified as an image datastore, a datastore, a table, or a cell array. The format of the validation data depends on the type of task and correspond to valid inputs to the `trainNetwork` function.

Specify validation data as one of the following:

<table>
<thead>
<tr>
<th>Input</th>
<th><code>trainNetwork</code> Argument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image datastore</td>
<td><code>imds</code></td>
</tr>
<tr>
<td>Datastore</td>
<td><code>ds</code></td>
</tr>
<tr>
<td>Table</td>
<td><code>tbl</code></td>
</tr>
<tr>
<td>Cell array <code>{X,Y}</code></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>Cell array <code>{sequences,Y}</code></td>
<td><code>sequences</code></td>
</tr>
</tbody>
</table>
During training, `trainNetwork` calculates the validation accuracy and validation loss on the validation data. To specify the validation frequency, use the 'ValidationFrequency' name-value pair argument. You can also use the validation data to stop training automatically when the validation loss stops decreasing. To turn on automatic validation stopping, use the 'ValidationPatience' name-value pair argument.

If your network has layers that behave differently during prediction than during training (for example, dropout layers), then the validation accuracy can be higher than the training (mini-batch) accuracy.

The validation data is shuffled according to the 'Shuffle' value. If the 'Shuffle' value equals 'every-epoch', then the validation data is shuffled before each network validation.

ValidationFrequency — Frequency of network validation

<table>
<thead>
<tr>
<th>Input</th>
<th>trainNetwork Argument</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y</td>
</tr>
</tbody>
</table>

ValidationFrequency — Frequency of network validation

Description: Frequency of network validation in number of iterations, specified as a positive integer.

Details: The `ValidationFrequency` value is the number of iterations between evaluations of validation metrics.

ValidationPatience — Patience of validation stopping

<table>
<thead>
<tr>
<th>Input</th>
<th>trainNetwork Argument</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y</td>
</tr>
</tbody>
</table>

ValidationPatience — Patience of validation stopping of network training, specified as a positive integer or Inf.

Description: Patience of validation stopping of network training, specified as a positive integer or Inf.

Details: The 'ValidationPatience' value is the number of times that the loss on the validation set can be larger than or equal to the previously smallest loss before network training stops.

Solver Options

InitialLearnRate — Initial learning rate

Description: Initial learning rate used for training, specified as a positive scalar.

Details: If the learning rate is too low, then training takes a long time. If the learning rate is too high, then training can reach a suboptimal result.

LearnRateScheduleSettings — Settings for learning rate schedule

Description: Settings for the learning rate schedule, specified as a structure. `LearnRateScheduleSettings` has the field `Method`, which specifies the type of method for adjusting the learning rate. The possible methods are:

- 'none' — The learning rate is constant throughout training.
- 'piecewise' — The learning rate drops periodically during training.

Details: If `Method` is 'piecewise', then `LearnRateScheduleSettings` contains two more fields:

- **DropRateFactor** — The multiplicative factor by which the learning rate drops during training.
- **DropPeriod** — The number of epochs that passes between adjustments to the learning rate during training.

Specify the settings for the learning schedule rate using `trainingOptions`.

Data Types: `struct`

L2Regularization — Factor for L₂ regularizer

Factor for L₂ regularizer (weight decay), specified as a nonnegative scalar.

You can specify a multiplier for the L₂ regularizer for network layers with learnable parameters.

Momentum — Contribution of previous gradient step

scalar from 0 to 1

Contribution of the gradient step from the previous iteration to the current iteration of the training, specified as a scalar value from 0 to 1. A value of 0 means no contribution from the previous step, whereas a value of 1 means maximal contribution from the previous step. For more information about the different solvers, see “Stochastic Gradient Descent” on page 1-992.

Gradient Clipping

GradientThreshold — Gradient threshold

positive scalar | Inf

Positive threshold for the gradient, specified as positive scalar or Inf. When the gradient exceeds the value of `GradientThreshold`, then the gradient is clipped according to `GradientThresholdMethod`.

GradientThresholdMethod — Gradient threshold method

'\text{l2norm}' | 'global-l2norm' | 'absolute-value'

Gradient threshold method used to clip gradient values that exceed the gradient threshold, specified as one of the following:

- 'l2norm' — If the L₂ norm of the gradient of a learnable parameter is larger than `GradientThreshold`, then scale the gradient so that the L₂ norm equals `GradientThreshold`.
- 'global-l2norm' — If the global L₂ norm, L, is larger than `GradientThreshold`, then scale all gradients by a factor of $\frac{\text{GradientThreshold}}{L}$. The global L₂ norm considers all learnable parameters.
- 'absolute-value' — If the absolute value of an individual partial derivative in the gradient of a learnable parameter is larger than `GradientThreshold`, then scale the partial derivative to have magnitude equal to `GradientThreshold` and retain the sign of the partial derivative.

For more information, see Gradient Clipping on page 1-994.

ResetInputNormalization — Option to reset input layer normalization

true (default) | false

Option to reset input layer normalization, specified as one of the following:

- true - Reset the input layer normalization statistics and recalculate them at training time.
• false - Calculate normalization statistics at training time when they are empty.

Sequence Options

SequenceLength — Option to pad or truncate sequences

'longest' | 'shortest' | positive integer

Option to pad, truncate, or split input sequences, specified as one of the following:

- 'longest' — Pad sequences in each mini-batch to have the same length as the longest sequence. This option does not discard any data, though padding can introduce noise to the network.
- 'shortest' — Truncate sequences in each mini-batch to have the same length as the shortest sequence. This option ensures that no padding is added, at the cost of discarding data.
- Positive integer — For each mini-batch, pad the sequences to the nearest multiple of the specified length that is greater than the longest sequence length in the mini-batch, and then split the sequences into smaller sequences of the specified length. If splitting occurs, then the software creates extra mini-batches. Use this option if the full sequences do not fit in memory. Alternatively, try reducing the number of sequences per mini-batch by setting the 'MiniBatchSize' option to a lower value.

To learn more about the effect of padding, truncating, and splitting the input sequences, see “Sequence Padding, Truncation, and Splitting”.

SequencePaddingDirection — Direction of padding or truncation

'right' (default) | 'left'

Direction of padding or truncation, specified as one of the following:

- 'right' — Pad or truncate sequences on the right. The sequences start at the same time step and the software truncates or adds padding to the end of the sequences.
- 'left' — Pad or truncate sequences on the left. The software truncates or adds padding to the start of the sequences so that the sequences end at the same time step.

Because LSTM layers process sequence data one time step at a time, when the layer `OutputMode` property is 'last', any padding in the final time steps can negatively influence the layer output. To pad or truncate sequence data on the left, set the 'SequencePaddingDirection' option to 'left'.

For sequence-to-sequence networks (when the `OutputMode` property is 'sequence' for each LSTM layer), any padding in the first time steps can negatively influence the predictions for the earlier time steps. To pad or truncate sequence data on the right, set the 'SequencePaddingDirection' option to 'right'.

To learn more about the effect of padding, truncating, and splitting the input sequences, see “Sequence Padding, Truncation, and Splitting”.

SequencePaddingValue — Value to pad sequences

scalar

Value by which to pad input sequences, specified as a scalar. The option is valid only when `SequenceLength` is 'longest' or a positive integer. Do not pad sequences with NaN, because doing so can propagate errors throughout the network.
Hardware Options

ExecutionEnvironment — Hardware resource for training network

'auto' | 'cpu' | 'gpu' | 'multi-gpu' | 'parallel'

Hardware resource for training network, specified as one of the following:

- 'auto' — Use a GPU if one is available. Otherwise, use the CPU.
- 'cpu' — Use the CPU.
- 'gpu' — Use the GPU.
- 'multi-gpu' — Use multiple GPUs on one machine, using a local parallel pool based on your default cluster profile. If there is no current parallel pool, the software starts a parallel pool with pool size equal to the number of available GPUs.
- 'parallel' — Use a local or remote parallel pool based on your default cluster profile. If there is no current parallel pool, the software starts one using the default cluster profile. If the pool has access to GPUs, then only workers with a unique GPU perform training computation. If the pool does not have GPUs, then training takes place on all available CPU workers instead.

For more information on when to use the different execution environments, see “Scale Up Deep Learning in Parallel and in the Cloud”.

GPU, multi-GPU, and parallel options require Parallel Computing Toolbox. To use a GPU for deep learning, you must also have a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If you choose one of these options and Parallel Computing Toolbox or a suitable GPU is not available, then the software returns an error.

To see an improvement in performance when training in parallel, try scaling up the MiniBatchSize and InitialLearnRate training options by the number of GPUs.

Training long short-term memory networks supports single CPU or single GPU training only.

Specify the execution environment using trainingOptions.

Data Types: char | string

WorkerLoad — Parallel worker load division

Scalar from 0 to 1 | positive integer | numeric vector

Worker load division for GPUs or CPUs, specified as a scalar from 0 to 1, a positive integer, or a numeric vector. This property has an effect only when the ExecutionEnvironment value equals 'multi-gpu' or 'parallel'.

Checkpoints

CheckpointPath — Path for saving checkpoint networks

Character vector

Path where checkpoint networks are saved, specified as a character vector.

Data Types: char

OutputFcn — Output functions

Function handle | cell array of function handles
Output functions to call during training, specified as a function handle or cell array of function handles. `trainNetwork` calls the specified functions once before the start of training, after each iteration, and once after training has finished. `trainNetwork` passes a structure containing information in the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoch</td>
<td>Current epoch number</td>
</tr>
<tr>
<td>Iteration</td>
<td>Current iteration number</td>
</tr>
<tr>
<td>TimeSinceStart</td>
<td>Time in seconds since the start of training</td>
</tr>
<tr>
<td>TrainingLoss</td>
<td>Current mini-batch loss</td>
</tr>
<tr>
<td>ValidationLoss</td>
<td>Loss on the validation data</td>
</tr>
<tr>
<td>BaseLearnRate</td>
<td>Current base learning rate</td>
</tr>
<tr>
<td>TrainingAccuracy</td>
<td>Accuracy on the current mini-batch (classification networks)</td>
</tr>
<tr>
<td>TrainingRMSE</td>
<td>RMSE on the current mini-batch (regression networks)</td>
</tr>
<tr>
<td>ValidationAccuracy</td>
<td>Accuracy on the validation data (classification networks)</td>
</tr>
<tr>
<td>ValidationRMSE</td>
<td>RMSE on the validation data (regression networks)</td>
</tr>
<tr>
<td>State</td>
<td>Current training state, with a possible value of "start", "iteration", or "done".</td>
</tr>
</tbody>
</table>

If a field is not calculated or relevant for a certain call to the output functions, then that field contains an empty array.

You can use output functions to display or plot progress information, or to stop training. To stop training early, make your output function return `true`. If any output function returns `true`, then training finishes and `trainNetwork` returns the latest network. For an example showing how to use output functions, see “Customize Output During Deep Learning Network Training”.

Data Types: `function_handle` | `cell`

Examples

Specify Training Options

Create a set of options for training a network using stochastic gradient descent with momentum. Reduce the learning rate by a factor of 0.2 every 5 epochs. Set the maximum number of epochs for training to 20, and use a mini-batch with 64 observations at each iteration. Turn on the training progress plot.

```matlab
options = trainingOptions('sgdm', ...
    'LearnRateSchedule','piecewise', ...%
    'LearnRateDropFactor',0.2, ...%
    'LearnRateDropPeriod',5, ...%
    'MaxEpochs',20, ...%
    'MiniBatchSize',64, ...%
    'Plots','training-progress')
```
options =
 TrainingOptionsSGDM with properties:
 Momentum: 0.9000
 InitialLearnRate: 0.0100
 LearnRateSchedule: 'piecewise'
 LearnRateDropFactor: 0.2000
 LearnRateDropPeriod: 5
 L2Regularization: 1.0000e-04
 GradientThresholdMethod: 'l2norm'
 GradientThreshold: Inf
 MaxEpochs: 20
 MiniBatchSize: 64
 Verbose: 1
 VerboseFrequency: 50
 ValidationData: []
 ValidationFrequency: 50
 ValidationPatience: Inf
 Shuffle: 'once'
 CheckpointPath: ''
 ExecutionEnvironment: 'auto'
 WorkerLoad: []
 OutputFcn: []
 Plots: 'training-progress'
 SequenceLength: 'longest'
 SequencePaddingValue: 0
 SequencePaddingDirection: 'right'
 DispatchInBackground: 0
 ResetInputNormalization: 1

See Also
trainNetwork | trainingOptions

Topics
“Create Simple Deep Learning Network for Classification”
“Transfer Learning Using Pretrained Network”
“Resume Training from Checkpoint Network”
“Deep Learning with Big Data on CPUs, GPUs, in Parallel, and on the Cloud”
“Specify Layers of Convolutional Neural Network”
“Set Up Parameters and Train Convolutional Neural Network”

Introduced in R2016a
trainNetwork

Train neural network for deep learning

Syntax

```matlab
net = trainNetwork(imds,layers,options)
net = trainNetwork(ds,layers,options)
net = trainNetwork(X,Y,layers,options)
net = trainNetwork(sequences,Y,layers,options)
net = trainNetwork(tbl,layers,options)
net = trainNetwork(tbl,responseNames,layers,options)

[net,info] = trainNetwork(____)
```

Description

For classification and regression tasks, you can use `trainNetwork` to train a convolutional neural network (ConvNet, CNN) for image data, a recurrent neural network (RNN) such as a long short-term memory (LSTM) or a gated recurrent unit (GRU) network for sequence data, or a multi-layer perceptron (MLP) network for numeric feature data. You can train on either a CPU or a GPU. For image classification and image regression, you can train using multiple GPUs or in parallel. Using GPU, multi-GPU, and parallel options requires Parallel Computing Toolbox. To use a GPU for deep learning, you must also have a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. To specify training options, including options for the execution environment, use the `trainingOptions` function.

`net = trainNetwork(imds,layers,options)` trains a network specified by `layers` for image classification tasks using the images and labels in the image datastore `imds` and the training options defined by `options`.

`net = trainNetwork(ds,layers,options)` trains a network using the data returned by the datastore `ds`. For networks with multiple inputs, use this syntax with a datastore that returns multiple columns of data, such as a combined datastore.

`net = trainNetwork(X,Y,layers,options)` trains a network using the image or feature data specified by the numeric array `X` with categorical or numeric responses specified by `Y`.

`net = trainNetwork(sequences,Y,layers,options)` trains a recurrent network (for example, an LSTM or GRU network) for the sequence data specified by `sequences` and responses specified by `Y`.

`net = trainNetwork(tbl,layers,options)` trains a network using the data in the table `tbl`.

`net = trainNetwork(tbl,responseNames,layers,options)` trains a network using the data in the table `tbl` and specifies the table columns containing the responses.

`[net,info] = trainNetwork(____)` also returns information on the training using any of the previous syntaxes.
Train Network for Image Classification

Load the data as an ImageDatastore object.

```matlab
digitDatasetPath = fullfile(matlabroot,'toolbox','nnet','...  'nndemos','nndatasets','DigitDataset');
imds = imageDatastore(digitDatasetPath, ...  'IncludeSubfolders',true, ...  'LabelSource','foldernames');
```

The datastore contains 10,000 synthetic images of digits from 0 to 9. The images are generated by applying random transformations to digit images created with different fonts. Each digit image is 28-by-28 pixels. The datastore contains an equal number of images per category.

Display some of the images in the datastore.

```matlab
figure
numImages = 10000;
perm = randperm(numImages,20);
for i = 1:20
    subplot(4,5,i);
    imshow(imds.Files{perm(i)});
    drawnow;
end
```
Divide the datastore so that each category in the training set has 750 images and the testing set has the remaining images from each label.

numTrainingFiles = 750;
[imdsTrain,imdsTest] = splitEachLabel(imds,numTrainingFiles,'randomize');

`splitEachLabel` splits the image files in `digitData` into two new datastores, `imdsTrain` and `imdsTest`.

Define the convolutional neural network architecture.

layers = [...
 imageInputLayer([28 28 1])
 convolution2dLayer(5,20)
 reluLayer
 maxPooling2dLayer(2,'Stride',2)
 fullyConnectedLayer(10)
 softmaxLayer
 classificationLayer];

Set the options to the default settings for the stochastic gradient descent with momentum. Set the maximum number of epochs at 20, and start the training with an initial learning rate of 0.0001.

options = trainingOptions('sgdm',...
 'MaxEpochs',20,...
 'InitialLearnRate',1e-4,...
 'Verbose',false,...
 'Plots','training-progress');

Train the network.

net = trainNetwork(imdsTrain,layers,options);
Run the trained network on the test set, which was not used to train the network, and predict the image labels (digits).

YPred = classify(net,imdsTest);
YTest = imdsTest.Labels;

Calculate the accuracy. The accuracy is the ratio of the number of true labels in the test data matching the classifications from classify to the number of images in the test data.

accuracy = sum(YPred == YTest)/numel(YTest)
accuracy = 0.9420

Train Network with Augmented Images

Train a convolutional neural network using augmented image data. Data augmentation helps prevent the network from overfitting and memorizing the exact details of the training images.

Load the sample data, which consists of synthetic images of handwritten digits.

[XTrain,YTrain] = digitTrain4DArrayData;
digitTrain4DArrayData loads the digit training set as 4-D array data. XTrain is a 28-by-28-by-1-by-5000 array, where:

• 28 is the height and width of the images.
• 1 is the number of channels.
• 5000 is the number of synthetic images of handwritten digits.

YTrain is a categorical vector containing the labels for each observation.

Set aside 1000 of the images for network validation.

idx = randperm(size(XTrain,4),1000);
XValidation = XTrain(:,:,:,:,idx);
XTrain(:,:,:,:,idx) = [];
YValidation = YTrain(idx);
YTrain(idx) = [];

Create an imageDataAugmenter object that specifies preprocessing options for image augmentation, such as resizing, rotation, translation, and reflection. Randomly translate the images up to three pixels horizontally and vertically, and rotate the images with an angle up to 20 degrees.

imageAugmenter = imageDataAugmenter(...
'RandRotation',[-20,20], ...
'RandXTranslation',[-3 3], ...
'RandYTranslation',[-3 3])
imageAugmenter =
imageDataAugmenter with properties:

 FillValue: 0
 RandXReflection: 0
 RandYReflection: 0
Create an augmentedImageDatastore object to use for network training and specify the image output size. During training, the datastore performs image augmentation and resizes the images. The datastore augments the images without saving any images to memory. trainNetwork updates the network parameters and then discards the augmented images.

```matlab
trainNetwork updates the network parameters and then discards the augmented images.
```

```matlab
imageSize = [28 28 1];
augimds = augmentedImageDatastore(imageSize,XTrain,YTrain,'DataAugmentation',imageAugmenter);
```

Specify the convolutional neural network architecture.

```matlab
layers = [
    imageInputLayer(imageSize)
    convolution2dLayer(3,8,'Padding','same')
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,16,'Padding','same')
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    convolution2dLayer(3,32,'Padding','same')
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];
```

Specify training options for stochastic gradient descent with momentum.

```matlab
opts = trainingOptions('sgdm', ...
    'MaxEpochs',15, ...
    'Shuffle','every-epoch', ...  
    'Plots','training-progress', ...
    'Verbose',false, ...  
    'ValidationData',{XValidation,YValidation});
```

Train the network. Because the validation images are not augmented, the validation accuracy is higher than the training accuracy.

```matlab
net = trainNetwork(augimds,layers,opts);
```
Train Network for Image Regression

Load the sample data, which consists of synthetic images of handwritten digits. The third output contains the corresponding angles in degrees by which each image has been rotated.

Load the training images as 4-D arrays using `digitTrain4DArrayData`. The output `XTrain` is a 28-by-28-by-1-by-5000 array, where:

- 28 is the height and width of the images.
- 1 is the number of channels.
- 5000 is the number of synthetic images of handwritten digits.

`YTrain` contains the rotation angles in degrees.

```
[XTrain,~,YTrain] = digitTrain4DArrayData;
```

Display 20 random training images using `imshow`.

```
figure
numTrainImages = numel(YTrain);
idx = randperm(numTrainImages,20);
for i = 1:numel(idx)
    subplot(4,5,i)
    imshow(XTrain(:,:,:,idx(i)))
    drawnow;
end
```
Specify the convolutional neural network architecture. For regression problems, include a regression layer at the end of the network.

```matlab
layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(12,25)
    reluLayer
    fullyConnectedLayer(1)
    regressionLayer];
```

Specify the network training options. Set the initial learn rate to 0.001.

```matlab
options = trainingOptions('sgdm', ...
    'InitialLearnRate',0.001, ...
    'Verbose',false, ...
    'Plots','training-progress');
```

Train the network.

```matlab
net = trainNetwork(XTrain,YTrain,layers,options);
```
Test the performance of the network by evaluating the prediction accuracy of the test data. Use `predict` to predict the angles of rotation of the validation images.

```matlab
[XTest,~,YTest] = digitTest4DArrayData;
YPred = predict(net,XTest);
```

Evaluate the performance of the model by calculating the root-mean-square error (RMSE) of the predicted and actual angles of rotation.

```matlab
rmse = sqrt(mean((YTest - YPred).^2))
rmse = single
  6.0356
```

Train Network for Sequence Classification

Train a deep learning LSTM network for sequence-to-label classification.

Load the Japanese Vowels data set as described in [1] and [2]. `XTrain` is a cell array containing 270 sequences of varying length with 12 features corresponding to LPC cepstrum coefficients. `Y` is a categorical vector of labels 1,2,...,9. The entries in `XTrain` are matrices with 12 rows (one row for each feature) and a varying number of columns (one column for each time step).

```matlab
[XTrain,YTrain] = japaneseVowelsTrainData;
```

Visualize the first time series in a plot. Each line corresponds to a feature.

```matlab
figure
plot(XTrain{1})
```
Define the LSTM network architecture. Specify the input size as 12 (the number of features of the input data). Specify an LSTM layer to have 100 hidden units and to output the last element of the sequence. Finally, specify nine classes by including a fully connected layer of size 9, followed by a softmax layer and a classification layer.

```matlab
inputSize = 12;
numHiddenUnits = 100;
numClasses = 9;

layers = [ ...
    sequenceInputLayer(inputSize)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];
```

5×1 Layer array with layers:

1 | Sequence Input | Sequence input with 12 dimensions
2 | LSTM | LSTM with 100 hidden units
3 | Fully Connected | 9 fully connected layer
4 | Softmax | softmax
5 | Classification Output | crossentropyex
Specify the training options. Specify the solver as 'adam' and 'GradientThreshold' as 1. Set the mini-batch size to 27 and set the maximum number of epochs to 70.

Because the mini-batches are small with short sequences, the CPU is better suited for training. Set 'ExecutionEnvironment' to 'cpu'. To train on a GPU, if available, set 'ExecutionEnvironment' to 'auto' (the default value).

```matlab
maxEpochs = 70;
miniBatchSize = 27;

options = trainingOptions('adam', ...
    'ExecutionEnvironment','cpu', ...
    'MaxEpochs',maxEpochs, ...
    'MiniBatchSize',miniBatchSize, ...
    'GradientThreshold',1, ...
    'Verbose',false, ...
    'Plots','training-progress');
```

Train the LSTM network with the specified training options.

```matlab
net = trainNetwork(XTrain,YTrain,layers,options);
```

Load the test set and classify the sequences into speakers.

```matlab
[XTest,YTest] = japaneseVowelsTestData;
```

Classify the test data. Specify the same mini-batch size used for training.

```matlab
YPred = classify(net,XTest,'MiniBatchSize',miniBatchSize);
```

Calculate the classification accuracy of the predictions.

```matlab
acc = sum(YPred == YTest)./numel(YTest)
```
Train Network with Numeric Features

If you have a data set of numeric features (for example a collection of numeric data without spatial or time dimensions), then you can train a deep learning network using a feature input layer.

Read the transmission casing data from the CSV file "transmissionCasingData.csv".

```matlab
filename = "transmissionCasingData.csv";
tbl = readtable(filename,'TextType','String');
```

Convert the labels for prediction to categorical using the `convertvars` function.

```matlab
labelName = "GearToothCondition";
tbl = convertvars(tbl,labelName,'categorical');
```

To train a network using categorical features, you must first convert the categorical features to numeric. First, convert the categorical predictors to categorical using the `convertvars` function by specifying a string array containing the names of all the categorical input variables. In this data set, there are two categorical features with names "SensorCondition" and "ShaftCondition".

```matlab
categoricalInputNames = [{'SensorCondition' 'ShaftCondition'}];
tbl = convertvars(tbl,categoricalInputNames,'categorical');
```

Loop over the categorical input variables. For each variable:

- Convert the categorical values to one-hot encoded vectors using the `onehotencode` function.
- Add the one-hot vectors to the table using the `addvars` function. Specify to insert the vectors after the column containing the corresponding categorical data.
- Remove the corresponding column containing the categorical data.

```matlab
for i = 1:numel(categoricalInputNames)
    name = categoricalInputNames(i);
    oh = onehotencode(tbl(:,name));
    tbl = addvars(tbl,oh,'After',name);
    tbl(:,name) = [];
end
```

Split the vectors into separate columns using the `splitvars` function.

```matlab
tbl = splitvars(tbl);
```

View the first few rows of the table. Notice that the categorical predictors have been split into multiple columns with the categorical values as the variable names.

```matlab
head(tbl)
```

```
ans=8×23 table
    SigMean     SigMedian    SigRMS    SigVar     SigPeak    SigPeak2Peak    SigSkewness    SigKurtosis    SigCrestFactor    ...    EnvPower    PeakSpecKurtosis    No Sensor Drift    Sensor Drift    No Shaft Wear    Shaft Wear    GearToothCondition
    ______    _________    ______    _______    _______    ____________    ___________    ___________    ______________    ...       ________    ________________    _______________    ____________    _____________    __________    __________________
    -0.94876     -0.9722     1.3726    0.98387    0.81571       3.6314        -0.041525       2.2666           2.0514         ...       3.23e-07         162.13                0                1                1              0           No Tooth Fault
    -0.97537    -0.98958     1.3937    0.99105    0.81571       3.6314        -0.023777       2.2598           2.0203        ...       9.16e-08         226.12                0                1                1              0           No Tooth Fault
    1.0502      1.0267     1.4449    0.98491     2.8157       3.6314         -0.04162       2.2658           1.9487        ...       2.85e-07         162.13                0                1                0              1           No Tooth Fault
```

1-1032
View the class names of the data set.

classNames = categories(tbl{:,labelName})

classNames = 2×1 cell
 {'No Tooth Fault'}
 {'Tooth Fault' }

Next, partition the data set into training and test partitions. Set aside 15% of the data for testing.

Determine the number of observations for each partition.

numObservations = size(tbl,1);
numObservationsTrain = floor(0.85*numObservations);
numObservationsTest = numObservations - numObservationsTrain;

Create an array of random indices corresponding to the observations and partition it using the partition sizes.

idx = randperm(numObservations);
idxTrain = idx(1:numObservationsTrain);
idxTest = idx(numObservationsTrain+1:end);

Partition the table of data into training, validation, and testing partitions using the indices.

tblTrain = tbl(idxTrain,:);
tblTest = tbl(idxTest,:);

Define a network with a feature input layer and specify the number of features. Also, configure the input layer to normalize the data using Z-score normalization.

numFeatures = size(tbl,2) - 1;
numClasses = numel(classNames);

layers = [
 featureInputLayer(numFeatures,'Normalization', 'zscore')
 fullyConnectedLayer(50)
 batchNormalizationLayer
 reluLayer
 fullyConnectedLayer(numClasses)
 softmaxLayer
 classificationLayer];

Specify the training options.

miniBatchSize = 16;

options = trainingOptions('adam', ...
 'MiniBatchSize',miniBatchSize, ...
 'Shuffle','every-epoch', ...
Train the network using the architecture defined by `layers`, the training data, and the training options.

```matlab
net = trainNetwork(tblTrain, layers, options);
```

Predict the labels of the test data using the trained network and calculate the accuracy. The accuracy is the proportion of the labels that the network predicts correctly.

```matlab
YPred = classify(net, tblTest, 'MiniBatchSize', miniBatchSize);
YTest = tblTest{:, labelName};
accuracy = sum(YPred == YTest)/numel(YTest)
```

Input Arguments

- `imds` — Image datastore
 ImageDatastore object

Image datastore containing images and labels, specified as an `ImageDatastore` object.

Create an image datastore using the `ImageDatastore` function. To use the names of the folders containing the images as labels, set the `'LabelSource'` option to `'foldernames'`. Alternatively, specify the labels manually using the `Labels` property of the image datastore.
The `trainNetwork` function supports image datastores for image classification networks only. To use image datastores for regression networks, create a transformed or combined datastore using the `transform` and `combine` functions. For more information, see the `ds` input argument.

`ImageDatastore` allows batch reading of JPG or PNG image files using prefetching. If you use a custom function for reading the images, then `ImageDatastore` does not prefetch.

Tip Use `augmentedImageDatastore` for efficient preprocessing of images for deep learning including image resizing.

Do not use the `readFcn` option of `ImageDatastore` for preprocessing or resizing as this option is usually significantly slower.

Datastore ds

Datastore for out-of-memory data and preprocessing.

The table below lists the datastores that are directly compatible with `trainNetwork`. You can use other built-in datastores for training deep learning networks by using the `transform` and `combine` functions. These functions can convert the data read from datastores to the table or cell array format required by `trainNetwork`. For networks with multiple inputs, the datastore must be a combined or transformed datastore, or a custom mini-batch datastore. For more information, see “Datastores for Deep Learning”.

<table>
<thead>
<tr>
<th>Type of Datastore</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CombinedDatastore</td>
<td>Horizontally concatenate the data read from two or more underlying datastores.</td>
</tr>
<tr>
<td>TransformedDatastore</td>
<td>Transform batches of read data from an underlying datastore according to your own preprocessing pipeline.</td>
</tr>
<tr>
<td>AugmentedImageDatastore</td>
<td>Apply random affine geometric transformations, including resizing, rotation, reflection, shear, and translation, for training deep neural networks.</td>
</tr>
<tr>
<td>PixelLabelImageDatastore</td>
<td>Apply identical affine geometric transformations to images and corresponding ground truth labels for training semantic segmentation networks (requires Computer Vision Toolbox).</td>
</tr>
<tr>
<td>RandomPatchExtractionDatastore</td>
<td>Extract pairs of random patches from images or pixel label images (requires Image Processing Toolbox). You optionally can apply identical random affine geometric transformations to the pairs of patches.</td>
</tr>
<tr>
<td>DenoisingImageDatastore</td>
<td>Apply randomly generated Gaussian noise for training denoising networks (requires Image Processing Toolbox).</td>
</tr>
<tr>
<td>Custom mini-batch datastore</td>
<td>Create mini-batches of sequence, time series, text, or feature data. For details, see “Develop Custom Mini-Batch Datastore”.</td>
</tr>
</tbody>
</table>

The datastore must return data in a table or a cell array. The format of the datastore output depends on the network architecture.
Network Architecture

Datastore Output

| Single input layer | Table or cell array with two columns.
The first and second columns specify the predictors and responses, respectively.
Table elements must be scalars, row vectors, or 1-by-1 cell arrays containing a numeric array.
Custom mini-batch datastores must output tables. | `data = read(ds)`
`data =
4×2 table
 Predictors Response
 {224×224×3 double} 2
 {224×224×3 double} 7
 {224×224×3 double} 9
 {224×224×3 double} 9

data = read(ds)
data =
4×2 cell array
{224×224×3 double} {[2]}
{224×224×3 double} {[7]}
{224×224×3 double} {[9]}
{224×224×3 double} {[9]} |

| Multiple input layers | Cell array with (numInputs + 1) columns, where numInputs is the number of network inputs.
The first numInputs columns specify the predictors for each input and the last column specifies the responses.
The order of inputs is given by the InputNames property of the layer graph layers. | `data = read(ds)`
`data =
4×3 cell array
{224×224×3 double} {128×128×3 double} {[2]}
{224×224×3 double} {128×128×3 double} {[7]}
{224×224×3 double} {128×128×3 double} {[9]}
{224×224×3 double} {128×128×3 double} {[9]} |

Format of Predictors

<table>
<thead>
<tr>
<th>Data</th>
<th>2-D image</th>
<th>3-D image</th>
<th>Vector sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>h-by-w-by-c</code> numeric array, where <code>h</code>, <code>w</code>, and <code>c</code> are the height, width, and number of channels of the image, respectively.</td>
<td><code>h-by-w-by-d-by-c</code> numeric array, where <code>h</code>, <code>w</code>, <code>d</code>, and <code>c</code> are the height, width, depth, and number of channels of the image, respectively.</td>
<td><code>c-by-s</code> matrix, where <code>c</code> is the number of features of the sequence and <code>s</code> is the sequence length.</td>
</tr>
</tbody>
</table>
Data

<table>
<thead>
<tr>
<th>Format of Predictors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-D image sequence</td>
</tr>
<tr>
<td>(h \times w \times c \times s) array, where (h, w,) and (c) correspond to the height, width, and number of channels of the image, respectively, and (s) is the sequence length. Each sequence in the mini-batch must have the same sequence length.</td>
</tr>
<tr>
<td>3-D image sequence</td>
</tr>
<tr>
<td>(h \times w \times d \times c \times s) array, where (h, w, d,) and (c) correspond to the height, width, depth, and number of channels of the image, respectively, and (s) is the sequence length. Each sequence in the mini-batch must have the same sequence length.</td>
</tr>
<tr>
<td>Features</td>
</tr>
<tr>
<td>(c)-by-1 column vector, where (c) is the number of features.</td>
</tr>
</tbody>
</table>

For predictors returned in tables, the elements must contain a numeric scalar, a numeric row vector, or a 1-by-1 cell array containing a numeric array.

The `trainNetwork` function does not support networks with multiple sequence input layers.

The format of the responses depend on the type of task.

<table>
<thead>
<tr>
<th>Task</th>
<th>Format of Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td>Categorical scalar</td>
</tr>
<tr>
<td>Regression</td>
<td></td>
</tr>
</tbody>
</table>
 - Scalar
 - Numeric vector
 - 3-D numeric array representing an image |
| Sequence-to-sequence classification | \(1 \)-by-\(s \) sequence of categorical labels, where \(s \) is the sequence length of the corresponding predictor sequence. |
| Sequence-to-sequence regression | \(R \)-by-\(s \) matrix, where \(R \) is the number of responses and \(s \) is the sequence length of the corresponding predictor sequence. |

For responses returned in tables, the elements must be a categorical scalar, a numeric scalar, a numeric row vector, or a 1-by-1 cell array containing a numeric array.

X — Image or feature data

numeric array

Image or feature data, specified as a numeric array. The size of the array depends on the type of input:
Input	Description
2-D images | A h-by-w-by-c-by-N numeric array, where h, w, and c are the height, width, and number of channels of the images, respectively, and N is the number of images.
3-D images | A h-by-w-by-d-by-c-by-N numeric array, where h, w, d, and c are the height, width, depth, and number of channels of the images, respectively, and N is the number of images.
Features | A N-by-numFeatures numeric array, where N is the number of observations and numFeatures is the number of features of the input data.

If the array contains NaNs, then they are propagated through the network.

sequences — Sequence or time series data
cell array of numeric arrays | numeric array

Sequence or time series data, specified as an N-by-1 cell array of numeric arrays, where N is the number of observations, or a numeric array representing a single sequence.

For cell array or numeric array input, the dimensions of the numeric arrays containing the sequences depend on the type of data.

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector sequences</td>
<td>c-by-s matrices, where c is the number of features of the sequences and s is the sequence length.</td>
</tr>
<tr>
<td>2-D image sequences</td>
<td>h-by-w-by-c-by-s arrays, where h, w, and c correspond to the height, width, and number of channels of the images, respectively, and s is the sequence length.</td>
</tr>
<tr>
<td>3-D image sequences</td>
<td>h-by-w-by-d-by-c-by-s, where h, w, d, and c correspond to the height, width, depth, and number of channels of the 3-D images, respectively, and s is the sequence length.</td>
</tr>
</tbody>
</table>

To specify sequences using a datastore, use the ds input argument.

Y — Responses
categorical vector of labels | numeric array | cell array of categorical sequences | cell array of numeric sequences

Responses, specified as a categorical vector of labels, a numeric array, a cell array of categorical sequences, or cell array of numeric sequences. The format of Y depends on the type of task. Responses must not contain NaNs.

Classification

<table>
<thead>
<tr>
<th>Task</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image or feature classification</td>
<td>N-by-1 categorical vector of labels, where N is the number of observations.</td>
</tr>
<tr>
<td>Sequence-to-label classification</td>
<td></td>
</tr>
</tbody>
</table>
Task Format

<table>
<thead>
<tr>
<th>Task</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence-to-sequence classification</td>
<td>N-by-1 cell array of categorical sequences of labels, where N is the number of observations. Each sequence must have the same number of time steps as the corresponding predictor sequence. For sequence-to-sequence classification tasks with one observation, sequences can also be a vector. In this case, Y must be a categorical sequence of labels.</td>
</tr>
</tbody>
</table>

Regression

<table>
<thead>
<tr>
<th>Task</th>
<th>Format</th>
</tr>
</thead>
</table>
| 2-D image regression | • N-by-R matrix, where N is the number of images and R is the number of responses.
• h-by-w-by-c-by-N numeric array, where h, w, and c are the height, width, and number of channels of the images, respectively, and N is the number of images. |
| 3-D image regression | • N-by-R matrix, where N is the number of images and R is the number of responses.
• h-by-w-by-d-by-c-by-N numeric array, where h, w, d, and c are the height, width, depth, and number of channels of the images, respectively, and N is the number of images. |
| Sequence-to-one regression | N-by-R matrix, where N is the number of sequences and R is the number of responses. |
| Sequence-to-sequence regression | N-by-1 cell array of numeric sequences, where N is the number of sequences. The sequences are matrices with R rows, where R is the number of responses. Each sequence must have the same number of time steps as the corresponding predictor sequence.
For sequence-to-sequence regression tasks with one observation, sequences can be a matrix. In this case, Y must be a matrix of responses. |
| Feature regression | N-by-R matrix, where N is the number of observations and R is the number of responses. |

Normalizing the responses often helps to stabilize and speed up training of neural networks for regression. For more information, see “Train Convolutional Neural Network for Regression”.

tbl — Input data

table

Input data, specified as a table containing predictors and responses. Each row in the table corresponds to an observation.
The arrangement of predictors and responses in the table columns depends on the type of task.

Classification

<table>
<thead>
<tr>
<th>Task</th>
<th>Predictors</th>
<th>Responses</th>
</tr>
</thead>
</table>
| **Image classification** | • Absolute or relative file path to an image, specified as a character vector in a single column
 • Image specified as a 1-by-1 cell array containing a 3-D numeric array
 Predictors must be in the first column of the table. | Categorical label |
| **Sequence-to-label classification** | Absolute or relative file path to a MAT file containing sequence or time series data.
 The MAT file must contain a time series represented by a matrix with rows corresponding to data points and columns corresponding to time steps.
 Predictors must be in the first column of the table. | Categorical label |
| **Sequence-to-sequence classification** | Absolute or relative file path to a MAT file. The MAT file must contain a time series represented by a categorical vector, with entries corresponding to labels for each time step. | |
| **Feature classification** | Numeric scalar. If you do not specify the responseNames argument, then the predictors must be in the first numFeatures columns of the table, where numFeatures is the number of features of the input data. | Categorical label |

For classification networks with image or sequence input, if you do not specify responseNames, then the function, by default, uses the first column of tbl for the predictors and the second column as the labels. For classification networks with feature input, if you do not specify the responseNames argument, then the function, by default, uses the first (numColumns - 1) columns of tbl for the predictors and the last column for the labels, where numFeatures is the number of features in the input data.
Regression

<table>
<thead>
<tr>
<th>Task</th>
<th>Predictors</th>
<th>Responses</th>
</tr>
</thead>
</table>
| Image regression | • Absolute or relative file path to an image, specified as a character vector
• Image specified as a 1-by-1 cell array containing a 3-D numeric array
Predictors must be in the first column of the table. | • One or more columns of scalar values
• Numeric row vector
• 1-by-1 cell array containing a 3-D numeric array |
| Sequence-to-one regression | Absolute or relative file path to a MAT file containing sequence or time series data. | • One or more columns of scalar values
• Numeric row vector |
| Sequence-to-sequence regression | The MAT file must contain a time series represented by a matrix with rows corresponding to data points and columns corresponding to time steps.
Predictors must be in the first column of the table. | Absolute or relative file path to a MAT file. The MAT file must contain a time series represented by a matrix, where rows correspond to responses and columns correspond to time steps. |
| Feature regression | Features specified in one or more columns as scalars.
If you do not specify the responseNames argument, then the predictors must be in the first numFeatures columns of the table, where numFeatures is the number of features of the input data. | One or more columns of scalar values |

For regression networks with image or sequence input, if you do not specify responseNames, then the function, by default, uses the first column of tbl for the predictors and the subsequent columns as responses. For regression networks with feature input, if you do not specify the responseNames argument, then the function, by default, uses the first numFeatures columns for the predictors and the subsequent columns for the responses, where numFeatures is the number of features in the input data.

Normalizing the responses often helps to stabilize and speed up training of neural networks for regression. For more information, see “Train Convolutional Neural Network for Regression”.

Responses cannot contain NaNs. If the predictor data contains NaNs, then they are propagated through the training. However, in most cases, the training fails to converge.

Data Types: table

responseNames — Names of response variables in the input table
character vector | cell array of character vectors | string array
Names of the response variables in the input table, specified as one of the following:

- For classification or regression tasks with a single response, `responseNames` must be a character vector or string scalar containing the response variable in the input table.
- For regression tasks with multiple responses, `responseNames` must be string array or cell array of character vectors containing the response variables in the input table.

Data Types: char | cell | string

layers — Network layers
Layer array | LayerGraph object

Network layers, specified as a `Layer` array or a `LayerGraph` object.

To create a network with all layers connected sequentially, you can use a `Layer` array as the input argument. In this case, the returned network is a `SeriesNetwork` object.

A directed acyclic graph (DAG) network has a complex structure in which layers can have multiple inputs and outputs. To create a DAG network, specify the network architecture as a `LayerGraph` object and then use that layer graph as the input argument to `trainNetwork`.

For a list of built-in layers, see “List of Deep Learning Layers”.

options — Training options
`TrainingOptionsSGDM | TrainingOptionsRMSProp | TrainingOptionsADAM`

Training options, specified as a `TrainingOptionsSGDM`, `TrainingOptionsRMSProp`, or `TrainingOptionsADAM` object returned by the `trainingOptions` function.

Output Arguments

net — Trained network
`SeriesNetwork object | DAGNetwork object`

Trained network, returned as a `SeriesNetwork` object or a `DAGNetwork` object.

If you train the network using a `Layer` array, then `net` is a `SeriesNetwork` object. If you train the network using a `LayerGraph` object, then `net` is a `DAGNetwork` object.

info — Training information
structure

Training information, returned as a structure, where each field is a scalar or a numeric vector with one element per training iteration.

For classification tasks, `info` contains the following fields:

- `TrainingLoss` — Loss function values
- `TrainingAccuracy` — Training accuracies
- `ValidationLoss` — Loss function values
- `ValidationAccuracy` — Validation accuracies
- `BaseLearnRate` — Learning rates
• FinalValidationLoss — Final validation loss
• FinalValidationAccuracy — Final validation accuracy

For regression tasks, info contains the following fields:
• TrainingLoss — Loss function values
• TrainingRMSE — Training RMSE values
• ValidationLoss — Loss function values
• ValidationRMSE — Validation RMSE values
• BaseLearnRate — Learning rates
• FinalValidationLoss — Final validation loss
• FinalValidationRMSE — Final validation RMSE

The structure only contains the fields ValidationLoss, ValidationAccuracy, ValidationRMSE, FinalValidationLoss, FinalValidationAccuracy and FinalValidationRMSE when options specifies validation data. The 'ValidationFrequency' option of trainingOptions determines which iterations the software calculates validation metrics. The final validation metrics are scalar. The other fields of the structure are row vectors, where each element corresponds to a training iteration. For iterations when the software does not calculate validation metrics, the corresponding values in the structure are NaN.

If your network contains batch normalization layers, then the final validation metrics are often different from the validation metrics evaluated during training. This is because batch normalization layers in the final network perform different operations than during training. For more information, see batchNormalizationLayer.

More About

Save Checkpoint Networks and Resume Training

Deep Learning Toolbox enables you to save networks as .mat files after each epoch during training. This periodic saving is especially useful when you have a large network or a large data set, and training takes a long time. If the training is interrupted for some reason, you can resume training from the last saved checkpoint network. If you want trainNetwork to save checkpoint networks, then you must specify the name of the path by using the 'CheckpointPath' name-value pair argument of trainingOptions. If the path that you specify does not exist, then trainingOptions returns an error.

trainNetwork automatically assigns unique names to checkpoint network files. In the example name, net_checkpoint__351__2018_04_12__18_09_52.mat, 351 is the iteration number, 2018_04_12 is the date, and 18_09_52 is the time at which trainNetwork saves the network. You can load a checkpoint network file by double-clicking it or using the load command at the command line. For example:

```matlab
load net_checkpoint__351__2018_04_12__18_09_52.mat
```

You can then resume training by using the layers of the network as an input argument to trainNetwork. For example:

```matlab
trainNetwork(XTrain,YTrain,net.Layers,options)
```
You must manually specify the training options and the input data, because the checkpoint network does not contain this information. For an example, see “Resume Training from Checkpoint Network”.

Floating-Point Arithmetic

All functions for deep learning training, prediction, and validation in Deep Learning Toolbox perform computations using single-precision, floating-point arithmetic. Functions for deep learning include trainNetwork, predict, classify, and activations. The software uses single-precision arithmetic when you train networks using both CPUs and GPUs.

References

Extended Capabilities

Automatic Parallel Support

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run computation in parallel, set the 'ExecutionEnvironment' option to 'multi-gpu' or 'parallel'.

Use trainingOptions to set the 'ExecutionEnvironment' and supply the options to trainNetwork. If you do not set 'ExecutionEnvironment', then trainNetwork runs on a GPU if available.

For details, see “Scale Up Deep Learning in Parallel and in the Cloud”.

See Also

DAGNetwork | Deep Network Designer | LayerGraph | SeriesNetwork | analyzeNetwork | assembleNetwork | classify | predict | trainingOptions

Topics

“Create Simple Deep Learning Network for Classification”
“Transfer Learning Using Pretrained Network”
“Train Convolutional Neural Network for Regression”
“Sequence Classification Using Deep Learning”
“Deep Learning in MATLAB”
“Define Custom Deep Learning Layers”
“List of Deep Learning Layers”

Introduced in R2016a
transposedConv2dLayer

Transposed 2-D convolution layer

Syntax

layer = transposedConv2dLayer(filterSize,numFilters)
layer = transposedConv2dLayer(filterSize,numFilters,Name,Value)

Description

A transposed 2-D convolution layer upsamples feature maps.

This layer is sometimes incorrectly known as a "deconvolution" or "deconv" layer. This layer is the transpose of convolution and does not perform deconvolution.

layer = transposedConv2dLayer(filterSize,numFilters) returns a transposed 2-D convolution layer and sets the filterSize and numFilters properties.

layer = transposedConv2dLayer(filterSize,numFilters,Name,Value) returns a transposed 2-D convolutional layer and specifies additional options using one or more name-value pair arguments.

Examples

Create Transposed Convolutional Layer

Create a transposed convolutional layer with 96 filters, each with a height and width of 11. Use a stride of 4 in the horizontal and vertical directions.

layer = transposedConv2dLayer(11,96,'Stride',4);

Input Arguments

filterSize — Height and width of filters
vector of two positive integers

Height and width of the filters, specified as a vector of two positive integers [h w], where h is the height and w is the width. FilterSize defines the size of the local regions to which the neurons connect in the input.

If you set FilterSize using an input argument, then you can specify FilterSize as scalar to use the same value for both dimensions.

Example: [5 5] specifies filters of height 5 and width 5.

numFilters — Number of filters
positive integer
Number of filters, specified as a positive integer. This number corresponds to the number of neurons in the layer that connect to the same region in the input. This parameter determines the number of channels (feature maps) in the output of the convolutional layer.

Example: 96

Name-Value Pair Arguments

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `'Cropping',1`

Transposed Convolution

Stride — Up-sampling factor

1 (default) | vector of two positive integers | positive integer

Up-sampling factor of the input, specified as one of the following:

- A vector of two positive integers `[a b]`, where `a` is the vertical stride and `b` is the horizontal stride.
- A positive integer the corresponds to both the vertical and horizontal stride.

Example: `'Stride',[2 1]`

Cropping — Output size reduction

0 (default) | 'same' | nonnegative integer | vector of two nonnegative integers

Output size reduction, specified as one of the following:

- 'same' - Set the cropping so that the output size equals `inputSize .* Stride`, where `inputSize` is the height and width of the layer input. If you set the 'Cropping' option to 'same', then the software automatically sets the `CroppingMode` property of the layer to 'same'. The software trims an equal amount from the top and bottom, and the left and right, if possible. If the vertical crop amount has an odd value, then the software trims an extra row from the bottom. If the horizontal crop amount has an odd value, then the software trims an extra column from the right.
- A positive integer - Crop the specified amount of data from all the edges.
- A vector of nonnegative integers `[a b]` - Crop `a` from the top and bottom and crop `b` from the left and right.
- A vector `[t b l r]` - Crop `t`, `b`, `l`, `r` from the top, bottom, left, and right of the input, respectively.

If you set the 'Cropping' option to a numeric value, then the software automatically sets the `CroppingMode` property of the layer to 'manual'.

Example: `[1 2]`

NumChannels — Number of channels for each filter

'auto' (default) | positive integer

Number of channels for each filter, specified as 'NumChannels' and 'auto' or a positive integer.
This parameter must be equal to the number of channels of the input to this convolutional layer. For example, if the input is a color image, then the number of channels for the input must be 3. If the number of filters for the convolutional layer prior to the current layer is 16, then the number of channels for this layer must be 16.

Parameters and Initialization

WeightsInitializer — Function to initialize weights

'glorot' (default) | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function handle

Function to initialize the weights, specified as one of the following:

- 'glorot' - Initialize the weights with the Glorot initializer [1] (also known as Xavier initializer). The Glorot initializer independently samples from a uniform distribution with zero mean and variance \(2/(\text{numIn} + \text{numOut})\), where \(\text{numIn} = \text{filterSize}(1) \times \text{filterSize}(2) \times \text{NumChannels}\), \(\text{numOut} = \text{filterSize}(1) \times \text{filterSize}(2) \times \text{numFilters}\), and \(\text{NumChannels}\) is the number of input channels.

- 'he' - Initialize the weights with the He initializer [2]. The He initializer samples from a normal distribution with zero mean and variance \(2/\text{numIn}\), where \(\text{numIn} = \text{filterSize}(1) \times \text{filterSize}(2) \times \text{NumChannels}\) and \(\text{NumChannels}\) is the number of input channels.

- 'narrow-normal' - Initialize the weights by independently sampling from a normal distribution with zero mean and standard deviation 0.01.

- 'zeros' - Initialize the weights with zeros.

- 'ones' - Initialize the weights with ones.

- Function handle - Initialize the weights with a custom function. If you specify a function handle, then the function must be of the form \(\text{weights} = \text{func}(\text{sz})\), where \(\text{sz}\) is the size of the weights. For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the weights when the **Weights** property is empty.

Data Types: char | string | function_handle

BiasInitializer — Function to initialize bias

'zeros' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:

- 'zeros' - Initialize the bias with zeros.

- 'ones' - Initialize the bias with ones.

- 'narrow-normal' - Initialize the bias by independently sampling from a normal distribution with zero mean and standard deviation 0.01.

- Function handle - Initialize the bias with a custom function. If you specify a function handle, then the function must be of the form \(\text{bias} = \text{func}(\text{sz})\), where \(\text{sz}\) is the size of the bias.

The layer only initializes the bias when the **Bias** property is empty.

Data Types: char | string | function_handle

Weights — Layer weights

[] (default) | numeric array
Layer weights for the convolutional layer, specified as a numeric array.

The layer weights are learnable parameters. You can specify the initial value for the weights directly using the `Weights` property of the layer. When training a network, if the `Weights` property of the layer is nonempty, then `trainNetwork` uses the `Weights` property as the initial value. If the `Weights` property is empty, then `trainNetwork` uses the initializer specified by the `WeightsInitializer` property of the layer.

At training time, `Weights` is a `filterSize(1)`-by-`filterSize(2)`-by-`numFilters`-by-`NumChannels` array.

Data Types: `single` | `double`

Bias — Layer biases

[] (default) | numeric array

Layer biases for the convolutional layer, specified as a numeric array.

The layer biases are learnable parameters. When training a network, if `Bias` is nonempty, then `trainNetwork` uses the `Bias` property as the initial value. If `Bias` is empty, then `trainNetwork` uses the initializer specified by `BiasInitializer`.

At training time, `Bias` is a 1-by-1-by-`numFilters` array.

Data Types: `single` | `double`

Learn Rate and Regularization

WeightLearnRateFactor — Learning rate factor for weights

1 (default) | nonnegative scalar

Learning rate factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the weights in this layer. For example, if `WeightLearnRateFactor` is 2, then the learning rate for the weights in this layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the `trainingOptions` function.

Example: 2

BiasLearnRateFactor — Learning rate factor for biases

1 (default) | nonnegative scalar

Learning rate factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the biases in this layer. For example, if `BiasLearnRateFactor` is 2, then the learning rate for the biases in the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the `trainingOptions` function.

Example: 2

WeightL2Factor — L2 regularization factor for weights

1 (default) | nonnegative scalar

L2 regularization factor for the weights, specified as a nonnegative scalar.
The software multiplies this factor by the global L2 regularization factor to determine the L2 regularization for the weights in this layer. For example, if \texttt{WeightL2Factor} is 2, then the L2 regularization for the weights in this layer is twice the global L2 regularization factor. You can specify the global L2 regularization factor using the \texttt{trainingOptions} function.

Example: 2

\textbf{BiasL2Factor — L2 regularization factor for biases}

\begin{verbatim}
0 (default) | nonnegative scalar
\end{verbatim}

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2 regularization for the biases in this layer. For example, if \texttt{BiasL2Factor} is 2, then the L2 regularization for the biases in this layer is twice the global L2 regularization factor. You can specify the global L2 regularization factor using the \texttt{trainingOptions} function.

Example: 2

\textbf{Layer}

\textbf{Name — Layer name}

\begin{verbatim}
' ' (default) | character vector | string scalar
\end{verbatim}

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and \texttt{Name} is set to ' ', then the software automatically assigns a name to the layer at training time.

\textbf{Output Arguments}

\textbf{layer — Transposed 2-D convolution layer}

\texttt{TransposedConvolution2DLayer} object

Transposed 2-D convolution layer, returned as a \texttt{TransposedConvolution2DLayer} object.

\textbf{Compatibility Considerations}

\textbf{Default weights initialization is Glorot}

\textit{Behavior changed in R2019a}

Starting in R2019a, the software, by default, initializes the layer weights of this layer using the Glorot initializer. This behavior helps stabilize training and usually reduces the training time of deep networks.

In previous releases, the software, by default, initializes the layer weights by sampling from a normal distribution with zero mean and variance 0.01. To reproduce this behavior, set the \texttt{WeightsInitializer} option of the layer to 'narrow-normal'.

\textbf{References}

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- Code generation does not support asymmetric cropping of the input. For example, specifying a vector \([t \ b \ l \ r]\) for the 'Cropping' parameter to crop the top, bottom, left, and right of the input is not supported.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
SoftmaxLayer | TransposedConvolution2DLayer | averagePooling2dLayer | maxPooling2dLayer

Topics
“Create Simple Deep Learning Network for Classification”
“Deep Learning in MATLAB”
“Compare Layer Weight Initializers”
“List of Deep Learning Layers”

Introduced in R2017b
transposedConv3dLayer

Transposed 3-D convolution layer

Syntax

```plaintext
layer = transposedConv3dLayer(filterSize,numFilters)
layer = transposedConv3dLayer(filterSize,numFilters,Name,Value)
```

Description

A transposed 3-D convolution layer upsamples three-dimensional feature maps.

This layer is sometimes incorrectly known as a "deconvolution" or "deconv" layer. This layer is the transpose of convolution and does not perform deconvolution.

`layer = transposedConv3dLayer(filterSize,numFilters)` returns a transposed 3-D convolution layer and sets the `FilterSize` and `NumFilters` properties.

`layer = transposedConv3dLayer(filterSize,numFilters,Name,Value)` returns a transposed 3-D convolutional layer and specifies additional options using one or more name-value pair arguments.

Examples

Create Transposed 3-D Convolutional Layer

Create a transposed 3-D convolutional layer with 32 filters, each with a height, width, and depth of 11. Use a stride of 4 in the horizontal and vertical directions and 2 along the depth.

```plaintext
layer = transposedConv3dLayer(11,32,'Stride',[4 4 2])
```

`layer = TransposedConvolution3DLayer with properties:

- Name: '
- Hyperparameters:
 - FilterSize: [11 11 11]
 - NumChannels: 'auto'
 - NumFilters: 32
 - Stride: [4 4 2]
 - CroppingMode: 'manual'
 - CroppingSize: [2x3 double]
- Learnable Parameters:
 - Weights: []
 - Bias: []

Show all properties
Input Arguments

filterSize — Height, width, and depth of filters

vector of three positive integers

Height, width, and depth of the filters, specified as a vector \([h \ w \ d]\) of three positive integers, where \(h\) is the height, \(w\) is the width, and \(d\) is the depth. **FilterSize** defines the size of the local regions to which the neurons connect in the input.

If you set **FilterSize** using an input argument, then you can specify **FilterSize** as scalar to use the same value for all three dimensions.

Example: \([5 \ 5 \ 5]\) specifies filters with a height, width, and depth of 5.

numFilters — Number of filters

positive integer

Number of filters, specified as a positive integer. This number corresponds to the number of neurons in the convolutional layer that connect to the same region in the input. This parameter determines the number of channels (feature maps) in the output of the convolutional layer.

Example: 96

Name-Value Pair Arguments

Specify optional comma-separated pairs of **Name,Value** arguments. **Name** is the argument name and **Value** is the corresponding value. **Name** must appear inside quotes. You can specify several name and value pair arguments in any order as **Name1,Value1,...,NameN,ValueN**.

Example: ‘Cropping’,1

Transposed Convolution

Stride — Step size for traversing input

\([1 \ 1 \ 1]\) (default) | vector of three positive integers

Step size for traversing the input in three dimensions, specified as a vector \([a \ b \ c]\) of three positive integers, where \(a\) is the vertical step size, \(b\) is the horizontal step size, and \(c\) is the step size along the depth. When creating the layer, you can specify **Stride** as a scalar to use the same value for step sizes in all three directions.

Example: \([2 \ 3 \ 1]\) specifies a vertical step size of 2, a horizontal step size of 3, and a step size along the depth of 1.

Cropping — Output size reduction

\(0\) (default) | ‘same’ | vector of nonnegative integers | matrix of nonnegative integers

Output size reduction, specified as one of the following:

- ‘same’ - Set the cropping so that the output size equals \(\text{inputSize} \times \text{Stride}\), where \(\text{inputSize}\) is the height, width, and depth of the layer input. If you set the ‘Cropping’ option to ‘same’, then the software automatically sets the **CroppingMode** property of the layer to ‘same’.

 The software trims an equal amount from the top and bottom, the left and right, and the front and back, if possible. If the vertical crop amount has an odd value, then the software trims an extra row from the bottom. If the horizontal crop amount has an odd value, then the software trims an
extra column from the right. If the depth crop amount has an odd value, then the software trims an extra plane from the back.

- A positive integer – Crop the specified amount of data from all the edges.
- A vector of nonnegative integers \([a \ b \ c]\) – Crop \(a\) from the top and bottom, crop \(b\) from the left and right, and crop \(c\) from the front and back.
- A matrix of nonnegative integers \([t \ l \ f; b \ r \ bk]\) of nonnegative integers — Crop \(t, l, f, b, r, bk\) from the top, left, front, bottom, right, and back of the input, respectively.

Example: \([1 \ 2 \ 2]\)

NumChannels — Number of channels for each filter

'auto' (default) | positive integer

Number of channels for each filter, specified as 'NumChannels' and 'auto' or a positive integer.

This parameter must be equal to the number of channels of the input to this convolutional layer. For example, if the input is a color image, then the number of channels for the input must be 3. If the number of filters for the convolutional layer prior to the current layer is 16, then the number of channels for this layer must be 16.

Parameters and Initialization

WeightsInitializer — Function to initialize weights

'glorot' (default) | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function handle

Function to initialize the weights, specified as one of the following:

- 'glorot' – Initialize the weights with the Glorot initializer [1] (also known as Xavier initializer). The Glorot initializer independently samples from a uniform distribution with zero mean and variance \(2/(numIn + numOut)\), where \(numIn = \text{filterSize}(1) \times \text{filterSize}(2) \times \text{filterSize}(3) \times \text{NumChannels}\), \(numOut = \text{filterSize}(1) \times \text{filterSize}(2) \times \text{filterSize}(3) \times \text{numFilters}\), and \(\text{NumChannels}\) is the number of input channels.
- 'he' – Initialize the weights with the He initializer [2]. The He initializer samples from a normal distribution with zero mean and variance \(2/numIn\), where \(numIn = \text{filterSize}(1) \times \text{filterSize}(2) \times \text{filterSize}(3) \times \text{NumChannels}\) and \(\text{NumChannels}\) is the number of input channels.
- 'narrow-normal' – Initialize the weights by independently sampling from a normal distribution with zero mean and standard deviation 0.01.
- 'zeros' – Initialize the weights with zeros.
- 'ones' – Initialize the weights with ones.
- Function handle – Initialize the weights with a custom function. If you specify a function handle, then the function must be of the form \(\text{weights} = \text{func}(sz)\), where \(sz\) is the size of the weights. For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the weights when the Weights property is empty.

BiasInitializer — Function to initialize bias

'zeros' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:
• 'zeros' - Initialize the bias with zeros.
• 'ones' - Initialize the bias with ones.
• 'narrow-normal' - Initialize the bias by independently sampling from a normal distribution with zero mean and standard deviation 0.01.
• Function handle - Initialize the bias with a custom function. If you specify a function handle, then the function must be of the form bias = func(sz), where sz is the size of the bias.

The layer only initializes the bias when the Bias property is empty.

Data Types: char | string | function_handle

Weights — Layer weights

[] (default) | numeric array

Layer weights for the transposed convolutional layer, specified as a numeric array.

The layer weights are learnable parameters. You can specify the initial value for the weights directly using the Weights property of the layer. When training a network, if the Weights property of the layer is nonempty, then trainNetwork uses the Weights property as the initial value. If the Weights property is empty, then trainNetwork uses the initializer specified by the WeightsInitializer property of the layer.

At training time, Weights is a FilterSize(1)-by-FilterSize(2)-by-FilterSize(3)-by-numFilters-by-NumChannels array.

Data Types: single | double

Bias — Layer biases

[] (default) | numeric array

Layer biases for the transposed convolutional layer, specified as a numeric array.

The layer biases are learnable parameters. When training a network, if Bias is nonempty, then trainNetwork uses the Bias property as the initial value. If Bias is empty, then trainNetwork uses the initializer specified by BiasInitializer.

At training time, Bias 1-by-1-by-1-by-numFilters array.

Data Types: single | double

Learn Rate and Regularization

WeightLearnRateFactor — Learning rate factor for weights

1 (default) | nonnegative scalar

Learning rate factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the weights in this layer. For example, if WeightLearnRateFactor is 2, then the learning rate for the weights in this layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the trainingOptions function.

Example: 2

BiasLearnRateFactor — Learning rate factor for biases

1 (default) | nonnegative scalar
Learning rate factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the biases in this layer. For example, if `BiasLearnRateFactor` is 2, then the learning rate for the biases in the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the `trainingOptions` function.

Example: 2

WeightL2Factor — L2 regularization factor for weights

1 (default) | nonnegative scalar

L2 regularization factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2 regularization for the weights in this layer. For example, if `WeightL2Factor` is 2, then the L2 regularization for the weights in this layer is twice the global L2 regularization factor. You can specify the global L2 regularization factor using the `trainingOptions` function.

Example: 2

BiasL2Factor — L2 regularization factor for biases

0 (default) | nonnegative scalar

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2 regularization for the biases in this layer. For example, if `BiasL2Factor` is 2, then the L2 regularization for the biases in this layer is twice the global L2 regularization factor. You can specify the global L2 regularization factor using the `trainingOptions` function.

Example: 2

Layer

Name — Layer name

'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and `Name` is set to '', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

Output Arguments

layer — Transposed 3-D convolution layer

`TransposedConvolution3DLayer` object

Transposed 3-D convolution layer, returned as a `TransposedConvolution3DLayer` object.

References

See Also
SoftmaxLayer | TransposedConvolution3dLayer | averagePooling3dLayer | maxPooling3dLayer | transposedConv2dLayer

Topics
“3-D Brain Tumor Segmentation Using Deep Learning”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2019a
TransposedConvolution2DLayer

Transposed 2-D convolution layer

Description

A transposed 2-D convolution layer upsamples feature maps.

This layer is sometimes incorrectly known as a "deconvolution" or "deconv" layer. This layer is the transpose of convolution and does not perform deconvolution.

Creation

Create a transposed convolution 2-D output layer using transposedConv2dLayer.

Properties

Transposed Convolution

FilterSize — Height and width of filters
vector of two positive integers

Height and width of the filters, specified as a vector of two positive integers \([h\ w]\), where \(h\) is the height and \(w\) is the width. FilterSize defines the size of the local regions to which the neurons connect in the input.

If you set FilterSize using an input argument, then you can specify FilterSize as scalar to use the same value for both dimensions.

Example: \([5\ 5]\) specifies filters of height 5 and width 5.

NumFilters — Number of filters
positive integer

Number of filters, specified as a positive integer. This number corresponds to the number of neurons in the convolutional layer that connect to the same region in the input. This parameter determines the number of channels (feature maps) in the output of the convolutional layer.

Example: 96

Stride — Step size for traversing input
[1 1] (default) | vector of two positive integers

Step size for traversing the input vertically and horizontally, specified as a vector \([a\ b]\) of two positive integers, where \(a\) is the vertical step size and \(b\) is the horizontal step size. When creating the layer, you can specify Stride as a scalar to use the same value for both step sizes.

Example: \([2\ 3]\) specifies a vertical step size of 2 and a horizontal step size of 3.

CroppingMode — Method to determine cropping size
'manual' (default) | 'same'

1-1057
Method to determine cropping size, specified as 'manual' or same.

The software automatically sets the value of `CroppingMode` based on the 'Cropping' value you specify when creating the layer.

- If you set the 'Cropping' option to a numeric value, then the software automatically sets the `CroppingMode` property of the layer to 'manual'.
- If you set the 'Cropping' option to 'same', then the software automatically sets the `CroppingMode` property of the layer to 'same' and set the cropping so that the output size equals `inputSize .* Stride`, where `inputSize` is the height and width of the layer input.

To specify the cropping size, use the 'Cropping' option of `transposedConv2dLayer`.

CroppingSize — Output size reduction
`[0 0 0 0]` (default) | vector of four nonnegative integers

Output size reduction, specified as a vector of four nonnegative integers `[t b l r]`, where `t`, `b`, `l`, `r` are the amounts to crop from the top, bottom, left, and right, respectively.

To specify the cropping size manually, use the 'Cropping' option of `transposedConv2dLayer`.

Example: `[0 1 0 1]`

Cropping — Output size reduction
`[0 0]` (default) | vector of two nonnegative integers

Note Cropping property will be removed in a future release. Use `CroppingSize` instead. To specify the cropping size manually, use the 'Cropping' option of `transposedConv2dLayer`.

Output size reduction, specified as a vector of two nonnegative integers `[a b]`, where `a` corresponds to the cropping from the top and bottom and `b` corresponds to the cropping from the left and right.

To specify the cropping size manually, use the 'Cropping' option of `transposedConv2dLayer`.

Example: `[0 1]`

NumChannels — Number of channels for each filter
'auto' (default) | integer

Number of channels for each filter, specified as 'NumChannels' and 'auto' or an integer.

This parameter must be equal to the number of channels of the input to this convolutional layer. For example, if the input is a color image, then the number of channels for the input must be 3. If the number of filters for the convolutional layer prior to the current layer is 16, then the number of channels for this layer must be 16.

Parameters and Initialization

WeightsInitializer — Function to initialize weights
'glorot' (default) | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function handle

Function to initialize the weights, specified as one of the following:

- 'glorot' - Initialize the weights with the Glorot initializer [1] (also known as Xavier initializer).
 The Glorot initializer independently samples from a uniform distribution with zero mean and...
\[
\text{variance} \frac{2}{(\text{numIn} + \text{numOut})}, \text{where numIn = FilterSize(1) FilterSize(2) NumChannels and numOut = FilterSize(1) FilterSize(2) NumFilters.}
\]

- 'he' - Initialize the weights with the He initializer \([2]\). The He initializer samples from a normal distribution with zero mean and variance \(2/\text{numIn}\), where \(\text{numIn} = \text{FilterSize(1)} \times \text{FilterSize(2)} \times \text{NumChannels}\).
- 'narrow-normal' - Initialize the weights by independently sampling from a normal distribution with zero mean and standard deviation 0.01.
- 'zeros' - Initialize the weights with zeros.
- 'ones' - Initialize the weights with ones.
- Function handle - Initialize the weights with a custom function. If you specify a function handle, then the function must be of the form \(\text{weights} = \text{func(sz)}\), where \(\text{sz}\) is the size of the weights. For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the weights when the \text{Weights} property is empty.

\text{Data Types: char | string | function_handle}

\textbf{BiasInitializer — Function to initialize bias}

'
zeros' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:

- 'zeros' - Initialize the bias with zeros.
- 'ones' - Initialize the bias with ones.
- 'narrow-normal' - Initialize the bias by independently sampling from a normal distribution with zero mean and standard deviation 0.01.
- Function handle - Initialize the bias with a custom function. If you specify a function handle, then the function must be of the form \(\text{bias} = \text{func(sz)}\), where \(\text{sz}\) is the size of the bias.

The layer only initializes the bias when the \text{Bias} property is empty.

\text{Data Types: char | string | function_handle}

\textbf{Weights — Layer weights}

\texttt{[]} (default) | numeric array

Layer weights for the convolutional layer, specified as a \text{FilterSize(1)}-by-\text{FilterSize(2)}-by-\text{NumFilters}-by-\text{NumChannels} array.

The layer weights are learnable parameters. You can specify the initial value for the weights directly using the \text{Weights} property of the layer. When training a network, if the \text{Weights} property of the layer is nonempty, then \text{trainNetwork} uses the \text{Weights} property as the initial value. If the \text{Weights} property is empty, then \text{trainNetwork} uses the initializer specified by the \text{WeightsInitializer} property of the layer.

\text{Data Types: single | double}

\textbf{Bias — Layer biases}

\texttt{[]} (default) | numeric array

Layer biases for the convolutional layer, specified as a numeric array.
The layer biases are learnable parameters. When training a network, if Bias is nonempty, then `trainNetwork` uses the Bias property as the initial value. If Bias is empty, then `trainNetwork` uses the initializer specified by `BiasInitializer`.

At training time, Bias is a 1-by-1-by-NumFilters array.

Data Types: `single` | `double`

Learn Rate and Regularization

WeightLearnRateFactor — Learning rate factor for weights

`1 (default) | nonnegative scalar`

Learning rate factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the weights in this layer. For example, if `WeightLearnRateFactor` is 2, then the learning rate for the weights in this layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the `trainingOptions` function.

Example: 2

BiasLearnRateFactor — Learning rate factor for biases

`1 (default) | nonnegative scalar`

Learning rate factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the biases in this layer. For example, if `BiasLearnRateFactor` is 2, then the learning rate for the biases in the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the `trainingOptions` function.

Example: 2

WeightL2Factor — L2 regularization factor for weights

`1 (default) | nonnegative scalar`

L2 regularization factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2 regularization for the weights in this layer. For example, if `WeightL2Factor` is 2, then the L2 regularization for the weights in this layer is twice the global L2 regularization factor. You can specify the global L2 regularization factor using the `trainingOptions` function.

Example: 2

BiasL2Factor — L2 regularization factor for biases

`0 (default) | nonnegative scalar`

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2 regularization for the biases in this layer. For example, if `BiasL2Factor` is 2, then the L2 regularization for the biases in this layer is twice the global L2 regularization factor. You can specify the global L2 regularization factor using the `trainingOptions` function.

Example: 2
Layer

Name — Layer name

' ' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to ' ', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

NumInputs — Number of inputs

1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames — Input names

{'in'} (default)

Input names of the layer. This layer accepts a single input only.

Data Types: cell

NumOutputs — Number of outputs

1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames — Output names

{'out'} (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Create Transposed Convolutional Layer

Create a transposed convolutional layer with 96 filters, each with a height and width of 11. Use a stride of 4 in the horizontal and vertical directions.

```matlab
layer = transposedConv2dLayer(11,96,'Stride',4);
```

Compatibility Considerations

Default weights initialization is Glorot

Behavior changed in R2019a
Starting in R2019a, the software, by default, initializes the layer weights of this layer using the Glorot initializer. This behavior helps stabilize training and usually reduces the training time of deep networks.

In previous releases, the software, by default, initializes the layer weights by sampling from a normal distribution with zero mean and variance 0.01. To reproduce this behavior, set the 'WeightsInitializer' option of the layer to 'narrow-normal'.

Cropping property of TransposedConvolution2DLayer will be removed

Not recommended starting in R2019a

Cropping property of TransposedConvolution2DLayer will be removed, use `CroppingSize` instead. To update your code, replace all instances of the `Cropping` property with `CroppingSize`.

References

See Also

`averagePooling2dLayer` | `convolution2dLayer` | `maxPooling2dLayer` | `transposedConv2dLayer`

Topics

"Create Simple Deep Learning Network for Classification"
"Deep Learning in MATLAB"
"Specify Layers of Convolutional Neural Network"
"List of Deep Learning Layers"
"Compare Layer Weight Initializers"

Introduced in R2017b
TransposedConvolution3dLayer

Transposed 3-D convolution layer

Description

A transposed 3-D convolution layer upsamples three-dimensional feature maps.

This layer is sometimes incorrectly known as a "deconvolution" or "deconv" layer. This layer is the transpose of convolution and does not perform deconvolution.

Creation

Create a transposed convolution 3-D output layer using `transposedConv3dLayer`.

Properties

Transposed Convolution

FilterSize — Height, width, and depth of filters

vector of three positive integers

Height, width, and depth of the filters, specified as a vector \([h\ w\ d]\) of three positive integers, where \(h\) is the height, \(w\) is the width, and \(d\) is the depth. `FilterSize` defines the size of the local regions to which the neurons connect in the input.

When creating the layer, you can specify `FilterSize` as a scalar to use the same value for the height, width, and depth.

Example: \([5\ 5\ 5]\) specifies filters with a height, width, and depth of 5.

NumFilters — Number of filters

positive integer

Number of filters, specified as a positive integer. This number corresponds to the number of neurons in the convolutional layer that connect to the same region in the input. This parameter determines the number of channels (feature maps) in the output of the convolutional layer.

Example: 96

Stride — Step size for traversing input

\([1\ 1\ 1]\) (default) | vector of three positive integers

Step size for traversing the input in three dimensions, specified as a vector \([a\ b\ c]\) of three positive integers, where \(a\) is the vertical step size, \(b\) is the horizontal step size, and \(c\) is the step size along the depth. When creating the layer, you can specify `Stride` as a scalar to use the same value for step sizes in all three directions.

Example: \([2\ 3\ 1]\) specifies a vertical step size of 2, a horizontal step size of 3, and a step size along the depth of 1.
CroppingMode — Method to determine cropping size

'manual' (default) | 'same'

Method to determine cropping size, specified as 'manual' or 'same'.

The software automatically sets the value of CroppingMode based on the 'Cropping' value you specify when creating the layer:

- If you set the 'Cropping' option to a numeric value, then the software automatically sets the CroppingMode property of the layer to 'manual'.
- If you set the 'Cropping' option to 'same', then the software automatically sets the CroppingMode property of the layer to 'same' and set the cropping so that the output size equals inputSize .* Stride, where inputSize is the height, width, and depth of the layer input.

To specify the cropping size, use the 'Cropping' option of transposedConv3dLayer.

CroppingSize — Output size reduction

\[0 \ 0 \ 0;0 \ 0 \ 0\] (default) | matrix of nonnegative integers

Output size reduction, specified as a matrix of nonnegative integers \[t \ l \ f; b \ r \ bk\], \(t, l, f, b, r, bk\) are the amounts to crop from the top, left, front, bottom, right, and back of the input, respectively.

To specify the cropping size manually, use the 'Cropping' option of transposedConv2dLayer.

Example: \[0 \ 1 \ 0 \ 1 \ 0 \ 1\]

NumChannels — Number of channels for each filter

'auto' (default) | integer

Number of channels for each filter, specified 'auto' or an integer.

This parameter must be equal to the number of channels of the input to this convolutional layer. For example, if the input is a color image, then the number of channels for the input must be 3. If the number of filters for the convolutional layer prior to the current layer is 16, then the number of channels for this layer must be 16.

Parameters and Initialization

WeightsInitializer — Function to initialize weights

'glorot' (default) | 'he' | 'narrow-normal' | 'zeros' | 'ones' | function handle

Function to initialize the weights, specified as one of the following:

- 'glorot' – Initialize the weights with the Glorot initializer [1] (also known as Xavier initializer). The Glorot initializer independently samples from a uniform distribution with zero mean and variance \(2/(\text{numIn} + \text{numOut})\), where \(\text{numIn} = \text{FilterSize}(1)*\text{FilterSize}(2)*\text{FilterSize}(3)*\text{NumChannels}\) and \(\text{numOut} = \text{FilterSize}(1)*\text{FilterSize}(2)*\text{FilterSize}(3)*\text{NumFilters}\).
- 'he' – Initialize the weights with the He initializer [2]. The He initializer samples from a normal distribution with zero mean and variance \(2/\text{numIn}\), where \(\text{numIn} = \text{FilterSize}(1)*\text{FilterSize}(2)*\text{FilterSize}(3)*\text{NumChannels}\).
- 'narrow-normal' – Initialize the weights by independently sampling from a normal distribution with zero mean and standard deviation 0.01.
• 'zeros' - Initialize the weights with zeros.
• 'ones' - Initialize the weights with ones.
• Function handle - Initialize the weights with a custom function. If you specify a function handle, then the function must be of the form `weights = func(sz)`, where `sz` is the size of the weights. For an example, see “Specify Custom Weight Initialization Function”.

The layer only initializes the weights when the `Weights` property is empty.

Data Types: `char` | `string` | `function_handle`

BiasInitializer — Function to initialize bias

'zeros' (default) | 'narrow-normal' | 'ones' | function handle

Function to initialize the bias, specified as one of the following:

• 'zeros' - Initialize the bias with zeros.
• 'ones' - Initialize the bias with ones.
• 'narrow-normal' - Initialize the bias by independently sampling from a normal distribution with zero mean and standard deviation 0.01.
• Function handle - Initialize the bias with a custom function. If you specify a function handle, then the function must be of the form `bias = func(sz)`, where `sz` is the size of the bias.

The layer only initializes the bias when the `Bias` property is empty.

Data Types: `char` | `string` | `function_handle`

Weights — Layer weights

[] (default) | numeric array

Layer weights for the transposed convolutional layer, specified as a numeric array.

The layer weights are learnable parameters. You can specify the initial value for the weights directly using the `Weights` property of the layer. When training a network, if the `Weights` property of the layer is nonempty, then `trainNetwork` uses the `Weights` property as the initial value. If the `Weights` property is empty, then `trainNetwork` uses the initializer specified by the `WeightsInitializer` property of the layer.

At training time, `Weights` is a `FilterSize(1)`-by-`FilterSize(2)`-by-`FilterSize(3)`-by-`NumFilters`-by-`NumChannels` array.

Data Types: `single` | `double`

Bias — Layer biases

[] (default) | numeric array

Layer biases for the transposed convolutional layer, specified as a numeric array.

The layer biases are learnable parameters. When training a network, if `Bias` is nonempty, then `trainNetwork` uses the `Bias` property as the initial value. If `Bias` is empty, then `trainNetwork` uses the initializer specified by `BiasInitializer`.

At training time, `Bias` is a `1`-by-`1`-by-`1`-by-`NumFilters` array.

Data Types: `single` | `double`
Learn Rate and Regularization

WeightLearnRateFactor — Learning rate factor for weights

1 (default) | nonnegative scalar

Learning rate factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the weights in this layer. For example, if `WeightLearnRateFactor` is 2, then the learning rate for the weights in this layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the `trainingOptions` function.

Example: 2

BiasLearnRateFactor — Learning rate factor for biases

1 (default) | nonnegative scalar

Learning rate factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning rate for the biases in this layer. For example, if `BiasLearnRateFactor` is 2, then the learning rate for the biases in the layer is twice the current global learning rate. The software determines the global learning rate based on the settings specified with the `trainingOptions` function.

Example: 2

WeightL2Factor — L2 regularization factor for weights

1 (default) | nonnegative scalar

L2 regularization factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2 regularization for the weights in this layer. For example, if `WeightL2Factor` is 2, then the L2 regularization for the weights in this layer is twice the global L2 regularization factor. You can specify the global L2 regularization factor using the `trainingOptions` function.

Example: 2

BiasL2Factor — L2 regularization factor for biases

0 (default) | nonnegative scalar

L2 regularization factor for the biases, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the L2 regularization for the biases in this layer. For example, if `BiasL2Factor` is 2, then the L2 regularization for the biases in this layer is twice the global L2 regularization factor. You can specify the global L2 regularization factor using the `trainingOptions` function.

Example: 2

Layer

Name — Layer name

'' (default) | character vector | string scalar
Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to '', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

NumInputs — Number of inputs
1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames — Input names
{'in'} (default)

Input names of the layer. This layer accepts a single input only.

Data Types: cell

NumOutputs — Number of outputs
1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames — Output names
{'out'} (default)

Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Create Transposed 3-D Convolutional Layer

Create a transposed 3-D convolutional layer with 32 filters, each with a height, width, and depth of 11. Use a stride of 4 in the horizontal and vertical directions and 2 along the depth.

```matlab
tLayer = transposedConv3dLayer(11,32,'Stride',[4 4 2])
```

```matlab
layer = TransposedConvolution3DLayer with properties:
    Name: ''

    Hyperparameters
    FilterSize: [11 11 11]
    NumChannels: 'auto'
    NumFilters: 32
    Stride: [4 4 2]
    CroppingMode: 'manual'
    CroppingSize: [2x3 double]
```

Learnable Parameters
Weights: []
Bias: []

Show all properties

References

See Also
averagePooling3dLayer | convolution3dLayer | maxPooling3dLayer | transposedConv2dLayer | transposedConv3dLayer

Topics
“3-D Brain Tumor Segmentation Using Deep Learning”
“Deep Learning in MATLAB”
“Specify Layers of Convolutional Neural Network”
“List of Deep Learning Layers”

Introduced in R2019a
unfreezeParameters

Convert nonlearnable network parameters in ONNXParameters to learnable

Syntax

params = unfreezeParameters(params,names)

Description

params = unfreezeParameters(params,names) unfreezes the network parameters specified by names in the ONNXParameters object params. The function moves the specified parameters from params.Nonlearnables in the input argument params to params.Learnables in the output argument params.

Examples

Train Imported ONNX Function Using Custom Training Loop

Import the alexnet convolution neural network as a function and fine-tune the pretrained network with transfer learning to perform classification on a new collection of images.

This example uses several helper functions. To view the code for these functions, see Helper Functions on page 1-0 .

Unzip and load the new images as an image datastore. imageDatastore automatically labels the images based on folder names and stores the data as an ImageDatastore object. An image datastore enables you to store large image data, including data that does not fit in memory, and efficiently read batches of images during training of a convolutional neural network. Specify the minibatch size.

unzip('MerchData.zip');
miniBatchSize = 8;
imds = imageDatastore('MerchData', ...
 'IncludeSubfolders',true, ...
 'LabelSource','foldernames',...
 'ReadSize', miniBatchSize);

This data set is small, containing 75 training images. Display some sample images.

numImages = numel(imds.Labels);
idx = randperm(numImages,16);
figure
for i = 1:16
 subplot(4,4,i)
 I = readimage(imds,idx(i));
 imshow(I)
end
Extract the training set and one-hot encode the categorical classification labels.

\[
\begin{align*}
XTrain &= \text{readall}(\text{imds}); \\
XTrain &= \text{single(cat}(4,\text{XTrain}(:,:,::))); \\
YTrain_categ &= \text{categorical}(\text{imds.Labels}); \\
YTrain &= \text{onehotencode}(YTrain_categ,2)';
\end{align*}
\]

Determine the number of classes in the data.

\[
\begin{align*}
\text{classes} &= \text{categories}(YTrain_categ); \\
\text{numClasses} &= \text{numel(classes)}
\end{align*}
\]

\[
\text{numClasses} = 5
\]

AlexNet is a convolutional neural network that is trained on more than a million images from the ImageNet database. As a result, the network has learned rich feature representations for a wide range of images. The network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many animals.

Import the pretrained alexnet network as a function.

\[
\text{alexnetONNX}()
\]

\[
\text{params} = \text{importONNXFunction('alexnet.onnx','alexnetFcn')}
\]

A function containing the imported ONNX network has been saved to the file alexnetFcn.m. To learn how to use this function, type: help alexnetFcn.

\[
\text{params} = \\
\text{ONNXParameters with properties:}
\]
Learnables: [1×1 struct]
Nonlearnables: [1×1 struct]
State: [1×1 struct]
NumDimensions: [1×1 struct]
NetworkFunctionName: 'alexnetFcn'

params is an ONNXParameters object that contains the network parameters. alexnetFcn is a model function that contains the network architecture. importONNXFunction saves alexnetFcn in the current folder.

Calculate the classification accuracy of the pretrained network on the new training set.

```matlab
accuracyBeforeTraining = getNetworkAccuracy(XTrain,YTrain,params);
fprintf('%.2f accuracy before transfer learning\n',accuracyBeforeTraining);
```

0.01 accuracy before transfer learning

The accuracy is very low.

Display the learnable parameters of the network. These parameters, for example the weights (W) and bias (B) of convolution and fully connected layers, are updated by the network during training. Nonlearnable parameters remain constant during training.

```matlab
params.Learnables
ans = struct with fields:
  data_Mean: [227×227×3 dlarray]
  conv1_W: [11×11×3×96 dlarray]
  conv1_B: [96×1 dlarray]
  conv2_W: [5×5×48×256 dlarray]
  conv2_B: [256×1 dlarray]
  conv3_W: [3×3×256×384 dlarray]
  conv3_B: [384×1 dlarray]
  conv4_W: [3×3×192×384 dlarray]
  conv4_B: [384×1 dlarray]
  conv5_W: [3×3×192×256 dlarray]
  conv5_B: [256×1 dlarray]
  fc6_W: [6×6×256×4096 dlarray]
  fc6_B: [4096×1 dlarray]
  fc7_W: [1×1×4096×4096 dlarray]
  fc7_B: [4096×1 dlarray]
  fc8_W: [1×1×4096×1000 dlarray]
  fc8_B: [1000×1 dlarray]
```

The last two learnable parameters of the pretrained network are configured for 1000 classes. The parameters fc8_W and fc8_B must be fine-tuned for the new classification problem. Transfer the parameters to classify 5 classes by initializing them.

```matlab
params.Learnables.fc8_B = rand(5,1);
params.Learnables.fc8_W = rand(1,1,4096,5);
```

Freeze all the parameters of the network to convert them to nonlearnable parameters. Because you do not need to compute the gradients of the frozen layers, freezing the weights of many initial layers can significantly speed up network training.
params = freezeParameters(params,'all');

Unfreeze the last two parameters of the network to convert them to learnable parameters.

params = unfreezeParameters(params,'fc8_W');
params = unfreezeParameters(params,'fc8_B');

Now the network is ready for training. Initialize the training progress plot.

plots = "training-progress";
if plots == "training-progress"
 figure
 lineLossTrain = animatedline;
 xlabel("Iteration")
 ylabel("Loss")
end

Specify the training options.

velocity = [];
numEpochs = 5;
miniBatchSize = 16;
numObservations = size(YTrain,2);
numIterationsPerEpoch = floor(numObservations./miniBatchSize);
initialLearnRate = 0.01;
momentum = 0.9;
decay = 0.01;

Train the network.

iteration = 0;
start = tic;
executionEnvironment = "cpu"; % Change to "gpu" to train on a GPU.

% Loop over epochs.
for epoch = 1:numEpochs

 % Shuffle data.
 idx = randperm(numObservations);
 XTrain = XTrain(:,idx);
 YTrain = YTrain(:,idx);

 % Loop over mini-batches.
 for i = 1:numIterationsPerEpoch
 iteration = iteration + 1;

 % Read mini-batch of data.
 idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
 X = XTrain(:,idx);
 Y = YTrain(:,idx);

 % If training on a GPU, then convert data to gpuArray.
 if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
 X = gpuArray(X);
 end

 % Evaluate the model gradients and loss using dlfeval and the
 % modelGradients function.
 [gradients,loss,state] = dlfeval(@modelGradients,X,Y,params);

 % Update the model parameters.
 % ...
params.State = state;

% Determine learning rate for time-based decay learning rate schedule.
learnRate = initialLearnRate/(1 + decay*iteration);

% Update the network parameters using the SGDM optimizer.
[params.Learnables,velocity] = sgdmupdate(params.Learnables,gradients,velocity);

% Display the training progress.
if plots == "training-progress"
 D = duration(0,0,toc(start),'Format','hh:mm:ss');
 addpoints(lineLossTrain,iteration,double(gather(extractdata(loss))))
 title("Epoch: " + epoch + ", Elapsed: " + string(D))
 drawnow
end
end

![Epoch: 5, Elapsed: 00:00:13](image)

Calculate the classification accuracy of the network after fine-tuning.

accuracyAfterTraining = getNetworkAccuracy(XTrain,YTrain,params);
fprintf('%.2f accuracy after transfer learning\n',accuracyAfterTraining);

0.99 accuracy after transfer learning

Helper Functions

This section provides the code of the helper functions used in this example.
The `getNetworkAccuracy` function evaluates the network performance by calculating the classification accuracy.

```matlab
function accuracy = getNetworkAccuracy(X,Y,onnxParams)

N = size(X,4);
Ypred = alexnetFcn(X,onnxParams,'Training',false);

[-,YIdx] = max(Y,[],1);
[-,YpredIdx] = max(Ypred,[],1);
numIncorrect = sum(abs(YIdx-YpredIdx) > 0);
accuracy = 1 - numIncorrect/N;
end
```

The `modelGradients` function calculates the loss and gradients.

```matlab
function [grad, loss, state] = modelGradients(X,Y,onnxParams)

[y,state] = alexnetFcn(X,onnxParams,'Training',true);
loss = crossentropy(y,Y,'DataFormat','CB');
gr = dlgradient(loss,onnxParams.Learnables);
end
```

The `alexnetONNX` function generates an ONNX model of the `alexnet` network. You need Deep Learning Toolbox Model for AlexNet Network support to access this model.

```matlab
function alexnetONNX()
exportONNXNetwork(alexnet,'alexnet.onnx');
end
```

Input Arguments

- `params` — Network parameters
 ONNXParameters object

 Network parameters, specified as an `ONNXParameters` object. `params` contains the network parameters of the imported ONNX model.

- `names` — Names of parameters to unfreeze
 `'all'` | string array

 Names of the parameters to unfreeze, specified as `'all'` or a string array. Unfreeze all nonlearnable parameters by setting `names` to `'all'`. Unfreeze k nonlearnable parameters by defining the parameter names in the 1-by-k string array `names`.

 Example: `["gpu_0_sl_pred_b_0", "gpu_0_sl_pred_w_0"]`

 Data Types: `char` | `string`

Output Arguments

- `params` — Network parameters
 ONNXParameters object
Network parameters, returned as an ONNXParameters object. params contains the network parameters updated by unfreezeParameters.

See Also
ONNXParameters | freezeParameters | importONNXFunction

Introduced in R2020b
validate

Quantize and validate a deep neural network

Syntax

```matlab
validationResults = validate(quantObj, valData)
validationResults = validate(quantObj, valData, quantOpts)
```

Description

`validationResults = validate(quantObj, valData)` quantizes the weights, biases, and activations in the convolution layers of the network, and validates the network specified by `dlquantizer` object, `quantObj` and using the data specified by `valData`.

`validationResults = validate(quantObj, valData, quantOpts)` quantizes the weights, biases, and activations in the convolution layers of the network, and validates the network specified by `dlquantizer` object, `quantObj`, using the data specified by `valData`, and the optional argument `quantOpts` that specifies a metric function to evaluate the performance of the quantized network.

To learn about the products required to quantize a deep neural network, see “Quantization Workflow Prerequisites”.

Examples

Quantize a Neural Network

This example shows how to quantize learnable parameters in the convolution layers of a neural network, and explore the behavior of the quantized network. In this example, you quantize the `squeezenet` neural network after retraining the network to classify new images according to the “Train Deep Learning Network to Classify New Images” example. In this example, the memory required for the network is reduced approximately 75% through quantization while the accuracy of the network is not affected.

Load the pretrained network.

```matlab
net = 
```

DAGNetwork with properties:

- Layers: [68x1 nnet.cnn.layer.Layer]
- Connections: [75x2 table]
- InputNames: {'data'}
- OutputNames: {'new_classoutput'}

Define calibration and validation data to use for quantization.

The calibration data is used to collect the dynamic ranges of the weights and biases in the convolution and fully connected layers of the network and the dynamic ranges of the activations in all
layers of the network. For the best quantization results, the calibration data must be representative of inputs to the network.

The validation data is used to test the network after quantization to understand the effects of the limited range and precision of the quantized convolution layers in the network.

In this example, use the images in the MerchData data set. Define an augmentedImageDatastore object to resize the data for the network. Then, split the data into calibration and validation data sets.

```matlab
unzip('MerchData.zip');
imds = imageDatastore('MerchData', ...
    'IncludeSubfolders',true, ...  
    'LabelSource','foldernames');
[calData, valData] = splitEachLabel(imds, 0.7, 'randomized');
aug_calData = augmentedImageDatastore([227 227], calData);
aug_valData = augmentedImageDatastore([227 227], valData);
```

Create a dlquantizer object and specify the network to quantize.

```matlab
quantObj = dlquantizer(net);
```

Define a metric function to use to compare the behavior of the network before and after quantization. Save this function in a local file.

```matlab
function accuracy = hComputeModelAccuracy(predictionScores, net, dataStore)
    %% Computes model-level accuracy statistics
    % Load ground truth
    tmp = readall(dataStore);
    groundTruth = tmp.response;
    % Compare with predicted label with actual ground truth
    predictionError = {};
    for idx=1:numel(groundTruth)
        [~, idy] = max(predictionScores(idx,:));
        yActual = net.Layers(end).Classes(idy);
        predictionError{end+1} = (yActual == groundTruth(idx)); %#ok
    end
    % Sum all prediction errors.
    predictionError = [predictionError{:}];
    accuracy = sum(predictionError)/numel(predictionError);
end
```

Specify the metric function in a dlquantizationOptions object.

```matlab
quantOpts = dlquantizationOptions('MetricFcn', ...
    @(x)hComputeModelAccuracy(x, net, aug_valData));
```

Use the calibrate function to exercise the network with sample inputs and collect range information. The calibrate function exercises the network and collects the dynamic ranges of the weights and biases in the convolution and fully connected layers of the network and the dynamic ranges of the activations in all layers of the network. The function returns a table. Each row of the table contains range information for a learnable parameter of the optimized network.

```matlab
calResults = calibrate(quantObj, aug_calData)
calResults =
    95x5 table
        Optimized Layer Name    Network Layer Name    Learnables / Activations    MinValue    MaxValue
        {'conv1_relu.conv1_Weights'} {'relu.conv1'}    'Weights'                  -0.91985     0.88489
        {'conv1_relu.conv1_Bias'}  {'relu.conv1'}    'Bias'                     -0.07925     0.26343
```

1-1077
Use the validate function to quantize the learnable parameters in the convolution layers of the network and exercise the network. The function uses the metric function defined in the dlquantizationOptions object to compare the results of the network before and after quantization.

valResults = validate(quantObj, aug_valData, quantOpts)

valResults =

struct with fields:
 NumSamples: 20
 MetricResults: [1x1 struct]

Examine the MetricResults.Result field of the validation output to see the performance of the quantized network.

valResults.MetricResults.Result

ans =

2x3 table
 NetworkImplementation MetricOutput LearnableParameterMemory(bytes)
 _______________________ ____________ _______________________________
 {'Floating-Point'} 1 2.9003e+06
 {'Quantized'} 1 7.3393e+05

In this example, the memory required for the network was reduced approximately 75% through quantization. The accuracy of the network is not affected.

The weights, biases, and activations of the convolution layers of the network specified in the dlquantizer object now use scaled 8-bit integer data types.

Quantize a Neural Network for FPGA Execution Environment

This example shows how to quantize learnable parameters in the convolution layers of a neural network, and explore the behavior of the quantized network. In this example, you quantize the LogoNet neural network. Quantization helps reduce the memory requirement of a deep neural network by quantizing weights, biases and activations of network layers to 8-bit scaled integer data types. Use MATLAB® to retrieve the prediction results from the target device.

To run this example, you need the products listed under FPGA in “Quantization Workflow Prerequisites”.

For additional requirements, see “Quantization Workflow Prerequisites”.

1-1078
Create a file in your current working directory called `getLogoNetwork.m`. Enter these lines into the file:

```matlab
function net = getLogoNetwork()
    data = getLogoData();
    net = data.convnet;
end

function data = getLogoData()
    if ~isfile('LogoNet.mat')
        url = 'https://www.mathworks.com/supportfiles/gpucoder/cnn_models/logo_detection/LogoNet.mat';
        websave('LogoNet.mat',url);
    end
    data = load('LogoNet.mat');
end
```

Load the pretrained network.

```matlab
snet = getLogoNetwork();
```

```
SeriesNetwork with properties:
    Layers: [22x1 nnet.cnn.layer.Layer]
    InputNames: {'imageinput'}
    OutputNames: {'classoutput'}
```

Define calibration and validation data to use for quantization.

The calibration data is used to collect the dynamic ranges of the weights and biases in the convolution and fully connected layers of the network and the dynamic ranges of the activations in all layers of the network. For the best quantization results, the calibration data must be representative of inputs to the network.

The validation data is used to test the network after quantization to understand the effects of the limited range and precision of the quantized convolution layers in the network.

This example uses the images in the `logos_dataset` data set. Define an `augmentedImageDatastore` object to resize the data for the network. Then, split the data into calibration and validation data sets.

```matlab
curDir = pwd;
newDir = fullfile(matlabroot,'examples','deeplearning_shared','data','logos_dataset.zip');
copyfile(newDir,curDir);
unzip('logos_dataset.zip');
imageData = imageDatastore(fullfile(curDir,'logos_dataset'),...
                        'IncludeSubfolders',true,'FileExtensions','.JPG','LabelSource','foldernames');
[calibrationData, validationData] = splitEachLabel(imageData, 0.5,'randomized');
```

Create a `dlquantizer` object and specify the network to quantize.

```matlab
dlQuantObj = dlquantizer(snet,'ExecutionEnvironment','FPGA');
```

Use the `calibrate` function to exercise the network with sample inputs and collect range information. The `calibrate` function exercises the network and collects the dynamic ranges of the weights and biases in the convolution and fully connected layers of the network and the dynamic ranges of the activations in all layers of the network. The function returns a table. Each row of the table contains range information for a learnable parameter of the optimized network.

```matlab
dlQuantObj.calibrate(calibrationData)
```

```matlab
dlquantizer OPTIONS
Bar states: 1-1079
```
Create a target object with a custom name for your target device and an interface to connect your target device to the host computer. Interface options are JTAG and Ethernet. To create the target object, enter:

```matlab
hTarget = dlhdl.Target('Intel', 'Interface', 'JTAG');
```

Define a metric function to use to compare the behavior of the network before and after quantization. Save this function in a local file.

```matlab
function accuracy = hComputeAccuracy(predictionScores, net, dataStore)
    % hComputeAccuracy test helper function computes model level accuracy statistics
    % Copyright 2020 The MathWorks, Inc.

    % Load ground truth
    groundTruth = dataStore.Labels;

    % Compute with predicted label with actual ground truth
    predictionError = {};
    for idx=1:numel(groundTruth)
        [~, idy] = max(predictionScores(idx, :));
        yActual = net.Layers(end).Classes(idy);
        predictionError{end+1} = (yActual == groundTruth(idx)); %#ok
    end

    % Sum all prediction errors.
    predictionError = [predictionError{:}];
    accuracy = sum(predictionError)/numel(predictionError);
end
```

Specify the metric function in a `dlquantizationOptions` object.

```matlab
options = dlquantizationOptions('MetricFcn', ...
    @(x)hComputeModelAccuracy(x, snet, validationData), 'Bitstream', 'arria10soc_int8', ...
    'Target', hTarget);
```

To compile and deploy the quantized network, run the `validate` function of the `dlquantizer` object. Use the `validate` function to quantize the learnable parameters in the convolution layers of the network and exercise the network. This function uses the output of the compile function to program the FPGA board by using the programming file. It also downloads the network weights and biases. The deploy function checks for the Intel Quartus tool and the supported tool version. It then starts programming the FPGA device by using the sof file, displays progress messages, and the time it takes to deploy the network. The function uses the metric function defined in the `dlquantizationOptions` object to compare the results of the network before and after quantization.

```matlab
prediction = dlQuantObj.validate(validationData, options);
```

<table>
<thead>
<tr>
<th>offset_name</th>
<th>offset_address</th>
<th>allocated_space</th>
</tr>
</thead>
<tbody>
<tr>
<td>"InputDataOffset"</td>
<td>"0x00000000"</td>
<td>"48.0 MB"</td>
</tr>
</tbody>
</table>
"OutputResultOffset" "0x03000000" "4.0 MB"
"SystemBufferOffset" "0x03400000" "60.0 MB"
"InstructionDataOffset" "0x07000000" "8.0 MB"
"ConvWeightDataOffset" "0x07800000" "8.0 MB"
"ConvWeightDataOffset" "0x08000000" "12.0 MB"
"EndOffset" "0x08c00000" "Total: 140.0 MB"

Programming FPGA Bitstream using JTAG...
Programming the FPGA bitstream has been completed successfully.
Loading weights to Conv Processor.
Conv Weights loaded. Current time is 16-Jul-2020 12:45:10
Loading weights to FC Processor.
FC Weights loaded. Current time is 16-Jul-2020 12:45:26
Finished writing input activations.
Running single input activations.

Deep Learning Processor Profiler Performance Results

<table>
<thead>
<tr>
<th>Network</th>
<th>LastLayerLatency(cycles)</th>
<th>LastLayerLatency(seconds)</th>
<th>FramesNum</th>
<th>Total Latency</th>
<th>Frames/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>conv_module</td>
<td>13570959</td>
<td>0.09047</td>
<td>30</td>
<td>380609145</td>
<td>11.8</td>
</tr>
<tr>
<td>conv_1</td>
<td>3938907</td>
<td>0.02626</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_1</td>
<td>1544560</td>
<td>0.01030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_2</td>
<td>2910954</td>
<td>0.01941</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_2</td>
<td>577524</td>
<td>0.00305</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_3</td>
<td>2552707</td>
<td>0.01702</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_3</td>
<td>676542</td>
<td>0.00451</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_4</td>
<td>455434</td>
<td>0.00304</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_4</td>
<td>11251</td>
<td>0.00008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_module</td>
<td>903173</td>
<td>0.00602</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_1</td>
<td>536164</td>
<td>0.00357</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_2</td>
<td>342643</td>
<td>0.00228</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_3</td>
<td>24364</td>
<td>0.00016</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The clock frequency of the DL processor is: 150MHz

Finished writing input activations.
Running single input activations.

Deep Learning Processor Profiler Performance Results

<table>
<thead>
<tr>
<th>Network</th>
<th>LastLayerLatency(cycles)</th>
<th>LastLayerLatency(seconds)</th>
<th>FramesNum</th>
<th>Total Latency</th>
<th>Frames/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>conv_module</td>
<td>12667103</td>
<td>0.08445</td>
<td>30</td>
<td>380612682</td>
<td>11.8</td>
</tr>
<tr>
<td>conv_1</td>
<td>3939296</td>
<td>0.02626</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_1</td>
<td>1544371</td>
<td>0.01030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_2</td>
<td>2910747</td>
<td>0.01940</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_2</td>
<td>577654</td>
<td>0.00305</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_3</td>
<td>2551829</td>
<td>0.01701</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_3</td>
<td>676548</td>
<td>0.00451</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_4</td>
<td>455396</td>
<td>0.00304</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_4</td>
<td>11355</td>
<td>0.00008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_module</td>
<td>903261</td>
<td>0.00602</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_1</td>
<td>536206</td>
<td>0.00357</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_2</td>
<td>342688</td>
<td>0.00228</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_3</td>
<td>24365</td>
<td>0.00016</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The clock frequency of the DL processor is: 150MHz

Finished writing input activations.
Running single input activations.

Deep Learning Processor Profiler Performance Results

<table>
<thead>
<tr>
<th>Network</th>
<th>LastLayerLatency(cycles)</th>
<th>LastLayerLatency(seconds)</th>
<th>FramesNum</th>
<th>Total Latency</th>
<th>Frames/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>conv_module</td>
<td>1268340</td>
<td>0.08446</td>
<td>30</td>
<td>380608338</td>
<td>11.8</td>
</tr>
<tr>
<td>conv_1</td>
<td>3939070</td>
<td>0.02626</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_1</td>
<td>1545327</td>
<td>0.01030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_2</td>
<td>2911861</td>
<td>0.01941</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_2</td>
<td>577557</td>
<td>0.00305</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_3</td>
<td>2552802</td>
<td>0.01701</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_3</td>
<td>676506</td>
<td>0.00451</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_4</td>
<td>455582</td>
<td>0.00304</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_4</td>
<td>11248</td>
<td>0.00007</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The clock frequency of the DL processor is: 150MHz

Finished writing input activations.
Running single input activations.
* The clock frequency of the DL processor is: 150MHz

FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.

Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.

Finished writing input activations.

Running single input activations.

offset_name	**offset_address**	**allocated_space**
"InputDataOffset" | "0x00000000" | "48.0 MB"
"OutputResultOffset" | "0x03000000" | "4.0 MB"
"SystemBufferOffset" | "0x03400000" | "60.0 MB"
"InstructionDataOffset" | "0x07000000" | "8.0 MB"
"ConvWeightDataOffset" | "0x07800000" | "8.0 MB"
"FCWeightDataOffset" | "0x08000000" | "12.0 MB"
"EndOffset" | "0x08c00000" | "Total: 140.0 MB"

Deep Learning Processor Profiler Performance Results

<table>
<thead>
<tr>
<th>Network</th>
<th>LastLayerLatency(cycles)</th>
<th>LastLayerLatency(seconds)</th>
<th>FramesNum</th>
<th>Total Latency</th>
<th>Frames/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>13570823</td>
<td>0.09047</td>
<td>30</td>
<td>380619836</td>
<td>11.8</td>
</tr>
<tr>
<td>conv_module</td>
<td>12667607</td>
<td>0.08445</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_1</td>
<td>3939074</td>
<td>0.02626</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_1</td>
<td>1544519</td>
<td>0.01030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_2</td>
<td>2910636</td>
<td>0.01940</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_2</td>
<td>577769</td>
<td>0.00385</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_3</td>
<td>2531800</td>
<td>0.01701</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_3</td>
<td>676795</td>
<td>0.00451</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_4</td>
<td>455859</td>
<td>0.00304</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_4</td>
<td>11248</td>
<td>0.00007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_module</td>
<td>903216</td>
<td>0.00602</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_1</td>
<td>536050</td>
<td>0.00357</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_2</td>
<td>342645</td>
<td>0.00228</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_3</td>
<td>24409</td>
<td>0.00016</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The clock frequency of the DL processor is: 150MHz

FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA.

Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.

Finished writing input activations.

Running single input activations.

offset_name	**offset_address**	**allocated_space**
"InputDataOffset" | "0x00000000" | "48.0 MB"
"OutputResultOffset" | "0x03000000" | "4.0 MB"
"SystemBufferOffset" | "0x03400000" | "60.0 MB"
"InstructionDataOffset" | "0x07000000" | "8.0 MB"
"ConvWeightDataOffset" | "0x07800000" | "8.0 MB"
"FCWeightDataOffset" | "0x08000000" | "12.0 MB"
"EndOffset" | "0x08c00000" | "Total: 140.0 MB"

Deep Learning Processor Profiler Performance Results

<table>
<thead>
<tr>
<th>Network</th>
<th>LastLayerLatency(cycles)</th>
<th>LastLayerLatency(seconds)</th>
<th>FramesNum</th>
<th>Total Latency</th>
<th>Frames/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>13572329</td>
<td>0.09048</td>
<td>10</td>
<td>127265075</td>
<td>11.8</td>
</tr>
<tr>
<td>conv_module</td>
<td>12669135</td>
<td>0.08446</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_1</td>
<td>3939559</td>
<td>0.02626</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Deep Learning Processor Profiler Performance Results

<table>
<thead>
<tr>
<th>Network</th>
<th>LastLayerLatency(cycles)</th>
<th>LastLayerLatency(seconds)</th>
<th>FramesNum</th>
<th>Total Latency (cycles)</th>
<th>Frames/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>13572527</td>
<td>0.09048</td>
<td>10</td>
<td>12726427</td>
<td>11.8</td>
</tr>
<tr>
<td>conv_module</td>
<td>12669266</td>
<td>0.08446</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_1</td>
<td>3939776</td>
<td>0.02627</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_1</td>
<td>1545632</td>
<td>0.01030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_2</td>
<td>2911169</td>
<td>0.01941</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_2</td>
<td>577592</td>
<td>0.00385</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_3</td>
<td>2551613</td>
<td>0.01701</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_3</td>
<td>676811</td>
<td>0.00451</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv_4</td>
<td>455418</td>
<td>0.00304</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxpool_4</td>
<td>11348</td>
<td>0.00008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_module</td>
<td>903261</td>
<td>0.00602</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_1</td>
<td>536205</td>
<td>0.00357</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_2</td>
<td>342689</td>
<td>0.00228</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fc_3</td>
<td>24364</td>
<td>0.00016</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The clock frequency of the DL processor is: 150MHz

Examine the `MetricResults.Result` field of the validation output to see the performance of the quantized network.

```matlab
validateOut = prediction.MetricResults.Result
ans =
```

```
NetworkImplementation    MetricOutput
--------------------------  ------------
{'Floating-Point'}        0.9875
{'Quantized'}             0.9875
```

Examine the `QuantizedNetworkFPS` field of the validation output to see the frames per second performance of the quantized network.

```matlab
prediction.QuantizedNetworkFPS
ans = 11.8126
```

The weights, biases, and activations of the convolution layers of the network specified in the `dlquantizer` object now use scaled 8-bit integer data types.

Input Arguments

- `quantObj` — Network to quantize
 - `dlquantizer` object

 - `dlquantizer` object specifying the network to quantize.
valData — Data to use for validation of quantized network
imageDataStore object | augmentedImageDataStore object | pixelLabelImage datastore object

Data to use for validation of quantized network, specified as an imageDataStore object, an
augmentedImageDataStore object, or a pixelLabelImage datastore object.

quantOpts — Options for quantizing network
dlQuantizationOptions object

Options for quantizing the network, specified as a dlQuantizationOptions object.

Output Arguments

validationResults — Results of quantization of network
struct

Results of quantization of the network, returned as a struct. The struct contains the following fields.

- NumSamples – The number of sample inputs used to validate the network.
- MetricResults – Struct containing results of the metric function defined in the
dlQuantizationOptions object. When more than one metric function is specified in the
dlQuantizationOptions object, MetricResults is an array of structs.

MetricResults contains the following fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MetricFunction</td>
<td>Function used to determine the performance of the quantized network. This function is specified in the dlQuantizationOptions object.</td>
</tr>
<tr>
<td>Result</td>
<td>Table indicating the results of the metric function before and after quantization.</td>
</tr>
<tr>
<td></td>
<td>The first row in the table contains the information for the original, floating-point implementation. The second row contains the information for the quantized implementation. The output of the metric function is displayed in the MetricOutput column, and the size of the network is displayed in the LearnableParameterMemory (bytes) column.</td>
</tr>
</tbody>
</table>

See Also

Apps
Deep Network Quantizer

Functions
calibrate | dlQuantizationOptions | dlquantizer
Topics
"Quantization of Deep Neural Networks"

Introduced in R2020a
vgg16

VGG-16 convolutional neural network

Syntax

net = vgg16
net = vgg16('Weights','imagenet')
layers = vgg16('Weights','none')

Description

VGG-16 is a convolutional neural network that is 16 layers deep. You can load a pretrained version of the network trained on more than a million images from the ImageNet database [1]. The pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many animals. As a result, the network has learned rich feature representations for a wide range of images. The network has an image input size of 224-by-224. For more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the VGG-16 network. Follow the steps of “Classify Image Using GoogLeNet” and replace GoogLeNet with VGG-16.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network to Classify New Images” and load VGG-16 instead of GoogLeNet.

net = vgg16 returns a VGG-16 network trained on the ImageNet data set.

This function requires Deep Learning Toolbox Model for VGG-16 Network support package. If this support package is not installed, then the function provides a download link.

net = vgg16('Weights','imagenet') returns a VGG-16 network trained on the ImageNet data set. This syntax is equivalent to net = vgg16.

layers = vgg16('Weights','none') returns the untrained VGG-16 network architecture. The untrained model does not require the support package.

Examples

Download VGG-16 Support Package

Download and install Deep Learning Toolbox Model for VGG-16 Network support package.

Type vgg16 at the command line.

vgg16

If Deep Learning Toolbox Model for VGG-16 Network support package is not installed, then the function provides a link to the required support package in the Add-On Explorer. To install the support package, click the link, and then click Install. Check that the installation is successful by typing vgg16 at the command line.
vgg16
ans =
 SeriesNetwork with properties:
 Layers: [41×1 nnet.cnn.layer.Layer]

Load Pretrained VGG-16 Convolutional Neural Network

Load a pretrained VGG-16 convolutional neural network and examine the layers and classes.

Use `vgg16` to load the pretrained VGG-16 network. The output `net` is a `SeriesNetwork` object.

```matlab
net = vgg16
net =
    SeriesNetwork with properties:
        Layers: [41×1 nnet.cnn.layer.Layer]
```

View the network architecture using the `Layers` property. The network has 41 layers. There are 16 layers with learnable weights: 13 convolutional layers, and 3 fully connected layers.

```matlab
net.Layers
ans =
    41x1 Layer array with layers:
        1   'input'     Image Input             224x224x3 images with 'zerocenter' normalization
        2   'conv1_1'   Convolution             64 3x3x3 convolutions with stride [1 1] and padding [1 1 1 1]
        3   'relu1_1'   ReLU                    ReLU
        4   'conv1_2'   Convolution             64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
        5   'relu1_2'   ReLU                    ReLU
        6   'pool1'     Max Pooling             2x2 max pooling with stride [2 2] and padding [0 0 0 0]
        7   'conv2_1'   Convolution             128 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
        8   'relu2_1'   ReLU                    ReLU
        9   'conv2_2'   Convolution             128 3x3x128 convolutions with stride [1 1] and padding [1 1 1 1]
       10   'relu2_2'   ReLU                    ReLU
       11   'pool2'     Max Pooling             2x2 max pooling with stride [2 2] and padding [0 0 0 0]
       12   'conv3_1'   Convolution             256 3x3x128 convolutions with stride [1 1] and padding [1 1 1 1]
       13   'relu3_1'   ReLU                    ReLU
       14   'conv3_2'   Convolution             256 3x3x256 convolutions with stride [1 1] and padding [1 1 1 1]
       15   'relu3_2'   ReLU                    ReLU
       16   'conv3_3'   Convolution             256 3x3x256 convolutions with stride [1 1] and padding [1 1 1 1]
       17   'relu3_3'   ReLU                    ReLU
       18   'pool3'     Max Pooling             2x2 max pooling with stride [2 2] and padding [0 0 0 0]
       19   'conv4_1'   Convolution             512 3x3x256 convolutions with stride [1 1] and padding [1 1 1 1]
       20   'relu4_1'   ReLU                    ReLU
       21   'conv4_2'   Convolution             512 3x3x512 convolutions with stride [1 1] and padding [1 1 1 1]
       22   'relu4_2'   ReLU                    ReLU
       23   'conv4_3'   Convolution             512 3x3x512 convolutions with stride [1 1] and padding [1 1 1 1]
       24   'relu4_3'   ReLU                    ReLU
       25   'pool4'     Max Pooling             2x2 max pooling with stride [2 2] and padding [0 0 0 0]
       26   'conv5_1'   Convolution             512 3x3x512 convolutions with stride [1 1] and padding [1 1 1 1]
       27   'relu5_1'   ReLU                    ReLU
```
To view the names of the classes learned by the network, you can view the Classes property of the classification output layer (the final layer). View the first 10 classes by specifying the first 10 elements.

```matlab
net.Layers(end).Classes(1:10)
```

```
ans = 10×1 categorical array
tench
goldfish
great white shark
tiger shark
hammerhead
electric ray
stingray
cock
hen
ostrich
```

Output Arguments

- **net** — Pretrained VGG-16 convolutional neural network
 SeriesNetwork object

 Pretrained VGG-16 convolutional neural network returned as a SeriesNetwork object.

- **layers** — Untrained VGG-16 convolutional neural network architecture
 Layer array

 Untrained VGG-16 convolutional neural network architecture, returned as a Layer array.

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax net = vgg16 or by passing the vgg16 function to coder.loadDeepLearningNetwork. For example: net = coder.loadDeepLearningNetwork('vgg16')

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax vgg16('Weights', 'none') is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

- For code generation, you can load the network by using the syntax net = vgg16 or by passing the vgg16 function to coder.loadDeepLearningNetwork. For example: net = coder.loadDeepLearningNetwork('vgg16')

 For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).

- The syntax vgg16('Weights', 'none') is not supported for GPU code generation.

See Also
alexnet | densenet201 | googlenet | inceptionresnetv2 | resnet101 | resnet18 | resnet50 | squeezenet | vgg19

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Transfer Learning Using Pretrained Network”
“Visualize Activations of a Convolutional Neural Network”

Introduced in R2017a
vgg19

VGG-19 convolutional neural network

Syntax

net = vgg19
net = vgg19('Weights','imagenet')
layers = vgg19('Weights','none')

Description

VGG-19 is a convolutional neural network that is 19 layers deep. You can load a pretrained version of
the network trained on more than a million images from the ImageNet database [1]. The pretrained
network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many
animals. As a result, the network has learned rich feature representations for a wide range of images.
The network has an image input size of 224-by-224. For more pretrained networks in MATLAB, see
“Pretrained Deep Neural Networks”.

You can use classify to classify new images using the VGG-19 network. Follow the steps of
“Classify Image Using GoogLeNet” and replace GoogLeNet with VGG-19.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network
to Classify New Images” and load VGG-19 instead of GoogLeNet.

This function requires Deep Learning Toolbox Model for VGG-19 Network support package. If this
support package is not installed, then the function provides a download link.

net = vgg19('Weights','imagenet') returns a VGG-19 network trained on the ImageNet data
set. This syntax is equivalent to net = vgg19.

layers = vgg19('Weights','none') returns the untrained VGG-19 network architecture. The
untrained model does not require the support package.

Examples

Download VGG-19 Support Package

This example shows how to download and install Deep Learning Toolbox Model for VGG-19 Network
support package.

Type vgg19 at the command line.

vgg19

If Deep Learning Toolbox Model for VGG-19 Network support package is not installed, then the
function provides a link to the required support package in the Add-On Explorer. To install the
support package, click the link, and then click **Install**. Check that the installation is successful by typing `vgg19` at the command line.

```matlab
vgg19
ans =
    SeriesNetwork with properties:
        Layers: [47×1 nnet.cnn.layer.Layer]
```

Load Pretrained VGG-19 Convolutional Neural Network

Load a pretrained VGG-19 convolutional neural network and examine the layers and classes.

Use `vgg19` to load a pretrained VGG-19 network. The output `net` is a `SeriesNetwork` object.

```matlab
net = vgg19
net =
    SeriesNetwork with properties:
        Layers: [47×1 nnet.cnn.layer.Layer]
```

View the network architecture using the `Layers` property. The network has 47 layers. There are 19 layers with learnable weights: 16 convolutional layers, and 3 fully connected layers.

```matlab
net.Layers
ans =
47×1 Layer array with layers:
   1   'input'     Image Input             224x224x3 images with 'zerocenter' normalization
   2   'conv1_1'   Convolution             64 3x3x3 convolutions with stride [1  1] and padding [1  1  1  1]
   3   'relu1_1'   ReLU                    ReLU
   4   'conv1_2'   Convolution             64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1]
   5   'relu1_2'   ReLU                    ReLU
   6   'pool1'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
   7   'conv2_1'   Convolution             128 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1]
   8   'relu2_1'   ReLU                    ReLU
   9   'conv2_2'   Convolution             128 3x3x128 convolutions with stride [1  1] and padding [1  1  1  1]
  10   'relu2_2'   ReLU                    ReLU
  11   'pool2'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
  12   'conv3_1'   Convolution             256 3x3x128 convolutions with stride [1  1] and padding [1  1  1  1]
  13   'relu3_1'   ReLU                    ReLU
  14   'conv3_2'   Convolution             256 3x3x256 convolutions with stride [1  1] and padding [1  1  1  1]
  15   'relu3_2'   ReLU                    ReLU
  16   'conv3_3'   Convolution             256 3x3x256 convolutions with stride [1  1] and padding [1  1  1  1]
  17   'relu3_3'   ReLU                    ReLU
  18   'conv3_4'   Convolution             256 3x3x256 convolutions with stride [1  1] and padding [1  1  1  1]
  19   'relu3_4'   ReLU                    ReLU
  20   'pool3'     Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
  21   'conv4_1'   Convolution             512 3x3x256 convolutions with stride [1  1] and padding [1  1  1  1]
  22   'relu4_1'   ReLU                    ReLU
  23   'conv4_2'   Convolution             512 3x3x512 convolutions with stride [1  1] and padding [1  1  1  1]
  24   'relu4_2'   ReLU                    ReLU
```
To view the names of the classes learned by the network, you can view the Classes property of the classification output layer (the final layer). View the first 10 classes by specifying the first 10 elements.

```matlab
net.Layers(end).Classes(1:10)
```

```
ans = 10x1 categorical array
tench
goldfish
great white shark	
tiger shark	
hammerhead	
electric ray	
ingray	
cock	
ehn	
ostrich
```

Output Arguments

- **net** — Pretrained VGG-19 convolutional neural network

 SeriesNetwork object

 Pretrained VGG-19 convolutional neural network returned as a `SeriesNetwork` object.

- **layers** — Untrained VGG-19 convolutional neural network architecture

 Layer array

 Untrained VGG-19 convolutional neural network architecture, returned as a `Layer` array.
References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax `net = vgg19` or by passing the `vgg19` function to `coder.loadDeepLearningNetwork`. For example: `net = coder.loadDeepLearningNetwork('vgg19')`

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

The syntax `vgg19('Weights', 'none')` is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

- For code generation, you can load the network by using the syntax `net = vgg19` or by passing the `vgg19` function to `coder.loadDeepLearningNetwork`. For example: `net = coder.loadDeepLearningNetwork('vgg19')`

 For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).

- The syntax `vgg19('Weights', 'none')` is not supported for GPU code generation.

See Also
alexnet | deepDreamImage | densenet201 | googlenet | inceptionresnetv2 | resnet101 | resnet18 | resnet50 | squeezenet | vgg16

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Transfer Learning Using Pretrained Network”
“Visualize Activations of a Convolutional Neural Network”

Introduced in R2017a
vggish

VGGish neural network

Syntax

net = vggish

Description

net = vggish returns a pretrained VGGish model.

This function requires both Audio Toolbox™ and Deep Learning Toolbox.

Examples

Download VGGish Network

Download and unzip the Audio Toolbox™ model for VGGish.

Type vggish at the Command Window. If the Audio Toolbox model for VGGish is not installed, then the function provides a link to the location of the network weights. To download the model, click the link. Unzip the file to a location on the MATLAB path.

Alternatively, execute these commands to download and unzip the VGGish model to your temporary directory.

downloadFolder = fullfile(tempdir,'VGGishDownload');
loc = websave(downloadFolder,'https://ssd.mathworks.com/supportfiles/audio/vggish.zip');
VGGishLocation = tempdir;
unzip(loc,VGGishLocation)
addpath(fullfile(VGGishLocation,'vggish'))

Check that the installation is successful by typing vggish at the Command Window. If the network is installed, then the function returns a SeriesNetwork object.

vggish

ans =
 SeriesNetwork with properties:

 Layers: [24×1 nnet.cnn.layer.Layer]
 InputNames: {'InputBatch'}
 OutputNames: {'regressionoutput'}

Load Pretrained VGGish Network

Load a pretrained VGGish convolutional neural network and examine the layers and classes.
Use **vggish** to load the pretrained VGGish network. The output `net` is a **SeriesNetwork** object.

```matlab
t = vggish
```

```matlab
net = SeriesNetwork with properties:
    Layers: [24×1 nnet.cnn.layer.Layer]
    InputNames: {'InputBatch'}
    OutputNames: {'regressionoutput'}
```

View the network architecture using the **Layers** property. The network has 24 layers. There are nine layers with learnable weights, of which six are convolutional layers and three are fully connected layers.

```matlab
net.Layers
```

```matlab
ans =
    24×1 Layer array with layers:
    1   'InputBatch'         Image Input         96×64×1 images
    2   'conv1'              Convolution         64 3×3×1 convolutions with stride [1  1] and padding 'same'
    3   'relu'               ReLU                ReLU
    4   'pool1'              Max Pooling         2×2 max pooling with stride [2  2] and padding 'same'
    5   'conv2'              Convolution         128 3×3×64 convolutions with stride [1  1] and padding 'same'
    6   'relu2'              ReLU                ReLU
    7   'pool2'              Max Pooling         2×2 max pooling with stride [2  2] and padding 'same'
    8   'conv3_1'            Convolution         256 3×3×128 convolutions with stride [1  1] and padding 'same'
    9   'relu3_1'            ReLU                ReLU
   10   'conv3_2'            Convolution         256 3×3×256 convolutions with stride [1  1] and padding 'same'
   11   'relu3_2'            ReLU                ReLU
   12   'pool3'              Max Pooling         2×2 max pooling with stride [2  2] and padding 'same'
   13   'conv4_1'            Convolution         512 3×3×256 convolutions with stride [1  1] and padding 'same'
   14   'relu4_1'            ReLU                ReLU
   15   'conv4_2'            Convolution         512 3×3×512 convolutions with stride [1  1] and padding 'same'
   16   'relu4_2'            ReLU                ReLU
   17   'pool4'              Max Pooling         2×2 max pooling with stride [2  2] and padding 'same'
   18   'fc1_1'              Fully Connected     4096 fully connected layer
   19   'relu5_1'            ReLU                ReLU
   20   'fc1_2'              Fully Connected     4096 fully connected layer
   21   'relu5_2'            ReLU                ReLU
   22   'fc2'                Fully Connected     128 fully connected layer
   23   'EmbeddingBatch'     ReLU                ReLU
   24   'regressionoutput'   Regression Output   mean-squared-error
```

Use **analyzeNetwork** to visually explore the network.

```matlab
analyzeNetwork(net)
```

1-1095
Extract Features Using VGGish

The VGGish network requires you to preprocess and extract features from audio signals by converting them to the sample rate the network was trained on, and then extracting log mel spectrograms. This example walks through the required preprocessing and feature extraction to match the preprocessing and feature extraction used to train VGGish. The `vggishFeatures` (Audio Toolbox) function performs these steps for you.

Read in an audio signal to classify. Resample the audio signal to 16 kHz and then convert it to single precision.

```matlab
[audioIn,fs0] = audioread('Ambiance-16-44p1.wav');
fs = 16e3;
audioIn = resample(audioIn,fs,fs0);
audioIn = single(audioIn);
```

Define mel spectrogram parameters and then extract features using the `melSpectrogram` (Audio Toolbox) function.

```matlab
FFTLength = 512;
numBands = 64;
frequencyRange = [125 7500];
```
windowLength = 0.025*fs;
overlapLength = 0.015*fs;

melSpect = melSpectrogram(audioIn,fs, ...
 'Window',hann(windowLength,'periodic'), ...
 'OverlapLength',overlapLength, ...
 'FFTLength',FFTLength, ...
 'FrequencyRange',frequencyRange, ...
 'NumBands',numBands, ...
 'FilterBankNormalization','none', ...
 'WindowNormalization',false, ...
 'SpectrumType','magnitude', ...
 'FilterBankDesignDomain','warped');

Convert the mel spectrogram to the log scale.

melSpect = log(melSpect + single(0.001));

Reorient the mel spectrogram so that time is along the first dimension as rows.

melSpect = melSpect. ;

[numSTFTWindows,numBands] = size(melSpect)

numSTFTWindows = 1222
numBands = 64

Partition the spectrogram into frames of length 96 with an overlap of 48. Place the frames along the fourth dimension.

frameWindowLength = 96;
frameOverlapLength = 48;

hopLength = frameWindowLength - frameOverlapLength;
numHops = floor((numSTFTWindows - frameWindowLength)/hopLength) + 1;

frames = zeros(frameWindowLength,numBands,1,numHops,'like',melSpect);
for hop = 1:numHops
 range = 1 + hopLength*(hop-1):hopLength*(hop - 1) + frameWindowLength;
 frames(:,:,1,hop) = melSpect(range,:);
end

Create a VGGish network.

net = vggish;

Call predict to extract feature embeddings from the spectrogram images. The feature embeddings are returned as a numFrames-by-128 matrix, where numFrames is the number of individual spectrograms, and 128 is the number of elements in each feature vector.

features = predict(net,frames);

[numFrames,numFeatures] = size(features)

numFrames = 24
numFeatures = 128

Compare visualizations of the mel spectrogram and the VGGish feature embeddings.
melSpectrogram(audioIn, fs, ... 'Window', hann(windowLength, 'periodic'), ... 'OverlapLength', overlapLength, ... 'FFTLength', FFTLength, ... 'FrequencyRange', frequencyRange, ... 'NumBands', numBands, ... 'FilterBankNormalization', 'none', ... 'WindowNormalization', false, ... 'SpectrumType', 'magnitude', ... 'FilterBankDesignDomain', 'warped');

surf(features, 'EdgeColor', 'none')
view([90, -90])
axis([1 numFeatures 1 numFrames])
xlabel('Feature')
ylabel('Frame')
title('VGGish Feature Embeddings')
Transfer Learning Using VGGish

In this example, you transfer the learning in the VGGish regression model to an audio classification task.

Download and unzip the environmental sound classification data set. This data set consists of recordings labeled as one of 10 different audio sound classes (ESC-10).

```matlab
url = 'http://ssd.mathworks.com/supportfiles/audio/ESC-10.zip';
downloadFolder = fullfile(tempdir,'ESC-10');
datasetLocation = tempdir;
if ~exist(fullfile(tempdir,'ESC-10'),'dir')
    loc = websave(downloadFolder,url);
    unzip(loc(fullfile(tempdir,'ESC-10')))
end
```

Create an `audioDatastore` (Audio Toolbox) object to manage the data and split it into train and validation sets. Call `countEachLabel` (Audio Toolbox) to display the distribution of sound classes and the number of unique labels.

```matlab
ads = audioDatastore(downloadFolder,'IncludeSubfolders',true,'LabelSource','foldernames');
labelTable = countEachLabel(ads)
```
Determine the total number of classes.

\[
\text{numClasses} = \text{size(labelTable,1)};
\]

Call `splitEachLabel` (Audio Toolbox) to split the data set into training and validation sets. Inspect the distribution of labels in the training and validation sets.

\[
\text{[adsTrain, adsValidation]} = \text{splitEachLabel(ads,0.8)};
\]

```matlab
countEachLabel(adsTrain)
ans=10×2 table
   Label    Count
    _______    _____
    chainsaw      32
    clock_tick    32
   crackling_fire  32
  crying_baby     32
        dog        32
  helicopter     32
          rain     32
         rooster    30
      sea_waves    32
      sneezing    32
```

```matlab
countEachLabel(adsValidation)
ans=10×2 table
   Label    Count
    _______    _____
    chainsaw       8
    clock_tick     8
   crackling_fire  8
  crying_baby      8
        dog        8
  helicopter      8
          rain     8
         rooster     8
      sea_waves     8
```
The VGGish network expects audio to be preprocessed into log mel spectrograms. The supporting function `vggishPreprocess` takes an `audioDatastore` object and the overlap percentage between log mel spectrograms as input, and returns matrices of predictors and responses suitable as input to the VGGish network.

```matlab
overlapPercentage = 75;

[trainFeatures, trainLabels] = vggishPreprocess(adsTrain, overlapPercentage);
[valFeatures, valLabels, segmentsPerFile] = vggishPreprocess(adsValidation, overlapPercentage);
```

Load the VGGish model and convert it to a `layerGraph` object.

```matlab
net = vggish;
lgraph = layerGraph(net.Layers);
```

Use `removeLayers` to remove the final regression output layer from the graph. After you remove the regression layer, the new final layer of the graph is a ReLU layer named ‘EmbeddingBatch’.

```matlab
lgraph = removeLayers(lgraph, 'regressionoutput');
ans = RelULayer with properties:
    Name: 'EmbeddingBatch'
```

Use `addLayers` to add a `fullyConnectedLayer`, a `softmaxLayer`, and a `classificationLayer` to the graph.

```matlab
lgraph = addLayers(lgraph, fullyConnectedLayer(numClasses, 'Name', 'FCFinal'));
lgraph = addLayers(lgraph, softmaxLayer('Name', 'softmax'));
lgraph = addLayers(lgraph, classificationLayer('Name', 'classOut'));
```

Use `connectLayers` to append the fully connected, softmax, and classification layers to the layer graph.

```matlab
lgraph = connectLayers(lgraph, 'EmbeddingBatch', 'FCFinal');
lgraph = connectLayers(lgraph, 'FCFinal', 'softmax');
lgraph = connectLayers(lgraph, 'softmax', 'classOut');
```

To define training options, use `trainingOptions`.

```matlab
miniBatchSize = 128;
options = trainingOptions('adam', ...
    'MaxEpochs',5, ...
    'MiniBatchSize',miniBatchSize, ...
    'Shuffle','every-epoch', ...
    'ValidationData',{valFeatures,valLabels}, ...
    'ValidationFrequency',50, ...
    'LearnRateSchedule','piecewise', ...
    'LearnRateDropFactor',0.5, ...
    'LearnRateDropPeriod',2);
```
To train the network, use `trainNetwork`.

```matlab
[trainedNet, netInfo] = trainNetwork(trainFeatures, trainLabels, lgraph, options);
```

Training on single GPU.

<table>
<thead>
<tr>
<th>Epoch</th>
<th>Iteration</th>
<th>Time Elapsed (hh:mm:ss)</th>
<th>Mini-batch Accuracy</th>
<th>Validation Accuracy</th>
<th>Mini-batch Loss</th>
<th>Validation Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>00:00:00</td>
<td>10.94%</td>
<td>26.03%</td>
<td>2.2253</td>
<td>2.0250</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>00:00:05</td>
<td>93.75%</td>
<td>83.75%</td>
<td>0.1884</td>
<td>0.1256</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>00:00:10</td>
<td>96.88%</td>
<td>80.07%</td>
<td>0.1150</td>
<td>0.1156</td>
</tr>
<tr>
<td>4</td>
<td>150</td>
<td>00:00:15</td>
<td>92.97%</td>
<td>81.99%</td>
<td>0.1656</td>
<td>0.1738</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>00:00:20</td>
<td>92.19%</td>
<td>80.07%</td>
<td>0.1389</td>
<td>0.1389</td>
</tr>
</tbody>
</table>

Each audio file was split into several segments to feed into the VGGish network. Combine the predictions for each file in the validation set using a majority-rule decision.

```matlab
validationPredictions = classify(trainedNet, validationFeatures);
idx = 1;
validationPredictionsPerFile = categorical;
for ii = 1:numel(adsValidation.Files)
    validationPredictionsPerFile(ii,1) = mode(validationPredictions(idx:idx+segmentsPerFile(ii)-1));
    idx = idx + segmentsPerFile(ii);
end
```

Use `confusionchart` to evaluate the performance of the network on the validation set.

```matlab
figure('Units', 'normalized', 'Position', [0.2 0.2 0.5 0.5]);
cm = confusionchart(adsValidation.Labels, validationPredictionsPerFile);
cm.Title = sprintf('Confusion Matrix for Validation Data \nAccuracy = %0.2f %', mean(validationPredictionsPerFile == adsValidation.Labels) * 100);
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';
```
Supporting Functions

function [predictor,response,segmentsPerFile] = vggishPreprocess(ads,overlap)
% This function is for example purposes only and may be changed or removed
% in a future release.

% Create filter bank
FFTLength = 512;
numBands = 64;
fs0 = 16e3;
filterBank = designAuditoryFilterBank(fs0, ...'FrequencyScale','mel', ...'FFTLength',FFTLength, ...'FrequencyRange',[125 7500], ...'NumBands',numBands, ...'Normalization','none', ...'FilterBankDesignDomain','warped');

% Define STFT parameters
windowLength = 0.025 * fs0;
hopLength = 0.01 * fs0;
win = hann(windowLength,'periodic');

% Define spectrogram segmentation parameters
segmentDuration = 0.96; % seconds
segmentRate = 100; % hertz
segmentLength = segmentDuration*segmentRate; % Number of spectrums per auditory spectrograms
segmentHopDuration = (100-overlap) * segmentDuration / 100; % Duration (s) advanced between auditory spectrograms
segmentHopLength = round(segmentHopDuration * segmentRate); % Number of spectrums advanced between auditory spectrograms

Confusion Matrix for Validation Data
Accuracy = 87.50 %

<table>
<thead>
<tr>
<th>True Class</th>
<th>chainsaw</th>
<th>clock_tick</th>
<th>cracking_fire</th>
<th>crying_baby</th>
<th>dog</th>
<th>helicopter</th>
<th>rain</th>
<th>rooster</th>
<th>sea_waves</th>
<th>sneezing</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainsaw</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>clock_tick</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>cracking_fire</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>crying_baby</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>dog</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>helicopter</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>rain</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>rooster</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>sea_waves</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>sneezing</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>True Class</th>
<th>70.0%</th>
<th>100.0%</th>
<th>100.0%</th>
<th>87.5%</th>
<th>87.5%</th>
<th>75.0%</th>
<th>85.0%</th>
<th>89.0%</th>
<th>89.0%</th>
<th>100.0%</th>
<th>87.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>chainsaw</td>
<td>70.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>87.5%</td>
<td>87.5%</td>
<td>75.0%</td>
<td>85.0%</td>
<td>89.0%</td>
<td>89.0%</td>
<td>100.0%</td>
<td>87.5%</td>
</tr>
<tr>
<td>clock_tick</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>87.5%</td>
<td>87.5%</td>
<td>75.0%</td>
<td>85.0%</td>
<td>89.0%</td>
<td>89.0%</td>
<td>100.0%</td>
<td>87.5%</td>
</tr>
<tr>
<td>cracking_fire</td>
<td>75.0%</td>
<td>25.0%</td>
<td>12.5%</td>
<td>12.5%</td>
<td>12.5%</td>
<td>25.0%</td>
<td>11.1%</td>
<td>11.1%</td>
<td>11.1%</td>
<td>12.5%</td>
<td>100.0%</td>
</tr>
<tr>
<td>crying_baby</td>
<td>87.5%</td>
<td>12.5%</td>
<td>25.0%</td>
<td>12.5%</td>
<td>12.5%</td>
<td>75.0%</td>
<td>88.9%</td>
<td>88.9%</td>
<td>88.9%</td>
<td>100.0%</td>
<td>87.5%</td>
</tr>
<tr>
<td>dog</td>
<td>87.5%</td>
<td>12.5%</td>
<td>25.0%</td>
<td>12.5%</td>
<td>12.5%</td>
<td>75.0%</td>
<td>88.9%</td>
<td>88.9%</td>
<td>88.9%</td>
<td>100.0%</td>
<td>87.5%</td>
</tr>
<tr>
<td>helicopter</td>
<td>75.0%</td>
<td>25.0%</td>
<td>12.5%</td>
<td>12.5%</td>
<td>12.5%</td>
<td>75.0%</td>
<td>88.9%</td>
<td>88.9%</td>
<td>88.9%</td>
<td>100.0%</td>
<td>87.5%</td>
</tr>
<tr>
<td>rain</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>87.5%</td>
<td>87.5%</td>
<td>75.0%</td>
<td>85.0%</td>
<td>89.0%</td>
<td>89.0%</td>
<td>100.0%</td>
<td>87.5%</td>
</tr>
<tr>
<td>rooster</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>87.5%</td>
<td>87.5%</td>
<td>75.0%</td>
<td>85.0%</td>
<td>89.0%</td>
<td>89.0%</td>
<td>100.0%</td>
<td>87.5%</td>
</tr>
<tr>
<td>sea_waves</td>
<td>87.5%</td>
<td>12.5%</td>
<td>25.0%</td>
<td>12.5%</td>
<td>12.5%</td>
<td>75.0%</td>
<td>88.9%</td>
<td>88.9%</td>
<td>88.9%</td>
<td>100.0%</td>
<td>87.5%</td>
</tr>
<tr>
<td>sneezing</td>
<td>87.5%</td>
<td>12.5%</td>
<td>25.0%</td>
<td>12.5%</td>
<td>12.5%</td>
<td>75.0%</td>
<td>88.9%</td>
<td>88.9%</td>
<td>88.9%</td>
<td>100.0%</td>
<td>87.5%</td>
</tr>
</tbody>
</table>
% Preallocate cell arrays for the predictors and responses
numFiles = numel(ads.Files);
predictor = cell(numFiles,1);
response = predictor;
segmentsPerFile = zeros(numFiles,1);

% Extract predictors and responses for each file
for ii = 1:numFiles
 [audioIn,info] = read(ads);
 x = single(resample(audioIn,fs0,info.SampleRate));
 Y = stft(x, ...
 'Window',win, ...
 'OverlapLength',windowLength-hopLength, ...
 'FFTLength',FFTLength, ...
 'FrequencyRange','onesided');
 Y = abs(Y);
 logMelSpectrogram = log(filterBank*Y + single(0.01))';

 % Segment log-mel spectrogram
 numHops = floor((size(Y,2)-segmentLength)/segmentHopLength) + 1;
 segmentedLogMelSpectrogram = zeros(segmentLength,numBands,1,numHops);
 for hop = 1:numHops
 segmentedLogMelSpectrogram(:,:,1,hop) = logMelSpectrogram(1+segmentHopLength*(hop-1):segmentLength+segmentHopLength*(hop-1),:);
 end
 predictor{ii} = segmentedLogMelSpectrogram;
 response{ii} = repelem(info.Label,numHops);
 segmentsPerFile(ii) = numHops;
end

% Concatenate predictors and responses into arrays
predictor = cat(4,predictor{:});
response = cat(2,response{:});
end

Output Arguments

net — Pretrained VGGish neural network
SeriesNetwork object

Pretrained VGGish neural network, returned as a SeriesNetwork object.

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- Only the activations and predict object functions are supported.
- To create a SeriesNetwork object for code generation, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

- Only the activations, classify, predict, predictAndUpdateState, and resetState object functions are supported.
- To create a SeriesNetwork object for code generation, see “Load Pretrained Networks for Code Generation” (GPU Coder).

See Also
audioFeatureExtractor | classifySound | melSpectrogram | vggish | vggishFeatures

Introduced in R2020b
xception

Xception convolutional neural network

Syntax

net = xception
net = xception('Weights','imagenet')
lgraph = xception('Weights','none')

Description

Xception is a convolutional neural network that is 71 layers deep. You can load a pretrained version of the network trained on more than a million images from the ImageNet database [1]. The pretrained network can classify images into 1000 object categories, such as keyboard, mouse, pencil, and many animals. As a result, the network has learned rich feature representations for a wide range of images. The network has an image input size of 299-by-299. For more pretrained networks in MATLAB, see “Pretrained Deep Neural Networks”.

You can use classify to classify new images using the Xception model. Follow the steps of “Classify Image Using GoogLeNet” and replace GoogLeNet with Xception.

To retrain the network on a new classification task, follow the steps of “Train Deep Learning Network to Classify New Images” and load Xception instead of GoogLeNet.

net = xception returns an Xception network trained on the ImageNet data set.

This function requires the Deep Learning Toolbox Model for Xception Network support package. If this support package is not installed, then the function provides a download link.

net = xception('Weights','imagenet') returns an Xception network trained on the ImageNet data set. This syntax is equivalent to net = xception.

lgraph = xception('Weights','none') returns the untrained Xception network architecture. The untrained model does not require the support package.

Examples

Download Xception Support Package

Download and install the Deep Learning Toolbox Model for Xception Network support package.

Type xception at the command line.

xception

If the Deep Learning Toolbox Model for Xception Network support package is not installed, then the function provides a link to the required support package in the Add-On Explorer. To install the support package, click the link, and then click Install. Check that the installation is successful by
typing `xception` at the command line. If the required support package is installed, then the function returns a `DAGNetwork` object.

```plaintext
xception
ans =
DAGNetwork with properties:
    Layers: [171x1 nnet.cnn.layer.Layer]
    Connections: [182x2 table]
```

Output Arguments

- `net` — **Pretrained Xception convolutional neural network**
 `DAGNetwork` object
 Pretrained Xception convolutional neural network, returned as a `DAGNetwork` object.

- `lgraph` — **Untrained Xception convolutional neural network architecture**
 `LayerGraph` object
 Untrained Xception convolutional neural network architecture, returned as a `LayerGraph` object.

References

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For code generation, you can load the network by using the syntax `net = xception` or by passing the `xception` function to `coder.loadDeepLearningNetwork`. For example: `net = coder.loadDeepLearningNetwork('xception')`

For more information, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

- For code generation, you can load the network by using the syntax `net = xception` or by passing the `xception` function to `coder.loadDeepLearningNetwork`. For example: `net = coder.loadDeepLearningNetwork('xception')`

 For more information, see “Load Pretrained Networks for Code Generation” (GPU Coder).
• The syntax `xception('Weights','none')` is not supported for GPU code generation.

See Also
DAGNetwork | densenet201 | googlenet | inceptionresnetv2 | layerGraph | plot |
resnet101 | resnet50 | squeezenet | trainNetwork | vgg16 | vgg19

Topics
“Deep Learning in MATLAB”
“Pretrained Deep Neural Networks”
“Classify Image Using GoogLeNet”
“Train Deep Learning Network to Classify New Images”
“Train Residual Network for Image Classification”

Introduced in R2019a
yamnet

YAMNet neural network

Syntax

net = yamnet

Description

net = yamnet returns a pretrained YAMNet model.

This function requires both Audio Toolbox and Deep Learning Toolbox.

Examples

Download YAMNet

Download and unzip the Audio Toolbox™ model for YAMNet.

Type yamnet at the Command Window. If the Audio Toolbox model for YAMNet is not installed, then
the function provides a link to the location of the network weights. To download the model, click the
link. Unzip the file to a location on the MATLAB path.

Alternatively, execute the following commands to download and unzip the YAMNet model to your
temporary directory.

downloadFolder = fullfile(tempdir,'YAMNetDownload');
loc = websave(downloadFolder,'https://ssd.mathworks.com/supportfiles/audio/yamnet.zip');
YAMNetLocation = tempdir;
unzip(loc,YAMNetLocation)
addpath(fullfile(YAMNetLocation,'yamnet'))

Check that the installation is successful by typing yamnet at the Command Window. If the network is
installed, then the function returns a SeriesNetwork object.

yamnet

ans =
 SeriesNetwork with properties:
 Layers: [86×1 nnet.cnn.layer.Layer]
 InputNames: {'input_1'}
 OutputNames: {'Sound'}

Load Pretrained YAMNet

Load a pretrained YAMNet convolutional neural network and examine the layers and classes.
Use `yamnet` to load the pretrained YAMNet network. The output net is a `SeriesNetwork` object.

```python
net = yamnet
```

```python
net = SeriesNetwork with properties:
  - Layers: [86×1 nnet.cnn.layer.Layer]
  - InputNames: {'input_1'}
  - OutputNames: {'Sound'}
```

View the network architecture using the `Layers` property. The network has 86 layers. There are 28 layers with learnable weights: 27 convolutional layers, and 1 fully connected layer.

```python
net.Layers
```

```python
ans = 86x1 Layer array with layers:

<table>
<thead>
<tr>
<th>Layer</th>
<th>Function</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>'input_1'</td>
<td>Image Input</td>
<td>96×64×1 images</td>
</tr>
<tr>
<td>'conv2d'</td>
<td>Convolution</td>
<td>32 3×3×1 convolutions with stride</td>
</tr>
<tr>
<td>'b'</td>
<td>Batch Normalization</td>
<td>Batch normalization with 32 channels</td>
</tr>
<tr>
<td>'activation'</td>
<td>ReLU</td>
<td></td>
</tr>
<tr>
<td>'depthwise_conv2d'</td>
<td>Grouped Convolution</td>
<td>32 groups of 1 3×3×1 convolutions</td>
</tr>
<tr>
<td>'L11'</td>
<td>Batch Normalization</td>
<td>Batch normalization with 32 channels</td>
</tr>
<tr>
<td>'activation_1'</td>
<td>ReLU</td>
<td></td>
</tr>
<tr>
<td>'conv2d_1'</td>
<td>Convolution</td>
<td>64 1×1×32 convolutions with stride</td>
</tr>
<tr>
<td>'L12'</td>
<td>Batch Normalization</td>
<td>Batch normalization with 64 channels</td>
</tr>
<tr>
<td>'activation_2'</td>
<td>ReLU</td>
<td></td>
</tr>
<tr>
<td>'depthwise_conv2d_1'</td>
<td>Grouped Convolution</td>
<td>64 groups of 1 3×3×1 convolutions</td>
</tr>
<tr>
<td>'L21'</td>
<td>Batch Normalization</td>
<td>Batch normalization with 64 channels</td>
</tr>
<tr>
<td>'activation_3'</td>
<td>ReLU</td>
<td></td>
</tr>
<tr>
<td>'conv2d_2'</td>
<td>Convolution</td>
<td>128 1×1×64 convolutions with stride</td>
</tr>
<tr>
<td>'L22'</td>
<td>Batch Normalization</td>
<td>Batch normalization with 128 channels</td>
</tr>
<tr>
<td>'activation_4'</td>
<td>ReLU</td>
<td></td>
</tr>
<tr>
<td>'depthwise_conv2d_2'</td>
<td>Grouped Convolution</td>
<td>128 groups of 1 3×3×1 convolutions</td>
</tr>
<tr>
<td>'L31'</td>
<td>Batch Normalization</td>
<td>Batch normalization with 128 channels</td>
</tr>
<tr>
<td>'activation_5'</td>
<td>ReLU</td>
<td></td>
</tr>
<tr>
<td>'conv2d_3'</td>
<td>Convolution</td>
<td>128 1×1×128 convolutions with stride</td>
</tr>
<tr>
<td>'L32'</td>
<td>Batch Normalization</td>
<td>Batch normalization with 128 channels</td>
</tr>
<tr>
<td>'activation_6'</td>
<td>ReLU</td>
<td></td>
</tr>
<tr>
<td>'depthwise_conv2d_3'</td>
<td>Grouped Convolution</td>
<td>128 groups of 1 3×3×1 convolutions</td>
</tr>
<tr>
<td>'L41'</td>
<td>Batch Normalization</td>
<td>Batch normalization with 128 channels</td>
</tr>
<tr>
<td>'activation_7'</td>
<td>ReLU</td>
<td></td>
</tr>
<tr>
<td>'conv2d_4'</td>
<td>Convolution</td>
<td>256 1×1×128 convolutions with stride</td>
</tr>
<tr>
<td>'L42'</td>
<td>Batch Normalization</td>
<td>Batch normalization with 256 channels</td>
</tr>
<tr>
<td>'activation_8'</td>
<td>ReLU</td>
<td></td>
</tr>
<tr>
<td>'depthwise_conv2d_4'</td>
<td>Grouped Convolution</td>
<td>256 groups of 1 3×3×1 convolutions</td>
</tr>
<tr>
<td>'L51'</td>
<td>Batch Normalization</td>
<td>Batch normalization with 256 channels</td>
</tr>
<tr>
<td>'activation_9'</td>
<td>ReLU</td>
<td></td>
</tr>
<tr>
<td>'conv2d_5'</td>
<td>Convolution</td>
<td>256 1×1×256 convolutions with stride</td>
</tr>
<tr>
<td>'L52'</td>
<td>Batch Normalization</td>
<td>Batch normalization with 256 channels</td>
</tr>
<tr>
<td>'activation_10'</td>
<td>ReLU</td>
<td></td>
</tr>
<tr>
<td>'depthwise_conv2d_5'</td>
<td>Grouped Convolution</td>
<td>256 groups of 1 3×3×1 convolutions</td>
</tr>
<tr>
<td>'L61'</td>
<td>Batch Normalization</td>
<td>Batch normalization with 256 channels</td>
</tr>
<tr>
<td>'activation_11'</td>
<td>ReLU</td>
<td></td>
</tr>
<tr>
<td>'conv2d_6'</td>
<td>Convolution</td>
<td>512 1×1×256 convolutions with stride</td>
</tr>
</tbody>
</table>
```
To view the names of the classes learned by the network, you can view the Classes property of the classification output layer (the final layer). View the first 10 classes by specifying the first 10 elements.

```matlab
net.Layers(end).Classes(1:10)
```

```matlab
ans = 10x1 categorical
Speech
Child speech, kid speaking
```
Use `analyzeNetwork` to visually explore the network.

```matlab
analyzeNetwork(net)
```

YAMNet was released with a corresponding sound class ontology, which you can explore using the `yamnetGraph` (Audio Toolbox) object.

```matlab
ygraph = yamnetGraph;
p = plot(ygraph);
layout(p,'layered')
```
The ontology graph plots all 521 possible sound classes. Plot a subgraph of the sounds related to respiratory sounds.

```matlab
allRespiratorySounds = dfsearch(ygraph,"Respiratory sounds");
ygraphSpeech = subgraph(ygraph,allRespiratorySounds);
plot(ygraphSpeech)
```
Classify Sounds Using YAMNet

The YAMNet network requires you to preprocess and extract features from audio signals by converting them to the sample rate the network was trained on, and then extracting overlapping log-mel spectrograms. This example walks through the required preprocessing and feature extraction necessary to match the preprocessing and feature extraction used to train YAMNet. The `classifySound` (Audio Toolbox) function performs these steps for you.

Read in an audio signal to classify it. Resample the audio signal to 16 kHz and then convert it to single precision.

```matlab
[audioIn,fs0] = audioread('Counting-16-44p1-mono-15secs.wav');
fs = 16e3;
audioIn = resample(audioIn,fs,fs0);
audioIn = single(audioIn);
```

Define mel spectrogram parameters and then extract features using the `melSpectrogram` (Audio Toolbox) function.

```matlab
FFTLength = 512;
numBands = 64;
frequencyRange = [125 7500];
```
windowLength = 0.025*fs;
overlapLength = 0.015*fs;

melSpect = melSpectrogram(audioIn,fs, ...
 'Window',hann(windowLength,'periodic'), ...
 'OverlapLength',overlapLength, ...
 'FFTLength',FFTLength, ...
 'FrequencyRange',frequencyRange, ...
 'NumBands',numBands, ...
 'FilterBankNormalization','none', ...
 'WindowNormalization',false, ...
 'SpectrumType','magnitude', ...
 'FilterBankDesignDomain','warped');

Convert the mel spectrogram to the log scale.

melSpect = log(melSpect + single(0.001));

Reorient the mel spectrogram so that time is along the first dimension as rows.

melSpect = melSpect.';
[numSTFTWindows,numBands] = size(melSpect)
numSTFTWindows = 1551
numBands = 64

Partition the spectrogram into frames of length 96 with an overlap of 48. Place the frames along the
fourth dimension.

frameWindowLength = 96;
frameOverlapLength = 48;

hopLength = frameWindowLength - frameOverlapLength;
numHops = floor((numSTFTWindows - frameWindowLength)/hopLength) + 1;

frames = zeros(frameWindowLength,numBands,1,numHops,'like',melSpect);
for hop = 1:numHops
 range = 1 + hopLength*(hop-1):hopLength*(hop - 1) + frameWindowLength;
 frames(:,:,1,hop) = melSpect(range,:);
end

Create a YAMNet network.
net = yamnet();

Classify the spectrogram images.
classes = classify(net,frames);

Classify the audio signal as the most frequently occurring sound.
mySound = mode(classes)
mySound = categorical
Speech
Transfer Learning Using YAMNet

Download and unzip the air compressor data set [1] on page 1-0. This data set consists of recordings from air compressors in a healthy state or one of 7 faulty states.

\begin{verbatim}
url = 'https://www.mathworks.com/supportfiles/audio/AirCompressorDataset/AirCompressorDataset.zip';
downloadFolder = fullfile(tempdir,'aircompressordataset');
datasetLocation = tempdir;
if ~exist(fullfile(tempdir,'AirCompressorDataSet'),'dir')
 loc = websave(downloadFolder,url);
 unzip(loc(fullfile(tempdir,'AirCompressorDataSet'))
end
\end{verbatim}

Create an \texttt{audioDatastore} (Audio Toolbox) object to manage the data and split it into train and validation sets.

\begin{verbatim}
ads = audioDatastore(downloadFolder,'IncludeSubfolders',true,'LabelSource','foldernames');
[adsTrain,adsValidation] = splitEachLabel(ads,0.8,0.2);
\end{verbatim}

Read an audio file from the datastore and save the sample rate for later use. Reset the datastore to return the read pointer to the beginning of the data set. Listen to the audio signal and plot the signal in the time domain.

\begin{verbatim}
[x,fileInfo] = read(adsTrain);
fs = fileInfo.SampleRate;
reset(adsTrain)
sound(x,fs)
figure
t = (0:size(x,1)-1)/fs;
plot(t,x)
xlabel('Time (s)')
title('State = ' + string(fileInfo.Label))
axis tight
\end{verbatim}
Create an `audioFeatureExtractor` (Audio Toolbox) object to extract the Bark spectrum from audio signals. Use the same window, overlap length, frequency range, and number of bands as YAMNet was trained on. Depending on your transfer learning task, you can modify the input features more or less from the input features YAMNet was trained on.

```matlab
afe = audioFeatureExtractor('SampleRate',fs, ...
    'Window',hann(0.025*fs,'periodic'), ...
    'OverlapLength',round(0.015*fs), ...
    'barkSpectrum',true);
setExtractorParams(afe,'barkSpectrum','NumBands',64);
```

Extract Bark spectrograms from the train set. There are multiple Bark spectrograms for each audio signal. Replicate the labels so that they are in one-to-one correspondence with the spectrograms.

```matlab
numSpectrumsPerSpectrogram = 96;
numSpectrumsOverlapBetweenSpectrograms = 48;
numSpectrumsHopBetweenSpectrograms = numSpectrumsPerSpectrogram - numSpectrumsOverlapBetweenSpectrograms;
emptyLabelVector = adsTrain.Labels;
emptyLabelVector(:) = [];
trainFeatures = [];
trainLabels = emptyLabelVector;
while hasdata(adsTrain)
    [audioIn,fileInfo] = read(adsTrain);
    features = extract(afe,audioIn);
    features = log10(features + single(0.001));
```
[numSpectrums,numBands] = size(features);
numSpectrograms = floor((numSpectrums - numSpectrumsPerSpectrogram)/numSpectrumsHopBetweenSpectrograms) + 1;
for hop = 1:numSpectrograms
 range = 1 + numSpectrumsHopBetweenSpectrograms*(hop-1):numSpectrumsHopBetweenSpectrograms*(hop-1) + numSpectrumsPerSpectrogram;
 trainFeatures = cat(4,trainFeatures,features(range,:));
 trainLabels = cat(1,trainLabels,fileInfo.Label);
end
end

Extract features from the validation set and replicate the labels.

validationFeatures = [];
validationLabels = emptyLabelVector;
while hasdata(adsValidation)
 [audioIn,fileInfo] = read(adsValidation);
 features = extract(afe,audioIn);
 features = log10(features + single(0.001));
 [numSpectrums,numBands] = size(features);
 numSpectrograms = floor((numSpectrums - numSpectrumsPerSpectrogram)/numSpectrumsHopBetweenSpectrograms) + 1;
 for hop = 1:numSpectrograms
 range = 1 + numSpectrumsHopBetweenSpectrograms*(hop-1):numSpectrumsHopBetweenSpectrograms*(hop-1) + numSpectrumsPerSpectrogram;
 validationFeatures = cat(4,validationFeatures,features(range,:));
 validationLabels = cat(1,validationLabels,fileInfo.Label);
 end
end

The air compressor data set has only eight classes. Read in YAMNet, convert it to a layerGraph, and then replace the final fullyConnectedLayer and the final classificationLayer to reflect the new task.

uniqueLabels = unique(adsTrain.Labels);
umLabels = numel(uniqueLabels);
net = yamnet;
lgraph = layerGraph(net.Layers);
newDenseLayer = fullyConnectedLayer(numLabels,"Name","dense");
lgraph = replaceLayer(lgraph,"dense",newDenseLayer);
newClassificationLayer = classificationLayer("Name","Sounds","Classes",uniqueLabels);
lgraph = replaceLayer(lgraph,"Sound",newClassificationLayer);

To define training options, use trainingOptions.

miniBatchSize = 128;
validationFrequency = floor(numel(trainLabels)/miniBatchSize);
options = trainingOptions('adam', ...
 'InitialLearnRate',3e-4, ...
 'MaxEpochs',2, ...
 'MiniBatchSize',miniBatchSize, ...
 'Shuffle','every-epoch', ...
 'Plots','training-progress', ...
 'Verbose',false, ...
 'ValidationData',{single(validationFeatures),validationLabels}, ...
 'ValidationFrequency',validationFrequency);

To train the network, use trainNetwork.
trainNetwork(single(trainFeatures), trainLabels, lgraph, options);

References

Output Arguments

net — Pretrained YAMNet neural network
SeriesNetwork object

Pretrained YAMNet neural network, returned as a SeriesNetwork object.

References

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.
Usage notes and limitations:

- Only the activations and predict object functions are supported.
- To create a SeriesNetwork object for code generation, see “Load Pretrained Networks for Code Generation” (MATLAB Coder).

GPU Code Generation

Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

- Only the activations, classify, predict, predictAndUpdateState, and resetState object functions are supported.
- To create a SeriesNetwork object for code generation, see “Load Pretrained Networks for Code Generation” (GPU Coder).

See Also

audioFeatureExtractor | classifySound | designAuditoryFilterBank | melSpectrogram | vggish | yamnetGraph

Introduced in R2020b
Approximation, Clustering, and Control Functions
adapt

Adapt neural network to data as it is simulated

Syntax

\[[\text{net}, \text{Y}, \text{E}, \text{Pf}, \text{Af}, \text{tr}] = \text{adapt}(\text{net}, \text{P}, \text{T}, \text{Pi}, \text{Ai}) \]

To Get Help

Type `help network/adapt`.

Description

This function calculates network outputs and errors after each presentation of an input.

\[[\text{net}, \text{Y}, \text{E}, \text{Pf}, \text{Af}, \text{tr}] = \text{adapt}(\text{net}, \text{P}, \text{T}, \text{Pi}, \text{Ai}) \]

<table>
<thead>
<tr>
<th>net</th>
<th>Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Network inputs</td>
</tr>
<tr>
<td>T</td>
<td>Network targets (default = zeros)</td>
</tr>
<tr>
<td>Pi</td>
<td>Initial input delay conditions (default = zeros)</td>
</tr>
<tr>
<td>Ai</td>
<td>Initial layer delay conditions (default = zeros)</td>
</tr>
</tbody>
</table>

and returns the following after applying the adapt function `net.adaptFcn` with the adaption parameters `net.adaptParam`:

<table>
<thead>
<tr>
<th>net</th>
<th>Updated network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Network outputs</td>
</tr>
<tr>
<td>E</td>
<td>Network errors</td>
</tr>
<tr>
<td>Pf</td>
<td>Final input delay conditions</td>
</tr>
<tr>
<td>Af</td>
<td>Final layer delay conditions</td>
</tr>
<tr>
<td>tr</td>
<td>Training record (epoch and perf)</td>
</tr>
</tbody>
</table>

Note that T is optional and is only needed for networks that require targets. Pi and Pf are also optional and only need to be used for networks that have input or layer delays.

`adapt`'s signal arguments can have two formats: cell array or matrix.

The cell array format is easiest to describe. It is most convenient for networks with multiple inputs and outputs, and allows sequences of inputs to be presented,

<table>
<thead>
<tr>
<th>P</th>
<th>Ni-by-TS cell array</th>
<th>Each element P{i,ts} is an Ri-by-Q matrix.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Nt-by-TS cell array</td>
<td>Each element T{i,ts} is a Vi-by-Q matrix.</td>
</tr>
</tbody>
</table>
Each element \(Pi\{i,k\} \) is a \(Ri \)-by-\(Q \) matrix.

Each element \(Ai\{i,k\} \) is a \(Si \)-by-\(Q \) matrix.

Each element \(Y\{i,ts\} \) is a \(Ui \)-by-\(Q \) matrix.

Each element \(E\{i,ts\} \) is a \(Ui \)-by-\(Q \) matrix.

Each element \(Pf\{i,k\} \) is a \(Ri \)-by-\(Q \) matrix.

Each element \(Af\{i,k\} \) is a \(Si \)-by-\(Q \) matrix.

\(Ni \)	\(\text{net.numInputs} \)
\(Nl \)	\(\text{net.numLayers} \)
\(No \)	\(\text{net.numOutputs} \)
\(ID \)	\(\text{net.numInputDelays} \)
\(LD \)	\(\text{net.numLayerDelays} \)
\(TS \)	Number of time steps
\(Q \)	Batch size
\(Ri \)	\(\text{net.inputs\{i\}.size} \)
\(Si \)	\(\text{net.layers\{i\}.size} \)
\(Ui \)	\(\text{net.outputs\{i\}.size} \)

The columns of \(Pi \), \(Pf \), \(Ai \), and \(Af \) are ordered from oldest delay condition to most recent:

\[
\begin{align*}
\Pi\{i,k\} &= \text{Input } i \text{ at time } ts = k - ID \\
\Pf\{i,k\} &= \text{Input } i \text{ at time } ts = TS + k - ID \\
\Ai\{i,k\} &= \text{Layer output } i \text{ at time } ts = k - LD \\
\Af\{i,k\} &= \text{Layer output } i \text{ at time } ts = TS + k - LD
\end{align*}
\]

The matrix format can be used if only one time step is to be simulated (\(TS = 1 \)). It is convenient for networks with only one input and output, but can be used with networks that have more.

Each matrix argument is found by storing the elements of the corresponding cell array argument in a single matrix:
<table>
<thead>
<tr>
<th>Pf</th>
<th>(sum of Ri)-by-(ID*Q) matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Af</td>
<td>(sum of Si)-by-(LD*Q) matrix</td>
</tr>
</tbody>
</table>

Examples

Here two sequences of 12 steps (where T1 is known to depend on P1) are used to define the operation of a filter.

```matlab
p1 = [-1 0 1 0 1 1 -1 0 -1 1 0 1];
t1 = [-1 -1 1 1 1 2 0 -1 -1 0 1 1];
```

Here `linearlayer` is used to create a layer with an input range of [-1 1], one neuron, input delays of 0 and 1, and a learning rate of 0.1. The linear layer is then simulated.

```matlab
net = linearlayer([0 1],0.1);
```

Here the network adapts for one pass through the sequence.

The network's mean squared error is displayed. (Because this is the first call to `adapt`, the default Pi is used.)

```matlab
[net,y,e,pf] = adapt(net,p1,t1);
mse(e)
```

Note that the errors are quite large. Here the network adapts to another 12 time steps (using the previous Pf as the new initial delay conditions).

```matlab
p2 = [1 -1 -1 1 1 -1 0 0 0 1 -1 -1];
t2 = [2 0 -2 0 2 0 -1 0 0 1 0 -1];
[net,y,e,pf] = adapt(net,p2,t2,pf);
mse(e)
```

Here the network adapts for 100 passes through the entire sequence.

```matlab
p3 = [p1 p2];
t3 = [t1 t2];
for i = 1:100
    [net,y,e] = adapt(net,p3,t3);
end
mse(e)
```

The error after 100 passes through the sequence is very small. The network has adapted to the relationship between the input and target signals.

Algorithms

`adapt` calls the function indicated by `net.adaptFcn`, using the adaption parameter values indicated by `net.adaptParam`.

Given an input sequence with TS steps, the network is updated as follows: Each step in the sequence of inputs is presented to the network one at a time. The network's weight and bias values are updated after each step, before the next step in the sequence is presented. Thus the network is updated TS times.
See Also
init | revert | sim | train

Introduced before R2006a
adaptwb

Adapt network with weight and bias learning rules

Syntax

[net,ar,Ac] = adapt(net,Pd,T,Ai)

Description

This function is normally not called directly, but instead called indirectly through the function adapt after setting a network's adaption function (net.adaptFcn) to this function.

[net,ar,Ac] = adapt(net,Pd,T,Ai) takes these arguments,

<table>
<thead>
<tr>
<th>net</th>
<th>Neural network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd</td>
<td>Delayed processed input states and inputs</td>
</tr>
<tr>
<td>T</td>
<td>Targets</td>
</tr>
<tr>
<td>Ai</td>
<td>Initial layer delay states</td>
</tr>
</tbody>
</table>

and returns

<table>
<thead>
<tr>
<th>net</th>
<th>Neural network after adaption</th>
</tr>
</thead>
<tbody>
<tr>
<td>ar</td>
<td>Adaption record</td>
</tr>
<tr>
<td>Ac</td>
<td>Combined initial layer states and layer outputs</td>
</tr>
</tbody>
</table>

Examples

Linear layers use this adaption function. Here a linear layer with input delays of 0 and 1, and a learning rate of 0.5, is created and adapted to produce some target data t when given some input data x. The response is then plotted, showing the network's error going down over time.

```matlab
x = {-1 0 1 0 1 1 -1 0 1 0 1};
t = {-1 -1 1 1 1 2 0 -1 -1 0 1};
net = linearlayer([0 1],0.5);
net.adaptFcn
[net,y,e,xf] = adapt(net,x,t);
plotresponse(t,y)
```

See Also

adapt

Introduced in R2010b
adddelay

Add delay to neural network response

Syntax

net = adddelay(net,n)

Description

net = adddelay(net,n) takes these arguments,

<table>
<thead>
<tr>
<th>net</th>
<th>Neural network</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Number of delays</td>
</tr>
</tbody>
</table>

and returns the network with input delay connections increased, and output feedback delays decreased, by the specified number of delays n. The result is a network that behaves identically, except that outputs are produced n timesteps later.

If the number of delays n is not specified, a default of one delay is used.

Examples

Time Delay Network

This example creates, trains, and simulates a time delay network in its original form, on an input time series X and target series T. Then the delay is removed and later added back. The first and third outputs will be identical, while the second result will include a new prediction for the following step.

[X,T] = simpleseries_dataset;
net1 = timedelaynet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net1,X,T);
net1 = train(net1,Xs,Ts,Xi);
y1 = net1(Xs,Xi);
view(net1)

net2 = removedelay(net1);
[Xs,Xi,Ai,Ts] = preparets(net2,X,T);
y2 = net2(Xs,Xi);
view(net2)
net3 = adddelay(net2);
[Xs,Xi,Ai,Ts] = preparets(net3,X,T);
y3 = net3(Xs,Xi);
view(net3)

See Also
closeloop | openloop | removedelay

Introduced in R2010b
boxdist
Distance between two position vectors

Syntax

d = boxdist(pos)

Description

boxdist is a layer distance function that is used to find the distances between the layer's neurons, given their positions.

\[d = \text{boxdist}(\text{pos}) \]

takes one argument,

| pos | N-by-S matrix of neuron positions |

and returns the S-by-S matrix of distances.

boxdist is most commonly used with layers whose topology function is gridtop.

Examples

Here you define a random matrix of positions for 10 neurons arranged in three-dimensional space and then find their distances.

\[\text{pos} = \text{rand}(3,10); \]
\[d = \text{boxdist}(\text{pos}) \]

Network Use

To change a network so that a layer's topology uses boxdist, set net.layers{i}.distanceFcn to 'boxdist'.

In either case, call sim to simulate the network with boxdist.

Algorithms

The box distance \(D \) between two position vectors \(P_i \) and \(P_j \) from a set of \(S \) vectors is

\[D_{ij} = \max(\text{abs}(P_i-P_j)) \]

See Also

dist | linkdist | mandist | sim

Introduced before R2006a
bttderiv

Backpropagation through time derivative function

Syntax

```matlab
bttderiv('dperf_dwb', net, X, T, Xi, Ai, EW)
bttderiv('de_dwb', net, X, T, Xi, Ai, EW)
```

Description

This function calculates derivatives using the chain rule from a network's performance back through the network, and in the case of dynamic networks, back through time.

`bttderiv('dperf_dwb', net, X, T, Xi, Ai, EW)` takes these arguments,

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>net</td>
<td>Neural network</td>
</tr>
<tr>
<td>X</td>
<td>Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)</td>
</tr>
<tr>
<td>T</td>
<td>Targets, an SxQ matrix (or MxTS cell array of SixQ matrices)</td>
</tr>
<tr>
<td>Xi</td>
<td>Initial input delay states (optional)</td>
</tr>
<tr>
<td>Ai</td>
<td>Initial layer delay states (optional)</td>
</tr>
<tr>
<td>EW</td>
<td>Error weights (optional)</td>
</tr>
</tbody>
</table>

and returns the gradient of performance with respect to the network's weights and biases, where R and S are the number of input and output elements and Q is the number of samples (and N and M are the number of input and output signals, Ri and Si are the number of each input and outputs elements, and TS is the number of timesteps).

`bttderiv('de_dwb', net, X, T, Xi, Ai, EW)` returns the Jacobian of errors with respect to the network's weights and biases.

Examples

Here a feedforward network is trained and both the gradient and Jacobian are calculated.

```matlab
[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
gwb = bttderiv('dperf_dwb',net,x,t)
jwb = bttderiv('de_dwb',net,x,t)
```

See Also

`defaultderiv` | `fpderiv` | `num2deriv` | `num5deriv` | `staticderiv`
cascadeforwardnet

Cascade-forward neural network

Syntax

cascadeforwardnet(hiddenSizes,trainFcn)

Description

Cascade-forward networks are similar to feed-forward networks, but include a connection from the input and every previous layer to following layers.

As with feed-forward networks, a two-or more layer cascade-network can learn any finite input-output relationship arbitrarily well given enough hidden neurons.

cascadeforwardnet(hiddenSizes,trainFcn) takes these arguments,

<table>
<thead>
<tr>
<th>hiddenSizes</th>
<th>Row vector of one or more hidden layer sizes (default = 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>trainFcn</td>
<td>Training function (default = 'trainlm')</td>
</tr>
</tbody>
</table>

and returns a new cascade-forward neural network.

Examples

Create and Train a Cascade Network

Here a cascade network is created and trained on a simple fitting problem.

```matlab
[x,t] = simplefit_dataset;
net = cascadeforwardnet(10);
net = train(net,x,t);
view(net)
y = net(x);
perf = perform(net,y,t)
```

perf =

1.9372e-05
See Also
feedforwardnet | network

Topics
“Create, Configure, and Initialize Multilayer Shallow Neural Networks”
“Neural Network Object Properties”
“Neural Network Subobject Properties”

Introduced in R2010b
catelements

Concatenate neural network data elements

Syntax

catelements(x1,x2,...,xn)
[x1; x2; ... xn]

Description

catelements(x1,x2,...,xn) takes any number of neural network data values, and merges them along the element dimension (i.e., the matrix row dimension).

If all arguments are matrices, this operation is the same as [x1; x2; ... xn].

If any argument is a cell array, then all non-cell array arguments are enclosed in cell arrays, and then the matrices in the same positions in each argument are concatenated.

Examples

This code concatenates the elements of two matrix data values.

x1 = [1 2 3; 4 7 4]
x2 = [5 8 2; 4 7 6; 2 9 1]
y = catelements(x1,x2)

This code concatenates the elements of two cell array data values.

x1 = {{1:3; 4:6} [7:9; 10:12}; [13:15] [16:18]}
x2 = {{2 1 3} [4 5 6]; [2 5 4] [9 7 5]}
y = catelements(x1,x2)

See Also
catsamples | catsignals | cattimesteps | getelements | nndata | numelements | setelements

Introduced in R2010b
catsamples

Concatenate neural network data samples

Syntax

catsamples(x1,x2,...,xn)
[x1 x2 ... xn]
catsamples(x1,x2,...,xn,'pad',v)

Description

catsamples(x1,x2,...,xn) takes any number of neural network data values, and merges them
along the samples dimension (i.e., the matrix column dimension).

If all arguments are matrices, this operation is the same as [x1 x2 ... xn].

If any argument is a cell array, then all non-cell array arguments are enclosed in cell arrays, and then
the matrices in the same positions in each argument are concatenated.

catsamples(x1,x2,...,xn,'pad',v) allows samples with varying numbers of timesteps
(columns of cell arrays) to be concatenated by padding the shorter time series with the value v, until
they are the same length as the longest series. If v is not specified, then the value NaN is used, which
is often used to represent unknown or don’t-care inputs or targets.

Examples

This code concatenates the samples of two matrix data values.

x1 = [1 2 3; 4 7 4]
x2 = [5 8 2; 4 7 6]
y = catsamples(x1,x2)

This code concatenates the samples of two cell array data values.

x1 = {{[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}}
x2 = {{[2 1 3; 5 4 1] [4 5 6; 9 4 8]; [2 5 4] [9 7 5]}}
y = catsamples(x1,x2)

Here the samples of two cell array data values, with unequal numbers of timesteps, are concatenated.

x1 = {1 2 3 4 5};
x2 = {10 11 12};
y = catsamples(x1,x2,'pad')

See Also
catelements | catsignals | cattimesteps | getsamples | nndata | numsamples | setsamples

Introduced in R2010b
catsignals

Concatenate neural network data signals

Syntax

catsignals(x1,x2,...,xn)
{\{x1; x2; ...; xn\}}

Description

catsignals(x1,x2,...,xn) takes any number of neural network data values, and merges them along the element dimension (i.e., the cell row dimension).

If all arguments are matrices, this operation is the same as \{x1; x2; ...; xn\}.

If any argument is a cell array, then all non-cell array arguments are enclosed in cell arrays, and the cell arrays are concatenated as \[[x1; x2; ...; xn]\].

Examples

This code concatenates the signals of two matrix data values.

\[
x1 = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 7 & 4 \end{bmatrix}
x2 = \begin{bmatrix} 5 & 8 & 2 \\ 4 & 7 & 6 \end{bmatrix}
y = \text{catsignals}(x1,x2)
\]

This code concatenates the signals of two cell array data values.

\[
x1 = {\{[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]\}}
x2 = {\{[2 1 3; 5 4 1] [4 5 6; 9 4 8]; [2 5 4] [9 7 5]\}}
y = \text{catsignals}(x1,x2)
\]

See Also
catelements|catsamples|cattimesteps|getsignals|nndata|numsignals|setsignals

Introduced in R2010b
cattimesteps

Concatenate neural network data timesteps

Syntax

cattimesteps(x1,x2,...,xn)
{x1 x2 ... xn}

Description

cattimesteps(x1,x2,...,xn) takes any number of neural network data values, and merges them along the element dimension (i.e., the cell column dimension).

If all arguments are matrices, this operation is the same as {x1 x2 ... xn}.

If any argument is a cell array, all non-cell array arguments are enclosed in cell arrays, and the cell arrays are concatenated as [x1 x2 ... xn].

Examples

This code concatenates the elements of two matrix data values.

```matlab
x1 = [1 2 3; 4 7 4]
x2 = [5 8 2; 4 7 6]
y = cattimesteps(x1,x2)
```

This code concatenates the elements of two cell array data values.

```matlab
x1 = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
x2 = {[2 1 3; 5 4 1] [4 5 6; 9 4 8]; [2 5 4] [9 7 5]}
y = cattimesteps(x1,x2)
```

See Also
catelements | catsamples | catsignals | gettimesteps | nndata | numtimesteps | settimesteps

Introduced in R2010b
cellmat

Create cell array of matrices

Syntax

cellmat(A,B,C,D,v)

Description

cellmat(A,B,C,D,v) takes four integer values and one scalar value v, and returns an A-by-B cell array of C-by-D matrices of value v. If the value v is not specified, zero is used.

Examples

Here two cell arrays of matrices are created.

cm1 = cellmat(2,3,5,4)
cm2 = cellmat(3,4,2,2,pi)

See Also

nndata

Introduced in R2010b
closeloop

Convert neural network open-loop feedback to closed loop

Syntax

net = closeloop(net)
[net,xi,ai] = closeloop(net,xi,ai)

Description

net = closeloop(net) takes a neural network and closes any open-loop feedback. For each feedback output \(i \) whose property \(\text{net}.outputs{i}.feedbackMode \) is 'open', it replaces its associated feedback input and their input weights with layer weight connections coming from the output. The \(\text{net}.outputs{i}.feedbackMode \) property is set to 'closed', and the \(\text{net}.outputs{i}.feedbackInput \) property is set to an empty matrix. Finally, the value of \(\text{net}.outputs{i}.feedbackDelays \) is added to the delays of the feedback layer weights (i.e., to the delays values of the replaced input weights).

[net,xi,ai] = closeloop(net,xi,ai) converts an open-loop network and its current input delay states \(\text{xi} \) and layer delay states \(\text{ai} \) to closed-loop form.

Examples

Convert NARX Network to Closed-Loop Form

This example shows how to design a NARX network in open-loop form, then convert it to closed-loop form.

\[
\begin{align*}
[X,T] &= \text{simplenarx_dataset;}
\text{net} &= \text{narxnet(1:2,1:2,10);}
[\text{Xs},\text{Xi},\text{Ai},\text{Ts}] &= \text{preparets(net,X,{},T)};
\text{net} &= \text{train(net,Xs,Ts,Xi,Ai)};
\text{view(net)}
\end{align*}
\]

\[
\begin{align*}
\text{Yopen} &= \text{net(Xs,Xi,Ai)}
\text{net} &= \text{closeloop(net)}
\text{view(net)}
[\text{Xs},\text{Xi},\text{Ai},\text{Ts}] &= \text{preparets(net,X,{},T)};
\text{Yclosed} &= \text{net(Xs,Xi,Ai)};
\end{align*}
\]

Convert Delay States

For examples on using closeloop and openloop to implement multistep prediction, see narxnet and narnet.

See Also

narnet | narxnet | noloop | openloop

Introduced in R2010b
combvec

Create all combinations of vectors

Syntax

combvec(A1,A2,...)

Description

combvec(A1,A2,...) takes any number of inputs,

<table>
<thead>
<tr>
<th>A1</th>
<th>Matrix of N1 (column) vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>Matrix of N2 (column) vectors</td>
</tr>
</tbody>
</table>

and returns a matrix of (N1*N2*...) column vectors, where the columns consist of all possibilities of A2 vectors, appended to A1 vectors.

Examples

a1 = [1 2 3; 4 5 6];
a2 = [7 8; 9 10];
a3 = combvec(a1,a2)

a3 =

1 2 3 1 2 3
4 5 6 4 5 6
7 7 7 8 8 8
9 9 9 10 10 10

Introduced before R2006a
compet

Competitive transfer function

Graph and Symbol

Syntax

\[A = \text{compet}(N, \text{FP}) \]

\[\text{info} = \text{compet('code')} \]

Description

\text{compet} is a neural transfer function. Transfer functions calculate a layer’s output from its net input.

\[A = \text{compet}(N, \text{FP}) \] takes \(N \) and optional function parameters,

\[
\begin{array}{|c|}
\hline
N & S\text{-by-}Q \text{ matrix of net input (column) vectors} \\
\hline
\text{FP} & \text{Struct of function parameters (ignored)} \\
\hline
\end{array}
\]

and returns the \(S\text{-by-}Q \) matrix \(A \) with a 1 in each column where the same column of \(N \) has its maximum value, and 0 elsewhere.

\[\text{info} = \text{compet('code')} \] returns information according to the code string specified:

\text{compet('name')} returns the name of this function.

\text{compet('output',FP)} returns the [min max] output range.

\text{compet('active',FP)} returns the [min max] active input range.

\text{compet('fullderiv')} returns 1 or 0, depending on whether \(dA_dN \) is \(S\text{-by-}S\text{-by-}Q \) or \(S\text{-by-}Q \).

\text{compet('fpnames')} returns the names of the function parameters.

\text{compet('fpdefaults')} returns the default function parameters.

Examples

Here you define a net input vector \(N \), calculate the output, and plot both with bar graphs.

\[
\begin{align*}
n &= [0; 1; -0.5; 0.5]; \\
a &= \text{compet}(n);
\end{align*}
\]
subplot(2,1,1), bar(n), ylabel('n')
subplot(2,1,2), bar(a), ylabel('a')

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'compet';

See Also
sim | softmax

Introduced before R2006a
competlayer

Competitive layer

Syntax

competlayer(numClasses,kohonenLR,conscienceLR)

Description

Competitive layers learn to classify input vectors into a given number of classes, according to similarity between vectors, with a preference for equal numbers of vectors per class.

competlayer(numClasses,kohonenLR,conscienceLR) takes these arguments,

<table>
<thead>
<tr>
<th>numClasses</th>
<th>Number of classes to classify inputs (default = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>kohonenLR</td>
<td>Learning rate for Kohonen weights (default = 0.01)</td>
</tr>
<tr>
<td>conscienceLR</td>
<td>Learning rate for conscience bias (default = 0.001)</td>
</tr>
</tbody>
</table>

and returns a competitive layer with numClasses neurons.

Examples

Create and Train a Competitive Layer

Here a competitive layer is trained to classify 150 iris flowers into 6 classes.

```matlab
inputs = iris_dataset;
net = competlayer(6);
et = train(net,inputs);
view(net)
outputs = net(inputs);
classes = vec2ind(outputs);
```

See Also

lvqnet | patternnet | selforgmap

Introduced in R2010b
Con2seq

Convert concurrent vectors to sequential vectors

Syntax

\[S = \text{con2seq}(b) \]
\[S = \text{con2seq}(b,\text{TS}) \]

Description

Deep Learning Toolbox software arranges concurrent vectors with a matrix, and sequential vectors with a cell array (where the second index is the time step).

\text{con2seq} and \text{seq2con} allow concurrent vectors to be converted to sequential vectors, and back again.

\[S = \text{con2seq}(b) \] takes one input,

\begin{tabular}{|c|c|}
\hline
\textbf{b} & \text{R-by-\text{TS} matrix} \\
\hline
\end{tabular}

and returns one output,

\begin{tabular}{|c|c|}
\hline
\textbf{S} & \text{1-by-\text{TS} cell array of R-by-1 vectors} \\
\hline
\end{tabular}

\[S = \text{con2seq}(b,\text{TS}) \] can also convert multiple batches,

\begin{tabular}{|c|c|}
\hline
\textbf{b} & \text{N-by-1 cell array of matrices with M*TS columns} \\
\hline
\textbf{TS} & \text{Time steps} \\
\hline
\end{tabular}

and returns

\begin{tabular}{|c|c|}
\hline
\textbf{S} & \text{N-by-\text{TS} cell array of matrices with M columns} \\
\hline
\end{tabular}

Examples

Here a batch of three values is converted to a sequence.

\[p1 = [1 \ 4 \ 2] \]
\[p2 = \text{con2seq}(p1) \]

Here, two batches of vectors are converted to two sequences with two time steps.

\[p1 = \{[1 \ 3 \ 4 \ 5; \ 1 \ 1 \ 7 \ 4]; \ [7 \ 3 \ 4 \ 4; \ 6 \ 9 \ 4 \ 1]\} \]
\[p2 = \text{con2seq}(p1,2) \]

See Also

\text{concur} | \text{seq2con}
Introduced before R2006a
concur

Create concurrent bias vectors

Syntax

\texttt{concur(B,Q)}

Description

\texttt{concur(B,Q)}

\begin{tabular}{|c|c|}
\hline
\textbf{B} & S-by-1 bias vector (or an \texttt{Nl-by-1} cell array of vectors) \\
\hline
\textbf{Q} & Concurrent size \\
\hline
\end{tabular}

and returns an S-by-B matrix of copies of B (or an \texttt{Nl-by-1} cell array of matrices).

Examples

Here \texttt{concur} creates three copies of a bias vector:

\begin{verbatim}
b = [1; 3; 2; -1];
concur(b,3)
\end{verbatim}

Network Use

To calculate a layer's net input, the layer's weighted inputs must be combined with its biases. The following expression calculates the net input for a layer with the \texttt{netsum} net input function, two input weights, and a bias:

\begin{verbatim}
n = netsum(z1,z2,b)
\end{verbatim}

The above expression works if \texttt{Z1}, \texttt{Z2}, and \texttt{B} are all S-by-1 vectors. However, if the network is being simulated by \texttt{sim} (or \texttt{adapt} or \texttt{train}) in response to \texttt{Q} concurrent vectors, then \texttt{Z1} and \texttt{Z2} will be S-by-Q matrices. Before \texttt{B} can be combined with \texttt{Z1} and \texttt{Z2}, you must make \texttt{Q} copies of it.

\begin{verbatim}
n = netsum(z1,z2,concur(b,q))
\end{verbatim}

See Also

\texttt{con2seq} | \texttt{netprod} | \texttt{netsum} | \texttt{seq2con} | \texttt{sim}

\textit{Introduced before R2006a}
configure

Configure network inputs and outputs to best match input and target data

Syntax

net = configure(net,x,t)
net = configure(net,x)
net = configure(net,'inputs',x,i)
net = configure(net,'outputs',t,i)

Description

Configuration is the process of setting network input and output sizes and ranges, input preprocessing settings and output postprocessing settings, and weight initialization settings to match input and target data.

Configuration must happen before a network’s weights and biases can be initialized. Unconfigured networks are automatically configured and initialized the first time train is called. Alternately, a network can be configured manually either by calling this function or by setting a network’s input and output sizes, ranges, processing settings, and initialization settings properties manually.

net = configure(net,x,t) takes input data x and target data t, and configures the network’s inputs and outputs to match.

net = configure(net,x) configures only inputs.

net = configure(net,'inputs',x,i) configures the inputs specified with the index vector i. If i is not specified all inputs are configured.

net = configure(net,'outputs',t,i) configures the outputs specified with the index vector i. If i is not specified all targets are configured.

Examples

Here a feedforward network is created and manually configured for a simple fitting problem (as opposed to allowing train to configure it).

[x,t] = simplefit_dataset;
net = feedforwardnet(20); view(net)
net = configure(net,x,t); view(net)

See Also
init | isconfigured | train | unconfigure

Introduced in R2010b
confusion

Classification confusion matrix

Syntax

\[c,cm,ind,per\] = confusion(targets,outputs)

Description

\[c,cm,ind,per\] = confusion(targets,outputs) takes these values:

<table>
<thead>
<tr>
<th>targets</th>
<th>S-by-Q matrix, where each column vector contains a single 1 value, with all other elements 0. The index of the 1 indicates which of S categories that vector represents.</th>
</tr>
</thead>
<tbody>
<tr>
<td>outputs</td>
<td>S-by-Q matrix, where each column contains values in the range [0,1]. The index of the largest element in the column indicates which of S categories that vector represents.</td>
</tr>
</tbody>
</table>

and returns these values:

<table>
<thead>
<tr>
<th>c</th>
<th>Confusion value = fraction of samples misclassified</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>S-by-S confusion matrix, where cm(i,j) is the number of samples whose target is the ith class that was classified as j</td>
</tr>
<tr>
<td>ind</td>
<td>S-by-S cell array, where ind{i,j} contains the indices of samples with the ith target class, but jth output class</td>
</tr>
<tr>
<td>per</td>
<td>S-by-4 matrix, where each row summarizes four percentages associated with the ith class: per(i,1) false negative rate = (false negatives)/(all output negatives) per(i,2) false positive rate = (false positives)/(all output positives) per(i,3) true positive rate = (true positives)/(all output positives) per(i,4) true negative rate = (true negatives)/(all output negatives)</td>
</tr>
</tbody>
</table>

\[c,cm,ind,per\] = confusion(TARGETS,OUTPUTS) takes these values:

<table>
<thead>
<tr>
<th>targets</th>
<th>1-by-Q vector of 1/0 values representing membership</th>
</tr>
</thead>
<tbody>
<tr>
<td>outputs</td>
<td>S-by-Q matrix, of value in [0,1] interval, where values greater than or equal to 0.5 indicate class membership</td>
</tr>
</tbody>
</table>

and returns these values:

<table>
<thead>
<tr>
<th>c</th>
<th>Confusion value = fraction of samples misclassified</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>2-by-2 confusion matrix</td>
</tr>
</tbody>
</table>
ind | 2-by-2 cell array, where ind{i,j} contains the indices of samples whose target is 1 versus 0, and whose output was greater than or equal to 0.5 versus less than 0.5
---|---
per | 2-by-4 matrix where each i-th row represents the percentage of false negatives, false positives, true positives, and true negatives for the class and out-of-class

Examples

```matlab
[x,t] = simpleclass_dataset;
net = patternnet(10);
net = train(net,x,t);
y = net(x);
[c,cm,ind,per] = confusion(t,y)
```

See Also

plotconfusion | roc

Introduced in R2008a
convwf

Convolution weight function

Syntax

\[Z = \text{convwf}(W, P) \]
\[\text{dim} = \text{convwf}('\text{size}', S, R, FP) \]
\[\text{dw} = \text{convwf}('\text{dw}', W, P, Z, FP) \]
\[\text{info} = \text{convwf}('\text{code}') \]

Description

Weight functions apply weights to an input to get weighted inputs.

\[Z = \text{convwf}(W, P) \] returns the convolution of a weight matrix \(W \) and an input \(P \).

\[\text{dim} = \text{convwf}('\text{size}', S, R, FP) \] takes the layer dimension \(S \), input dimension \(R \), and function parameters, and returns the weight size.

\[\text{dw} = \text{convwf}('\text{dw}', W, P, Z, FP) \] returns the derivative of \(Z \) with respect to \(W \).

\[\text{info} = \text{convwf}('\text{code}') \] returns information about this function. The following codes are defined:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'deriv'</td>
<td>Name of derivative function</td>
</tr>
<tr>
<td>'fullderiv'</td>
<td>Reduced derivative = 2, full derivative = 1, linear derivative = 0</td>
</tr>
<tr>
<td>'pfullderiv'</td>
<td>Input: reduced derivative = 2, full derivative = 1, linear derivative = 0</td>
</tr>
<tr>
<td>'wfullderiv'</td>
<td>Weight: reduced derivative = 2, full derivative = 1, linear derivative = 0</td>
</tr>
<tr>
<td>'name'</td>
<td>Full name</td>
</tr>
<tr>
<td>'fpnames'</td>
<td>Returns names of function parameters</td>
</tr>
<tr>
<td>'fpdefaults'</td>
<td>Returns default function parameters</td>
</tr>
</tbody>
</table>

Examples

Here you define a random weight matrix \(W \) and input vector \(P \) and calculate the corresponding weighted input \(Z \).

\[W = \text{rand}(4,1); \]
\[P = \text{rand}(8,1); \]
\[Z = \text{convwf}(W, P) \]

Network Use

To change a network so an input weight uses \text{convwf}, set \text{net.inputWeights\{i,j\}.weightFcn} to '\text{convwf}'. For a layer weight, set \text{net.layerWeights\{i,j\}.weightFcn} to '\text{convwf}'.

2-29
In either case, call `sim` to simulate the network with `convwf`.

Introduced in R2006a
crossentropy

Neural network performance

Syntax

```matlab
perf = crossentropy(net,targets,outputs,perfWeights)
perf = crossentropy(____,Name,Value)
```

Description

`perf = crossentropy(net,targets,outputs,perfWeights)` calculates a network performance given targets and outputs, with optional performance weights and other parameters. The function returns a result that heavily penalizes outputs that are extremely inaccurate (y near 1-t), with very little penalty for fairly correct classifications (y near t). Minimizing cross-entropy leads to good classifiers.

The cross-entropy for each pair of output-target elements is calculated as:

\[ce = -t .* \log(y) \]

The aggregate cross-entropy performance is the mean of the individual values:

\[\text{perf} = \frac{\text{sum}(ce(:))}{\text{numel}(ce)} \]

Special case (N = 1): If an output consists of only one element, then the outputs and targets are interpreted as binary encoding. That is, there are two classes with targets of 0 and 1, whereas in 1-of-N encoding, there are two or more classes. The binary cross-entropy expression is:

\[ce = -t .* \log(y) - (1-t) .* \log(1-y) \]

`perf = crossentropy(____,Name,Value)` supports customization according to the specified name-value pair arguments.

Examples

Calculate Network Performance

This example shows how to design a classification network with cross-entropy and 0.1 regularization, then calculate performance on the whole dataset.

```matlab
[x,t] = iris_dataset;
net = patternnet(10);
net.performParam.regularization = 0.1;
net = train(net,x,t);
y = net(x);
perf = crossentropy(net,t,y,1,'regularization',0.1)
perf = 0.0278
```

Set crossentropy as Performance Function

This example shows how to set up the network to use the `crossentropy` during training.
net = feedforwardnet(10);
net.performFcn = 'crossentropy';
net.performParam.regularization = 0.1;
net.performParam.normalization = 'none';

Input Arguments

net — neural network

network object

Neural network, specified as a network object.

Example: `net = feedforwardnet(10);`

targets — neural network target values

matrix or cell array of numeric values

Neural network target values, specified as a matrix or cell array of numeric values. Network target values define the desired outputs, and can be specified as an N-by-Q matrix of Q N-element vectors, or an M-by-TS cell array where each element is an Ni-by-Q matrix. In each of these cases, N or Ni indicates a vector length, Q the number of samples, M the number of signals for neural networks with multiple outputs, and TS is the number of time steps for time series data. targets must have the same dimensions as outputs.

The target matrix columns consist of all zeros and a single 1 in the position of the class being represented by that column vector. When N = 1, the software uses cross entropy for binary encoding, otherwise it uses cross entropy for 1-of-N encoding. NaN values are allowed to indicate unknown or don't-care output values. The performance of NaN target values is ignored.

Data Types: `double` | `cell`

outputs — neural network output values

matrix or cell array of numeric values

Neural network output values, specified as a matrix or cell array of numeric values. Network output values can be specified as an N-by-Q matrix of Q N-element vectors, or an M-by-TS cell array where each element is an Ni-by-Q matrix. In each of these cases, N or Ni indicates a vector length, Q the number of samples, M the number of signals for neural networks with multiple outputs and TS is the number of time steps for time series data. outputs must have the same dimensions as targets.

Outputs can include NaN to indicate unknown output values, presumably produced as a result of NaN input values (also representing unknown or don't-care values). The performance of NaN output values is ignored.

General case (N>=2): The columns of the output matrix represent estimates of class membership, and should sum to 1. You can use the softmax transfer function to produce such output values. Use patternnet to create networks that are already set up to use cross-entropy performance with a softmax output layer.

Data Types: `double` | `cell`

perfWeights — performance weights

{1} (default) | vector or cell array of numeric values

Performance weights, specified as a vector or cell array of numeric values. Performance weights are an optional argument defining the importance of each performance value, associated with each target
value, using values between 0 and 1. Performance values of 0 indicate targets to ignore, values of 1 indicate targets to be treated with normal importance. Values between 0 and 1 allow targets to be treated with relative importance.

Performance weights have many uses. They are helpful for classification problems, to indicate which classifications (or misclassifications) have relatively greater benefits (or costs). They can be useful in time series problems where obtaining a correct output on some time steps, such as the last time step, is more important than others. Performance weights can also be used to encourage a neural network to best fit samples whose targets are known most accurately, while giving less importance to targets which are known to be less accurate.

perfWeights can have the same dimensions as targets and outputs. Alternately, each dimension of the performance weights can either match the dimension of targets and outputs, or be 1. For instance, if targets is an N-by-Q matrix defining Q samples of N-element vectors, the performance weights can be N-by-Q indicating a different importance for each target value, or N-by-1 defining a different importance for each row of the targets, or 1-by-Q indicating a different importance for each sample, or be the scalar 1 (i.e. 1-by-1) indicating the same importance for all target values.

Similarly, if outputs and targets are cell arrays of matrices, the perfWeights can be a cell array of the same size, a row cell array (indicating the relative importance of each time step), a column cell array (indicating the relative importance of each neural network output), or a cell array of a single matrix or just the matrix (both cases indicating that all matrices have the same importance values).

For any problem, a perfWeights value of {1} (the default) or the scalar 1 indicates all performances have equal importance.

Data Types: double | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1,...,NameN, ValueN.

Example: 'normalization', 'standard' specifies the inputs and targets to be normalized to the range (-1, +1).

regularization — proportion of performance attributed to weight/bias values

0 (default) | numeric value in the range (0,1)

Proportion of performance attributed to weight/bias values, specified as a double between 0 (the default) and 1. A larger value penalizes the network for large weights, and the more likely the network function will avoid overfitting.

Example: 'regularization', 0

Data Types: single | double

normalization — Normalization mode for outputs, targets, and errors

'none' (default) | 'standard' | 'percent'

Normalization mode for outputs, targets, and errors, specified as 'none', 'standard', or 'percent'. 'none' performs no normalization. 'standard' results in outputs and targets being normalized to (-1, +1), and therefore errors in the range (-2, +2). 'percent' normalizes outputs and targets to (-0.5, 0.5) and errors to (-1, 1).

Example: 'normalization', 'standard'
Data Types: char

Output Arguments

perf — network performance
double

Network performance, returned as a double in the range (0,1).

See Also

mae | mse | patternnet | sae | softmax | sse

Introduced in R2013b
defaultderiv

Default derivative function

Syntax

defaultderiv('dperf_dwb',net,X,T,Xi,Ai,EW)
defaultderiv('de_dwb',net,X,T,Xi,Ai,EW)

Description

This function chooses the recommended derivative algorithm for the type of network whose derivatives are being calculated. For static networks, defaultderiv calls staticderiv; for dynamic networks it calls bttderiv to calculate the gradient and fpderiv to calculate the Jacobian.

defaultderiv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

<table>
<thead>
<tr>
<th>net</th>
<th>Neural network</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Inputs, an R-by-Q matrix (or N-by-TS cell array of Ri-by-Q matrices)</td>
</tr>
<tr>
<td>T</td>
<td>Targets, an S-by-Q matrix (or M-by-TS cell array of Si-by-Q matrices)</td>
</tr>
<tr>
<td>Xi</td>
<td>Initial input delay states (optional)</td>
</tr>
<tr>
<td>Ai</td>
<td>Initial layer delay states (optional)</td>
</tr>
<tr>
<td>EW</td>
<td>Error weights (optional)</td>
</tr>
</tbody>
</table>

and returns the gradient of performance with respect to the network’s weights and biases, where R and S are the number of input and output elements and Q is the number of samples (or N and M are the number of input and output signals, Ri and Si are the number of each input and outputs elements, and TS is the number of timesteps).

defaultderiv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of errors with respect to the network’s weights and biases.

Examples

Here a feedforward network is trained and both the gradient and Jacobian are calculated.

```matlab
[x,t] = simplefit_dataset;
net = feedforwardnet(10);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
dwb = defaultderiv('dperf_dwb',net,x,t)
```

See Also

bttderiv | fpderiv | num2deriv | num5deriv | staticderiv

Introduced in R2010b
dist

Euclidean distance weight function

Syntax

\[Z = \text{dist}(W,P,FP) \]
\[\text{dim} = \text{dist}('\text{size}',S,R,FP) \]
\[dw = \text{dist}('\text{dw}',W,P,Z,FP) \]
\[D = \text{dist}(\text{pos}) \]
\[\text{info} = \text{dist}('\text{code}') \]

Description

Weight functions apply weights to an input to get weighted inputs.

\[Z = \text{dist}(W,P,FP) \] takes these inputs,

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(W)</td>
<td>S-by-R weight matrix</td>
</tr>
<tr>
<td>(P)</td>
<td>R-by-Q matrix of Q input (column) vectors</td>
</tr>
<tr>
<td>(FP)</td>
<td>Struct of function parameters (optional, ignored)</td>
</tr>
</tbody>
</table>

and returns the S-by-Q matrix of vector distances.

\[\text{dim} = \text{dist}('\text{size}',S,R,FP) \] takes the layer dimension \(S \), input dimension \(R \), and function parameters, and returns the weight size [S-by-R].

\[dw = \text{dist}('\text{dw}',W,P,Z,FP) \] returns the derivative of \(Z \) with respect to \(W \).

\text{dist} is also a layer distance function which can be used to find the distances between neurons in a layer.

\[D = \text{dist}(\text{pos}) \] takes one argument,

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{pos})</td>
<td>N-by-S matrix of neuron positions</td>
</tr>
</tbody>
</table>

and returns the S-by-S matrix of distances.

\[\text{info} = \text{dist}('\text{code}') \] returns information about this function. The following codes are supported:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'deriv'</td>
<td>Name of derivative function</td>
</tr>
<tr>
<td>'fullderiv'</td>
<td>Full derivative = 1, linear derivative = 0</td>
</tr>
<tr>
<td>'pfullderiv'</td>
<td>Input: reduced derivative = 2, full derivative = 1, linear derivative = 0</td>
</tr>
<tr>
<td>'name'</td>
<td>Full name</td>
</tr>
<tr>
<td>'fpnames'</td>
<td>Returns names of function parameters</td>
</tr>
<tr>
<td>'fpdefaults'</td>
<td>Returns default function parameters</td>
</tr>
</tbody>
</table>
Examples

Here you define a random weight matrix \(W \) and input vector \(P \) and calculate the corresponding weighted input \(Z \).

\[
W = \text{rand}(4,3);
P = \text{rand}(3,1);
Z = \text{dist}(W,P)
\]

Here you define a random matrix of positions for 10 neurons arranged in three-dimensional space and find their distances.

\[
pos = \text{rand}(3,10);
D = \text{dist}(pos)
\]

Network Use

You can create a standard network that uses \text{dist} by calling \text{newpnn} or \text{newgrnn}.

To change a network so an input weight uses \text{dist}, set \text{net.inputWeights\{i,j\}.weightFcn} to 'dist'. For a layer weight, set \text{net.layerWeights\{i,j\}.weightFcn} to 'dist'.

To change a network so that a layer's topology uses \text{dist}, set \text{net.layers\{i\}.distanceFcn} to 'dist'.

In either case, call \text{sim} to simulate the network with \text{dist}.

See \text{newpnn} or \text{newgrnn} for simulation examples.

Algorithms

The Euclidean distance \(d \) between two vectors \(X \) and \(Y \) is

\[
d = \text{sum}((x-y)^2)^{0.5}
\]

See Also

\text{dotprod} | \text{linkdist} | \text{mandist} | \text{negdist} | \text{normprod} | \text{sim}

Introduced before R2006a
distdelaynet

Distributed delay network

Syntax

distdelaynet(delays,hiddenSizes,trainFcn)

Description

 Distributed delay networks are similar to feedforward networks, except that each input and layer weights has a tap delay line associated with it. This allows the network to have a finite dynamic response to time series input data. This network is also similar to the time delay neural network (timedelaynet), which only has delays on the input weight.

distdelaynet(delays,hiddenSizes,trainFcn) takes these arguments,

delays \ Row vector of increasing 0 or positive delays (default = 1:2)
hiddenSizes \ Row vector of one or more hidden layer sizes (default = 10)
trainFcn \ Training function (default = 'trainlm')

and returns a distributed delay neural network.

Examples

Distributed Delay Network

Here a distributed delay neural network is used to solve a simple time series problem.

[X,T] = simpleseries_dataset;
net = distdelaynet({1:2,1:2},10);
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi,Ai);
perf = perform(net,Y,Ts)

perf =

 0.0323
See Also
narnet|narxnet|preparets|removedelay|timedelaynet

Introduced in R2010b
divideblock

Divide targets into three sets using blocks of indices

Syntax

[trainInd, valInd, testInd] = divideblock(Q, trainRatio, valRatio, testRatio)

Description

[trainInd, valInd, testInd] = divideblock(Q, trainRatio, valRatio, testRatio)
separates targets into three sets: training, validation, and testing. It takes the following inputs:

<table>
<thead>
<tr>
<th>Q</th>
<th>Number of targets to divide up.</th>
</tr>
</thead>
<tbody>
<tr>
<td>trainRatio</td>
<td>Ratio of targets for training. Default = 0.7.</td>
</tr>
<tr>
<td>valRatio</td>
<td>Ratio of targets for validation. Default = 0.15.</td>
</tr>
<tr>
<td>testRatio</td>
<td>Ratio of targets for testing. Default = 0.15.</td>
</tr>
</tbody>
</table>

and returns

<table>
<thead>
<tr>
<th>trainInd</th>
<th>Training indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>valInd</td>
<td>Validation indices</td>
</tr>
<tr>
<td>testInd</td>
<td>Test indices</td>
</tr>
</tbody>
</table>

Examples

[trainInd, valInd, testInd] = divideblock(3000, 0.6, 0.2, 0.2);

Network Use

Here are the network properties that define which data division function to use, what its parameters are, and what aspects of targets are divided up, when train is called.

net.divideFcn
net.divideParam
net.divideMode

See Also

divideind | divideint | dividerand | dividetrain

Introduced in R2008a
divideind

Divide targets into three sets using specified indices

Syntax

[trainInd,valInd,testInd] = divideind(Q,trainInd,valInd,testInd)

Description

[trainInd,valInd,testInd] = divideind(Q,trainInd,valInd,testInd) separates targets into three sets: training, validation, and testing, according to indices provided. It actually returns the same indices it receives as arguments; its purpose is to allow the indices to be used for training, validation, and testing for a network to be set manually.

It takes the following inputs,

<table>
<thead>
<tr>
<th>Q</th>
<th>Number of targets to divide up</th>
</tr>
</thead>
<tbody>
<tr>
<td>trainInd</td>
<td>Training indices</td>
</tr>
<tr>
<td>valInd</td>
<td>Validation indices</td>
</tr>
<tr>
<td>testInd</td>
<td>Test indices</td>
</tr>
</tbody>
</table>

and returns

<table>
<thead>
<tr>
<th>trainInd</th>
<th>Training indices (unchanged)</th>
</tr>
</thead>
<tbody>
<tr>
<td>valInd</td>
<td>Validation indices (unchanged)</td>
</tr>
<tr>
<td>testInd</td>
<td>Test indices (unchanged)</td>
</tr>
</tbody>
</table>

Examples

[trainInd,valInd,testInd] = ...
divideind(3000,1:2000,2001:2500,2501:3000);

Network Use

Here are the network properties that define which data division function to use, what its parameters are, and what aspects of targets are divided up, when train is called.

net.divideFcn
net.divideParam
net.divideMode

See Also

divideblock | divideint | dividerand | dividetrain

Introduced in R2008a
divideint

Divide targets into three sets using interleaved indices

Syntax

```
[trainInd,valInd,testInd] = divideint(Q,trainRatio,valRatio,testRatio)
```

Description

```
[trainInd,valInd,testInd] = divideint(Q,trainRatio,valRatio,testRatio)
```

separates targets into three sets: training, validation, and testing. It takes the following inputs,

<table>
<thead>
<tr>
<th>Q</th>
<th>Number of targets to divide up.</th>
</tr>
</thead>
<tbody>
<tr>
<td>trainRatio</td>
<td>Ratio of vectors for training. Default = 0.7.</td>
</tr>
<tr>
<td>valRatio</td>
<td>Ratio of vectors for validation. Default = 0.15.</td>
</tr>
<tr>
<td>testRatio</td>
<td>Ratio of vectors for testing. Default = 0.15.</td>
</tr>
</tbody>
</table>

and returns

<table>
<thead>
<tr>
<th>trainInd</th>
<th>Training indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>valInd</td>
<td>Validation indices</td>
</tr>
<tr>
<td>testInd</td>
<td>Test indices</td>
</tr>
</tbody>
</table>

Examples

```
[trainInd,valInd,testInd] = divideint(3000,0.6,0.2,0.2);
```

Network Use

Here are the network properties that define which data division function to use, what its parameters are, and what aspects of targets are divided up, when `train` is called.

```
net.divideFcn
net.divideParam
net.divideMode
```

See Also

divideblock | divideind | dividerand | dividetrain

Introduced in R2008a
dividerand

Divide targets into three sets using random indices

Syntax

[trainInd,valInd,testInd] = dividerand(Q,trainRatio,valRatio,testRatio)

Description

[trainInd,valInd,testInd] = dividerand(Q,trainRatio,valRatio,testRatio)
separates targets into three sets: training, validation, and testing. It takes the following inputs,

<table>
<thead>
<tr>
<th></th>
<th>Number of targets to divide up.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>trainRatio</td>
<td>Ratio of vectors for training. Default = 0.7.</td>
</tr>
<tr>
<td>valRatio</td>
<td>Ratio of vectors for validation. Default = 0.15.</td>
</tr>
<tr>
<td>testRatio</td>
<td>Ratio of vectors for testing. Default = 0.15.</td>
</tr>
</tbody>
</table>

and returns

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>trainInd</td>
<td>Training indices</td>
</tr>
<tr>
<td>valInd</td>
<td>Validation indices</td>
</tr>
<tr>
<td>testInd</td>
<td>Test indices</td>
</tr>
</tbody>
</table>

Examples

[trainInd,valInd,testInd] = dividerand(3000,0.6,0.2,0.2);

Network Use

Here are the network properties that define which data division function to use, what its parameters are, and what aspects of targets are divided up, when train is called.

net.divideFcn
net.divideParam
net.divideMode

See Also

divideblock | divideind | divideint | dividetrain

Introduced in R2008a
dividetrain

Assign all targets to training set

Syntax

\[
[trainInd, valInd, testInd] = dividetrain(Q)
\]

Description

\[
[trainInd, valInd, testInd] = dividetrain(Q)
\] assigns all targets to the training set and no targets to the validation or test sets. It takes the following inputs:

<table>
<thead>
<tr>
<th>Q</th>
<th>Number of targets to divide up.</th>
</tr>
</thead>
</table>

and returns:

<table>
<thead>
<tr>
<th>trainInd</th>
<th>Training indices equal to 1:Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>valInd</td>
<td>Empty validation indices, []</td>
</tr>
<tr>
<td>testInd</td>
<td>Empty test indices, []</td>
</tr>
</tbody>
</table>

Examples

\[
[trainInd, valInd, testInd] = dividetrain(250);
\]

Network Use

Here are the network properties that define which data division function to use, what its parameters are, and what aspects of targets are divided up, when *train* is called.

- `net.divideFcn`
- `net.divideParam`
- `net.divideMode`

See Also

- `divideblock`
- `divideind`
- `divideint`
- `dividerand`

Introduced in R2010b
dotprod

Dot product weight function

Syntax

\[
Z = \text{dotprod}(W,P,FP) \\
\text{dim} = \text{dotprod('size',S,R,FP)} \\
dw = \text{dotprod('dw',W,P,Z,FP)} \\
\text{info} = \text{dotprod('code')} \\
\]

Description

Weight functions apply weights to an input to get weighted inputs.

\[
Z = \text{dotprod}(W,P,FP) \quad \text{takes these inputs,} \\
\]

<table>
<thead>
<tr>
<th>W</th>
<th>S-by-R weight matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>R-by-Q matrix of Q input (column) vectors</td>
</tr>
<tr>
<td>FP</td>
<td>Struct of function parameters (optional, ignored)</td>
</tr>
</tbody>
</table>

and returns the S-by-Q dot product of W and P.

\[
\text{dim} = \text{dotprod('size',S,R,FP)} \quad \text{takes the layer dimension S, input dimension R, and function parameters, and returns the weight size [S-by-R].} \\
\text{dw} = \text{dotprod('dw',W,P,Z,FP)} \quad \text{returns the derivative of Z with respect to W.} \\
\text{info} = \text{dotprod('code')} \quad \text{returns information about this function. The following codes are defined:} \\
\]

<table>
<thead>
<tr>
<th>'deriv'</th>
<th>Name of derivative function</th>
</tr>
</thead>
<tbody>
<tr>
<td>'pfullderiv'</td>
<td>Input: reduced derivative = 2, full derivative = 1, linear derivative = 0</td>
</tr>
<tr>
<td>'wfullderiv'</td>
<td>Weight: reduced derivative = 2, full derivative = 1, linear derivative = 0</td>
</tr>
<tr>
<td>'name'</td>
<td>Full name</td>
</tr>
<tr>
<td>'fpnames'</td>
<td>Returns names of function parameters</td>
</tr>
<tr>
<td>'fpdefaults'</td>
<td>Returns default function parameters</td>
</tr>
</tbody>
</table>

Examples

Here you define a random weight matrix W and input vector P and calculate the corresponding weighted input Z.

\[
W = \text{rand}(4,3); \\
P = \text{rand}(3,1); \\
Z = \text{dotprod}(W,P) \\
\]
Network Use

You can create a standard network that uses dotprod by calling `feedforwardnet`.

To change a network so an input weight uses dotprod, set `net.inputWeights{i,j}.weightFcn` to `'dotprod'`. For a layer weight, set `net.layerWeights{i,j}.weightFcn` to `'dotprod'`.

In either case, call `sim` to simulate the network with dotprod.

See Also

`dist` | `feedforwardnet` | `negdist` | `normprod` | `sim`

Introduced before R2006a
elliotsig

Elliot symmetric sigmoid transfer function

Syntax

A = elliotsig(N)

Description

Transfer functions convert a neural network layer’s net input into its net output.

A = elliotsig(N) takes an S-by-Q matrix of S N-element net input column vectors and returns an S-by-Q matrix A of output vectors, where each element of N is squashed from the interval [-\infty, \infty] to the interval [-1, 1] with an “S-shaped” function.

The advantage of this transfer function over other sigmoids is that it is fast to calculate on simple computing hardware as it does not require any exponential or trigonometric functions. Its disadvantage is that it only flattens out for large inputs, so its effect is not as local as other sigmoid functions. This might result in more training iterations, or require more neurons to achieve the same accuracy.

Examples

Calculate a layer output from a single net input vector:

n = [0; 1; -0.5; 0.5];
a = elliotsig(n);

Plot the transfer function:

n = -5:0.01:5;
plot(n, elliotsig(n))
set(gca,'dataaspectratio',[1 1 1],'xgrid','on','ygrid','on')

For a network you have already defined, change the transfer function for layer i:

net.layers{i}.transferFcn = 'elliotsig';

See Also

elliotsig2| logsig | tansig

Introduced in R2012b
elliot2sig

Elliot 2 symmetric sigmoid transfer function

Syntax

A = elliot2sig(N)

Description

Transfer functions convert a neural network layer’s net input into its net output. This function is a variation on the original Elliot sigmoid function. It has a steeper slope, closer to tansig, but is not as smooth at the center.

A = elliot2sig(N) takes an S-by-Q matrix of S N-element net input column vectors and returns an S-by-Q matrix A of output vectors, where each element of N is squashed from the interval [-inf inf] to the interval [-1 1] with an “S-shaped” function.

The advantage of this transfer function over other sigmoids is that it is fast to calculate on simple computing hardware as it does not require any exponential or trigonometric functions. Its disadvantage is that it departs from the classic sigmoid shape around zero.

Examples

Calculate a layer output from a single net input vector:

n = [0; 1; -0.5; 0.5];
a = elliot2sig(n);

Plot the transfer function:

n = -5:0.01:5;
plot(n, elliot2sig(n))
set(gca,'dataaspectratio',[1 1 1],'xgrid','on','ygrid','on')

For a network you have already defined, change the transfer function for layer i:

net.layers{i}.transferFcn = 'elliot2sig';

See Also

elliotsig | logsig | tansig

Introduced in R2012b
elmannet

Elman neural network

Syntax

```
elmannet(layerdelays,hiddenSizes,trainFcn)
```

Description

Elman networks are feedforward networks ([feedforwardnet](#)) with the addition of layer recurrent connections with tap delays.

With the availability of full dynamic derivative calculations ([fpderiv](#) and [bttderiv](#)), the Elman network is no longer recommended except for historical and research purposes. For more accurate learning try time delay ([timedelaynet](#)), layer recurrent ([layrecnet](#)), NARX ([narxnet](#)), and NAR ([narnet](#)) neural networks.

Elman networks with one or more hidden layers can learn any dynamic input-output relationship arbitrarily well, given enough neurons in the hidden layers. However, Elman networks use simplified derivative calculations (using [staticderiv](#), which ignores delayed connections) at the expense of less reliable learning.

```
elmannet(layerdelays,hiddenSizes,trainFcn)
```

takes these arguments,

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>layerdelays</td>
<td>Row vector of increasing 0 or positive delays (default = 1:2)</td>
</tr>
<tr>
<td>hiddenSizes</td>
<td>Row vector of one or more hidden layer sizes (default = 10)</td>
</tr>
<tr>
<td>trainFcn</td>
<td>Training function (default = 'trainlm')</td>
</tr>
</tbody>
</table>

and returns an Elman neural network.

Examples

Here an Elman neural network is used to solve a simple time series problem.

```
[X,T] = simpleseries_dataset;
net = elmannet(1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi,Ai);
perf = perform(net,Ts,Y)
```

See Also

[layrecnet](#)| [narnet](#)| [narxnet](#)| [preparets](#)| [removedelay](#)| [timedelaynet](#)

Introduced in R2010b
errs surf

Error surface of single-input neuron

Syntax

`errs surf(P,T,WV,BV,F)`

Description

`errs surf(P,T,WV,BV,F)` takes these arguments,

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>P</code></td>
<td>1-by-Q matrix of input vectors</td>
</tr>
<tr>
<td><code>T</code></td>
<td>1-by-Q matrix of target vectors</td>
</tr>
<tr>
<td><code>WV</code></td>
<td>Row vector of values of W</td>
</tr>
<tr>
<td><code>BV</code></td>
<td>Row vector of values of B</td>
</tr>
<tr>
<td><code>F</code></td>
<td>Transfer function (string)</td>
</tr>
</tbody>
</table>

and returns a matrix of error values over `WV` and `BV`.

Examples

```matlab
p = [-6.0 -6.1 -4.1 -4.0 +4.0 +4.1 +6.0 +6.1];
t = [+0.0 +0.0 +.97 +.99 +.01 +.03 +1.0 +1.0];
wv = -1:.1:1; bv = -2.5:.25:2.5;
es = errs surf(p,t,wv,bv,'logsig');
plotes(wv,bv,es,[60 30])
```

See Also

`plotes`

Introduced before R2006a
extendts

Extend time series data to given number of timesteps

Syntax

`extendts(x,ts,v)`

Description

`extendts(x,ts,v)` takes these values,

<table>
<thead>
<tr>
<th>x</th>
<th>Neural network time series data</th>
</tr>
</thead>
<tbody>
<tr>
<td>ts</td>
<td>Number of timesteps</td>
</tr>
<tr>
<td>v</td>
<td>Value</td>
</tr>
</tbody>
</table>

and returns the time series data either extended or truncated to match the specified number of timesteps. If the value v is specified, then extended series are filled in with that value, otherwise they are extended with random values.

Examples

Here, a 20-timestep series is created and then extended to 25 timesteps with the value zero.

```plaintext
x = nndata(5,4,20);
y = extendts(x,25,0)
```

See Also

catsamples | nndata | prepares

Introduced in R2010b
feedforwardnet

Generate feedforward neural network

Syntax

```matlab
net = feedforwardnet(hiddenSizes,trainFcn)
```

Description

`net = feedforwardnet(hiddenSizes,trainFcn)` returns a feedforward neural network with a hidden layer size of `hiddenSizes` and training function, specified by `trainFcn`.

Feedforward networks consist of a series of layers. The first layer has a connection from the network input. Each subsequent layer has a connection from the previous layer. The final layer produces the network's output.

You can use feedforward networks for any kind of input to output mapping. A feedforward network with one hidden layer and enough neurons in the hidden layers can fit any finite input-output mapping problem.

Specialized versions of the feedforward network include fitting and pattern recognition networks. For more information, see the `fitnet` and `patternnet` functions.

A variation on the feedforward network is the cascade forward network, which has additional connections from the input to every layer, and from each layer to all following layers. For more information on cascade forward networks, see the `cascadeforwardnet` function.

Examples

Construct and Train a Feedforward Neural Network

This example shows how to use a feedforward neural network to solve a simple problem.

Load the training data.

```matlab
[x,t] = simplefit_dataset;
```

The 1-by-94 matrix `x` contains the input values and the 1-by-94 matrix `t` contains the associated target output values.

Construct a feedforward network with one hidden layer of size 10.

```matlab
net = feedforwardnet(10);
```

Train the network `net` using the training data.

```matlab
net = train(net,x,t);
```

View the trained network.

```matlab
view(net)
```
Estimate the targets using the trained network.

\[y = \text{net}(x); \]

Assess the performance of the trained network. The default performance function is mean squared error.

\[\text{perf} = \text{perform}(\text{net},y,t) \]

\[\text{perf} = 1.4639\times10^{-04} \]

Input Arguments

hiddenSizes — Size of the hidden layers

10 (default) | row vector

Size of the hidden layers in the network, specified as a row vector. The length of the vector determines the number of hidden layers in the network.

Example: For example, you can specify a network with 3 hidden layers, where the first hidden layer size is 10, the second is 8, and the third is 5 as follows: [10,8,5]

The input and output sizes are set to zero. The software adjusts the sizes of these during training according to the training data.

Data Types: `single` | `double`

trainFcn — Training function name

'\text{trainlm}' (default) | '\text{trainbr}' | '\text{trainbfg}' | '\text{trainrp}' | '\text{trainscg}' | ...\n
Training function name, specified as one of the following.

<table>
<thead>
<tr>
<th>Training Function</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>'trainlm'</td>
<td>Levenberg-Marquardt</td>
</tr>
<tr>
<td>'trainbr'</td>
<td>Bayesian Regularization</td>
</tr>
<tr>
<td>'trainbfg'</td>
<td>BFGS Quasi-Newton</td>
</tr>
<tr>
<td>'trainrp'</td>
<td>Resilient Backpropagation</td>
</tr>
<tr>
<td>'trainscg'</td>
<td>Scaled Conjugate Gradient</td>
</tr>
<tr>
<td>'traincgb'</td>
<td>Conjugate Gradient with Powell/Beale Restarts</td>
</tr>
<tr>
<td>'traincgp'</td>
<td>Fletcher-Powell Conjugate Gradient</td>
</tr>
<tr>
<td>'trainoss'</td>
<td>Polak-Ribière Conjugate Gradient</td>
</tr>
<tr>
<td>'traingdx'</td>
<td>One Step Secant</td>
</tr>
<tr>
<td>'traingdm'</td>
<td>Variable Learning Rate Gradient Descent</td>
</tr>
<tr>
<td>'traingd'</td>
<td>Gradient Descent with Momentum</td>
</tr>
</tbody>
</table>

Example: For example, you can specify the variable learning rate gradient descent algorithm as the training algorithm as follows: `'traingdx'`
For more information on the training functions, see “Train and Apply Multilayer Shallow Neural Networks” and “Choose a Multilayer Neural Network Training Function”.

Data Types: char

Output Arguments

net — Feedforward network
network object

Feedforward neural network, returned as a network object.

See Also

cascadeforwardnet | fitnet | network | patternnet

Topics

“Neural Network Object Properties”
“Neural Network Subobject Properties”

Introduced in R2010b
fixunknowns

Process data by marking rows with unknown values

Syntax

[y,ps] = fixunknowns(X)
[y,ps] = fixunknowns(X,FP)
Y = fixunknowns('apply',X,PS)
X = fixunknowns('reverse',Y,PS)
name = fixunknowns('name')
fp = fixunknowns('pdefaults')
pd = fixunknowns('pdesc')
fixunknowns('pcheck',fp)

Description

fixunknowns processes matrices by replacing each row containing unknown values (represented by NaN) with two rows of information.

The first row contains the original row, with NaN values replaced by the row’s mean. The second row contains 1 and 0 values, indicating which values in the first row were known or unknown, respectively.

[y,ps] = fixunknowns(X) takes these inputs,

<table>
<thead>
<tr>
<th>X</th>
<th>N-by-Q matrix</th>
</tr>
</thead>
</table>

and returns

<table>
<thead>
<tr>
<th>Y</th>
<th>M-by-Q matrix with M - N rows added</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS</td>
<td>Process settings that allow consistent processing of values</td>
</tr>
</tbody>
</table>

[y,ps] = fixunknowns(X,FP) takes an empty struct FP of parameters.
Y = fixunknowns('apply',X,PS) returns Y, given X and settings PS.
X = fixunknowns('reverse',Y,PS) returns X, given Y and settings PS.
name = fixunknowns('name') returns the name of this process method.
fp = fixunknowns('pdefaults') returns the default process parameter structure.
pd = fixunknowns('pdesc') returns the process parameter descriptions.
fixunknowns('pcheck',fp) throws an error if any parameter is illegal.

Examples

Here is how to format a matrix with a mixture of known and unknown values in its second row:
x1 = [1 2 3 4; 4 NaN 6 5; NaN 2 3 NaN]
[y1,ps] = fixunknowns(x1)

Next, apply the same processing settings to new values:

x2 = [4 5 3 2; NaN 9 NaN 2; 4 9 5 2]
y2 = fixunknowns('apply',x2,ps)

Reverse the processing of y1 to get x1 again.

x1_again = fixunknowns('reverse',y1,ps)

More About

Recode Data with NaNs Using fixunknowns

If you have input data with unknown values, you can represent them with NaN values. For example, here are five 2-element vectors with unknown values in the first element of two of the vectors:

p1 = [1 NaN 3 2 NaN; 3 1 -1 2 4];

The network will not be able to process the NaN values properly. Use the function fixunknowns to transform each row with NaN values (in this case only the first row) into two rows that encode that same information numerically.

[p2,ps] = fixunknowns(p1);

Here is how the first row of values was recoded as two rows.

p2 =

 1 2 3 2 2
 1 0 1 1 0
 3 1 -1 2 4

The first new row is the original first row, but with the mean value for that row (in this case 2) replacing all NaN values. The elements of the second new row are now either 1, indicating the original element was a known value, or 0 indicating that it was unknown. The original second row is now the new third row. In this way both known and unknown values are encoded numerically in a way that lets the network be trained and simulated.

Whenever supplying new data to the network, you should transform the inputs in the same way, using the settings ps returned by fixunknowns when it was used to transform the training input data.

p2new = fixunknowns('apply',p1new,ps);

The function fixunknowns is only recommended for input processing. Unknown targets represented by NaN values can be handled directly by the toolbox learning algorithms. For instance, performance functions used by backpropagation algorithms recognize NaN values as unknown or unimportant values.

See Also

mapminmax | mapstd | processpca

Introduced in R2006a
formwb

Form bias and weights into single vector

Syntax

formwb(net,b,IW,LW)

Description

formwb(net,b,IW,LW) takes a neural network and bias b, input weight IW, and layer weight LW values, and combines the values into a single vector.

Examples

Here a network is created, configured, and its weights and biases formed into a vector.

[x,t] = simplefit_dataset;
net = feedforwardnet(10);
net = configure(net,x,t);
wb = formwb(net,net.b,net.IW,net.LW)

See Also

getwb | separatewb | setwb

Introduced in R2010b
fpderiv

Forward propagation derivative function

Syntax

```plaintext
fpderiv('dperf_dwb', net, X, T, Xi, Ai, EW)
fpderiv('de_dwb', net, X, T, Xi, Ai, EW)
```

Description

This function calculates derivatives using the chain rule from inputs to outputs, and in the case of dynamic networks, forward through time.

`fpderiv('dperf_dwb', net, X, T, Xi, Ai, EW)` takes these arguments,

<table>
<thead>
<tr>
<th>net</th>
<th>Neural network</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Inputs, an R-by-Q matrix (or N-by-TS cell array of Ri-by-Q matrices)</td>
</tr>
<tr>
<td>T</td>
<td>Targets, an S-by-Q matrix (or M-by-TS cell array of Si-by-Q matrices)</td>
</tr>
<tr>
<td>Xi</td>
<td>Initial input delay states (optional)</td>
</tr>
<tr>
<td>Ai</td>
<td>Initial layer delay states (optional)</td>
</tr>
<tr>
<td>EW</td>
<td>Error weights (optional)</td>
</tr>
</tbody>
</table>

and returns the gradient of performance with respect to the network’s weights and biases, where R and S are the number of input and output elements and Q is the number of samples (or N and M are the number of input and output signals, Ri and Si are the number of each input and outputs elements, and TS is the number of timesteps).

`fpderiv('de_dwb', net, X, T, Xi, Ai, EW)` returns the Jacobian of errors with respect to the network’s weights and biases.

Examples

Here a feedforward network is trained and both the gradient and Jacobian are calculated.

```plaintext
[x, t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net, x, t);
y = net(x);
perf = perform(net, t, y);
gwb = fpderiv('dperf_dwb', net, x, t)
jwb = fpderiv('de_dwb', net, x, t)
```

See Also

bttderiv | defaultderiv | num2deriv | num5deriv | staticderiv

Introduced in R2010b
fromnndata

Convert data from standard neural network cell array form

Syntax

fromnndata(x,toMatrix,columnSample,cellTime)

Description

fromnndata(x,toMatrix,columnSample,cellTime) takes these arguments,

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>net</td>
<td>Neural network</td>
</tr>
<tr>
<td>toMatrix</td>
<td>True if result is to be in matrix form</td>
</tr>
<tr>
<td>columnSample</td>
<td>True if samples are to be represented as columns, false if rows</td>
</tr>
<tr>
<td>cellTime</td>
<td>True if time series are to be represented as a cell array, false if represented with a matrix</td>
</tr>
</tbody>
</table>

and returns the original data reformatted accordingly.

Examples

Here time-series data is converted from a matrix representation to standard cell array representation, and back. The original data consists of a 5-by-6 matrix representing one time-series sample consisting of a 5-element vector over 6 timesteps arranged in a matrix with the samples as columns.

```matlab
x = rands(5,6)
columnSamples = true; % samples are by columns.
cellTime = false; % time-steps in matrix, not cell array.
[y,wasMatrix] = tonndata(x,columnSamples,cellTime)
x2 = fromnndata(y,wasMatrix,columnSamples,cellTime)
```

Here data is defined in standard neural network data cell form. Converting this data does not change it. The data consists of three time series samples of 2-element signals over 3 timesteps.

```matlab
x = {rands(2,3);rands(2,3);rands(2,3)}
columnSamples = true;
cellTime = true;
[y,wasMatrix] = tonndata(x)
x2 = fromnndata(y,wasMatrix,columnSamples)
```

See Also

tonndata

Introduced in R2010b
gadd

Generalized addition

Syntax

gadd(a,b)

Description

gadd(a,b) takes two matrices or cell arrays, and adds them in an element-wise manner.

Examples

Add Matrix and Cell Array Values

This example shows how to add matrix and cell array values.

gadd([1 2 3; 4 5 6],[10;20])

ans =

2×3
11 12 13
24 25 26

gadd({1 2; 3 4},{1 3; 5 2})

ans=2×2 cell array

{[2]} {[5]}
{[8]} {[6]}

gadd({1 2 3 4},{10;20;30})

ans=3×4 cell array

{[11]} {[12]} {[13]} {[14]}
{[21]} {[22]} {[23]} {[24]}
{[31]} {[32]} {[33]} {[34]}

See Also

gdivide | gmultiply | gnegate | gsqrt | gsubtract

Introduced in R2010b
gdivide

Generalized division

Syntax

gdivide(a,b)

Description

gdivide(a,b) takes two matrices or cell arrays, and divides them in an element-wise manner.

Examples

Divide Matrix and Cell Array Values

This example shows how to divide matrix and cell array values.

gdivide([1 2 3; 4 5 6],[10;20])

ans = 2×3
 0.1000 0.2000 0.3000
 0.2000 0.2500 0.3000

gdivide({1 2; 3 4},{1 3; 5 2})

ans=2×2 cell array
 {{1}} {[0.6667]}
 {[0.6000]} {[2]}

gdivide({1 2 3 4},{10;20;30})

ans=3×4 cell array
 {[0.1000]} {[0.2000]} {[0.3000]} {[0.4000]}
 {[0.0500]} {[0.1000]} {[0.1500]} {[0.2000]}
 {[0.0333]} {[0.0667]} {[0.1000]} {[0.1333]}

See Also

gadd | gmultiply | gnegate | gsqrt | gsubtract

Introduced in R2010b
gensim

Generate Simulink block for shallow neural network simulation

Syntax

```
gensim(net, st)
```

To Get Help

Type `help network/gensim`.

Description

This function generates a Simulink® block for a shallow neural network. `gensim` does not support deep learning networks such as convolutional or LSTM networks. For more information on code generation for deep learning, see “Deep Learning Code Generation”.

`gensim(net, st)` creates a Simulink system containing a block that simulates neural network `net`.

`gensim(net, st)` takes these inputs:

<table>
<thead>
<tr>
<th>net</th>
<th>Neural network</th>
</tr>
</thead>
<tbody>
<tr>
<td>st</td>
<td>Sample time (default = 1)</td>
</tr>
</tbody>
</table>

and creates a Simulink system containing a block that simulates neural network `net` with a sampling time of `st`.

If `net` has no input or layer delays (`net.numInputDelays` and `net.numLayerDelays` are both 0), you can use `-1` for `st` to get a network that samples continuously.

Examples

Generate a Simulink Block for a Feedforward Network

```
[x, t] = simplefit_dataset;
net = feedforwardnet(10);
net = train(net, x, t);
gensim(net)
```

Generate a Simulink Block for a NARX Network

Create a NARX network.

```
[x, t] = simplenarx_dataset;
net = narxnet(1:2, 1:2, 20);
view(net)
[xs, xi, ai, ts] = preparets(net, x, {}, t);
net = train(net, xs, ts, xi, ai);
y = net(xs, xi, ai);
```
Convert the network to closed loop.
net = closeloop(net);
view(net)

Prepare the data and simulate the network's closed loop response.

[xs,xi,ai,ts] = preparets(net,x,{},t);
y = net(xs,xi,ai);

Convert the network to a Simulink system with workspace input and output ports.

[sysName,netName] = gensim(net,'InputMode','Workspace',
 'OutputMode','Workspace','SolverMode','Discrete');

Initialize the delay states. Note that this is an important step to obtain the same output as in MATLAB.

setsiminit(sysName,netName,net,xi,ai,1);

Define the model input X1 in the workspace, simulate the system programmatically.

x1 = nndata2sim(xs,1,1);
out = sim(sysName,'ReturnWorkspaceOutputs','on','StopTime',num2str(x1.time(end)));
ysim = sim2nndata(out.y1);

Introduced before R2006a
genFunction

Generate MATLAB function for simulating shallow neural network

Syntax

```matlab
genFunction(net,pathname)
genFunction(___,'MatrixOnly','yes')
genFunction(___,'ShowLinks','no')
```

Description

This function generates a MATLAB function for simulating a shallow neural network. `genFunction` does not support deep learning networks such as convolutional or LSTM networks. For more information on code generation for deep learning, see “Deep Learning Code Generation”.

`genFunction(net,pathname)` generates a complete stand-alone MATLAB function for simulating a neural network including all settings, weight and bias values, module functions, and calculations in one file. The result is a standalone MATLAB function file. You can also use this function with MATLAB Compiler and MATLAB Coder™ tools.

`genFunction(___,'MatrixOnly','yes')` overrides the default cell/matrix notation and instead generates a function that uses only matrix arguments compatible with MATLAB Coder tools. For static networks, the matrix columns are interpreted as independent samples. For dynamic networks, the matrix columns are interpreted as a series of time steps. The default value is 'no'.

`genFunction(___,'ShowLinks','no')` disables the default behavior of displaying links to generated help and source code. The default is 'yes'.

Examples

Create Functions from Static Neural Network

This example shows how to create a MATLAB function and a MEX-function from a static neural network.

First, train a static network and calculate its outputs for the training data.

```matlab
[x,t] = bodyfat_dataset;
bodyfatNet = feedforwardnet(10);
bodyfatNet = train(bodyfatNet,x,t);
y = bodyfatNet(x);
```

Next, generate and test a MATLAB function. Then the new function is compiled to a shared/dynamically linked library with `mcc`.

```matlab
genFunction(bodyfatNet,'bodyfatFcn');
y2 = bodyfatFcn(x);
accuracy2 = max(abs(y-y2))
mcc -W lib:libBodyfat -T link:lib bodyfatFcn
```
Next, generate another version of the MATLAB function that supports only matrix arguments (no cell arrays), and test the function. Use the MATLAB Coder tool `codegen` to generate a MEX-function, which is also tested.

```matlab
genFunction(bodyfatNet,'bodyfatFcn','MatrixOnly','yes');
y3 = bodyfatFcn(x);
accuracy3 = max(abs(y-y3))
x1Type = coder.typeof(double(0),[13 Inf]); % Coder type of input 1
codegen bodyfatFcn.m -config:mex -o bodyfatCodeGen -args {x1Type}
y4 = bodyfatCodeGen(x);
accuracy4 = max(abs(y-y4))
```

Create Functions from Dynamic Neural Network

This example shows how to create a MATLAB function and a MEX-function from a dynamic neural network.

First, train a dynamic network and calculate its outputs for the training data.

```matlab
[x,t] = maglev_dataset;
maglevNet = narxnet(1:2,1:2,10);
[X,Xi, Ai, T] = preparets(maglevNet,x,{},t);
maglevNet = train(maglevNet,X,T,Xi,Ai);
[y,xf,af] = maglevNet(X,Xi,Ai);
```

Next, generate and test a MATLAB function. Use the function to create a shared/dynamically linked library with `mcc`.

```matlab
genFunction(maglevNet,'maglevFcn');
[y2,xf,af] = maglevFcn(X,Xi,Ai);
accuracy2 = max(abs(cell2mat(y)-cell2mat(y2)))
mcc -W lib:libMaglev -T link:lib maglevFcn
```

Next, generate another version of the MATLAB function that supports only matrix arguments (no cell arrays), and test the function. Use the MATLAB Coder tool `codegen` to generate a MEX-function, which is also tested.

```matlab
genFunction(maglevNet,'maglevFcn','MatrixOnly','yes');
x1 = cell2mat(X(1,:)); % Convert each input to matrix
dx2 = cell2mat(X(2,:));
x11 = cell2mat(Xi(1,:)); % Convert each input state to matrix
x12 = cell2mat(Xi(2,:));
[y3,xf1,xf2] = maglevFcn(x1,x2,x11,x12);
accuracy3 = max(abs(cell2mat(y)-y3))
x1Type = coder.typeof(double(0),[1 Inf]); % Coder type of input 1
x2Type = coder.typeof(double(0),[1 Inf]); % Coder type of input 2
x11Type = coder.typeof(double(0),[1 2]); % Coder type of input 1 states
x12Type = coder.typeof(double(0),[1 2]); % Coder type of input 2 states
codegen maglevFcn.m -config:mex -o maglevNetCodeGen -args{x1Type x2Type x11Type x12Type}
[y4,xf1,xf2] = maglevNetCodeGen(x1,x2,x11,x12);
dynamic_codegen_accuracy = max(abs(cell2mat(y)-y4))
```

Input Arguments

- **net** — neural network

 network object

 Neural network, specified as a network object.
Example: `net = feedforwardnet(10);`

pathname — location and name of generated function file

(default) | character string

Location and name of generated function file, specified as a character string. If you do not specify a file name extension of `.m`, it is automatically appended. If you do not specify a path to the file, the default location is the current working folder.

Example: `myFcn.m`

Data Types: `char`

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

- You can use `genFunction` in the Deep Learning Toolbox to generate a standalone MATLAB function for a trained neural network. You can generate C/C++ code from this standalone MATLAB function. To generate Simulink blocks, use the `genSim` function. See “Deploy Shallow Neural Network Functions”.

See Also

- `gensim`

Topics

“Deploy Shallow Neural Network Functions”

Introduced in R2013b
getelements

Get neural network data elements

Syntax

getelements(x,ind)

Description

getelements(x,ind) returns the elements of neural network data x indicated by the indices ind. The neural network data may be in matrix or cell array form.

If x is a matrix, the result is the ind rows of x.

If x is a cell array, the result is a cell array with as many columns as x, whose elements (1,i) are matrices containing the ind rows of [x{:,i}].

Examples

This code gets elements 1 and 3 from matrix data:

\[
x = \begin{bmatrix}
1 & 2 & 3 \\
4 & 7 & 4
\end{bmatrix}
\]

\[
y = getelements(x,[1 3])
\]

This code gets elements 1 and 3 from cell array data:

\[
x = \{[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]\}
\]

\[
y = getelements(x,[1 3])
\]

See Also

catelements | getsamples | getsignals | gettimesteps | nndata | numelements | setelements

Introduced in R2010b
getsamples

Get neural network data samples

Syntax

getsamples(x,ind)

Description

getsamples(x,ind) returns the samples of neural network data x indicated by the indices ind. The neural network data may be in matrix or cell array form.

If x is a matrix, the result is the ind columns of x.

If x is a cell array, the result is a cell array the same size as x, whose elements are the ind columns of the matrices in x.

Examples

This code gets samples 1 and 3 from matrix data:

```matlab
x = [1 2 3; 4 7 4]
y = getsamples(x,[1 3])
```

This code gets elements 1 and 3 from cell array data:

```matlab
x = {{[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}}
y = getsamples(x,[1 3])
```

See Also
catsamples | getelements | getsignals | gettimesteps | nndata | numsamples | setsamples

Introduced in R2010b
getsignals

Get neural network data signals

Syntax

getsignals(x,ind)

Description

getsignals(x,ind) returns the signals of neural network data x indicated by the indices ind. The neural network data may be in matrix or cell array form.

If x is a matrix, ind may only be 1, which will return x, or [] which will return an empty matrix.

If x is a cell array, the result is the ind rows of x.

Examples

This code gets signal 2 from cell array data:

```matlab
x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
y = getsignals(x,2)
```

See Also

catsignals | getelements | getsamples | gettimesteps | nndata | numsignals | setsignals

Introduced in R2010b
getsiminit

Get Simulink neural network block initial input and layer delays states

Syntax

\[[xi,ai] = getsiminit(sysName,netName,net) \]

Description

\[[xi,ai] = getsiminit(sysName,netName,net) \] takes these arguments,

<table>
<thead>
<tr>
<th>sysName</th>
<th>The name of the Simulink system containing the neural network block</th>
</tr>
</thead>
<tbody>
<tr>
<td>netName</td>
<td>The name of the Simulink neural network block</td>
</tr>
<tr>
<td>net</td>
<td>The original neural network</td>
</tr>
</tbody>
</table>

...and returns,

<table>
<thead>
<tr>
<th>xi</th>
<th>Initial input delay states</th>
</tr>
</thead>
<tbody>
<tr>
<td>ai</td>
<td>Initial layer delay states</td>
</tr>
</tbody>
</table>

Examples

Here a NARX network is designed. The NARX network has a standard input and an open-loop feedback output to an associated feedback input.

\[
[x,t] = simplenarx_dataset;
net = narxnet(1:2,1:2,20);
view(net)
[xs,xi,ai,ts] = preparets(net,x,{},t);
net = train(net,xs,ts,xi,ai);
y = net(xs,xi,ai);
\]

Now the network is converted to closed-loop, and the data is reformatted to simulate the network's closed-loop response.

\[
net = closeloop(net);
view(net)
[xs,xi,ai,ts] = preparets(net,x,{},t);
y = net(xs,xi,ai);
\]

Here the network is converted to a Simulink system with workspace input and output ports. Its delay states are initialized, inputs X1 defined in the workspace, and it is ready to be simulated in Simulink.

\[
[sysName,netName] = gensim(net,'InputMode','Workspace',...'
'OutputMode','Workspace','SolverMode','Discrete');
setsiminit(sysName,netName,net,xi,ai,1);
x1 = nndata2sim(x,1,1);
\]

Finally the initial input and layer delays are obtained from the Simulink model. (They will be identical to the values set with setsiminit.)
[xi,ai] = getsiminit(sysName,netName,net);

See Also
gensim | nndata2sim | setsiminit | sim2nndata

Introduced in R2010b
gettimesteps

Get neural network data timesteps

Syntax

gettimesteps(x,ind)

Description

gettimesteps(x,ind) returns the timesteps of neural network data x indicated by the indices ind. The neural network data may be in matrix or cell array form.

If x is a matrix, ind can only be 1, which will return x; or [], which will return an empty matrix.

If x is a cell array the result is the ind columns of x.

Examples

This code gets timestep 2 from cell array data:

```matlab
x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
y = gettimesteps(x,2)
```

See Also

cattimesteps | getelements | getsamples | getsignals | nndata | numtimesteps | settimesteps

Introduced in R2010b
getwb

Get network weight and bias values as single vector

Syntax

getwb(net)

Description

getwb(net) returns a neural network’s weight and bias values as a single vector.

Examples

Here a feedforward network is trained to fit some data, then its bias and weight values are formed into a vector:

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
wb = getwb(net)

See Also

formwb | separatewb | setwb

Introduced in R2010b
gmultiply

Generalized multiplication

Syntax

gmultiply(a,b)

Description

gmultiply(a,b) takes two matrices or cell arrays, and multiplies them in an element-wise manner.

Examples

Multiply Matrix and Cell Array Values

This example shows how to multiply matrix and cell array values.

gmultiply([1 2 3; 4 5 6],[10;20])

ans = 2×3
 10 20 30
 80 100 120

gmultiply({1 2; 3 4},{1 3; 5 2})

ans=2×2 cell array
 {{1}} {{6}}
 {{15}} {{8}}

gmultiply({1 2 3 4},{10;20;30})

ans=3×4 cell array
 {{10}} {{20}} {{30}} {{40}}
 {{20}} {{40}} {{60}} {{80}}
 {{30}} {{60}} {{90}} {{120}}

See Also

gadd | gdivide | gnegate | gsqrt | gsubtract

Introduced in R2010b
gnegate

Generalized negation

Syntax

gnegate(x)

Description

gnegate(x) takes a matrix or cell array of matrices, and negates their element values.

Examples

Negate a Cell Array

This example shows how to negate a cell array:

```matlab
x = {[1 2; 3 4],[1 -3; -5 2]};
y = gnegate(x);
y{1}, y{2}
```

```
ans = 2×2
-1    -2
-3    -4

ans = 2×2
-1     3
5    -2
```

See Also

gadd | gdivide | gmultiply | gsqrt | gsubtract

Introduced in R2010b
gpu2nndata

Reformat neural data back from GPU

Syntax

\[
X = \text{gpu2nndata}(Y, Q) \\
X = \text{gpu2nndata}(Y) \\
X = \text{gpu2nndata}(Y, Q, N, TS)
\]

Description

Training and simulation of neural networks require that matrices be transposed. But they do not require (although they are more efficient with) padding of column length so that each column is memory aligned. This function copies data back from the current GPU and reverses this transform. It can be used on data formatted with `nndata2gpu` or on the results of network simulation.

\[
X = \text{gpu2nndata}(Y, Q)
\]

copies the \(QQ\)-by-\(N\) `gpuArray` \(Y\) into RAM, takes the first \(Q\) rows and transposes the result to get an \(N\)-by-\(Q\) matrix representing \(Q\) \(N\)-element vectors.

\[
X = \text{gpu2nndata}(Y)
\]

calculates \(Q\) as the index of the last row in \(Y\) that is not all NaN values (those rows were added to pad \(Y\) for efficient GPU computation by `nndata2gpu`). \(Y\) is then transformed as before.

\[
X = \text{gpu2nndata}(Y, Q, N, TS)
\]

takes a \(QQ\)-by-(\(N*TS\)) `gpuArray` where \(N\) is a vector of signal sizes, \(Q\) is the number of samples (less than or equal to the number of rows after alignment padding \(QQ\)), and \(TS\) is the number of time steps.

The `gpuArray` \(Y\) is copied back into RAM, the first \(Q\) rows are taken, and then it is partitioned and transposed into an \(M\)-by-\(TS\) cell array, where \(M\) is the number of elements in \(N\). Each \(Y\{i, ts\}\) is an \(N(i)\)-by-\(Q\) matrix.

Examples

Copy a matrix to the GPU and back:

```matlab
x = rand(5,6)
[y,q] = nndata2gpu(x)
x2 = gpu2nndata(y,q)
```

Copy from the GPU a neural network cell array data representing four time series, each consisting of five time steps of 2-element and 3-element signals.

```matlab
x = nndata([2;3],4,5)
[y,q,n,ts] = nndata2gpu(x)
x2 = gpu2nndata(y,q,n,ts)
```

See Also

`nndata2gpu`
Introduced in R2012b
gridtop

Grid layer topology function

Syntax

gridtop(dimensions)

Description

pos = gridtop calculates neuron positions for layers whose neurons are arranged in an N-dimensional grid.

gridtop(dimensions) takes one argument:

| dimensions | Row vector of dimension sizes |

and returns an N-by-S matrix of N coordinate vectors where N is the number of dimensions and S is the product of dimensions.

Examples

Display Layer with Grid Pattern

This example shows how to display a two-dimensional layer with 40 neurons arranged in an 8-by-5 grid pattern.

pos = gridtop([8 5]);
plotsom(pos)
See Also
hextop | randtop | tritop

Introduced before R2006a
gsqrt
Generalized square root

Syntax

gsqrt(x)

Description

gsqrt(x) takes a matrix or cell array of matrices, and generates the element-wise square root of the matrices.

Examples

Compute Element-Wise Square Root

This example shows how to get the element-wise square root of a cell array:

```matlab
gsqrt({1 2; 3 4})
```

```
an=
  2×2 cell array
  {[1]}    {[1.4142]}
  {[1.7321]}    {[2]}
```

See Also

gadd | gdivide | gmultiply | gnegate | gsubtract

Introduced in R2010b
gsubtract

Generalized subtraction

Syntax

gsubtract(a,b)

Description

gsubtract(a,b) takes two matrices or cell arrays, and subtracts them in an element-wise manner.

Examples

Subtract Matrix and Cell Array Values

This example shows how to subtract matrix and cell array values.

\[
gsubtract([1 2 3; 4 5 6],[10;20])
\]

\[
ans = 2x3
\]

\[
-9
-8
-7
-16
-15
-14
\]

\[
gsubtract({1 2; 3 4},{1 3; 5 2})
\]

ans=2x2 cell array

\[
{{[0]}}
{{[-1]}}
{{[-2]}}
{{[2]}}
\]

\[
gsubtract({1 2 3 4},{10;20;30})
\]

ans=3x4 cell array

\[
{{[-9]}}
{{[-8]}}
{{[-7]}}
{{[-6]}}
{{[-19]}}
{{[-18]}}
{{[-17]}}
{{[-16]}}
{{[-29]}}
{{[-28]}}
{{[-27]}}
{{[-26]}}
\]

See Also

gadd | gdivide | gmultiply | gnegate | gsqrt

Introduced in R2010b
hardlim

Hard-limit transfer function

Graph and Symbol

![Graph and Symbol](image)

Hard-Limit Transfer Function

Syntax

\[A = \text{hardlim}(N,FP) \]

Description

`hardlim` is a neural transfer function. Transfer functions calculate a layer’s output from its net input.

\[A = \text{hardlim}(N,FP) \]

takes \(N \) and optional function parameters,

| \(N \) | S-by-Q matrix of net input (column) vectors |
| FP | Struct of function parameters (ignored) |

and returns \(A \), the S-by-Q Boolean matrix with 1s where \(N \geq 0 \).

\[\text{info} = \text{hardlim('code')} \]

returns information according to the code string specified:

- `hardlim('name')` returns the name of this function.
- `hardlim('output',FP)` returns the \([\text{min } \text{max}]\) output range.
- `hardlim('active',FP)` returns the \([\text{min } \text{max}]\) active input range.
- `hardlim('fullderiv')` returns 1 or 0, depending on whether \(\frac{dA}{dN} \) is S-by-S-by-Q or S-by-Q.
- `hardlim('fpnames')` returns the names of the function parameters.
- `hardlim('fpdefaults')` returns the default function parameters.

Examples

Here is how to create a plot of the `hardlim` transfer function.

\[
\text{n} = -5:0.1:5; \\
\text{a} = \text{hardlim(n)}; \\
\text{plot(n,a)}
\]
Assign this transfer function to layer \(i \) of a network.

\[
\text{net.layers}\{i\}.\text{transferFcn} = '\text{hardlim}';
\]

Algorithms

\[
\text{hardlim}(n) = 1 \text{ if } n \geq 0
\]

\[
0 \text{ otherwise}
\]

See Also

hardlims | sim

Introduced before R2006a
hardlims

Symmetric hard-limit transfer function

Graph and Symbol

![Graph of hardlims Transfer Function](image)

\[
a = \text{hardlims}(n)
\]

Symmetric Hard-Limit Transfer Function

Syntax

\[
A = \text{hardlims}(N, FP)
\]

Description

hardlims is a neural transfer function. Transfer functions calculate a layer’s output from its net input.

\[
A = \text{hardlims}(N, FP)
\]

takes \(N \) and optional function parameters,

\[
N = S\text{-by-}Q \text{ matrix of net input (column) vectors}
\]

\[
FP = \text{Struct of function parameters (ignored)}
\]

and returns \(A \), the \(S \)-by-\(Q \) +1/-1 matrix with +1s where \(N \geq 0 \).

\[
\text{info} = \text{hardlims('code')}\]

returns information according to the code string specified:

\[
\text{hardlims('name')}\]

returns the name of this function.

\[
\text{hardlims('output', FP)}\]

returns the [\(\text{min} \) \(\text{max} \)] output range.

\[
\text{hardlims('active', FP)}\]

returns the [\(\text{min} \) \(\text{max} \)] active input range.

\[
\text{hardlims('fullderiv')}\]

returns 1 or 0, depending on whether \(dA/dN \) is \(S\text{-by-}S\text{-by-}Q \) or \(S\text{-by-}Q \).

\[
\text{hardlims('fpnames')}\]

returns the names of the function parameters.

\[
\text{hardlims('fpdefaults')}\]

returns the default function parameters.

Examples

Here is how to create a plot of the hardlims transfer function.
n = -5:0.1:5;
a = hardlims(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'hardlims';

Algorithms

hardlims(n) = 1 if n ≥ 0, -1 otherwise.

See Also

hardlim | sim

Introduced before R2006a
hextop

Hexagonal layer topology function

Syntax

hextop(dimensions)

Description

hextop calculates the neuron positions for layers whose neurons are arranged in an N-dimensional hexagonal pattern.

hextop(dimensions) takes one argument:

| dimensions | Row vector of dimension sizes |

and returns an N-by-S matrix of N coordinate vectors where N is the number of dimensions and S is the product of dimensions.

Examples

Display Layer with Hexagonal Pattern

This example shows how to display a two-dimensional layer with 40 neurons arranged in an 8-by-5 hexagonal pattern.

pos = hextop([8 5]);
plotsom(pos)
See Also
gridtop | randtop | tritop

Introduced before R2006a
ind2vec

Convert indices to vectors

Syntax

\[
\text{ind2vec}(\text{ind}) \\
\text{ind2vec}(\text{ind}, N)
\]

Description

\text{ind2vec} and \text{vec2ind} allow indices to be represented either by themselves, or as vectors containing a 1 in the row of the index they represent.

\text{ind2vec}(\text{ind}) \text{ takes one argument,}

<table>
<thead>
<tr>
<th>ind</th>
<th>Row vector of indices</th>
</tr>
</thead>
</table>

and returns a sparse matrix of vectors, with one 1 in each column, as indicated by \text{ind}.

\text{ind2vec}(\text{ind},N) \text{ returns an } N\text{-by-} M \text{ matrix, where } N \text{ can be equal to or greater than the maximum index.}

Examples

Here four indices are defined and converted to vector representation.

\[
\text{ind} = [1 \ 3 \ 2 \ 3]; \\
\text{vec} = \text{ind2vec}(\text{ind})
\]

\[
\text{vec} = \\
\begin{bmatrix}
(1,1) & 1 \\
(3,2) & 1 \\
(2,3) & 1 \\
(3,4) & 1 \\
\end{bmatrix}
\]

Here a vector with all zeros in the last row is converted to indices and back, while preserving the number of rows.

\[
\text{vec} = [0 \ 0 \ 1 \ 0; 1 \ 0 \ 0 \ 0; 0 \ 1 \ 0 \ 0]'
\]

\[
\text{vec} = \\
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}
\]

\[
[\text{ind}, n] = \text{vec2ind}(\text{vec})
\]

\[
\text{ind} = \\
\begin{bmatrix}
3 & 1 & 2 \\
\end{bmatrix}
\]

\[
n = \\
\begin{bmatrix}
4 \\
\end{bmatrix}
\]
vec2 = full(ind2vec(ind,n))

vec2 =
0 1 0
0 0 1
1 0 0
0 0 0

See Also
ind2sub | sub2ind | vec2ind

Introduced before R2006a
init

Initialize neural network

Syntax

\[\text{net} = \text{init}(ext{net}) \]

To Get Help

Type `help network/init`.

Description

\[\text{net} = \text{init}(ext{net}) \]
returns neural network `net` with weight and bias values updated according to the network initialization function, indicated by `net.initFcn`, and the parameter values, indicated by `net.initParam`.

Examples

Here a perceptron is created, and then configured so that its input, output, weight, and bias dimensions match the input and target data.

\[
\begin{align*}
x &= [0 \ 1 \ 0 \ 1; \ 0 \ 0 \ 1 \ 1]; \\
t &= [0 \ 0 \ 0 \ 1]; \\
\text{net} &= \text{perceptron}; \\
\text{net} &= \text{configure}(\text{net},x,t); \\
\text{net}.iw{1,1} \\
\text{net}.b{1} \\
\end{align*}
\]

Training the perceptron alters its weight and bias values.

\[
\begin{align*}
\text{net} &= \text{train}(\text{net},x,t); \\
\text{net}.iw{1,1} \\
\text{net}.b{1} \\
\end{align*}
\]

`init` reinitializes those weight and bias values.

\[
\begin{align*}
\text{net} &= \text{init}(\text{net}); \\
\text{net}.iw{1,1} \\
\text{net}.b{1} \\
\end{align*}
\]

The weights and biases are zeros again, which are the initial values used by perceptron networks.

Algorithms

`init` calls `net.initFcn` to initialize the weight and bias values according to the parameter values `net.initParam`.

Typically, `net.initFcn` is set to `'initlay'`, which initializes each layer’s weights and biases according to its `net.layers{i}.initFcn`.

2-90
Backpropagation networks have `net.layers{i}.initFcn` set to 'initnw', which calculates the weight and bias values for layer i using the Nguyen-Widrow initialization method.

Other networks have `net.layers{i}.initFcn` set to 'initwb', which initializes each weight and bias with its own initialization function. The most common weight and bias initialization function is `rands`, which generates random values between -1 and 1.

See Also
adapt | initlay | initnw | initwb | rands | revert | sim | train

Introduced before R2006a
initcon

Conscience bias initialization function

Syntax

\[
\text{initcon} (S,PR)
\]

Description

initcon is a bias initialization function that initializes biases for learning with the *learncon* learning function.

initcon \((S,PR)\) takes two arguments,

\[
\begin{array}{|l|l|}
\hline
S & \text{Number of rows (neurons)} \\
\hline
PR & R\text{-by-2 matrix of } R = [P_{\text{min}} \ P_{\text{max}}] \text{ (default = [1 1])} \\
\hline
\end{array}
\]

and returns an \(S\)-by-1 bias vector.

Note that for biases, \(R\) is always 1. *initcon* could also be used to initialize weights, but it is not recommended for that purpose.

Examples

Here initial bias values are calculated for a five-neuron layer.

\[
b = \text{initcon(5)}
\]

Network Use

You can create a standard network that uses *initcon* to initialize weights by calling *competlayer*.

To prepare the bias of layer \(i\) of a custom network to initialize with *initcon*,

1. Set \(\text{net.initFcn} = 'initlay'\). (*net.initParam* automatically becomes *initlay*’s default parameters.)
2. Set \(\text{net.layers}\{i\}.initFcn = 'initwb'\).
3. Set \(\text{net.biases}\{i\}.initFcn = 'initcon'\).

To initialize the network, call *init*.

Algorithms

learncon updates biases so that each bias value \(b(i)\) is a function of the average output \(c(i)\) of the neuron \(i\) associated with the bias.

initcon gets initial bias values by assuming that each neuron has responded to equal numbers of vectors in the past.
See Also
competlayer | init | initlay | initwb | learncon

Introduced before R2006a
initlay

Layer-by-layer network initialization function

Syntax

net = initlay(net)
info = initlay('code')

Description

initlay is a network initialization function that initializes each layer \(i \) according to its own initialization function net.layers\(\{i\} \).initFcn.

net = initlay(net) takes

<table>
<thead>
<tr>
<th>net</th>
<th>Neural network</th>
</tr>
</thead>
</table>

and returns the network with each layer updated.

info = initlay('code') returns useful information for each supported code character vector:

<table>
<thead>
<tr>
<th>'pnames'</th>
<th>Names of initialization parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>'pdefaults'</td>
<td>Default initialization parameters</td>
</tr>
</tbody>
</table>

initlay does not have any initialization parameters.

Network Use

You can create a standard network that uses initlay by calling feedforwardnet, cascadeforwardnet, and many other network functions.

To prepare a custom network to be initialized with initlay,

1. Set net.initFcn to 'initlay'. This sets net.initParam to the empty matrix [], because initlay has no initialization parameters.
2. Set each net.layers\(\{i\} \).initFcn to a layer initialization function. (Examples of such functions are initwb and initnw.)

To initialize the network, call init.

Algorithms

The weights and biases of each layer \(i \) are initialized according to net.layers\(\{i\} \).initFcn.

See Also
cascadeforwardnet | feedforwardnet | init | initnw | initwb
Introduced before R2006a
initlvq

LVQ weight initialization function

Syntax

```
initlvq('configure',x)
initlvq('configure',net,'IW',i,j,settings)
initlvq('configure',net,'LW',i,j,settings)
initlvq('configure',net,'b',i,)
```

Description

`initlvq('configure',x)` takes input data `x` and returns initialization settings for an LVQ weights associated with that input.

`initlvq('configure',net,'IW',i,j,settings)` takes a network, and indices indicating an input weight to layer `i` from input `j`, and that weights settings, and returns new weight values.

`initlvq('configure',net,'LW',i,j,settings)` takes a network, and indices indicating a layer weight to layer `i` from layer `j`, and that weights settings, and returns new weight values.

`initlvq('configure',net,'b',i,)` takes a network, and an index indicating a bias for layer `i`, and returns new bias values.

See Also

`initlvqnet`

Introduced in R2010b
initnw

Nguyen-Widrow layer initialization function

Syntax

```matlab
net = initnw(net,i)
```

Description

`initnw` is a layer initialization function that initializes a layer’s weights and biases according to the Nguyen-Widrow initialization algorithm. This algorithm chooses values in order to distribute the active region of each neuron in the layer approximately evenly across the layer’s input space. The values contain a degree of randomness, so they are not the same each time this function is called.

`initnw` requires that the layer it initializes have a transfer function with a finite active input range. This includes transfer functions such as `tansig` and `satlin`, but not `purelin`, whose active input range is the infinite interval `[-inf, inf]`. Transfer functions, such as `tansig`, will return their active input range as follows:

```matlab
activeInputRange = tansig('active')
activeInputRange =
    -2     2
```

`net = initnw(net,i)` takes two arguments,

<table>
<thead>
<tr>
<th>net</th>
<th>Neural network</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Index of a layer</td>
</tr>
</tbody>
</table>

and returns the network with layer i’s weights and biases updated.

There is a random element to Nguyen-Widrow initialization. Unless the default random generator is set to the same seed before each call to `initnw`, it will generate different weight and bias values each time.

Network Use

You can create a standard network that uses `initnw` by calling `feedforwardnet` or `cascadeforwardnet`.

To prepare a custom network to be initialized with `initnw`,

1. Set `net.initFcn` to `'initlay'`. This sets `net.initParam` to the empty matrix `[]`, because `initlay` has no initialization parameters.
2. Set `net.layers{i}.initFcn` to `'initnw'`.

To initialize the network, call `init`.

2-97
Algorithms

The Nguyen-Widrow method generates initial weight and bias values for a layer so that the active regions of the layer's neurons are distributed approximately evenly over the input space.

Advantages over purely random weights and biases are

- Few neurons are wasted (because all the neurons are in the input space).
- Training works faster (because each area of the input space has neurons). The Nguyen-Widrow method can only be applied to layers
 - With a bias
 - With weights whose `weightFcn` is `dotprod`
 - With `netInputFcn` set to `netsum`
 - With `transferFcn` whose active region is finite

If these conditions are not met, then `initnw` uses `rands` to initialize the layer's weights and biases.

See Also
cascadeforwardnet | feedforwardnet | init | initlay | initwb

Introduced before R2006a
initwb

By weight and bias layer initialization function

Syntax

`initwb(net,i)`

Description

`initwb` is a layer initialization function that initializes a layer’s weights and biases according to their own initialization functions.

`initwb(net,i)` takes two arguments,

<table>
<thead>
<tr>
<th>net</th>
<th>Neural network</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Index of a layer</td>
</tr>
</tbody>
</table>

and returns the network with layer i’s weights and biases updated.

Network Use

You can create a standard network that uses `initwb` by calling `perceptron` or `linearlayer`.

To prepare a custom network to be initialized with `initwb`,

1. Set `net.initFcn` to 'initlay'. This sets `net.initParam` to the empty matrix [], because `initlay` has no initialization parameters.
2. Set `net.layers{i}.initFcn` to 'initwb'.
3. Set each `net.inputWeights{i,j}.initFcn` to a weight initialization function. Set each `net.layerWeights{i,j}.initFcn` to a weight initialization function. Set each `net.biases{i}.initFcn` to a bias initialization function. Examples of initialization functions are `rands` (for weights and biases) and `midpoint` (for weights only).

To initialize the network, call `init`.

Algorithms

Each weight (bias) in layer i is set to new values calculated according to its weight (bias) initialization function.

See Also

`init | initlay | initnw | linearlayer | perceptron`

Introduced before R2006a
initzero

Zero weight and bias initialization function

Syntax

\[
W = \text{initzero}(S,PR) \\
b = \text{initzero}(S,[1 1])
\]

Description

\[W = \text{initzero}(S,PR) \]

takes two arguments,

<table>
<thead>
<tr>
<th>S</th>
<th>Number of rows (neurons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR</td>
<td>R-by-2 matrix of input value ranges = [Pmin Pmax]</td>
</tr>
</tbody>
</table>

and returns an S-by-R weight matrix of zeros.

\[b = \text{initzero}(S,[1 1]) \]

returns an S-by-1 bias vector of zeros.

Examples

Here initial weights and biases are calculated for a layer with two inputs ranging over [0 1] and [-2 2] and four neurons.

\[W = \text{initzero}(5,[0 1; -2 2]) \\
b = \text{initzero}(5,[1 1]) \]

See Also

init | initlay | initwb

Introduced before R2006a
isconfigured

Indicate if network inputs and outputs are configured

Syntax

[flag,inputflags,outputflags] = isconfigured(net)

Description

[flag,inputflags,outputflags] = isconfigured(net) takes a neural network and returns three values,

<table>
<thead>
<tr>
<th>flag</th>
<th>True if all network inputs and outputs are configured (have non-zero sizes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>inputflags</td>
<td>Vector of true/false values for each configured/unconfigured input</td>
</tr>
<tr>
<td>outputflags</td>
<td>Vector of true/false values for each configured/unconfigured output</td>
</tr>
</tbody>
</table>

Examples

Here are the flags returned for a new network before and after being configured:

```
net = feedforwardnet;
[flag,inputFlags,outputFlags] = isconfigured(net)
[x,t] = simplefit_dataset;
net = configure(net,x,t);
[flag,inputFlags,outputFlags] = isconfigured(net)
```

See Also

configure | unconfigure

Introduced in R2010b
layrecnet

Layer recurrent neural network

Syntax

layrecnet(layerDelays,hiddenSizes,trainFcn)

Description

Layer recurrent neural networks are similar to feedforward networks, except that each layer has a recurrent connection with a tap delay associated with it. This allows the network to have an infinite dynamic response to time series input data. This network is similar to the time delay (timedelaynet) and distributed delay (distdelaynet) neural networks, which have finite input responses.

layrecnet(layerDelays,hiddenSizes,trainFcn) takes these arguments,

layerDelays	Row vector of increasing 0 or positive delays (default = 1:2)
hiddenSizes	Row vector of one or more hidden layer sizes (default = 10)
trainFcn	Training function (default = 'trainlm')

and returns a layer recurrent neural network.

Examples

Recurrent Neural Network

Use a layer recurrent neural network to solve a simple time series problem.

```matlab
[X,T] = simpleseries_dataset;
net = layrecnet(1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi,Ai);
perf = perform(net,Y,Ts)
```

perf =

6.1239e-11
See Also

distdelaynet | narnet | narxnet | prepares | removedelay | timedelaynet

Introduced in R2010b
learncon

Conscience bias learning function

Syntax

\[
[dB,LS] = \text{learncon}(B,P,Z,N,A,T,E,gW,gA,D,LP,LS)
\]

\[
\text{info} = \text{learncon('code')}
\]

Description

`learncon` is the conscience bias learning function used to increase the net input to neurons that have the lowest average output until each neuron responds approximately an equal percentage of the time.

\[
[dB,LS] = \text{learncon}(B,P,Z,N,A,T,E,gW,gA,D,LP,LS)
\]

takes several inputs,

<table>
<thead>
<tr>
<th>B</th>
<th>S-by-1 bias vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>1-by-Q ones vector</td>
</tr>
<tr>
<td>Z</td>
<td>S-by-Q weighted input vectors</td>
</tr>
<tr>
<td>N</td>
<td>S-by-Q net input vectors</td>
</tr>
<tr>
<td>A</td>
<td>S-by-Q output vectors</td>
</tr>
<tr>
<td>T</td>
<td>S-by-Q layer target vectors</td>
</tr>
<tr>
<td>E</td>
<td>S-by-Q layer error vectors</td>
</tr>
<tr>
<td>gW</td>
<td>S-by-R gradient with respect to performance</td>
</tr>
<tr>
<td>gA</td>
<td>S-by-Q output gradient with respect to performance</td>
</tr>
<tr>
<td>D</td>
<td>S-by-S neuron distances</td>
</tr>
<tr>
<td>LP</td>
<td>Learning parameters, none, LP = []</td>
</tr>
<tr>
<td>LS</td>
<td>Learning state, initially should be = []</td>
</tr>
</tbody>
</table>

and returns

<table>
<thead>
<tr>
<th>dB</th>
<th>S-by-1 weight (or bias) change matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS</td>
<td>New learning state</td>
</tr>
</tbody>
</table>

Learning occurs according to `learncon`’s learning parameter, shown here with its default value.

<table>
<thead>
<tr>
<th>LP.lr</th>
<th>0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning rate</td>
<td></td>
</tr>
</tbody>
</table>

\[
\text{info} = \text{learncon('code')}
\]

turns useful information for each supported `code` character vector:

- `'pnames'`: Names of learning parameters
- `'pdefaults'`: Default learning parameters
- `'needg'`: Returns 1 if this function uses `gW` or `gA`
Deep Learning Toolbox 2.0 compatibility: The LP.lr described above equals 1 minus the bias time constant used by trainc in the Deep Learning Toolbox 2.0 software.

Examples

Here you define a random output A and bias vector W for a layer with three neurons. You also define the learning rate LR.

\[
\begin{align*}
 \text{a} &= \text{rand}(3,1); \\
 \text{b} &= \text{rand}(3,1); \\
 \text{lp.lr} &= 0.5;
\end{align*}
\]

Because learncon only needs these values to calculate a bias change (see "Algorithm" below), use them to do so.

\[
dW = \text{learncon}(\text{b},[],[],[],\text{a},[],[],[],[],[],\text{lp},[])
\]

Network Use

To prepare the bias of layer i of a custom network to learn with learncon,

1. Set \text{net.trainFcn} to 'trainr'. (\text{net.trainParam} automatically becomes trainr's default parameters.)
2. Set \text{net.adaptFcn} to 'trains'. (\text{net.adaptParam} automatically becomes trains's default parameters.)
3. Set \text{net.inputWeights\{i\}.learnFcn} to 'learncon'
4. Set each \text{net.layerWeights\{i,j\}.learnFcn} to 'learncon'. (Each weight learning parameter property is automatically set to learncon's default parameters.)

To train the network (or enable it to adapt),

1. Set \text{net.trainParam} (or \text{net.adaptParam}) properties as desired.
2. Call train (or adapt).

Algorithms

learncon calculates the bias change \(db\) for a given neuron by first updating each neuron’s conscience, i.e., the running average of its output:

\[
c = (1 - lr)*c + lr*a
\]

The conscience is then used to compute a bias for the neuron that is greatest for smaller conscience values.

\[
b = \exp(1 - \log(c)) - b
\]

(learncon recovers \(C\) from the bias values each time it is called.)

See Also

adapt | learnk | learnos | train
Introduced before R2006a
learnbgd

Gradient descent weight and bias learning function

Syntax

\[dW,LS = \text{learnbgd}(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) \]
\[\text{info} = \text{learnbgd}('code') \]

Description

learnbgd is the gradient descent weight and bias learning function.

\[dW,LS = \text{learnbgd}(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) \] takes several inputs:

\(W \)	S-by-R weight matrix (or S-by-1 bias vector)
\(P \)	R-by-Q input vectors (or \(\text{ones}(1,Q) \))
\(Z \)	S-by-Q output gradient with respect to performance x Q weighted input vectors
\(N \)	S-by-Q net input vectors
\(A \)	S-by-Q output vectors
\(T \)	S-by-Q layer target vectors
\(E \)	S-by-Q layer error vectors
\(gW \)	S-by-R gradient with respect to performance
\(gA \)	S-by-Q output gradient with respect to performance
\(D \)	S-by-S neuron distances
\(LP \)	Learning parameters, none, \(LP = [] \)
\(LS \)	Learning state, initially should be \([] \)

and returns

| \(dW \) | S-by-R weight (or bias) change matrix |
| \(LS \) | New learning state |

Learning occurs according to learnbgd's learning parameter, shown here with its default value.

\[\text{LP.lr} = 0.01 \]

\[\text{Learning rate} \]

\[\text{info} = \text{learnbgd}('code') \] returns useful information for each supported code character vector:

\('pnames' \)	Names of learning parameters
\('pdefaults' \)	Default learning parameters
\('needg' \)	Returns 1 if this function uses \(gW \) or \(gA \)
Examples

Here you define a random gradient gW for a weight going to a layer with three neurons from an input with two elements. Also define a learning rate of 0.5.

```
gW = rand(3,2);
lp.lr = 0.5;
```

Because `learnmgd` only needs these values to calculate a weight change (see “Algorithm” below), use them to do so.

```
dW = learnmgd([],[],[],[],[],gW,[],[],lp,[])
```

Algorithms

`learnmgd` calculates the weight change dW for a given neuron from the neuron’s input P and error E, and the weight (or bias) learning rate LR, according to the gradient descent $dw = lr \times gW$.

See Also

`adapt` | `learnmgdm` | `train`

Introduced before R2006a
learnngdm

Gradient descent with momentum weight and bias learning function

Syntax

[dW,LS] = learnngdm(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnngdm('code')

Description

learnngdm is the gradient descent with momentum weight and bias learning function.

[dW,LS] = learnngdm(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

<table>
<thead>
<tr>
<th>W</th>
<th>S-by-R weight matrix (or S-by-1 bias vector)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>R-by-Q input vectors (or ones(1,Q))</td>
</tr>
<tr>
<td>Z</td>
<td>S-by-Q weighted input vectors</td>
</tr>
<tr>
<td>N</td>
<td>S-by-Q net input vectors</td>
</tr>
<tr>
<td>A</td>
<td>S-by-Q output vectors</td>
</tr>
<tr>
<td>T</td>
<td>S-by-Q layer target vectors</td>
</tr>
<tr>
<td>E</td>
<td>S-by-Q layer error vectors</td>
</tr>
<tr>
<td>gW</td>
<td>S-by-R gradient with respect to performance</td>
</tr>
<tr>
<td>gA</td>
<td>S-by-Q output gradient with respect to performance</td>
</tr>
<tr>
<td>D</td>
<td>S-by-S neuron distances</td>
</tr>
<tr>
<td>LP</td>
<td>Learning parameters, none, LP = []</td>
</tr>
<tr>
<td>LS</td>
<td>Learning state, initially should be = []</td>
</tr>
</tbody>
</table>

and returns

| dW | S-by-R weight (or bias) change matrix |
| LS | New learning state |

Learning occurs according to learnngdm’s learning parameters, shown here with their default values.

| LP.lr| Learning rate | 0.01 |
| LP.mc| Momentum constant | 0.9 |

info = learnngdm('code') returns useful information for each code character vector:

'pnames'	Names of learning parameters
'pdefaults'	Default learning parameters
'needg'	Returns 1 if this function uses gW or gA
Examples

Here you define a random gradient \(G \) for a weight going to a layer with three neurons from an input with two elements. Also define a learning rate of 0.5 and momentum constant of 0.8:

\[
gW = \text{rand}(3,2);
lp.lr = 0.5;
lp.mc = 0.8;
\]

Because `learnngdm` only needs these values to calculate a weight change (see “Algorithm” below), use them to do so. Use the default initial learning state.

\[
ls = [];
[dW,ls] = learnngdm([],[],[],[],[],[],[],gW,[],[],lp,ls)
\]

`learnngdm` returns the weight change and a new learning state.

Algorithms

`learnngdm` calculates the weight change \(dW \) for a given neuron from the neuron's input \(P \) and error \(E \), the weight (or bias) \(W \), learning rate \(LR \), and momentum constant \(MC \), according to gradient descent with momentum:

\[
dW = mc \cdot dW_{\text{prev}} + (1-mc) \cdot lr \cdot gW
\]

The previous weight change \(dW_{\text{prev}} \) is stored and read from the learning state \(LS \).

See Also

adapt | `learngd` | train

Introduced before R2006a
learnh

Hebb weight learning rule

Syntax

\[[dW,LS] = \text{learnh}(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) \]
\[\text{info} = \text{learnh}('\text{code}') \]

Description

\text{learnh} is the Hebb weight learning function.

\[[dW,LS] = \text{learnh}(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) \] takes several inputs,

\(W \)	S-by-R weight matrix (or S-by-1 bias vector)
\(P \)	R-by-Q input vectors (or \text{ones}(1,Q))
\(Z \)	S-by-Q weighted input vectors
\(N \)	S-by-Q net input vectors
\(A \)	S-by-Q output vectors
\(T \)	S-by-Q layer target vectors
\(E \)	S-by-Q layer error vectors
\(gW \)	S-by-R gradient with respect to performance
\(gA \)	S-by-Q output gradient with respect to performance
\(D \)	S-by-S neuron distances
\(LP \)	Learning parameters, none, LP = []
\(LS \)	Learning state, initially should be = []

and returns

| \(dW \) | S-by-R weight (or bias) change matrix |
| \(LS \) | New learning state |

Learning occurs according to \text{learnh}'s learning parameter, shown here with its default value.

| \(\text{LP.lr} - 0.01 \) | Learning rate |

\text{info} = \text{learnh}'('\text{code}') returns useful information for each \text{code} character vector:

\('\text{pnames}' \)	Names of learning parameters
\('\text{pdefaults}' \)	Default learning parameters
\('\text{needg}' \)	Returns 1 if this function uses \text{gW} or \text{gA}
Examples

Here you define a random input P and output A for a layer with a two-element input and three neurons. Also define the learning rate LR.

\[
p = \text{rand}(2,1); \\
a = \text{rand}(3,1); \\
lp.lr = 0.5;
\]

Because learnh only needs these values to calculate a weight change (see “Algorithm” below), use them to do so.

\[
dW = \text{learnh}([],p,[],[],a,[],[],[],[],[],[],[],[],[],lp,[])
\]

Network Use

To prepare the weights and the bias of layer i of a custom network to learn with learnh,

1. Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr’s default parameters.)
2. Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains’s default parameters.)
3. Set each net.inputWeights{i,j}.learnFcn to 'learnh'.
4. Set each net.layerWeights{i,j}.learnFcn to 'learnh'. (Each weight learning parameter property is automatically set to learnh’s default parameters.)

To train the network (or enable it to adapt),

1. Set net.trainParam (or net.adaptParam) properties to desired values.
2. Call train (adapt).

Algorithms

learnh calculates the weight change dW for a given neuron from the neuron’s input P, output A, and learning rate LR according to the Hebb learning rule:

\[
dw = \text{lr} \ast a \ast p'
\]

References

See Also

adapt | learnhd | train

Introduced before R2006a
learnhd

Hebb with decay weight learning rule

Syntax

\[[dW,LS] = \text{learnhd}(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) \]
\[\text{info} = \text{learnhd}('code') \]

Description

learnhd is the Hebb weight learning function.

\[[dW,LS] = \text{learnhd}(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) \] takes several inputs,

\(W \)	S-by-R weight matrix (or S-by-1 bias vector)
\(P \)	R-by-Q input vectors (or ones(1,Q))
\(Z \)	S-by-Q weighted input vectors
\(N \)	S-by-Q net input vectors
\(A \)	S-by-Q output vectors
\(T \)	S-by-Q layer target vectors
\(E \)	S-by-Q layer error vectors
\(gW \)	S-by-R gradient with respect to performance
\(gA \)	S-by-Q output gradient with respect to performance
\(D \)	S-by-S neuron distances
\(LP \)	Learning parameters, none, \(LP = [] \)
\(LS \)	Learning state, initially should be = []

and returns

| \(dW \) | S-by-R weight (or bias) change matrix |
| \(LS \) | New learning state |

Learning occurs according to learnhd's learning parameters, shown here with default values.

| \(LP.dr - 0.01 \) | Decay rate |
| \(LP.lr - 0.1 \) | Learning rate |

\[\text{info} = \text{learnhd}('code') \] returns useful information for each \textit{code} character vector:

\textit{pnames}	Names of learning parameters
\textit{pdefaults}	Default learning parameters
\textit{needg}	Returns 1 if this function uses \textit{gW} or \textit{gA}
Examples

Here you define a random input P, output A, and weights W for a layer with a two-element input and three neurons. Also define the decay and learning rates.

```matlab
p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.dr = 0.05;
lp.lr = 0.5;
```

Because learnhd only needs these values to calculate a weight change (see “Algorithm” below), use them to do so.

```matlab
dW = learnhd(w,p,[],[],a,[],[],[],[],[],lp);
```

Network Use

To prepare the weights and the bias of layer i of a custom network to learn with learnhd,

1. Set `net.trainFcn` to `'trainr'`. (`net.trainParam` automatically becomes `trainr`'s default parameters.)
2. Set `net.adaptFcn` to `'trains'`. (`net.adaptParam` automatically becomes `trains`'s default parameters.)
3. Set each `net.inputWeights{i,j}.learnFcn` to `'learnhd'`.
4. Set each `net.layerWeights{i,j}.learnFcn` to `'learnhd'`. (Each weight learning parameter property is automatically set to `learnhd`'s default parameters.)

To train the network (or enable it to adapt),

1. Set `net.trainParam` (or `net.adaptParam`) properties to desired values.
2. Call `train` (or `adapt`).

Algorithms

`learnhd` calculates the weight change `dW` for a given neuron from the neuron's input `P`, output `A`, decay rate `DR`, and learning rate `LR` according to the Hebb with decay learning rule:

```matlab
dw = lr*a*p' - dr*w
```

See Also

`adapt` | `learnh` | `train`

Introduced before R2006a
learnis

Instar weight learning function

Syntax

\[[dW, LS] = \text{learnis}(W, P, Z, N, A, T, E, gW, gA, D, LP, LS) \]
\[\text{info} = \text{learnis}('\text{code}') \]

Description

learnis is the instar weight learning function.

\[[dW, LS] = \text{learnis}(W, P, Z, N, A, T, E, gW, gA, D, LP, LS) \] takes several inputs,

\(W \)	S-by-R weight matrix (or S-by-1 bias vector)
\(P \)	R-by-Q input vectors (or ones(1,Q))
\(Z \)	S-by-Q weighted input vectors
\(N \)	S-by-Q net input vectors
\(A \)	S-by-Q output vectors
\(T \)	S-by-Q layer target vectors
\(E \)	S-by-Q layer error vectors
\(gW \)	S-by-R gradient with respect to performance
\(gA \)	S-by-Q output gradient with respect to performance
\(D \)	S-by-S neuron distances
\(LP \)	Learning parameters, none, LP = []
\(LS \)	Learning state, initially should be = []

and returns

| \(dW \) | S-by-R weight (or bias) change matrix |
| \(LS \) | New learning state |

Learning occurs according to learnis's learning parameter, shown here with its default value.

\[\text{LP.lr} - 0.01 \] Learning rate

\[\text{info} = \text{learnis}('\text{code}') \] returns useful information for each code character vector:

'pnames'	Names of learning parameters
'pdefaults'	Default learning parameters
'needg'	Returns 1 if this function uses gW or gA
Examples

Here you define a random input P, output A, and weight matrix W for a layer with a two-element input and three neurons. Also define the learning rate LR.

```matlab
p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.lr = 0.5;
```

Because `learnis` only needs these values to calculate a weight change (see "Algorithm" below), use them to do so.

```matlab
dW = learnis(w,p,[],[],a,[],[],[],[],lp,[])
```

Network Use

To prepare the weights and the bias of layer i of a custom network so that it can learn with `learnis`,

1. Set `net.trainFcn` to 'trainr'. (`net.trainParam` automatically becomes `trainr`'s default parameters.)
2. Set `net.adaptFcn` to 'trains'. (`net.adaptParam` automatically becomes `trains`'s default parameters.)
3. Set each `net.inputWeights{i,j}.learnFcn` to 'learnis'.
4. Set each `net.layerWeights{i,j}.learnFcn` to 'learnis'. (Each weight learning parameter property is automatically set to `learnis`'s default parameters.)

To train the network (or enable it to adapt),

1. Set `net.trainParam` (or `net.adaptParam`) properties to desired values.
2. Call `train` (or `adapt`).

Algorithms

`learnis` calculates the weight change dW for a given neuron from the neuron’s input P, output A, and learning rate LR according to the instar learning rule:

$$dw = lr*a*(p' - w)$$

References

See Also

`adapt` | `learnk` | `learnos` | `train`

Introduced before R2006a
learnk

Kohonen weight learning function

Syntax

[dW,LS] = learnk(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnk('code')

Description

learnk is the Kohonen weight learning function.

[dW,LS] = learnk(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

<table>
<thead>
<tr>
<th>W</th>
<th>S-by-R weight matrix (or S-by-1 bias vector)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>R-by-Q input vectors (or ones(1,Q))</td>
</tr>
<tr>
<td>Z</td>
<td>S-by-Q weighted input vectors</td>
</tr>
<tr>
<td>N</td>
<td>S-by-Q net input vectors</td>
</tr>
<tr>
<td>A</td>
<td>S-by-Q output vectors</td>
</tr>
<tr>
<td>T</td>
<td>S-by-Q layer target vectors</td>
</tr>
<tr>
<td>E</td>
<td>S-by-Q layer error vectors</td>
</tr>
<tr>
<td>gW</td>
<td>S-by-R gradient with respect to performance</td>
</tr>
<tr>
<td>gA</td>
<td>S-by-Q output gradient with respect to performance</td>
</tr>
<tr>
<td>D</td>
<td>S-by-S neuron distances</td>
</tr>
<tr>
<td>LP</td>
<td>Learning parameters, none, LP = {}</td>
</tr>
<tr>
<td>LS</td>
<td>Learning state, initially should be = {}</td>
</tr>
</tbody>
</table>

and returns

<table>
<thead>
<tr>
<th>dW</th>
<th>S-by-R weight (or bias) change matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS</td>
<td>New learning state</td>
</tr>
</tbody>
</table>

Learning occurs according to learnk’s learning parameter, shown here with its default value.

| LP.lr | 0.01 | Learning rate |

info = learnk('code') returns useful information for each code character vector:

<table>
<thead>
<tr>
<th>'pnames'</th>
<th>Names of learning parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>'pdefaults'</td>
<td>Default learning parameters</td>
</tr>
<tr>
<td>'needg'</td>
<td>Returns 1 if this function uses gW or gA</td>
</tr>
</tbody>
</table>
Examples

Here you define a random input \(P \), output \(A \), and weight matrix \(W \) for a layer with a two-element input and three neurons. Also define the learning rate LR.

\[
p = \text{rand}(2,1);
\]
\[
a = \text{rand}(3,1);
\]
\[
w = \text{rand}(3,2);
\]
\[
lp.lr = 0.5;
\]

Because \texttt{learnk} only needs these values to calculate a weight change (see "Algorithm" below), use them to do so.

\[
dW = \text{learnk}(w,p,[],[],a,[],[],[],[],[],[],[],lp,[])
\]

Network Use

To prepare the weights of layer \(i \) of a custom network to learn with \texttt{learnk},

1. Set \texttt{net.trainFcn} to 'trainr'. (\texttt{net.trainParam} automatically becomes \texttt{trainr}'s default parameters.)
2. Set \texttt{net.adaptFcn} to 'trains'. (\texttt{net.adaptParam} automatically becomes \texttt{trains}'s default parameters.)
3. Set each \texttt{net.inputWeights\{i\,j\}.learnFcn} to 'learnk'.
4. Set each \texttt{net.layerWeights\{i\,j\}.learnFcn} to 'learnk'. (Each weight learning parameter property is automatically set to \texttt{learnk}'s default parameters.)

To train the network (or enable it to adapt),

1. Set \texttt{net.trainParam} (or \texttt{net.adaptParam}) properties as desired.
2. Call \texttt{train} (or \texttt{adapt}).

Algorithms

\texttt{learnk} calculates the weight change \(dW \) for a given neuron from the neuron's input \(P \), output \(A \), and learning rate LR according to the Kohonen learning rule:

\[
dw = lr*(p'-w), \text{ if } a \neq 0; = 0, \text{ otherwise}
\]

References

See Also

adapt | learnis | learnos | train

Introduced before R2006a
learnlv1

LVQ1 weight learning function

Syntax

[dW,LS] = learnlv1(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnlv1('code')

Description

learnlv1 is the LVQ1 weight learning function.

[dW,LS] = learnlv1(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

<table>
<thead>
<tr>
<th>W</th>
<th>S-by-R weight matrix (or S-by-1 bias vector)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>R-by-Q input vectors (or ones(1,Q))</td>
</tr>
<tr>
<td>Z</td>
<td>S-by-Q weighted input vectors</td>
</tr>
<tr>
<td>N</td>
<td>S-by-Q net input vectors</td>
</tr>
<tr>
<td>A</td>
<td>S-by-Q output vectors</td>
</tr>
<tr>
<td>T</td>
<td>S-by-Q layer target vectors</td>
</tr>
<tr>
<td>E</td>
<td>S-by-Q layer error vectors</td>
</tr>
<tr>
<td>gW</td>
<td>S-by-R gradient with respect to performance</td>
</tr>
<tr>
<td>gA</td>
<td>S-by-Q output gradient with respect to performance</td>
</tr>
<tr>
<td>D</td>
<td>S-by-S neuron distances</td>
</tr>
<tr>
<td>LP</td>
<td>Learning parameters, none, LP = []</td>
</tr>
<tr>
<td>LS</td>
<td>Learning state, initially should be = []</td>
</tr>
</tbody>
</table>

and returns

<table>
<thead>
<tr>
<th>dW</th>
<th>S-by-R weight (or bias) change matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS</td>
<td>New learning state</td>
</tr>
</tbody>
</table>

Learning occurs according to learnlv1's learning parameter, shown here with its default value.

<table>
<thead>
<tr>
<th>LP.lr - 0.01</th>
<th>Learning rate</th>
</tr>
</thead>
</table>

info = learnlv1('code') returns useful information for each code character vector:

<table>
<thead>
<tr>
<th>code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'pnames'</td>
<td>Names of learning parameters</td>
</tr>
<tr>
<td>'pdefaults'</td>
<td>Default learning parameters</td>
</tr>
<tr>
<td>'needg'</td>
<td>Returns 1 if this function uses gW or gA</td>
</tr>
</tbody>
</table>
Examples

Here you define a random input P, output A, weight matrix W, and output gradient gA for a layer with a two-element input and three neurons. Also define the learning rate LR.

\[
p = \text{rand}(2,1);
\]
\[
w = \text{rand}(3,2);
\]
\[
a = \text{compet}(\text{negdist}(w,p));
\]
\[
gA = [-1; 1];
\]
\[
lp.lr = 0.5;
\]

Because learnlv1 only needs these values to calculate a weight change (see “Algorithm” below), use them to do so.

\[
dW = \text{learnlv1}(w,p,[],[],a,[],[],[],gA,[],lp,[])
\]

Network Use

You can create a standard network that uses learnlv1 with lvqnet. To prepare the weights of layer i of a custom network to learn with learnlv1,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr’s default parameters.)
2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains’s default parameters.)
3 Set each net.inputWeights{i,j}.learnFcn to 'learnlv1'.
4 Set each net.layerWeights{i,j}.learnFcn to 'learnlv1'. (Each weight learning parameter property is automatically set to learnlv1’s default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties as desired.
2 Call train (or adapt).

Algorithms

learnlv1 calculates the weight change \(dW \) for a given neuron from the neuron’s input \(P \), output \(A \), output gradient \(gA \), and learning rate \(LR \), according to the LVQ1 rule, given \(i \), the index of the neuron whose output \(a(i) \) is 1:

\[
dw(i,:) = +lr*(p-w(i,:)) \text{ if } gA(i) = 0;
= -lr*(p-w(i,:)) \text{ if } gA(i) = -1
\]

See Also
adapt | learnlv2 | train

Introduced before R2006a
learnlv2

LVQ2.1 weight learning function

Syntax

info = learnlv2('code')

Description

learnlv2 is the LVQ2 weight learning function.

[dW,LS] = learnlv2(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>S-by-R weight matrix (or S-by-1 bias vector)</td>
</tr>
<tr>
<td>P</td>
<td>R-by-Q input vectors (or ones(1,Q))</td>
</tr>
<tr>
<td>Z</td>
<td>S-by-Q weighted input vectors</td>
</tr>
<tr>
<td>N</td>
<td>S-by-Q net input vectors</td>
</tr>
<tr>
<td>A</td>
<td>S-by-Q output vectors</td>
</tr>
<tr>
<td>T</td>
<td>S-by-Q layer target vectors</td>
</tr>
<tr>
<td>E</td>
<td>S-by-Q layer error vectors</td>
</tr>
<tr>
<td>gW</td>
<td>S-by-R weight gradient with respect to performance</td>
</tr>
<tr>
<td>gA</td>
<td>S-by-Q output gradient with respect to performance</td>
</tr>
<tr>
<td>D</td>
<td>S-by-S neuron distances</td>
</tr>
<tr>
<td>LP</td>
<td>Learning parameters, none, LP = []</td>
</tr>
<tr>
<td>LS</td>
<td>Learning state, initially should be = []</td>
</tr>
</tbody>
</table>

and returns

<table>
<thead>
<tr>
<th>Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dW</td>
<td>S-by-R weight (or bias) change matrix</td>
</tr>
<tr>
<td>LS</td>
<td>New learning state</td>
</tr>
</tbody>
</table>

Learning occurs according to learnlv2’s learning parameter, shown here with its default value.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP.lr</td>
<td>Learning rate</td>
</tr>
<tr>
<td>LP.window</td>
<td>Window size (0 to 1, typically 0.2 to 0.3)</td>
</tr>
</tbody>
</table>

info = learnlv2('code') returns useful information for each code character vector:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'pnames'</td>
<td>Names of learning parameters</td>
</tr>
<tr>
<td>'pdefaults'</td>
<td>Default learning parameters</td>
</tr>
<tr>
<td>'needg'</td>
<td>Returns 1 if this function uses gW or gA</td>
</tr>
</tbody>
</table>
Examples

Here you define a sample input P, output A, weight matrix W, and output gradient gA for a layer with a two-element input and three neurons. Also define the learning rate LR.

\[
p = \text{rand}(2,1);
w = \text{rand}(3,2);
n = \text{negdist}(w,p);
a = \text{compet}(n);
gA = [-1;1;1];
lp.lr = 0.5;
\]

Because learnlv2 only needs these values to calculate a weight change (see “Algorithm” below), use them to do so.

\[
dW = \text{learnlv2}(w,p,[],n,a,[],[],[],gA,[],lp,[])
\]

Network Use

You can create a standard network that uses learnlv2 with lvqnet.

To prepare the weights of layer i of a custom network to learn with learnlv2,

1. Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr’s default parameters.)
2. Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains’s default parameters.)
3. Set each net.inputWeights{i,j}.learnFcn to 'learnlv2'.
4. Set each net.layerWeights{i,j}.learnFcn to 'learnlv2'. (Each weight learning parameter property is automatically set to learnlv2’s default parameters.)

To train the network (or enable it to adapt),

1. Set net.trainParam (or net.adaptParam) properties as desired.
2. Call train (or adapt).

Algorithms

learnlv2 implements Learning Vector Quantization 2.1, which works as follows:

For each presentation, if the winning neuron i should not have won, and the runnerup j should have, and the distance \(d_i\) between the winning neuron and the input p is roughly equal to the distance \(d_j\) from the runnerup neuron to the input p according to the given window,

\[
\min(d_i/d_j, d_j/d_i) > (1-\text{window})/(1+\text{window})
\]

then move the winning neuron i weights away from the input vector, and move the runnerup neuron j weights toward the input according to

\[
dw(i,:) = -lp.lr*(p'-w(i,:))
dw(j,:) = +lp.lr*(p'-w(j,:))
\]
See Also
adapt | learnlv1 | train

Introduced before R2006a
learnos

Outstar weight learning function

Syntax

[dW,LS] = learnos(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnos('code')

Description

learnos is the outstar weight learning function.

[dW,LS] = learnos(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W	S-by-R weight matrix (or S-by-1 bias vector)
P	R-by-Q input vectors (or ones(1,Q))
Z	S-by-Q weighted input vectors
N	S-by-Q net input vectors
A	S-by-Q output vectors
T	S-by-Q layer target vectors
E	S-by-Q layer error vectors
gW	S-by-R weight gradient with respect to performance
gA	S-by-Q output gradient with respect to performance
D	S-by-S neuron distances
LP	Learning parameters, none, LP = []
LS	Learning state, initially should be = []

and returns

| dW | S-by-R weight (or bias) change matrix |
| LS | New learning state |

Learning occurs according to learnos’s learning parameter, shown here with its default value.

| LP.lr - 0.01 | Learning rate |

info = learnos('code') returns useful information for each code character vector:

'pnames'	Names of learning parameters
'pdefaults'	Default learning parameters
'needg'	Returns 1 if this function uses gW or gA
Examples

Here you define a random input P, output A, and weight matrix W for a layer with a two-element input and three neurons. Also define the learning rate LR.

```matlab
p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.lr = 0.5;
```

Because `learnos` only needs these values to calculate a weight change (see “Algorithm” below), use them to do so.

```matlab
dW = learnos(w,p,[],[],a,[],[],[],[],[],[],lp,[])
```

Network Use

To prepare the weights and the bias of layer i of a custom network to learn with `learnos`,

1. Set `net.trainFcn` to 'trainr'. (`net.trainParam` automatically becomes `trainr`'s default parameters.)
2. Set `net.adaptFcn` to 'trains'. (`net.adaptParam` automatically becomes `trains`'s default parameters.)
3. Set each `net.inputWeights{i,j}.learnFcn` to 'learnos'.
4. Set each `net.layerWeights{i,j}.learnFcn` to 'learnos'. (Each weight learning parameter property is automatically set to `learnos`'s default parameters.)

To train the network (or enable it to adapt),

1. Set `net.trainParam` (or `net.adaptParam`) properties to desired values.
2. Call `train` (adapt).

Algorithms

`learnos` calculates the weight change dW for a given neuron from the neuron’s input P, output A, and learning rate LR according to the outstar learning rule:

$$dw = lr \times (a - w) \times p'$$

References

See Also

`adapt | learnis | learnk | train`

Introduced before R2006a
learnp

Perceptron weight and bias learning function

Syntax

\[\text{[dW,LS]} = \text{learnp}(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) \]
\[\text{info} = \text{learnp('code')} \]

Description

learnp is the perceptron weight/bias learning function.

\[\text{[dW,LS]} = \text{learnp}(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) \] takes several inputs,

\[
\begin{array}{||l||}
\hline
W & S\text{-by-}R \text{ weight matrix (or b, and S\text{-by-}1 bias vector)} \\
\hline
P & R\text{-by-}Q \text{ input vectors (or ones(1,Q))} \\
\hline
Z & S\text{-by-}Q \text{ weighted input vectors} \\
\hline
N & S\text{-by-}Q \text{ net input vectors} \\
\hline
A & S\text{-by-}Q \text{ output vectors} \\
\hline
T & S\text{-by-}Q \text{ layer target vectors} \\
\hline
E & S\text{-by-}Q \text{ layer error vectors} \\
\hline
gW & S\text{-by-}R \text{ weight gradient with respect to performance} \\
\hline
gA & S\text{-by-}Q \text{ output gradient with respect to performance} \\
\hline
D & S\text{-by-}S \text{ neuron distances} \\
\hline
LP & \text{Learning parameters, none, } LP = [] \\
\hline
LS & \text{Learning state, initially should be = []} \\
\hline
\end{array}
\]

and returns

\[
\begin{array}{||l||}
\hline
dW & S\text{-by-}R \text{ weight (or bias) change matrix} \\
\hline
LS & \text{New learning state} \\
\hline
\end{array}
\]

info = learnp('code') returns useful information for each code character vector:

\[
\begin{array}{||l||}
\hline
\text{'pnames'} & \text{Names of learning parameters} \\
\hline
\text{'pdefaults'} & \text{Default learning parameters} \\
\hline
\text{'needg'} & \text{Returns 1 if this function uses gW or gA} \\
\hline
\end{array}
\]

Examples

Here you define a random input P and error E for a layer with a two-element input and three neurons.

\[
p = \text{rand}(2,1);
go to p = \text{rand}(2,1);\]
\[
e = \text{rand}(3,1);
\]
Because `learnp` only needs these values to calculate a weight change (see “Algorithm” below), use them to do so.

\[dW = \text{learnp}([], p, [], [], [], e, [], [], [], []) \]

Algorithms

`learnp` calculates the weight change \(dW \) for a given neuron from the neuron’s input \(P \) and error \(E \) according to the perceptron learning rule:

\[
\begin{align*}
 dw &= 0, \text{ if } e = 0 \\
 &= p', \text{ if } e = 1 \\
 &= -p', \text{ if } e = -1
\end{align*}
\]

This can be summarized as

\[dw = e*p' \]

References

See Also

`adapt` | `learnpn` | `train`

learnpn

Normalized perceptron weight and bias learning function

Syntax

[dW,LS] = learnpn(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnpn('code')

Description

learnpn is a weight and bias learning function. It can result in faster learning than learnp when input vectors have widely varying magnitudes.

[dW,LS] = learnpn(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>S-by-R weight matrix (or S-by-1 bias vector)</td>
</tr>
<tr>
<td>P</td>
<td>R-by-Q input vectors (or ones(1,Q))</td>
</tr>
<tr>
<td>Z</td>
<td>S-by-Q weighted input vectors</td>
</tr>
<tr>
<td>N</td>
<td>S-by-Q net input vectors</td>
</tr>
<tr>
<td>A</td>
<td>S-by-Q output vectors</td>
</tr>
<tr>
<td>T</td>
<td>S-by-Q layer target vectors</td>
</tr>
<tr>
<td>E</td>
<td>S-by-Q layer error vectors</td>
</tr>
<tr>
<td>gW</td>
<td>S-by-R weight gradient with respect to performance</td>
</tr>
<tr>
<td>gA</td>
<td>S-by-Q output gradient with respect to performance</td>
</tr>
<tr>
<td>D</td>
<td>S-by-S neuron distances</td>
</tr>
<tr>
<td>LP</td>
<td>Learning parameters, none, LP = []</td>
</tr>
<tr>
<td>LS</td>
<td>Learning state, initially should be = []</td>
</tr>
</tbody>
</table>

and returns

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dW</td>
<td>S-by-R weight (or bias) change matrix</td>
</tr>
<tr>
<td>LS</td>
<td>New learning state</td>
</tr>
</tbody>
</table>

info = learnpn('code') returns useful information for each code character vector:

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'pnames'</td>
<td>Names of learning parameters</td>
</tr>
<tr>
<td>'pdefaults'</td>
<td>Default learning parameters</td>
</tr>
<tr>
<td>'needg'</td>
<td>Returns 1 if this function uses gW or gA</td>
</tr>
</tbody>
</table>

Examples

Here you define a random input P and error E for a layer with a two-element input and three neurons.
p = rand(2,1);
e = rand(3,1);

Because `learnpn` only needs these values to calculate a weight change (see “Algorithm” below), use them to do so.

dW = learnpn([],p,[],[],[],[],e,[],[],[],[])

Limitations

Perceptrons do have one real limitation. The set of input vectors must be linearly separable if a solution is to be found. That is, if the input vectors with targets of 1 cannot be separated by a line or hyperplane from the input vectors associated with values of 0, the perceptron will never be able to classify them correctly.

Algorithms

`learnpn` calculates the weight change dW for a given neuron from the neuron’s input P and error E according to the normalized perceptron learning rule:

\[
pn = \frac{p}{\sqrt{(1 + p(1)^2 + p(2)^2 + ... + p(R)^2)}}
\]

\[
dw = 0, \quad \text{if } e = 0
\]
\[
=pn', \quad \text{if } e = 1
\]
\[
=-pn', \quad \text{if } e = -1
\]

The expression for dW can be summarized as

\[
dw = e*pn'
\]

See Also

adapt | learnp | train

Introduced before R2006a

learnsom

Self-organizing map weight learning function

Syntax

\[
[dW,LS] = \text{learnsom}(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
\]
\[
\text{info} = \text{learnsom}('\text{code}')
\]

Description

learnsom is the self-organizing map weight learning function.

\[
[dW,LS] = \text{learnsom}(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
\]
takes several inputs,

\[
\begin{array}{ll}
W & \text{S-by-R weight matrix (or S-by-1 bias vector)} \\
P & \text{R-by-Q input vectors (or ones(1,Q))} \\
Z & \text{S-by-Q weighted input vectors} \\
N & \text{S-by-Q net input vectors} \\
A & \text{S-by-Q output vectors} \\
T & \text{S-by-Q layer target vectors} \\
E & \text{S-by-Q layer error vectors} \\
gW & \text{S-by-R weight gradient with respect to performance} \\
gA & \text{S-by-Q output gradient with respect to performance} \\
D & \text{S-by-S neuron distances} \\
LP & \text{Learning parameters, none, } LP = [] \\
LS & \text{Learning state, initially should be } = []
\end{array}
\]

and returns

\[
\begin{array}{ll}
dW & \text{S-by-R weight (or bias) change matrix} \\
LS & \text{New learning state}
\end{array}
\]

Learning occurs according to learnsom’s learning parameters, shown here with their default values.

\[
\begin{array}{lll}
\text{LP.order_lr} & 0.9 & \text{Ordering phase learning rate} \\
\text{LP.order_steps} & 1000 & \text{Ordering phase steps} \\
\text{LP.tune_lr} & 0.02 & \text{Tuning phase learning rate} \\
\text{LP.tune Nd} & 1 & \text{Tuning phase neighborhood distance}
\end{array}
\]

\[
\text{info} = \text{learnsom}('\text{code}') \text{ returns useful information for each } \text{code} \text{ character vector:}
\]

\[
\begin{array}{ll}
'\text{pnames}' & \text{Names of learning parameters}
\end{array}
\]
Examples

Here you define a random input P, output A, and weight matrix W for a layer with a two-element input and six neurons. You also calculate positions and distances for the neurons, which are arranged in a 2-by-3 hexagonal pattern. Then you define the four learning parameters.

```matlab
p = rand(2,1);
a = rand(6,1);
w = rand(6,2);
pos = hextop(2,3);
d = linkdist(pos);
lp.order_lr = 0.9;
lp.order_steps = 1000;
lp.tune_lr = 0.02;
lp.tune_nd = 1;
```

Because `learnsom` only needs these values to calculate a weight change (see "Algorithm" below), use them to do so.

```matlab
ls = [];
[dW,ls] = learnsom(w,p,[],[],a,[],[],[],[],d,lp,ls)
```

Algorithms

`learnsom` calculates the weight change `dW` for a given neuron from the neuron's input `P`, activation `A2`, and learning rate `LR`:

```matlab
dw = lr*a2*(p'-w)
```

where the activation `A2` is found from the layer output `A`, neuron distances `D`, and the current neighborhood size `ND`:

```matlab
a2(i,q) = 1, if a(i,q) = 1
    = 0.5, if a(j,q) = 1 and D(i,j) <= nd
    = 0, otherwise
```

The learning rate `LR` and neighborhood size `NS` are altered through two phases: an ordering phase and a tuning phase.

The ordering phases lasts as many steps as `LP.order_steps`. During this phase `LR` is adjusted from `LP.order_lr` down to `LP.tune_lr`, and `ND` is adjusted from the maximum neuron distance down to 1. It is during this phase that neuron weights are expected to order themselves in the input space consistent with the associated neuron positions.

During the tuning phase `LR` decreases slowly from `LP.tune_lr`, and `ND` is always set to `LP.tune_nd`. During this phase the weights are expected to spread out relatively evenly over the input space while retaining their topological order, determined during the ordering phase.

See Also

`adapt` | `train`
Introduced before R2006a
learnsomb

Batch self-organizing map weight learning function

Syntax

\[
[dW,LS] = \text{learnsomb}(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
\]

info = \text{learnsomb('code')}

Description

learnsomb is the batch self-organizing map weight learning function.

\[
[dW,LS] = \text{learnsomb}(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
\]
takes several inputs:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(W)</td>
<td>(S)-by-(R) weight matrix (or (S)-by-1 bias vector)</td>
</tr>
<tr>
<td>(P)</td>
<td>(R)-by-(Q) input vectors (or \texttt{ones(1,Q)})</td>
</tr>
<tr>
<td>(Z)</td>
<td>(S)-by-(Q) weighted input vectors</td>
</tr>
<tr>
<td>(N)</td>
<td>(S)-by-(Q) net input vectors</td>
</tr>
<tr>
<td>(A)</td>
<td>(S)-by-(Q) output vectors</td>
</tr>
<tr>
<td>(T)</td>
<td>(S)-by-(Q) layer target vectors</td>
</tr>
<tr>
<td>(E)</td>
<td>(S)-by-(Q) layer error vectors</td>
</tr>
<tr>
<td>(gW)</td>
<td>(S)-by-(R) gradient with respect to performance</td>
</tr>
<tr>
<td>(gA)</td>
<td>(S)-by-(Q) output gradient with respect to performance</td>
</tr>
<tr>
<td>(D)</td>
<td>(S)-by-(S) neuron distances</td>
</tr>
<tr>
<td>(LP)</td>
<td>Learning parameters, none, (LP = [])</td>
</tr>
<tr>
<td>(LS)</td>
<td>Learning state, initially should be = []</td>
</tr>
</tbody>
</table>

and returns the following:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(dW)</td>
<td>(S)-by-(R) weight (or bias) change matrix</td>
</tr>
<tr>
<td>(LS)</td>
<td>New learning state</td>
</tr>
</tbody>
</table>

Learning occurs according to learnsomb's learning parameter, shown here with its default value:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(LP.init_neighborhood)</td>
<td>3</td>
</tr>
<tr>
<td>(LP.steps)</td>
<td>100</td>
</tr>
</tbody>
</table>

info = \text{learnsomb('code')} returns useful information for each \texttt{code} character vector:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>('pnames')</td>
<td>Returns names of learning parameters.</td>
</tr>
<tr>
<td>('pdefaults')</td>
<td>Returns default learning parameters.</td>
</tr>
<tr>
<td>('needg')</td>
<td>Returns 1 if this function uses (gW) or (gA).</td>
</tr>
</tbody>
</table>
Examples

This example defines a random input \(P \), output \(A \), and weight matrix \(W \) for a layer with a 2-element input and 6 neurons. This example also calculates the positions and distances for the neurons, which appear in a 2-by-3 hexagonal pattern.

\[
p = \text{rand}(2,1);
\]
\[
a = \text{rand}(6,1);
\]
\[
w = \text{rand}(6,2);
\]
\[
\text{pos} = \text{hextop}(2,3);
\]
\[
d = \text{linkdist}(\text{pos});
\]
\[
lp = \text{learnsomb('pdefaults')};
\]

Because \text{learnsom} only needs these values to calculate a weight change (see Algorithm).

\[
ls = [];
\]
\[
[dW,ls] = \text{learnsomb}(w,p,[],[],a,[],[],[]),d,lp,ls)
\]

Network Use

You can create a standard network that uses \text{learnsomb} with \text{selforgmap}. To prepare the weights of layer \(i \) of a custom network to learn with \text{learnsomb}:

1. Set \(\text{NET}.\text{trainFcn} \) to 'trainr'. (\(\text{NET}.\text{trainParam} \) automatically becomes \text{trainr}'s default parameters.)
2. Set \(\text{NET}.\text{adaptFcn} \) to 'trains'. (\(\text{NET}.\text{adaptParam} \) automatically becomes \text{trains}'s default parameters.)
3. Set each \(\text{NET}.\text{inputWeights}\{i,j\}.\text{learnFcn} \) to 'learnsomb'.
4. Set each \(\text{NET}.\text{layerWeights}\{i,j\}.\text{learnFcn} \) to 'learnsomb'. (Each weight learning parameter property is automatically set to \text{learnsomb}'s default parameters.)

To train the network (or enable it to adapt):

1. Set \(\text{NET}.\text{trainParam} \) (or \(\text{NET}.\text{adaptParam} \)) properties as desired.
2. Call train (or adapt).

Algorithms

\text{learnsomb} calculates the weight changes so that each neuron's new weight vector is the weighted average of the input vectors that the neuron and neurons in its neighborhood responded to with an output of 1.

The ordering phase lasts as many steps as \(\text{LP}.\text{steps} \).

During this phase, the neighborhood is gradually reduced from a maximum size of \(\text{LP}.\text{init}_\text{neighborhood} \) down to 1, where it remains from then on.

See Also

adapt | selforgmap | train

Introduced in R2008a
learnwh

Widrow-Hoff weight/bias learning function

Syntax

\[
[dW,LS] = \text{learnwh}(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
\]
\[
\text{info} = \text{learnwh}('\text{code}')
\]

Description

\text{learnwh} is the Widrow-Hoff weight/bias learning function, and is also known as the delta or least mean squared (LMS) rule.

\[
[dW,LS] = \text{learnwh}(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
\]

takes several inputs,

\begin{array}{ll}
\text{W} & \text{S-by-R weight matrix (or b, and S-by-1 bias vector)} \\
\text{P} & \text{R-by-Q input vectors (or ones(1,Q))} \\
\text{Z} & \text{S-by-Q weighted input vectors} \\
\text{N} & \text{S-by-Q net input vectors} \\
\text{A} & \text{S-by-Q output vectors} \\
\text{T} & \text{S-by-Q layer target vectors} \\
\text{E} & \text{S-by-Q layer error vectors} \\
\text{gW} & \text{S-by-R weight gradient with respect to performance} \\
\text{gA} & \text{S-by-Q output gradient with respect to performance} \\
\text{D} & \text{S-by-S neuron distances} \\
\text{LP} & \text{Learning parameters, none, } \text{LP} = [] \\
\text{LS} & \text{Learning state, initially should be } = []
\end{array}

and returns

\begin{array}{ll}
\text{dW} & \text{S-by-R weight (or bias) change matrix} \\
\text{LS} & \text{New learning state}
\end{array}

Learning occurs according to the \text{learnwh} learning parameter, shown here with its default value.

\[
\text{LP.lr} = 0.01
\]

\text{Learning rate}

\text{info} = \text{learnwh}('\text{code}') \text{ returns useful information for each } \text{code} \text{ character vector:}

\begin{array}{ll}
'\text{pnames}' & \text{Names of learning parameters} \\
'\text{pdefaults}' & \text{Default learning parameters} \\
'\text{needg}' & \text{Returns 1 if this function uses } \text{gW} \text{ or } \text{gA}
\end{array}

2-135
Examples

Here you define a random input P and error E for a layer with a two-element input and three neurons. You also define the learning rate LR learning parameter.

\[
p = \text{rand}(2,1);
e = \text{rand}(3,1);
lp.lr = 0.5;
\]

Because `learnwh` needs only these values to calculate a weight change (see “Algorithm” below), use them to do so.

\[
dW = \text{learnwh}([],p,[],[],[],[],e,[],[],[],[],lp,[])
\]

Network Use

You can create a standard network that uses `learnwh` with `linearlayer`.

To prepare the weights and the bias of layer i of a custom network to learn with `learnwh`,

1. Set `net.trainFcn` to `'trainb'`. `net.trainParam` automatically becomes `trainb`'s default parameters.
2. Set `net.adaptFcn` to `'trains'`. `net.adaptParam` automatically becomes `trains`'s default parameters.
3. Set each `net.inputWeights{i,j}.learnFcn` to `'learnwh'`.
4. Set each `net.layerWeights{i,j}.learnFcn` to `'learnwh'`.
5. Set `net.biases{i}.learnFcn` to `'learnwh'`. Each weight and bias learning parameter property is automatically set to the `learnwh` default parameters.

To train the network (or enable it to adapt),

1. Set `net.trainParam` (or `net.adaptParam`) properties to desired values.
2. Call `train` (or `adapt`).

Algorithms

`learnwh` calculates the weight change dW for a given neuron from the neuron’s input P and error E, and the weight (or bias) learning rate LR, according to the Widrow-Hoff learning rule:

\[
dw = lr*e*pn'
\]

References

See Also

adapt | linearlayer | train
Introduced before R2006a
linearlayer

Linear layer

Syntax

linearlayer(inputDelays,widrowHoffLR)

Description

Linear layers are single layers of linear neurons. They may be static, with input delays of 0, or dynamic, with input delays greater than 0. They can be trained on simple linear time series problems, but often are used adaptively to continue learning while deployed so they can adjust to changes in the relationship between inputs and outputs while being used.

If a network is needed to solve a nonlinear time series relationship, then better networks to try include timedelaynet, narxnet, and narnet.

linearlayer(inputDelays,widrowHoffLR) takes these arguments,

<table>
<thead>
<tr>
<th>inputDelays</th>
<th>Row vector of increasing 0 or positive delays (default = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>widrowHoffLR</td>
<td>Widrow-Hoff learning rate (default = 0.01)</td>
</tr>
</tbody>
</table>

and returns a linear layer.

If the learning rate is too small, learning will happen very slowly. However, a greater danger is that it may be too large and learning will become unstable resulting in large changes to weight vectors and errors increasing instead of decreasing. If a data set is available which characterizes the relationship the layer is to learn, the maximum stable learning rate can be calculated with maxlinlr.

Examples

Create and Train a Linear Layer

Here a linear layer is trained on a simple time series problem.

```matlab
x = {0 -1 1 1 0 -1 1 0 0 1};
t = {0 -1 0 2 1 -1 0 1 0 1};
net = linearlayer(1:2,0.01);
[Xs,Xi,Ai,Ts] = preparets(net,x,t);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi);
perf = perform(net,Ts,Y)
```

perf =

```
0.2396
```
See Also
narnet | narxnet | preparets | removedelay | timedelaynet

Introduced in R2010b
linkdist

Link distance function

Syntax

d = linkdist(pos)

Description

linkdist is a layer distance function used to find the distances between the layer's neurons given their positions.

d = linkdist(pos) takes one argument,

| pos | N-by-S matrix of neuron positions |

and returns the S-by-S matrix of distances.

Examples

Here you define a random matrix of positions for 10 neurons arranged in three-dimensional space and find their distances.

pos = rand(3,10);
D = linkdist(pos)

Network Use

You can create a standard network that uses linkdist as a distance function by calling selforgmap.

To change a network so that a layer's topology uses linkdist, set net.layers{i}.distanceFcn to 'linkdist'.

In either case, call sim to simulate the network with dist.

Algorithms

The link distance D between two position vectors Pi and Pj from a set of S vectors is

\[
D_{ij} = \begin{cases}
0, & \text{if } i == j \\
1, & \text{if } (\text{sum}((Pi-Pj).^2)).^0.5 \text{ is } \leq 1 \\
2, & \text{if } k \text{ exists, } D_{ik} = D_{kj} = 1 \\
3, & \text{if } k_1, k_2 \text{ exist, } D_{ik1} = D_{k1k2} = D_{k2j} = 1 \\
N, & \text{if } k_1..k_N \text{ exist, } D_{ik1} = D_{k1k2} = ... = D_{kNj} = 1 \\
S, & \text{if none of the above conditions apply}
\end{cases}
\]

See Also
dist | mandist | selforgmap | sim
Introduced before R2006a
logsig

Log-sigmoid transfer function

Graph and Symbol

![Graph of logsig](image)

$a = \text{logsig}(n)$

Log-Sigmoid Transfer Function

Syntax

$A = \text{logsig}(N, FP)$
$dA_dN = \text{logsig}('dn', N, A, FP)$
info = \text{logsig}('code')$

Description

logsig is a transfer function. Transfer functions calculate a layer's output from its net input.

$A = \text{logsig}(N, FP)$ takes N and optional function parameters,

<table>
<thead>
<tr>
<th>N</th>
<th>S-by-Q matrix of net input (column) vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP</td>
<td>Struct of function parameters (ignored)</td>
</tr>
</tbody>
</table>

and returns A, the S-by-Q matrix of N's elements squashed into $[0, 1]$.

$dA_dN = \text{logsig}('dn', N, A, FP)$ returns the S-by-Q derivative of A with respect to N. If A or FP is not supplied or is set to $[]$, FP reverts to the default parameters, and A is calculated from N.

info = \text{logsig}('code') returns useful information for each *code* character vector:

logsig('name') returns the name of this function.

logsig('output', FP) returns the [min max] output range.

logsig('active', FP) returns the [min max] active input range.

logsig('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-by-Q.

logsig('fpnames') returns the names of the function parameters.

logsig('fpdefaults') returns the default function parameters.
Examples

Here is the code to create a plot of the \texttt{logsig} transfer function.

\begin{verbatim}
n = -5:0.1:5;
a = logsig(n);
plot(n,a)
\end{verbatim}

Assign this transfer function to layer 1 of a network.

\begin{verbatim}
net.layers{1}.transferFcn = 'logsig';
\end{verbatim}

Algorithms

\begin{verbatim}
logsig(n) = \frac{1}{1 + \exp(-n)}
\end{verbatim}

See Also

\texttt{sim} \textbar \texttt{tansig}

Introduced before R2006a
lvqnet

Learning vector quantization neural network

Syntax

```
lvqnet(hiddenSize,lvqLR,lvqLF)
```

Description

LVQ (learning vector quantization) neural networks consist of two layers. The first layer maps input vectors into clusters that are found by the network during training. The second layer merges groups of first layer clusters into the classes defined by the target data.

The total number of first layer clusters is determined by the number of hidden neurons. The larger the hidden layer the more clusters the first layer can learn, and the more complex mapping of input to target classes can be made. The relative number of first layer clusters assigned to each target class are determined according to the distribution of target classes at the time of network initialization. This occurs when the network is automatically configured the first time `train` is called, or manually configured with the function `configure`, or manually initialized with the function `init` is called.

```
lvqnet(hiddenSize,lvqLR,lvqLF)
```

takes these arguments,

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>hiddenSize</code></td>
<td>Size of hidden layer (default = 10)</td>
</tr>
<tr>
<td><code>lvqLR</code></td>
<td>LVQ learning rate (default = 0.01)</td>
</tr>
<tr>
<td><code>lvqLF</code></td>
<td>LVQ learning function (default = 'learnlv1')</td>
</tr>
</tbody>
</table>

and returns an LVQ neural network.

The other option for the `lvq` learning function is `learnlv2`.

Examples

Train a Learning Vector Quantization Network

Here, an LVQ network is trained to classify iris flowers.

```
[x,t] = iris_dataset;
net = lvqnet(10);
net.trainParam.epochs = 50;
net = train(net,x,t);
view(net)
y = net(x);
perf = perform(net,y,t)
classes = vec2ind(y);

perf =
    0.0489
```
See Also
competlayer | patternnet | selforgmap

Introduced in R2010b
lvqoutputs

LVQ outputs processing function

Syntax

\[
[X,\text{settings}] = \text{lvqoutputs}(X) \\
X = \text{lvqoutputs}('apply',X,PS) \\
X = \text{lvqoutputs}('reverse',X,PS) \\
dx_dy = \text{lvqoutputs}('dx_dy',X,X,PS)
\]

Description

\[
[X,\text{settings}] = \text{lvqoutputs}(X) \text{ returns its argument unchanged, but stores the ratio of target classes in the settings for use by } \text{initlvq to initialize weights.}
\]

\[
X = \text{lvqoutputs}('apply',X,PS) \text{ returns } X.
\]

\[
X = \text{lvqoutputs}('reverse',X,PS) \text{ returns } X.
\]

\[
dx_dy = \text{lvqoutputs}('dx_dy',X,X,PS) \text{ returns the identity derivative.}
\]

See Also

initlvq|lvqnet

Introduced in R2010b
mae

Mean absolute error performance function

Syntax

perf = mae(E,Y,X,FP)

Description

mae is a network performance function. It measures network performance as the mean of absolute errors.

perf = mae(E,Y,X,FP) takes E and optional function parameters,

<table>
<thead>
<tr>
<th>E</th>
<th>Matrix or cell array of error vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Matrix or cell array of output vectors (ignored)</td>
</tr>
<tr>
<td>X</td>
<td>Vector of all weight and bias values (ignored)</td>
</tr>
<tr>
<td>FP</td>
<td>Function parameters (ignored)</td>
</tr>
</tbody>
</table>

and returns the mean absolute error.

dPerf_dx = mae('dx',E,Y,X,perf,FP) returns the derivative of perf with respect to X.

info = mae('code') returns useful information for each code character vector:

mae('name') returns the name of this function.

mae('pnames') returns the names of the training parameters.

mae('pdefaults') returns the default function parameters.

Examples

Create and configure a perceptron to have one input and one neuron:

net = perceptron;
net = configure(net,0,0);

The network is given a batch of inputs P. The error is calculated by subtracting the output A from target T. Then the mean absolute error is calculated.

p = [-10 -5 0 5 10];
t = [0 0 1 1 1];
y = net(p)
e = t-y
perf = mae(e)

Note that mae can be called with only one argument because the other arguments are ignored. mae supports those arguments to conform to the standard performance function argument list.
Network Use

You can create a standard network that uses mae with perceptron.

To prepare a custom network to be trained with mae, set `net.performFcn` to `'mae'`. This automatically sets `net.performParam` to the empty matrix `[]`, because mae has no performance parameters.

In either case, calling `train` or `adapt`, results in mae being used to calculate performance.

See Also

`mse` | `perceptron`

Introduced before R2006a
mandist

Manhattan distance weight function

Syntax

\[Z = \text{mandist}(W,P) \]
\[D = \text{mandist}(\text{pos}) \]

Description

mandist is the Manhattan distance weight function. Weight functions apply weights to an input to get weighted inputs.

\[Z = \text{mandist}(W,P) \] takes these inputs,

\begin{tabular}{|c|l|}
\textbf{W} & S-by-R weight matrix \\
\textbf{P} & R-by-Q matrix of Q input (column) vectors \\
\end{tabular}

and returns the S-by-Q matrix of vector distances.

mandist is also a layer distance function, which can be used to find the distances between neurons in a layer.

\[D = \text{mandist}(\text{pos}) \] takes one argument,

\begin{tabular}{|c|l|}
\textbf{pos} & S row matrix of neuron positions \\
\end{tabular}

and returns the S-by-S matrix of distances.

Examples

Here you define a random weight matrix \(W \) and input vector \(P \) and calculate the corresponding weighted input \(Z \).

\begin{verbatim}
W = rand(4,3);
P = rand(3,1);
Z = mandist(W,P)
\end{verbatim}

Here you define a random matrix of positions for 10 neurons arranged in three-dimensional space and then find their distances.

\begin{verbatim}
pos = rand(3,10);
D = mandist(pos)
\end{verbatim}

Network Use

To change a network so an input weight uses mandist, set net.inputWeights\{i,j\}.weightFcn to 'mandist'. For a layer weight, set net.layerWeights\{i,j\}.weightFcn to 'mandist'.
To change a network so a layer's topology uses `mandist`, set `net.layers{i}.distanceFcn` to 'mandist'.

In either case, call `sim` to simulate the network with `dist`. See `newpnn` or `newgrnn` for simulation examples.

Algorithms

The Manhattan distance D between two vectors X and Y is

$$D = \sum(|x-y|)$$

See Also

`dist` | `linkdist` | `sim`

Introduced before R2006a
mapminmax

Process matrices by mapping row minimum and maximum values to [-1 1]

Syntax

[Y,PS] = mapminmax(X,YMIN,YMAX)
[Y,PS] = mapminmax(X,FP)
Y = mapminmax('apply',X,PS)
X = mapminmax('reverse',Y,PS)
dx_dy = mapminmax('dx_dy',X,Y,PS)

Description

mapminmax processes matrices by normalizing the minimum and maximum values of each row to [YMIN, YMAX].

[Y,PS] = mapminmax(X,YMIN,YMAX) takes X and optional parameters

<table>
<thead>
<tr>
<th>X</th>
<th>N-by-Q matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>YMIN</td>
<td>Minimum value for each row of Y (default is -1)</td>
</tr>
<tr>
<td>YMAX</td>
<td>Maximum value for each row of Y (default is +1)</td>
</tr>
</tbody>
</table>

and returns

<table>
<thead>
<tr>
<th>Y</th>
<th>N-by-Q matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS</td>
<td>Process settings that allow consistent processing of values</td>
</tr>
</tbody>
</table>

[Y,PS] = mapminmax(X,FP) takes parameters as a struct: FP.ymin, FP.ymax.

Y = mapminmax('apply',X,PS) returns Y, given X and settings PS.

X = mapminmax('reverse',Y,PS) returns X, given Y and settings PS.

dx_dy = mapminmax('dx_dy',X,Y,PS) returns the reverse derivative.

Examples

Here is how to format a matrix so that the minimum and maximum values of each row are mapped to default interval [-1, +1].

x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]
[y1,PS] = mapminmax(x1)

Next, apply the same processing settings to new values.

x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]
y2 = mapminmax('apply',x2,PS)

Reverse the processing of y1 to get x1 again.
More About

Normalize Inputs and Targets Using `mapminmax`

Before training, it is often useful to scale the inputs and targets so that they always fall within a specified range. The function `mapminmax` scales inputs and targets so that they fall in the range [-1,1]. The following code illustrates how to use this function.

```matlab
[pn,ps] = mapminmax(p);
[tn,ts] = mapminmax(t);
net = train(net,pn,tn);
```

The original network inputs and targets are given in the matrices `p` and `t`. The normalized inputs and targets `pn` and `tn` that are returned will all fall in the interval [-1,1]. The structures `ps` and `ts` contain the settings, in this case the minimum and maximum values of the original inputs and targets. After the network has been trained, the `ps` settings should be used to transform any future inputs that are applied to the network. They effectively become a part of the network, just like the network weights and biases.

If `mapminmax` is used to scale the targets, then the output of the network will be trained to produce outputs in the range [-1,1]. To convert these outputs back into the same units that were used for the original targets, use the settings `ts`. The following code simulates the network that was trained in the previous code, and then converts the network output back into the original units.

```matlab
an = sim(net,pn);
a = mapminmax('reverse',an,ts);
```

The network output `an` corresponds to the normalized targets `tn`. The unnormalized network output `a` is in the same units as the original targets `t`.

If `mapminmax` is used to preprocess the training set data, then whenever the trained network is used with new inputs they should be preprocessed with the minimum and maximums that were computed for the training set stored in the settings `ps`. The following code applies a new set of inputs to the network already trained.

```matlab
pnewn = mapminmax('apply',pnew,ps);
anewn = sim(net,pnewn);
anew = mapminmax('reverse',anewn,ts);
```

For most networks, including `feedforwardnet`, these steps are done automatically, so that you only need to use the `sim` command.

Algorithms

It is assumed that `X` has only finite real values, and that the elements of each row are not all equal. (If `xmax=xmin` or if either `xmax` or `xmin` are non-finite, then `y=x` and no change occurs.)

\[
 y = (ymax-ymin)*(x-xmin)/(xmax-xmin) + ymin;
\]

See Also

`fixunknowns` | `mapstd` | `processpca`
Introduced in R2006a
mapstd

Process matrices by mapping each row's means to 0 and deviations to 1

Syntax

\[
[Y,PS] = \text{mapstd}(X,ymean,ystd) \\
[Y,PS] = \text{mapstd}(X,FP) \\
Y = \text{mapstd}('\text{apply}',X,PS) \\
X = \text{mapstd}('\text{reverse}',Y,PS) \\
dx_dy = \text{mapstd}('dx_dy',X,Y,PS)
\]

Description

mapstd processes matrices by transforming the mean and standard deviation of each row to ymean and ystd.

\[
[Y,PS] = \text{mapstd}(X,ymean,ystd) \text{ takes } X \text{ and optional parameters,}
\]

<table>
<thead>
<tr>
<th>X</th>
<th>N-by-Q matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>ymean</td>
<td>Mean value for each row of Y (default is 0)</td>
</tr>
<tr>
<td>ystd</td>
<td>Standard deviation for each row of Y (default is 1)</td>
</tr>
</tbody>
</table>

and returns

<table>
<thead>
<tr>
<th>Y</th>
<th>N-by-Q matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS</td>
<td>Process settings that allow consistent processing of values</td>
</tr>
</tbody>
</table>

\[
[Y,PS] = \text{mapstd}(X,FP) \text{ takes parameters as a struct: } FP.ymean, FP.ystd.
\]

Y = mapstd('apply',X,PS) returns Y, given X and settings PS.

X = mapstd('reverse',Y,PS) returns X, given Y and settings PS.

dx_dy = mapstd('dx_dy',X,Y,PS) returns the reverse derivative.

Examples

Here you format a matrix so that the minimum and maximum values of each row are mapped to default mean and STD of 0 and 1.

\[
x_1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0] \\
y_1,PS = \text{mapstd}(x_1)
\]

Next, apply the same processing settings to new values.

\[
x_2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0] \\
y_2 = \text{mapstd}('\text{apply}',x_2,PS)
\]

Reverse the processing of y1 to get x1 again.
x1_again = mapstd('reverse',y1,PS)

More About

Normalize Network Inputs and Targets Using mapstd

Another approach for scaling network inputs and targets is to normalize the mean and standard deviation of the training set. The function mapstd normalizes the inputs and targets so that they will have zero mean and unity standard deviation. The following code illustrates the use of mapstd.

```
[pn,ps] = mapstd(p);
[tn,ts] = mapstd(t);
```

The original network inputs and targets are given in the matrices p and t. The normalized inputs and targets pn and tn that are returned will have zero means and unity standard deviation. The settings structures ps and ts contain the means and standard deviations of the original inputs and original targets. After the network has been trained, you should use these settings to transform any future inputs that are applied to the network. They effectively become a part of the network, just like the network weights and biases.

If mapstd is used to scale the targets, then the output of the network is trained to produce outputs with zero mean and unity standard deviation. To convert these outputs back into the same units that were used for the original targets, use ts. The following code simulates the network that was trained in the previous code, and then converts the network output back into the original units.

```
an = sim(net,pn);
a = mapstd('reverse',an,ts);
```

The network output an corresponds to the normalized targets tn. The unnormalized network output a is in the same units as the original targets t.

If mapstd is used to preprocess the training set data, then whenever the trained network is used with new inputs, you should preprocess them with the means and standard deviations that were computed for the training set using ps. The following commands apply a new set of inputs to the network already trained:

```
pnewn = mapstd('apply',pnew,ps);
anewn = sim(net,pnewn);
anew = mapstd('reverse',anewn,ts);
```

For most networks, including feedforwardnet, these steps are done automatically, so that you only need to use the sim command.

Algorithms

It is assumed that X has only finite real values, and that the elements of each row are not all equal.

```
y = (x-xmean)*(ystd/xstd) + ymean;
```

See Also

fixunknowns | mapminmax | processpca

Introduced in R2006a
maxlinlr

Maximum learning rate for linear layer

Syntax

\[lr = \text{maxlinlr}(P) \]
\[lr = \text{maxlinlr}(P,'bias') \]

Description

`maxlinlr` is used to calculate learning rates for `linearlayer`.

\[lr = \text{maxlinlr}(P) \] takes one argument,

\[
\begin{array}{|c|}
\hline
P & R-by-Q matrix of input vectors \\
\hline
\end{array}
\]

and returns the maximum learning rate for a linear layer without a bias that is to be trained only on the vectors in \(P \).

\[lr = \text{maxlinlr}(P,'bias') \] returns the maximum learning rate for a linear layer with a bias.

Examples

Here you define a batch of four two-element input vectors and find the maximum learning rate for a linear layer with a bias.

\[P = [1 \ 2 \ -4 \ 7; \ 0.1 \ 3 \ 10 \ 6]; \]
\[lr = \text{maxlinlr}(P,'bias') \]

See Also

`learnwh` | `linearlayer`

Introduced before R2006a
meanabs

Mean of absolute elements of matrix or matrices

Syntax

\[m, n \] = meanabs(x)

Description

\[m, n \] = meanabs(x) takes a matrix or cell array of matrices and returns,

<table>
<thead>
<tr>
<th>m</th>
<th>Mean value of all absolute finite values</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Number of finite values</td>
</tr>
</tbody>
</table>

If \(x \) contains no finite values, the mean returned is 0.

Examples

\[
m = \text{meanabs}([1 2; 3 4])
\]

\[
[m,n] = \text{meanabs}({{[1 2; NaN 4], [4 5; 2 3]}})
\]

See Also

meansqr | sumabs | sumsqr

Introduced in R2010b
meansqr

Mean of squared elements of matrix or matrices

Syntax

\[
[m,n] = \text{meansqr}(x)
\]

Description

\[
[m,n] = \text{meansqr}(x)
\]

takes a matrix or cell array of matrices and returns,

<table>
<thead>
<tr>
<th>m</th>
<th>Mean value of all squared finite values</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Number of finite values</td>
</tr>
</tbody>
</table>

If \(x \) contains no finite values, the mean returned is 0.

Examples

\[
\begin{align*}
m &= \text{meansqr}([1 \ 2; 3 \ 4]) \\
[m,n] &= \text{meansqr}({[1 \ 2; NaN \ 4], [4 \ 5; 2 \ 3]})
\end{align*}
\]

See Also
meanabs | sumabs | sumsqr

Introduced in R2010b

midpoint

Midpoint weight initialization function

Syntax

\[W = \text{midpoint}(S, PR) \]

Description

`midpoint` is a weight initialization function that sets weight (row) vectors to the center of the input ranges.

\[W = \text{midpoint}(S, PR) \]

takes two arguments,

- `S`: Number of rows (neurons)
- `PR`: R-by-Q matrix of input value ranges = \[[P_{\text{min}} \ P_{\text{max}}] \]

and returns an S-by-R matrix with rows set to \((P_{\text{min}}+P_{\text{max}})'/2\).

Examples

Here initial weight values are calculated for a five-neuron layer with input elements ranging over \[[0 \ 1] \] and \[[-2 \ 2] \].

\[W = \text{midpoint}(5, [0 \ 1; -2 \ 2]) \]

See Also

init | initlay | initwb

Introduced before R2006a
minmax

Ranges of matrix rows

Syntax

```
pr = minmax(P)
```

Description

```
pr = minmax(P) takes one argument,
```

<table>
<thead>
<tr>
<th>P</th>
<th>R-by-Q matrix</th>
</tr>
</thead>
</table>

and returns the R-by-2 matrix `pr` of minimum and maximum values for each row of `P`.

Alternatively, `P` can be an M-by-N cell array of matrices. Each matrix `P{i,j}` should have Ri rows and Q columns. In this case, `minmax` returns an M-by-1 cell array where the mth element is an Ri-by-2 matrix of the minimum and maximum values of elements for the matrix on the ith row of `P`.

Examples

```
x = rands(4,5)
mm = minmax(x)
x = nndata([1;2],3,4)
mm = minmax(x)
```

Introduced before R2006a
mse

Mean squared normalized error performance function

Syntax

perf = mse(net,t,y,ew)

Description

mse is a network performance function. It measures the network’s performance according to the mean of squared errors.

perf = mse(net,t,y,ew) takes these arguments:

<table>
<thead>
<tr>
<th>net</th>
<th>Neural network</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>Matrix or cell array of targets</td>
</tr>
<tr>
<td>y</td>
<td>Matrix or cell array of outputs</td>
</tr>
<tr>
<td>ew</td>
<td>Error weights (optional)</td>
</tr>
</tbody>
</table>

and returns the mean squared error.

This function has two optional parameters, which are associated with networks whose net.trainFcn is set to this function:

- 'regularization' can be set to any value between 0 and 1. The greater the regularization value, the more squared weights and biases are included in the performance calculation relative to errors. The default is 0, corresponding to no regularization.
- 'normalization' can be set to 'none' (the default); 'standard', which normalizes errors between -2 and 2, corresponding to normalizing outputs and targets between -1 and 1; and 'percent', which normalizes errors between -1 and 1. This feature is useful for networks with multi-element outputs. It ensures that the relative accuracy of output elements with differing target value ranges are treated as equally important, instead of prioritizing the relative accuracy of the output element with the largest target value range.

You can create a standard network that uses mse with feedforwardnet or cascademorowardnet. To prepare a custom network to be trained with mse, set net.performFcn to 'mse'. This automatically sets net.performParam to a structure with the default optional parameter values.

Examples

Train Neural Network Using mse Performance Function

This example shows how to train a neural network using the mse performance function.

Here a two-layer feedforward network is created and trained to estimate body fat percentage using the mse performance function and a regularization value of 0.01.
[x, t] = bodyfat_dataset;
net = feedforwardnet(10);
net.performParam.regularization = 0.01;

MSE is the default performance function for feedforwardnet.
net.performFcn
ans =
'mse'

Train the network and evaluate performance.
net = train(net, x, t);
y = net(x);
perf = perform(net, t, y)
perf = 20.7769

Alternatively, you can call mse directly.
perf = mse(net, t, y, 'regularization', 0.01)
perf = 20.7769

See Also
mae

Introduced before R2006a
narnet
Nonlinear autoregressive neural network

Syntax
narnet(feedbackDelays,hiddenSizes,feedbackMode,trainFcn)

Description
NAR (nonlinear autoregressive) neural networks can be trained to predict a time series from that series past values.

narnet(feedbackDelays,hiddenSizes,feedbackMode,trainFcn) takes these arguments,

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>feedbackDelays</td>
<td>Row vector of increasing 0 or positive delays (default = 1:2)</td>
</tr>
<tr>
<td>hiddenSizes</td>
<td>Row vector of one or more hidden layer sizes (default = 10)</td>
</tr>
<tr>
<td>feedbackMode</td>
<td>One of 'open', 'closed', or 'none' (default is 'open')</td>
</tr>
<tr>
<td>trainFcn</td>
<td>Training function (default is 'trainlm')</td>
</tr>
</tbody>
</table>

and returns a NAR neural network.

Examples

Train NAR Network and Predict on New Data

Load the simple time-series prediction data and create a NAR network.

```matlab
T = simplenar_dataset;
net = narnet(1:2,10);
```

Prepare the time series data using `preparets` and train the network.

```matlab
[Xs,Xi,Ai,Ts] = preparets(net,{},{},T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
```

Calculate the network performance.
\[[Y, X_f, A_f] = \text{net}(X_s, X_i, A_i); \]
\[\text{perf} = \text{perform}(\text{net}, T_s, Y) \]

\[\text{perf} = 1.0100 \times 10^{-9} \]

To predict the output for the next 20 time steps, first simulate the network in closed loop form.

\[[\text{netc}, X_{ic}, A_{ic}] = \text{closeloop}(\text{net}, X_f, A_f); \]
\[\text{view}(\text{netc}) \]

The network only has one input. In closed loop mode, this input is joined to the output.

To simulate the network 20 time steps ahead, input an empty cell array of length 20. The network requires only the initial conditions given in \(X_{ic} \) and \(A_{ic} \).

\[y_2 = \text{netc}(\text{cell}(0, 20), X_{ic}, A_{ic}) \]

\[y_2 = \]

1x20 cell array

Columns 1 through 5

\[
\begin{bmatrix}
[0.8346] & [0.3329] & [0.9084] & [1.0000] & [0.3190]
\end{bmatrix}
\]

Columns 6 through 10

\[
\begin{bmatrix}
[0.7329] & [0.9801] & [0.6409] & [0.5146] & [0.9746]
\end{bmatrix}
\]

Columns 11 through 15

\[
\begin{bmatrix}
[0.9077] & [0.2807] & [0.8651] & [0.9897] & [0.4093]
\end{bmatrix}
\]

Columns 16 through 20

\[
\begin{bmatrix}
[0.4200] & [0.5577] & [0.8146] & [0.3787] & [0.9681]
\end{bmatrix}
\]
See Also
narnet | narxnet | prepares | removedelay | timedelaynet

Introduced in R2010b
narxnet

Nonlinear autoregressive neural network with external input

Syntax

```
narxnet(inputDelays,feedbackDelays,hiddenSizes,feedbackMode,trainFcn)
```

Description

NARX (Nonlinear autoregressive with external input) networks can learn to predict one time series given past values of the same time series, the feedback input, and another time series, called the external or exogenous time series.

```
narxnet(inputDelays,feedbackDelays,hiddenSizes,feedbackMode,trainFcn)
```
takes these arguments,

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>inputDelays</td>
<td>Row vector of increasing 0 or positive delays (default = 1:2)</td>
</tr>
<tr>
<td>feedbackDelays</td>
<td>Row vector of increasing 0 or positive delays (default = 1:2)</td>
</tr>
<tr>
<td>hiddenSizes</td>
<td>Row vector of one or more hidden layer sizes (default = 10)</td>
</tr>
<tr>
<td>feedbackMode</td>
<td>One of 'open', 'closed', or 'none' (default is 'open')</td>
</tr>
<tr>
<td>trainFcn</td>
<td>Training function (default is 'trainlm')</td>
</tr>
</tbody>
</table>

and returns a NARX neural network.

Examples

Train NARX Network and Predict on New Data

Partition the training data. Use Xnew to do prediction in closed loop mode later.

```
[X,T] = simpleseries_dataset;
Xnew = X(81:100);
X = X(1:80);
T = T(1:80);
```

Train a network, and simulate it on the first 80 observations

```
net = narxnet(1:2,1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
```
Calculate the network performance.

\[
[Y, X_f, A_f] = \text{net}(X_s, X_i, A_i);
\]
\[
\text{perf} = \text{perform}(\text{net}, T_s, Y)
\]

\[
\text{perf} = \\
0.0153
\]

Run the prediction for 20 time steps ahead in closed loop mode.

\[
[\text{netc}, X_{ic}, A_{ic}] = \text{closeloop}(\text{net}, X_f, A_f);
\]
\[
\text{view}(\text{netc})
\]

\[
y_2 = \text{netc}(X_{new}, X_{ic}, A_{ic})
\]

\[
y_2 = \\
1\times20 \text{ cell array}
\]

Columns 1 through 5

\[
\{[-0.0156]\} \quad \{[0.1133]\} \quad \{[-0.1472]\} \quad \{[-0.0706]\} \quad \{[0.0355]\}
\]
Columns 6 through 10

\{[-0.2829]\} \{[0.2047]\} \{[-0.3809]\} \{[-0.2836]\} \{[0.1886]\}

Columns 11 through 15

\{[-0.1813]\} \{[0.1373]\} \{[0.2189]\} \{[0.3122]\} \{[0.2346]\}

Columns 16 through 20

\{[-0.0156]\} \{[0.0724]\} \{[0.3395]\} \{[0.1940]\} \{[0.0757]\}

See Also
closeloop | narnet | openloop | preparets | removedelay | timedelaynet

Introduced in R2010b
nctool

Neural network classification or clustering tool

Syntax

nctool

Description

nctool opens the Neural Net Clustering GUI.

For more information and an example of its usage, see “Cluster Data with a Self-Organizing Map”.

Algorithms

nctool leads you through solving a clustering problem using a self-organizing map. The map forms a compressed representation of the inputs space, reflecting both the relative density of input vectors in that space, and a two-dimensional compressed representation of the input-space topology.

See Also

nftool | nprtool | ntstool

Introduced in R2008a
negdist

Negative distance weight function

Syntax

\[Z = \text{negdist}(W,P) \]
\[\text{dim} = \text{negdist}('\text{size}',S,R,FP) \]
\[\text{dw} = \text{negdist}('\text{dz_dw}',W,P,Z,FP) \]

Description

negdist is a weight function. Weight functions apply weights to an input to get weighted inputs.

\[Z = \text{negdist}(W,P) \] takes these inputs,

- \(W \) - S-by-R weight matrix
- \(P \) - R-by-Q matrix of Q input (column) vectors
- FP - Row cell array of function parameters (optional, ignored)

and returns the S-by-Q matrix of negative vector distances.

\[\text{dim} = \text{negdist}('\text{size}',S,R,FP) \] takes the layer dimension \(S \), input dimension \(R \), and function parameters, and returns the weight size [S-by-R].

\[\text{dw} = \text{negdist}('\text{dz_dw}',W,P,Z,FP) \] returns the derivative of \(Z \) with respect to \(W \).

Examples

Here you define a random weight matrix \(W \) and input vector \(P \) and calculate the corresponding weighted input \(Z \).

\[
W = \text{rand}(4,3); \\
P = \text{rand}(3,1); \\
Z = \text{negdist}(W,P)
\]

Network Use

You can create a standard network that uses negdist by calling competlayer or selforgmap.

To change a network so an input weight uses negdist, set net.inputWeights\{i,j\}.weightFcn to 'negdist'. For a layer weight, set net.layerWeights\{i,j\}.weightFcn to 'negdist'.

In either case, call sim to simulate the network with negdist.

Algorithms

negdist returns the negative Euclidean distance:

\[
z = -\sqrt{\text{sum}(w-p)^2}
\]
See Also
competlayer | dist | dotprod | selforgmap | sim

Introduced before R2006a
netinv

Inverse transfer function

Syntax

A = netinv(N,FP)

Description

netinv is a transfer function. Transfer functions calculate a layer's output from its net input.

A = netinv(N,FP) takes inputs

<table>
<thead>
<tr>
<th>N</th>
<th>S-by-Q matrix of net input (column) vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP</td>
<td>Struct of function parameters (ignored)</td>
</tr>
</tbody>
</table>

and returns 1/N.

info = netinv('code') returns information about this function. The following codes are supported:

netinv('name') returns the name of this function.

netinv('output',FP) returns the [min max] output range.

netinv('active',FP) returns the [min max] active input range.

netinv('fullderiv') returns 1 or 0, depending on whether \(\frac{dA}{dN}\) is S-by-S-by-Q or S-by-Q.

netinv('fpnames') returns the names of the function parameters.

netinv('fpdefaults') returns the default function parameters.

Examples

Here you define 10 five-element net input vectors N and calculate A.

n = rand(5,10);
a = netinv(n);

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'netinv';

See Also

logsig | tansig

Introduced in R2006a
netprod

Product net input function

Syntax

\[
N = \text{netprod}({Z_1,Z_2,...,Z_n})
\]

\[
\text{info} = \text{netprod}('code')
\]

Description

netprod is a net input function. Net input functions calculate a layer’s net input by combining its weighted inputs and biases.

\[
N = \text{netprod}({Z_1,Z_2,...,Z_n}) \text{ takes }
\]

\[
Z_i \quad \text{S-by-Q matrices in a row cell array}
\]

and returns an element-wise product of Z1 to Zn.

\[
\text{info} = \text{netprod}('code') \text{ returns information about this function. The following codes are supported:}
\]

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'deriv'</td>
<td>Name of derivative function</td>
</tr>
<tr>
<td>'fullderiv'</td>
<td>Full N-by-S-by-Q derivative = 1, element-wise S-by-Q derivative = 0</td>
</tr>
<tr>
<td>'name'</td>
<td>Full name</td>
</tr>
<tr>
<td>'fpnames'</td>
<td>Returns names of function parameters</td>
</tr>
<tr>
<td>'fpdefaults'</td>
<td>Returns default function parameters</td>
</tr>
</tbody>
</table>

Examples

Here netprod combines two sets of weighted input vectors (user-defined).

\[
Z_1 = \begin{bmatrix} 1 & 2 & 4 ; 3 & 4 & 1 \end{bmatrix};
Z_2 = \begin{bmatrix} -1 & 2 & 2 ; -5 & -6 & 1 \end{bmatrix};
Z = \{Z_1,Z_2\};
N = \text{netprod}({Z})
\]

Here netprod combines the same weighted inputs with a bias vector. Because Z1 and Z2 each contain three concurrent vectors, three concurrent copies of B must be created with `concur` so that all sizes match.

\[
B = \begin{bmatrix} 0 ; -1 \end{bmatrix};
Z = \{Z_1, Z_2, \text{concur}(B,3)\};
N = \text{netprod}(Z)
\]
Network Use

You can create a standard network that uses `netprod` by calling `newpnn` or `newgrnn`.

To change a network so that a layer uses `netprod`, set `net.layers{i}.netInputFcn` to `'netprod'`.

In either case, call `sim` to simulate the network with `netprod`. See `newpnn` or `newgrnn` for simulation examples.

See Also
`concur` | `netsum` | `sim`

Introduced before R2006a
netsum

Sum net input function

Syntax

\[N = \text{netsum} \left(\{Z_1, Z_2, \ldots, Z_n\}, FP \right) \]

\[\text{info} = \text{netsum}(\text{'code'}) \]

Description

netsum is a net input function. Net input functions calculate a layer's net input by combining its weighted inputs and biases.

\[N = \text{netsum} \left(\{Z_1, Z_2, \ldots, Z_n\}, FP \right) \]

takes \(Z_1\) to \(Z_n\) and optional function parameters,

<table>
<thead>
<tr>
<th>(Z_i)</th>
<th>S-by-Q matrices in a row cell array</th>
</tr>
</thead>
<tbody>
<tr>
<td>(FP)</td>
<td>Row cell array of function parameters (ignored)</td>
</tr>
</tbody>
</table>

and returns the elementwise sum of \(Z_1\) to \(Z_n\).

\[\text{info} = \text{netsum}(\text{'code'}) \]

returns information about this function. The following codes are supported:

- \(\text{netsum('name')}\) returns the name of this function.
- \(\text{netsum('type')}\) returns the type of this function.
- \(\text{netsum('fpnames')}\) returns the names of the function parameters.
- \(\text{netsum('fpdefaults')}\) returns default function parameter values.
- \(\text{netsum('fpcheck', FP)}\) throws an error for illegal function parameters.
- \(\text{netsum('fullderiv')}\) returns 0 or 1, depending on whether the derivative is S-by-Q or N-by-S-by-Q.

Examples

Here *netsum* combines two sets of weighted input vectors and a bias. You must use *concur* to make \(b\) the same dimensions as \(z_1\) and \(z_2\).

\[z_1 = [1, 2, 4; 3, 4, 1] \]
\[z_2 = [-1, 2, 2; -5, -6, 1] \]
\[b = [0; -1] \]
\[n = \text{netsum} \left(\{z_1, z_2, \text{concur}(b, 3)\} \right) \]

Assign this net input function to the first layer of a network.

\[\text{net} = \text{feedforwardnet}(); \]
\[\text{net.layers\{1\}.netInputFcn} = \text{'netsum'}; \]
See Also
cascadeforwardnet | feedforwardnet | netinv | netprod

Introduced before R2006a
network

Create custom shallow neural network

Syntax

net = network
net = network(numInputs,numLayers,biasConnect,inputConnect,layerConnect,outputConnect)

To Get Help

Type help network/network.

Tip To learn how to create a deep learning network, see “Specify Layers of Convolutional Neural Network”.

Description

network creates new custom networks. It is used to create networks that are then customized by functions such as feedforwardnet and narxnet.

net = network without arguments returns a new neural network with no inputs, layers or outputs.

net = network(numInputs,numLayers,biasConnect,inputConnect,layerConnect,outputConnect) takes these optional arguments (shown with default values):

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>numInputs</td>
<td>Number of inputs, 0</td>
</tr>
<tr>
<td>numLayers</td>
<td>Number of layers, 0</td>
</tr>
<tr>
<td>biasConnect</td>
<td>numLayers-by-1 Boolean vector, zeros</td>
</tr>
<tr>
<td>inputConnect</td>
<td>numLayers-by-numInputs Boolean matrix, zeros</td>
</tr>
<tr>
<td>layerConnect</td>
<td>numLayers-by-numLayers Boolean matrix, zeros</td>
</tr>
<tr>
<td>outputConnect</td>
<td>1-by-numLayers Boolean vector, zeros</td>
</tr>
</tbody>
</table>

and returns

net New network with the given property values

Properties

Architecture Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>net.numInputs</td>
<td>0 or a positive integer</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>net.numLayers</td>
<td>0 or a positive integer, Number of layers.</td>
</tr>
<tr>
<td>net.biasConnect</td>
<td>numLayer-by-1 Boolean vector, If net.biasConnect(i) is 1, then layer i has a bias, and net.biases{i} is a structure describing that bias.</td>
</tr>
<tr>
<td>net.inputConnect</td>
<td>numLayer-by-numInputs Boolean vector, If net.inputConnect(i,j) is 1, then layer i has a weight coming from input j, and net.inputWeights{i,j} is a structure describing that weight.</td>
</tr>
<tr>
<td>net.layerConnect</td>
<td>numLayer-by-numLayers Boolean vector, If net.layerConnect(i,j) is 1, then layer i has a weight coming from layer j, and net.layerWeights{i,j} is a structure describing that weight.</td>
</tr>
<tr>
<td>net.outputConnect</td>
<td>1-by-numLayers Boolean vector, If net.outputConnect(i) is 1, then the network has an output from layer i, and net.outputs{i} is a structure describing that output.</td>
</tr>
<tr>
<td>net.numOutputs</td>
<td>0 or a positive integer (read only), Number of network outputs according to net.outputConnect.</td>
</tr>
<tr>
<td>net.numInputDelays</td>
<td>0 or a positive integer (read only), Maximum input delay according to all net.inputWeights{i,j}.delays.</td>
</tr>
<tr>
<td>net.numLayerDelays</td>
<td>0 or a positive number (read only), Maximum layer delay according to all net.layerWeights{i,j}.delays.</td>
</tr>
</tbody>
</table>

Subobject Structure Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>net.inputs</td>
<td>numInputs-by-1 cell array, net.inputs{i} is a structure defining input i.</td>
</tr>
<tr>
<td>net.layers</td>
<td>numLayers-by-1 cell array, net.layers{i} is a structure defining layer i.</td>
</tr>
<tr>
<td>net.biases</td>
<td>numLayers-by-1 cell array, If net.biasConnect(i) is 1, then net.biases{i} is a structure defining the bias for layer i.</td>
</tr>
<tr>
<td>net.inputWeights</td>
<td>numLayers-by-numInputs cell array, If net.inputConnect(i,j) is 1, then net.inputWeights{i,j} is a structure defining the weight to layer i from input j.</td>
</tr>
<tr>
<td>net.layerWeights</td>
<td>numLayers-by-numLayers cell array, If net.layerConnect(i,j) is 1, then net.layerWeights{i,j} is a structure defining the weight to layer i from layer j.</td>
</tr>
<tr>
<td>net.outputs</td>
<td>1-by-numLayers cell array, If net.outputConnect(i) is 1, then net.outputs{i} is a structure defining the network output from layer i.</td>
</tr>
</tbody>
</table>

Function Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>net.adaptFcn</td>
<td>Name of a network adaption function or ''.</td>
</tr>
<tr>
<td>net.initFcn</td>
<td>Name of a network initialization function or ''.</td>
</tr>
<tr>
<td>net.performFcn</td>
<td>Name of a network performance function or ''</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>net.trainFcn</td>
<td>Name of a network training function or ''</td>
</tr>
</tbody>
</table>

Parameter Properties

<table>
<thead>
<tr>
<th>net.adaptParam</th>
<th>Network adaption parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>net.initParam</td>
<td>Network initialization parameters</td>
</tr>
<tr>
<td>net.performParam</td>
<td>Network performance parameters</td>
</tr>
<tr>
<td>net.trainParam</td>
<td>Network training parameters</td>
</tr>
</tbody>
</table>

Weight and Bias Value Properties

<table>
<thead>
<tr>
<th>net.IW</th>
<th>numLayers-by-numInputs cell array of input weight values</th>
</tr>
</thead>
<tbody>
<tr>
<td>net.LW</td>
<td>numLayers-by-numLayers cell array of layer weight values</td>
</tr>
<tr>
<td>net.b</td>
<td>numLayers-by-1 cell array of bias values</td>
</tr>
</tbody>
</table>

Other Properties

| net.userdata | Structure you can use to store useful values |

Examples

Create Network with One Input and Two Layers

This example shows how to create a network without any inputs and layers, and then set its numbers of inputs and layers to 1 and 2 respectively.

```matlab
net = network;
net.numInputs = 1;
net.numLayers = 2;
```

Alternatively, you can create the same network with one line of code.

```matlab
net = network(1,2);
```

Create Feedforward Network and View Properties

This example shows how to create a one-input, two-layer, feedforward network. Only the first layer has a bias. An input weight connects to layer 1 from input 1. A layer weight connects to layer 2 from layer 1. Layer 2 is a network output and has a target.

```matlab
net = network(1,2,[1;0],[1; 0],[0 0; 1 0],[0 1]);
```

You can view the network subobjects with the following code.

```matlab
net.inputs{1}
net.layers{1}, net.layers{2}
net.biases{1}
net.inputWeights{1,1}, net.layerWeights{2,1}
net.outputs{2}
```
You can alter the properties of any of the network subobjects. This code changes the transfer functions of both layers:

```matlab
gen.layers{1}.transferFcn = 'tansig';
gen.layers{2}.transferFcn = 'logsig';
```

You can view the weights for the connection from the first input to the first layer as follows. The weights for a connection from an input to a layer are stored in `net.IW`. If the values are not yet set, these result is empty.

```matlab
net.IW{1,1}
```

You can view the weights for the connection from the first layer to the second layer as follows. Weights for a connection from a layer to a layer are stored in `net.LW`. Again, if the values are not yet set, the result is empty.

```matlab
net.LW{2,1}
```

You can view the bias values for the first layer as follows.

```matlab
net.b{1}
```

To change the number of elements in input 1 to 2, set each element’s range:

```matlab
net.inputs{1}.range = [0 1; -1 1];
```

To simulate the network for a two-element input vector, the code might look like this:

```matlab
p = [0.5; -0.1];
y = sim(net,p)
```

See Also

`sim`

Topics

“Neural Network Object Properties”
“Neural Network Subobject Properties”

Introduced before R2006a
newgrnn

Design generalized regression neural network

Syntax

```
net = newgrnn(P,T,spread)
```

Description

Generalized regression neural networks (grnns) are a kind of radial basis network that is often used for function approximation. grnnns can be designed very quickly.

```
net = newgrnn(P,T,spread)
```
takes three inputs, where

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>R-by-Q matrix of Q input vectors</td>
</tr>
<tr>
<td>T</td>
<td>S-by-Q matrix of Q target class vectors</td>
</tr>
<tr>
<td>spread</td>
<td>Spread of radial basis functions (default = 1.0)</td>
</tr>
</tbody>
</table>

and returns a new generalized regression neural network.

The larger the spread, the smoother the function approximation. To fit data very closely, use a spread smaller than the typical distance between input vectors. To fit the data more smoothly, use a larger spread.

Properties

newgrnn creates a two-layer network. The first layer has radbas neurons, and calculates weighted inputs with dist and net input with netprod. The second layer has purelin neurons, calculates weighted input with normprod, and net inputs with netsum. Only the first layer has biases.

newgrnn sets the first layer weights to \(P'\), and the first layer biases are all set to \(0.8326/\text{spread}\), resulting in radial basis functions that cross 0.5 at weighted inputs of \(+/- \text{spread}\). The second layer weights \(W2\) are set to \(T\).

Examples

Here you design a radial basis network, given inputs \(P\) and targets \(T\).

```
P = [1 2 3];
T = [2.0 4.1 5.9];
net = newgrnn(P,T);
```

The network is simulated for a new input.

```
P = 1.5;
Y = sim(net,P)
```
References

See Also

newpnn | newrb | newrbe | sim

Introduced before R2006a
newlind
Design linear layer

Syntax
net = newlind(P,T,Pi)

Description
net = newlind(P,T,Pi) takes these input arguments,

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>R-by-Q matrix of Q input vectors</td>
</tr>
<tr>
<td>T</td>
<td>S-by-Q matrix of Q target class vectors</td>
</tr>
<tr>
<td>Pi</td>
<td>1-by-ID cell array of initial input delay states</td>
</tr>
</tbody>
</table>

where each element Pi{i,k} is an Ri-by-Q matrix, and the default = []; and returns a linear layer designed to output T (with minimum sum square error) given input P.

newlind(P,T,Pi) can also solve for linear networks with input delays and multiple inputs and layers by supplying input and target data in cell array form:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Ni-by-TS cell array Each element P{i,ts} is an Ri-by-Q input matrix</td>
</tr>
<tr>
<td>T</td>
<td>Nt-by-TS cell array Each element P{i,ts} is a Vi-by-Q matrix</td>
</tr>
<tr>
<td>Pi</td>
<td>Ni-by-ID cell array Each element Pi{i,k} is an Ri-by-Q matrix, default = []</td>
</tr>
</tbody>
</table>

and returns a linear network with ID input delays, Ni network inputs, and Nl layers, designed to output T (with minimum sum square error) given input P.

Examples
You want a linear layer that outputs T given P for the following definitions:

P = [1 2 3];
T = [2.0 4.1 5.9];

Use newlind to design such a network and check its response.

net = newlind(P,T);
Y = sim(net,P)

You want another linear layer that outputs the sequence T given the sequence P and two initial input delay states Pi.

P = {1 2 1 3 2};
Pi = {1 3};
T = {5.0 6.1 4.0 6.0 6.9 8.0};
net = newlind(P,T,Pi);
Y = sim(net,P,Pi)
You want a linear network with two outputs Y1 and Y2 that generate sequences T1 and T2, given the sequences P1 and P2, with three initial input delay states Pi1 for input 1 and three initial delays states Pi2 for input 2.

P1 = [1 2 1 3 3 2]; Pi1 = [1 3 0];
P2 = [1 2 1 1 2 1]; Pi2 = [2 1 2];
T1 = [5.0 6.1 4.0 6.0 6.9 8.0];
T2 = [11.0 12.1 10.1 10.9 13.0 13.0];
net = newlind([P1; P2],[T1; T2],[Pi1; Pi2]);
Y = sim(net,[P1; P2],[Pi1; Pi2]);
Y1 = Y(1,:)
Y2 = Y(2,:)

Algorithms

newlind calculates weight W and bias B values for a linear layer from inputs P and targets T by solving this linear equation in the least squares sense:

\[
[W \ b] * [P; ones] = T
\]

See Also

sim

Introduced before R2006a
newpnn

Design probabilistic neural network

Syntax

net = newpnn(P,T,spread)

Description

Probabilistic neural networks (PNN) are a kind of radial basis network suitable for classification problems.

net = newpnn(P,T,spread) takes two or three arguments,

<table>
<thead>
<tr>
<th>P</th>
<th>R-by-Q matrix of Q input vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>S-by-Q matrix of Q target class vectors</td>
</tr>
<tr>
<td>spread</td>
<td>Spread of radial basis functions (default = 0.1)</td>
</tr>
</tbody>
</table>

and returns a new probabilistic neural network.

If spread is near zero, the network acts as a nearest neighbor classifier. As spread becomes larger, the designed network takes into account several nearby design vectors.

Examples

Here a classification problem is defined with a set of inputs P and class indices Tc.

P = [1 2 3 4 5 6 7];
Tc = [1 2 3 2 2 3 1];

The class indices are converted to target vectors, and a PNN is designed and tested.

T = ind2vec(Tc)
net = newpnn(P,T);
Y = sim(net,P)
Yc = vec2ind(Y)

Algorithms

newpnn creates a two-layer network. The first layer has radbas neurons, and calculates its weighted inputs with dist and its net input with netprod. The second layer has compet neurons, and calculates its weighted input with dotprod and its net inputs with netsum. Only the first layer has biases.

newpnn sets the first-layer weights to P', and the first-layer biases are all set to 0.8326/spread, resulting in radial basis functions that cross 0.5 at weighted inputs of +/- spread. The second-layer weights W2 are set to T.
References

See Also
ind2vec | newgrnn | newrb | newrbe | sim | vec2ind

Introduced before R2006a
newrb

Design radial basis network

Syntax

```matlab
net = newrb(P,T,goal,spread,MN,DF)
```

Description

Radial basis networks can be used to approximate functions. `newrb` adds neurons to the hidden layer of a radial basis network until it meets the specified mean squared error goal.

```matlab
net = newrb(P,T,goal,spread,MN,DF)
```
takes two of these arguments,

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>P</code></td>
<td>R-by-Q matrix of Q input vectors</td>
</tr>
<tr>
<td><code>T</code></td>
<td>S-by-Q matrix of Q target class vectors</td>
</tr>
<tr>
<td><code>goal</code></td>
<td>Mean squared error goal (default = 0.0)</td>
</tr>
<tr>
<td><code>spread</code></td>
<td>Spread of radial basis functions (default = 1.0)</td>
</tr>
<tr>
<td><code>MN</code></td>
<td>Maximum number of neurons (default is Q)</td>
</tr>
<tr>
<td><code>DF</code></td>
<td>Number of neurons to add between displays (default = 25)</td>
</tr>
</tbody>
</table>

and returns a new radial basis network.

The larger `spread` is, the smoother the function approximation. Too large a spread means a lot of neurons are required to fit a fast-changing function. Too small a spread means many neurons are required to fit a smooth function, and the network might not generalize well. Call `newrb` with different spreads to find the best value for a given problem.

Examples

Here you design a radial basis network, given inputs `P` and targets `T`.

```matlab
P = [1 2 3];
T = [2.0 4.1 5.9];
net = newrb(P,T);
```

The network is simulated for a new input.

```matlab
P = 1.5;
Y = sim(net,P)
```

Algorithms

`newrb` creates a two-layer network. The first layer has `radbas` neurons, and calculates its weighted inputs with `dist` and its net input with `netprod`. The second layer has `purelin` neurons, and calculates its weighted input with `dotprod` and its net inputs with `netsum`. Both layers have biases.
Initially the `radbas` layer has no neurons. The following steps are repeated until the network's mean squared error falls below `goal`.

1. The network is simulated.
2. The input vector with the greatest error is found.
3. A `radbas` neuron is added with weights equal to that vector.
4. The `purelin` layer weights are redesigned to minimize error.

See Also

newgrnn | newpnn | newrbe | sim

Introduced before R2006a
newrbe

Design exact radial basis network

Syntax

net = newrbe(P,T,spread)

Description

Radial basis networks can be used to approximate functions. **newrbe** very quickly designs a radial basis network with zero error on the design vectors.

net = newrbe(P,T,spread) takes two or three arguments,

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>RxQ matrix of Q R-element input vectors</td>
</tr>
<tr>
<td>T</td>
<td>SxQ matrix of Q S-element target class vectors</td>
</tr>
<tr>
<td>spread</td>
<td>Spread of radial basis functions (default = 1.0)</td>
</tr>
</tbody>
</table>

and returns a new exact radial basis network.

The larger the **spread** is, the smoother the function approximation will be. Too large a spread can cause numerical problems.

Examples

Here you design a radial basis network given inputs P and targets T.

```
P = [1 2 3];
T = [2.0 4.1 5.9];
net = newrbe(P,T);
```

The network is simulated for a new input.

```
P = 1.5;
Y = sim(net,P)
```

Algorithms

newrbe creates a two-layer network. The first layer has **radbas** neurons, and calculates its weighted inputs with **dist** and its net input with **netprod**. The second layer has **purelin** neurons, and calculates its weighted input with **dotprod** and its net inputs with **netsum**. Both layers have biases.

newrbe sets the first-layer weights to P', and the first-layer biases are all set to 0.8326/spread, resulting in radial basis functions that cross 0.5 at weighted inputs of +/- spread.

The second-layer weights **IW{2,1}** and biases **b{2}** are found by simulating the first-layer outputs **A{1}** and then solving the following linear expression:

```
[W{2,1} b{2}] * [A{1}; ones] = T
```
See Also
newgrnn | newpnn | newrb | sim

Introduced before R2006a
nftool

Neural Net Fitting tool

Syntax

`nftool`

Description

`nftool` opens the Neural Net Fitting GUI.

For more information and an example of its usage, see “Fit Data with a Shallow Neural Network”.

Algorithms

`nftool` leads you through solving a data fitting problem, solving it with a two-layer feed-forward network trained with Levenberg-Marquardt.

See Also

`nctool` | `npnntool` | `ntstool`

Introduced in R2006a
nnCell2Mat

Combine neural network cell data into matrix

Syntax

\[y, i, j \] nnCell2Mat(x)

Description

\[y, i, j \] nnCell2Mat(x) takes a cell array of matrices and returns,

<table>
<thead>
<tr>
<th>y</th>
<th>Cell array formed by concatenating matrices</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Array of row sizes</td>
</tr>
<tr>
<td>ji</td>
<td>Array of column sizes</td>
</tr>
</tbody>
</table>

The row and column sizes returned by `nnCell2Mat` can be used to convert the returned matrix back into a cell of matrices with `mat2cell`.

Examples

Here neural network data is converted to a matrix and back.

\[x = \{ \text{rands}(2,3) \ \text{rands}(2,3); \ \text{rands}(5,3) \ \text{rands}(5,3) \}; \]
\[[m, i, j] = \text{nnCell2Mat}(x) \]
\[c3 = \text{mat2cell}(m, i, j) \]

See Also

`nndata` | `nnSize`

Introduced in R2010b
nncorr

Cross correlation between neural network time series

Syntax

nncorr(a, b, maxlag, 'flag')

Description

nncorr(a, b, maxlag, 'flag') takes these arguments,

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Matrix or cell array, with columns interpreted as timesteps, and having a total number of matrix rows of N.</td>
</tr>
<tr>
<td>b</td>
<td>Matrix or cell array, with columns interpreted as timesteps, and having a total number of matrix rows of M.</td>
</tr>
<tr>
<td>maxlag</td>
<td>Maximum number of time lags</td>
</tr>
<tr>
<td>flag</td>
<td>Type of normalization (default = 'none')</td>
</tr>
</tbody>
</table>

and returns an N-by-M cell array where each {i,j} element is a 2*maxlag+1 length row vector formed from the correlations of a elements (i.e., matrix row) i and b elements (i.e., matrix column) j.

If a and b are specified with row vectors, the result is returned in matrix form.

The options for the normalization flag are:

- 'biased' — scales the raw cross-correlation by 1/N.
- 'unbiased' — scales the raw correlation by 1/(N-abs(k)), where k is the index into the result.
- 'coeff' — normalizes the sequence so that the correlations at zero lag are 1.0.
- 'none' — no scaling. This is the default.

Examples

Here the autocorrelation of a random 1-element, 1-sample, 20-timestep signal is calculated with a maximum lag of 10.

```matlab
a = ndata(1,1,20)
aa = nncorr(a,a,10)
```

Here the cross-correlation of the first signal with another random 2-element signal are found, with a maximum lag of 8.

```matlab
b = ndata(2,1,20)
ab = nncorr(a,b,8)
```

See Also

confusion | regression
Introduced in R2010b
nndata

Create neural network data

Syntax

nndata(N,Q,TS,v)

Description

nndata(N,Q,TS,v) takes these arguments,

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Vector of M element sizes</td>
</tr>
<tr>
<td>Q</td>
<td>Number of samples</td>
</tr>
<tr>
<td>TS</td>
<td>Number of timesteps</td>
</tr>
<tr>
<td>v</td>
<td>Scalar value</td>
</tr>
</tbody>
</table>

and returns an M-by-TS cell array where each row i has N(i)-by-Q sized matrices of value v. If v is not specified, random values are returned.

You can access subsets of neural network data with getelements, getsamples, gettimesteps, and getsignals.

You can set subsets of neural network data with setelements, setsamples, settimesteps, and setsignals.

You can concatenate subsets of neural network data with catelements, catsamples, cattimesteps, and catsignals.

Examples

Here four samples of five timesteps, for a 2-element signal consisting of zero values is created:

x = nndata(2,4,5,0)

To create random data with the same dimensions:

x = nndata(2,4,5)

Here static (1 timestep) data of 12 samples of 4 elements is created.

x = nndata(4,12)

See Also

fromnndata | nndata2sim | nnsize | sim2nndata | tonndata

Introduced in R2010b
nndata2gpu

Format neural data for efficient GPU training or simulation

Syntax

nndata2gpu(x)
[Y,Q,N,TS] = nndata2gpu(X)
nndata2gpu(X,PRECISION)

Description

nndata2gpu requires Parallel Computing Toolbox.

nndata2gpu(x) takes an N-by-Q matrix X of Q N-element column vectors, and returns it in a form for neural network training and simulation on the current GPU device.

The N-by-Q matrix becomes a QQ-by-N gpuArray where QQ is Q rounded up to the next multiple of 32. The extra rows (Q+1):QQ are filled with NaN values. The gpuArray has the same precision ('single' or 'double') as X.

[Y,Q,N,TS] = nndata2gpu(X) can also take an M-by-TS cell array of M signals over TS time steps. Each element of X{i,ts} should be an Ni-by-Q matrix of Q Ni-element vectors, representing the ith signal vector at time step ts, across all Q time series. In this case, the gpuArray Y returned is QQ-by-(sum(Ni)*TS). Dimensions Ni, Q, and TS are also returned so they can be used with gpu2nndata to perform the reverse formatting.

nndata2gpu(X,PRECISION) specifies the default precision of the gpuArray, which can be 'double' or 'single'.

Examples

Copy a matrix to the GPU and back:

x = rand(5,6)
[y,q] = nndata2gpu(x)
x2 = gpu2nndata(y,q)

Copy neural network cell array data, representing four time series, each consisting of five time steps of 2-element and 3-element signals:

x = nndata([2;3],4,5)
[y,q,n,ts] = nndata2gpu(x)
x2 = gpu2nndata(y,q,n,ts)

See Also

gpu2nndata

Introduced in R2012b
nnidata2sim

Convert neural network data to Simulink time series

Syntax

nnidata2sim(x,i,q)

Description

nnidata2sim(x,i,q) takes these arguments,

<table>
<thead>
<tr>
<th>x</th>
<th>Neural network data</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Index of signal (default = 1)</td>
</tr>
<tr>
<td>q</td>
<td>Index of sample (default = 1)</td>
</tr>
</tbody>
</table>

and returns time series q of signal i as a Simulink time series structure.

Examples

Here random neural network data is created with two signals having 4 and 3 elements respectively, over 10 timesteps. Three such series are created.

```matlab
x = nnidata([4;3],3,10);
```

Now the second signal of the first series is converted to Simulink form.

```matlab
y_2_1 = nnidata2sim(x,2,1)
```

See Also

nnidata | nnsize | sim2nnidata

Introduced in R2010b
nnsize

Number of neural data elements, samples, timesteps, and signals

Syntax

\[
[N,Q,TS,M] = \text{nnsize}(X)
\]

Description

\([N,Q,TS,M] = \text{nnsize}(X)\) takes neural network data \(x\) and returns,

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>Vector containing the number of element sizes for each of (M) signals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Q)</td>
<td>Number of samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(TS)</td>
<td>Number of timesteps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M)</td>
<td>Number of signals</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If \(X\) is a matrix, \(N\) is the number of rows of \(X\), \(Q\) is the number of columns, and both \(TS\) and \(M\) are 1.

If \(X\) is a cell array, \(N\) is an \(S\times1\) vector, where \(M\) is the number of rows in \(X\), and \(N(i)\) is the number of rows in \(X{i,1}\). \(Q\) is the number of columns in the matrices in \(X\).

Examples

This code gets the dimensions of matrix data:

\[
x = [1\ 2\ 3;\ 4\ 7\ 4]
\]

\[
[n,q,ts,s] = \text{nnsize}(x)
\]

This code gets the dimensions of cell array data:

\[
x = \{[1:3;\ 4:6]\ [7:9;\ 10:12]\ [13:15]\ [16:18]\}
\]

\[
[n,q,ts,s] = \text{nnsize}(x)
\]

See Also

nndata|numelements|numsamples|numsignals|numtimesteps

Introduced in R2010b
nnstart

Neural network getting started GUI

Syntax
nnstart

Description
nnstart opens a window with launch buttons for neural network fitting, pattern recognition, clustering and time series tools. It also provides links to lists of data sets, examples, and other useful information for getting started. See specific topics on “Get Started with Deep Learning Toolbox”.

See Also
nctool | nftool | npftool | ntstool

Introduced in R2010b
nntool

Open Network/Data Manager

Syntax

nntool

Description

nntool opens the Network/Data Manager window, which allows you to import, create, use, and export neural networks and data.

Note Although it is still available, nntool is no longer recommended. Instead, use nnstart, which provides graphical interfaces that allow you to design and deploy fitting, pattern recognition, clustering, and time-series neural networks.

See Also

nnstart

Introduced before R2006a
nntraintool

Neural network training tool

Syntax

nntraintool
nntraintool close
nntraintool('close')

Description

nntraintool opens the neural network training GUI.

This function can be called to make the training GUI visible before training has occurred, after training if the window has been closed, or just to bring the training GUI to the front.

Network training functions handle all activity within the training window.

To access additional useful plots, related to the current or last network trained, during or after training, click their respective buttons in the training window.

nntraintool close or nntraintool('close') closes the training window.

Introduced in R2008a
noloop

Remove neural network open- and closed-loop feedback

Syntax

net = noloop(net)

Description

net = noloop(net) takes a neural network and returns the network with open- and closed-loop feedback removed.

For outputs i, where net.outputs{i}.feedbackMode is 'open', the feedback mode is set to 'none', outputs{i}.feedbackInput is set to the empty matrix, and the associated network input is deleted.

For outputs i, where net.outputs{i}.feedbackMode is 'closed', the feedback mode is set to 'none'.

Examples

Here a NARX network is designed. The NARX network has a standard input and an open-loop feedback output to an associated feedback input.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi,Ai)

Now the network is converted to no loop form. The output and second input are no longer associated.

net = noloop(net);
view(net)
[Xs,Xi,Ai] = preparets(net,X,T);
Y = net(Xs,Xi,Ai)

See Also
closeloop | openloop

Introduced in R2010b
normc

Normalize columns of matrix

Syntax

normc(M)

Description

normc(M) normalizes the columns of M to a length of 1.

Examples

m = [1 2; 3 4];
normc(m)
ans =
0.3162 0.4472
0.9487 0.8944

See Also

normr

Introduced before R2006a
normprod

Normalized dot product weight function

Syntax

\[
Z = \text{normprod}(W,P,FP) \\
dim = \text{normprod}('size',S,R,FP) \\
dw = \text{normprod}('dz_dw',W,P,Z,FP)
\]

Description

\text{normprod} is a weight function. Weight functions apply weights to an input to get weighted inputs.

\[Z = \text{normprod}(W,P,FP)\] takes these inputs,

- \(W\): S-by-R weight matrix
- \(P\): R-by-Q matrix of Q input (column) vectors
- \(FP\): Row cell array of function parameters (optional, ignored)

and returns the S-by-Q matrix of normalized dot products.

\[dim = \text{normprod}('size',S,R,FP)\] takes the layer dimension \(S\), input dimension \(R\), and function parameters, and returns the weight size [S-by-R].

\[dw = \text{normprod}('dz_dw',W,P,Z,FP)\] returns the derivative of \(Z\) with respect to \(W\).

Examples

Here you define a random weight matrix \(W\) and input vector \(P\) and calculate the corresponding weighted input \(Z\).

\[
W = \text{rand}(4,3); \\
P = \text{rand}(3,1); \\
Z = \text{normprod}(W,P)
\]

Network Use

You can create a standard network that uses \text{normprod} by calling \text{newgrnn}.

To change a network so an input weight uses \text{normprod}, set \text{net.inputWeights\{i,j\}.weightFcn} to 'normprod'. For a layer weight, set \text{net.layerWeights\{i,j\}.weightFcn} to 'normprod'.

In either case, call \text{sim} to simulate the network with \text{normprod}. See \text{newgrnn} for simulation examples.

Algorithms

\text{normprod} returns the dot product normalized by the sum of the input vector elements.
\[z = w \cdot p / \text{sum}(p) \]

See Also

dotprod

Introduced before R2006a
normr

Normalize rows of matrix

Syntax

normr(M)

Description

normr(M) normalizes the rows of M to a length of 1.

Examples

m = [1 2; 3 4];
normr(m)
ans =
 0.4472 0.8944
 0.6000 0.8000

See Also

normc

Introduced before R2006a
nprtool

Neural Net Pattern Recognition tool

Syntax

nprtool

Description

nprtool opens the Neural Net Pattern Recognition tool.

For more information and an example of its usage, see “Classify Patterns with a Shallow Neural Network”.

Algorithms

nprtool leads you through solving a pattern-recognition classification problem using a two-layer feed-forward patternnet network with sigmoid output neurons.

See Also

nctool | nftool | ntstool

Introduced in R2008a
ntstool

Neural network time series tool

Syntax

```matlab
ntstool
ntstool('close')
```

Description

`ntstool` opens the neural network time series tool and leads you through solving a fitting problem using a two-layer feed-forward network.

For more information and an example of its usage, see “Shallow Neural Network Time-Series Prediction and Modeling”.

`ntstool('close')` closes the tool.

See Also

`nctool` | `nftool` | `nprtool`

Introduced in R2010b
Numeric two-point network derivative function

Syntax

num2deriv('dperf_dwb', net, X, T, Xi, Ai, EW)
num2deriv('de_dwb', net, X, T, Xi, Ai, EW)

Description

This function calculates derivatives using the two-point numeric derivative rule.

\[
\frac{dy}{dx} = \frac{y(x + dx) - y(x)}{dx}
\]

This function is much slower than the analytical (non-numerical) derivative functions, but is provided as a means of checking the analytical derivative functions. The other numerical function, num5deriv, is slower but more accurate.

num2deriv('dperf_dwb', net, X, T, Xi, Ai, EW) takes these arguments,

<table>
<thead>
<tr>
<th>net</th>
<th>Neural network</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)</td>
</tr>
<tr>
<td>T</td>
<td>Targets, an SxQ matrix (or MxTS cell array of SxQ matrices)</td>
</tr>
<tr>
<td>Xi</td>
<td>Initial input delay states (optional)</td>
</tr>
<tr>
<td>Ai</td>
<td>Initial layer delay states (optional)</td>
</tr>
<tr>
<td>EW</td>
<td>Error weights (optional)</td>
</tr>
</tbody>
</table>

and returns the gradient of performance with respect to the network’s weights and biases, where R and S are the number of input and output elements and Q is the number of samples (and N and M are the number of input and output signals, Ri and Si are the number of each input and outputs elements, and TS is the number of timesteps).

num2deriv('de_dwb', net, X, T, Xi, Ai, EW) returns the Jacobian of errors with respect to the network’s weights and biases.

Examples

Here a feedforward network is trained and both the gradient and Jacobian are calculated.

```matlab
[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
dwb = num2deriv('dperf_dwb',net,x,t)
```
See Also
bttderv|defaultderiv|fpderiv|num5deriv|staticderiv

Introduced in R2010b
num5deriv

Numeric five-point stencil neural network derivative function

Syntax

```matlab
num5deriv('dperf_dwb',net,X,T,Xi,Ai,EW)
num5deriv('de_dwb',net,X,T,Xi,Ai,EW)
```

Description

This function calculates derivatives using the five-point numeric derivative rule.

\[
y_1 = y(x + 2dx) \\
y_2 = y(x + dx) \\
y_3 = y(x - dx) \\
y_4 = y(x - 2dx) \\
\frac{dy}{dx} = \frac{-y_1 + 8y_2 - 8y_3 + y_4}{12dx}
\]

This function is much slower than the analytical (non-numerical) derivative functions, but is provided as a means of checking the analytical derivative functions. The other numerical function, `num2deriv`, is faster but less accurate.

`num5deriv('dperf_dwb',net,X,T,Xi,Ai,EW)` takes these arguments,

<table>
<thead>
<tr>
<th>net</th>
<th>Neural network</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)</td>
</tr>
<tr>
<td>T</td>
<td>Targets, an SxQ matrix (or MxTS cell array of SixQ matrices)</td>
</tr>
<tr>
<td>Xi</td>
<td>Initial input delay states (optional)</td>
</tr>
<tr>
<td>Ai</td>
<td>Initial layer delay states (optional)</td>
</tr>
<tr>
<td>EW</td>
<td>Error weights (optional)</td>
</tr>
</tbody>
</table>

and returns the gradient of performance with respect to the network’s weights and biases, where R and S are the number of input and output elements and Q is the number of samples (and N and M are the number of input and output signals, Ri and Si are the number of each input and outputs elements, and TS is the number of timesteps).

`num5deriv('de_dwb',net,X,T,Xi,Ai,EW)` returns the Jacobian of errors with respect to the network’s weights and biases.

Examples

Here a feedforward network is trained and both the gradient and Jacobian are calculated.

```matlab
[x,t] = simplefit_dataset;
net = feedforwardnet(20);
```
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
dwb = num5deriv('dperf_dwb',net,x,t)

See Also
bttderiv | defaultderiv | fpderiv | num2deriv | staticderiv

Introduced in R2010b
numelements

Number of elements in neural network data

Syntax

numelements(x)

Description

numelements(x) takes neural network data x in matrix or cell array form, and returns the number of elements in each signal.

If x is a matrix the result is the number of rows of x.

If x is a cell array the result is an S-by-1 vector, where S is the number of signals (i.e., rows of X), and each element S(i) is the number of elements in each signal i (i.e., rows of x{i,1}).

Examples

This code calculates the number of elements represented by matrix data:

```matlab
x = [1 2 3; 4 7 4]
n = numelements(x)
```

This code calculates the number of elements represented by cell data:

```matlab
x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
n = numelements(x)
```

See Also

catelements | getelements | nndata | nnscale | numsamples | numsignals | numtimesteps | setelements

Introduced in R2010b
numfinite

Number of finite values in neural network data

Syntax

```matlab
numfinite(x)
```

Description

`numfinite(x)` takes a matrix or cell array of matrices and returns the number of finite elements in it.

Examples

```matlab
x = [1 2; 3 NaN]
n = numfinite(x)
```

```matlab
x = {[1 2; 3 NaN] [5 NaN; NaN 8]}
n = numfinite(x)
```

See Also

`nndata` | `nnsize` | `numnan`

Introduced in R2010b

numnan

Number of NaN values in neural network data

Syntax

numnan(x)

Description

numnan(x) takes a matrix or cell array of matrices and returns the number of NaN elements in it.

Examples

x = [1 2; 3 NaN]
n = numnan(x)

x = {{[1 2; 3 NaN] [5 NaN; NaN 8]}}
n = numnan(x)

See Also

nndata | nnsizelnan

Introduced in R2010b
numsamples

Number of samples in neural network data

Syntax

numsamples(x)

Description

numsamples(x) takes neural network data x in matrix or cell array form, and returns the number of samples.

If x is a matrix, the result is the number of columns of x.
If x is a cell array, the result is the number of columns of the matrices in x.

Examples

This code calculates the number of samples represented by matrix data:

```matlab
x = [1 2 3; 4 7 4]  
n = numsamples(x)
```

This code calculates the number of samples represented by cell data:

```matlab
x = {
    [1:3; 4:7; 10:12];
    [13:15] [16:18]
}  
n = numsamples(x)
```

See Also

catsamples | getsamples | nndata | nnsizes | numelements | numsignals | numtimesteps | setsamples

Introduced in R2010b
numsignals

Number of signals in neural network data

Syntax

numsignals(x)

Description

numsignals(x) takes neural network data x in matrix or cell array form, and returns the number of signals.

If x is a matrix, the result is 1.

If x is a cell array, the result is the number of rows in x.

Examples

This code calculates the number of signals represented by matrix data:

```matlab
x = [1 2 3; 4 7 4];
n = numsignals(x)
```

This code calculates the number of signals represented by cell data:

```matlab
x = {{[1:3]; [4:6]} [7:9; 10:12]; {[13:15] [16:18]}};
n = numsignals(x)
```

See Also

catsignals | getsignals | nndata | nnsize | numelements | numsamples | numtimesteps | setsignals

Introduced in R2010b
numtimesteps

Number of time steps in neural network data

Syntax

numtimesteps(x)

Description

numtimesteps(x) takes neural network data x in matrix or cell array form, and returns the number of signals.

If x is a matrix, the result is 1.

If x is a cell array, the result is the number of columns in x.

Examples

This code calculates the number of time steps represented by matrix data:

\[
\begin{align*}
x &= \begin{bmatrix} 1 & 2 & 3 \\ 4 & 7 & 4 \end{bmatrix} \\
n &= \text{numtimesteps}(x)
\end{align*}
\]

This code calculates the number of time steps represented by cell data:

\[
\begin{align*}
n &= \text{numtimesteps}(x)
\end{align*}
\]

See Also

cattimesteps | gettimesteps | nndata | nnsite | numelements | numsamples | numsignals | settimesteps

Introduced in R2010b
openloop

Convert neural network closed-loop feedback to open loop

Syntax

net = openloop(net)
[net,xi,ai] = openloop(net,xi,ai)

Description

net = openloop(net) takes a neural network and opens any closed-loop feedback. For each feedback output i whose property net.outputs{i}.feedbackMode is 'closed', it replaces its associated feedback layer weights with a new input and input weight connections. The net.outputs{i}.feedbackMode property is set to 'open', and the net.outputs{i}.feedbackInput property is set to the index of the new input. Finally, the value of net.outputs{i}.feedbackDelays is subtracted from the delays of the feedback input weights (i.e., to the delays values of the replaced layer weights).

[net,xi,ai] = openloop(net,xi,ai) converts a closed-loop network and its current input delay states xi and layer delay states ai to open-loop form.

Examples

Convert NARX Network to Open-Loop Form

Here a NARX network is designed in open-loop form and then converted to closed-loop form, then converted back.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Yopen = net(Xs,Xi,Ai)
net = closeloop(net)
view(net)
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
Yclosed = net(Xs,Xi,Ai);
net = openloop(net)
view(net)
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
Yopen = net(Xs,Xi,Ai)

Convert Delay States

For examples on using closeloop and openloop to implement multistep prediction, see narxnet and narnet.

See Also
closeloop | narnet | narxnet | noloop
Introduced in R2010b
patternnet

Generate pattern recognition network

Syntax

net = patternnet(hiddenSizes,trainFcn,performFcn)

Description

net = patternnet(hiddenSizes,trainFcn,performFcn) returns a pattern recognition neural network with a hidden layer size of hiddenSizes, a training function, specified by trainFcn, and a performance function, specified by trainFcn.

Pattern recognition networks are feedforward networks that can be trained to classify inputs according to target classes. The target data for pattern recognition networks should consist of vectors of all zero values except for a 1 in element i, where i is the class they are to represent.

Examples

Construct and Train a Pattern Recognition Neural Network

This example shows how to design a pattern recognition network to classify iris flowers.

Load the training data.

[x,t] = iris_dataset;

Construct a pattern network with one hidden layer of size 10.

net = patternnet(10);

Train the network net using the training data.

net = train(net,x,t);

View the trained network.

view(net)

Estimate the targets using the trained network.

y = net(x);

Assess the performance of the trained network. The default performance function is mean squared error.

perf = perform(net,t,y)

perf = 0.0302

classes = vec2ind(y);
Input Arguments

hiddenSizes — Size of the hidden layers

10 (default) | row vector

Size of the hidden layers in the network, specified as a row vector. The length of the vector determines the number of hidden layers in the network.

Example: For example, you can specify a network with 3 hidden layers, where the first hidden layer size is 10, the second is 8, and the third is 5 as follows: [10, 8, 5]

The input and output sizes are set to zero. The software adjusts the sizes of these during training according to the training data.

Data Types: `single` | `double`

trainFcn — Training function name

'{trainscg}' (default) | '{trainbr}' | '{trainbfg}' | '{trainrp}' | '{trainlm}' |

Training function name, specified as one of the following.

<table>
<thead>
<tr>
<th>Training Function</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>'{trainlm}'</td>
<td>Levenberg-Marquardt</td>
</tr>
<tr>
<td>'{trainbr}'</td>
<td>Bayesian Regularization</td>
</tr>
<tr>
<td>'{trainbfg}'</td>
<td>BFGS Quasi-Newton</td>
</tr>
<tr>
<td>'{trainrp}'</td>
<td>Resilient Backpropagation</td>
</tr>
<tr>
<td>'{trainscg}'</td>
<td>Scaled Conjugate Gradient</td>
</tr>
<tr>
<td>'{traincgb}'</td>
<td>Conjugate Gradient with Powell/Beale Restarts</td>
</tr>
<tr>
<td>'{traincgf}'</td>
<td>Fletcher-Powell Conjugate Gradient</td>
</tr>
<tr>
<td>'{traincgp}'</td>
<td>Polak-Ribiére Conjugate Gradient</td>
</tr>
<tr>
<td>'{trainoss}'</td>
<td>One Step Secant</td>
</tr>
<tr>
<td>'{traindx}'</td>
<td>Variable Learning Rate Gradient Descent</td>
</tr>
<tr>
<td>'{traindm}'</td>
<td>Gradient Descent with Momentum</td>
</tr>
<tr>
<td>'{traind}'</td>
<td>Gradient Descent</td>
</tr>
</tbody>
</table>

Example: For example, you can specify the variable learning rate gradient descent algorithm as the training algorithm as follows: '{traindx}'

For more information on the training functions, see “Train and Apply Multilayer Shallow Neural Networks” and “Choose a Multilayer Neural Network Training Function”.

Data Types: `char`

performFcn — Performance function

character vector

Performance function. The default value is '{crossentropy}'.

This argument defines the function used to measure the network’s performance. The performance function is used to calculate network performance during training.
For a list of functions, in the MATLAB command window, type `help nnperformance`.

Output Arguments

`net — Pattern recognition network
network object`

Pattern recognition neural network, returned as a network object.

See Also

`competlayer` | `lvqnet` | `network` | `nprtool` | `selforgmap`

Topics

“Classify Patterns with a Shallow Neural Network”
“Neural Network Object Properties”
“Neural Network Subobject Properties”

Introduced in R2010b
perceptron

Perceptron

Syntax

\[
\text{perceptron(hardlimitTF,perceptronLF)}
\]

Description

Perceptrons are simple single-layer binary classifiers, which divide the input space with a linear decision boundary.

Perceptrons can learn to solve a narrow range of classification problems. They were one of the first neural networks to reliably solve a given class of problem, and their advantage is a simple learning rule.

\[
\text{perceptron(hardlimitTF,perceptronLF)}
\]

takes these arguments,

<table>
<thead>
<tr>
<th>hardlimitTF</th>
<th>Hard limit transfer function (default = 'hardlim')</th>
</tr>
</thead>
<tbody>
<tr>
<td>perceptronLF</td>
<td>Perceptron learning rule (default = 'learnp')</td>
</tr>
</tbody>
</table>

and returns a perceptron.

In addition to the default hard limit transfer function, perceptrons can be created with the hardlims transfer function. The other option for the perceptron learning rule is learnpn.

Note Deep Learning Toolbox supports perceptrons for historical interest. For better results, you should instead use patternnet, which can solve nonlinearly separable problems. Sometimes the term “perceptrons” refers to feed-forward pattern recognition networks; but the original perceptron, described here, can solve only simple problems.

Examples

Solve Simple Classification Problem Using Perceptron

Use a perceptron to solve a simple classification logical-OR problem.

\[
x = [0 \ 0 \ 1; \ 0 \ 1 \ 0];
t = [0 \ 1 \ 1];
\text{net} = \text{perceptron};
\text{net} = \text{train}\text{.}(\text{net},x,t);
\text{view}\text{.}(\text{net})
y = \text{net}\text{.}(x);
\]
See Also
narnet | narxnet | patternnet | preparets | removedelay | timedelaynet

Introduced in R2010b
perform

Calculate network performance

Syntax

perform(net,t,y,ew)

Description

perform(net,t,y,ew) takes these arguments,

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>net</td>
<td>Neural network</td>
</tr>
<tr>
<td>t</td>
<td>Target data</td>
</tr>
<tr>
<td>y</td>
<td>Output data</td>
</tr>
<tr>
<td>ew</td>
<td>Error weights (default = {1})</td>
</tr>
</tbody>
</table>

and returns network performance calculated according to the net.performFcn and net.performParam property values.

The target and output data must have the same dimensions. The error weights may be the same dimensions as the targets, in the most general case, but may also have any of its dimensions be 1. This gives the flexibility of defining error weights across any dimension desired.

Error weights can be defined by sample, output element, time step, or network output:

- $ew = [1.0 \ 0.5 \ 0.7 \ 0.2]$; % Across 4 samples
- $ew = [0.1; 0.5; 1.0]$; % Across 3 elements
- $ew = \{0.1 \ 0.2 \ 0.3 \ 0.5 \ 1.0\}$; % Across 5 timesteps
- $ew = \{1.0; 0.5\}$; % Across 2 outputs

The error weights can also be defined across any combination, such as across two time-series (i.e., two samples) over four timesteps.

- $ew = \{[0.5 \ 0.4],[0.3 \ 0.5],[1.0 \ 1.0],[0.7 \ 0.5]\}$;

In the general case, error weights may have exactly the same dimensions as targets, in which case each target value will have an associated error weight.

The default error weight treats all errors the same.

- $ew = \{1\}$

Examples

Here a simple fitting problem is solved with a feed-forward network and its performance calculated.

```matlab
[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y)
```
perf =
 2.3654e-06

See Also
configure | init | train

Introduced in R2010b
plotconfusion

Plot classification confusion matrix

Syntax

plotconfusion(targets,outputs)
plotconfusion(targets,outputs,name)
plotconfusion(targets1,outputs1,name1,targets2,outputs2,name2,...,targetsn,outputsn,namen)

Description

plotconfusion(targets,outputs) plots a confusion matrix for the true labels targets and predicted labels outputs. Specify the labels as categorical vectors, or in one-of-N (one-hot) form.

On the confusion matrix plot, the rows correspond to the predicted class (Output Class) and the columns correspond to the true class (Target Class). The diagonal cells correspond to observations that are correctly classified. The off-diagonal cells correspond to incorrectly classified observations. Both the number of observations and the percentage of the total number of observations are shown in each cell.

The column on the far right of the plot shows the percentages of all the examples predicted to belong to each class that are correctly and incorrectly classified. These metrics are often called the precision (or positive predictive value) and false discovery rate, respectively. The row at the bottom of the plot shows the percentages of all the examples belonging to each class that are correctly and incorrectly classified. These metrics are often called the recall (or true positive rate) and false negative rate, respectively. The cell in the bottom right of the plot shows the overall accuracy.

plotconfusion(targets,outputs,name) plots a confusion matrix and adds name to the beginning of the plot title.

plotconfusion(targets1,outputs1,name1,targets2,outputs2,name2,...,targetsn,outputsn,namen) plots multiple confusion matrices in one figure and adds the name arguments to the beginnings of the titles of the corresponding plots.

Examples

Plot Confusion Matrix Using Categorical Labels

Load the data consisting of synthetic images of handwritten digits. XTrain is a 28-by-28-by-1-by-5000 array of images and YTrain is a categorical vector containing the image labels.

[XTrain,YTrain] = digitTrain4DArrayData;
whos YTrain

Name Size Bytes Class Attributes
---------- ----------- -------- -------- -----------
YTrain 5000x1 6062 categorical

Define the architecture of a convolutional neural network.
layers = [
 imageInputLayer([28 28 1])
 convolution2dLayer(3,8,'Padding','same')
 batchNormalizationLayer
 reluLayer
 convolution2dLayer(3,16,'Padding','same','Stride',2)
 batchNormalizationLayer
 reluLayer
 convolution2dLayer(3,32,'Padding','same','Stride',2)
 batchNormalizationLayer
 reluLayer
 fullyConnectedLayer(10)
 softmaxLayer
 classificationLayer];

Specify training options and train the network.

options = trainingOptions('sgdm', ...
 'MaxEpochs',5, ...
 'Verbose',false, ...
 'Plots','training-progress');
net = trainNetwork(XTrain,YTrain,layers,options);

Load and classify test data using the trained network.

[XTest,YTest] = digitTest4DArrayData;
YPredicted = classify(net,XTest);

Plot the confusion matrix of the true test labels YTest and the predicted labels YPredicted.

plotconfusion(YTest,YPredicted)
The rows correspond to the predicted class (Output Class) and the columns correspond to the true class (Target Class). The diagonal cells correspond to observations that are correctly classified. The off-diagonal cells correspond to incorrectly classified observations. Both the number of observations and the percentage of the total number of observations are shown in each cell.

The column on the far right of the plot shows the percentages of all the examples predicted to belong to each class that are correctly and incorrectly classified. These metrics are often called the precision (or positive predictive value) and false discovery rate, respectively. The row at the bottom of the plot shows the percentages of all the examples belonging to each class that are correctly and incorrectly classified. These metrics are often called the recall (or true positive rate) and false negative rate, respectively. The cell in the bottom right of the plot shows the overall accuracy.

Close all figures.
Plot Confusion Matrix Using One-of-N Labels

Load sample data using the `cancer_dataset` function. `XTrain` is a 9-by-699 matrix defining nine attributes of 699 biopsies. `YTrain` is a 2-by-699 matrix where each column indicates the correct category of the corresponding observation. Each column of `YTrain` has one element that equals one in either the first or second row, corresponding to the cancer being benign or malignant, respectively. For more information on this dataset, type `help cancer_dataset` at the command line.

```matlab
rng default
[XTrain,YTrain] = cancer_dataset;
YTrain(:,1:10)
ans = 2×10
     1     1     1     0     1     1     0     0     0     1
     0     0     0     1     0     0     1     1     1     0
```

Create a pattern recognition network and train it using the sample data.

```matlab
net = patternnet(10);
net = train(net,XTrain,YTrain);
```

Estimate the cancer status using the trained network. Each column of the matrix `YPredicted` contains the predicted probabilities of each observation belonging to class 1 and class 2, respectively.

```matlab
YPredicted = net(XTrain);
YPredicted(:,1:10)
ans = 2×10
0.9980    0.9979    0.9894    0.0578    0.9614    0.9960    0.0026    0.0023    0.0084    0.9944
0.0020    0.0021    0.0106    0.9422    0.0386    0.0040    0.9974    0.9977    0.9916    0.0056
```

Plot the confusion matrix. To create the plot, `plotconfusion` labels each observation according to the highest class probability.

```matlab
plotconfusion(YTrain,YPredicted)
```
In this figure, the first two diagonal cells show the number and percentage of correct classifications by the trained network. For example, 446 biopsies are correctly classified as benign. This corresponds to 63.8% of all 699 biopsies. Similarly, 236 cases are correctly classified as malignant. This corresponds to 33.8% of all biopsies.

5 of the malignant biopsies are incorrectly classified as benign and this corresponds to 0.7% of all 699 biopsies in the data. Similarly, 12 of the benign biopsies are incorrectly classified as malignant and this corresponds to 1.7% of all data.

Out of 451 benign predictions, 98.9% are correct and 1.1% are wrong. Out of 248 malignant predictions, 95.2% are correct and 4.8% are wrong. Out of 458 benign cases, 97.4% are correctly predicted as benign and 2.6% are predicted as malignant. Out of 241 malignant cases, 97.9% are correctly classified as malignant and 2.1% are classified as benign.
Overall, 97.6% of the predictions are correct and 2.4% are wrong.

Input Arguments

targets — True class labels

categorical vector | matrix

True class labels, specified one of the following:

- A categorical vector, where each element is the class label of one observation. The `outputs` and `targets` arguments must have the same number of elements. If the categorical vectors define underlying classes, then `plotconfusion` displays all the underlying classes, even if there are no observations of some of the underlying classes. If the arguments are ordinal categorical vectors, then they must both define the same underlying categories, in the same order.
- An N-by-M matrix, where N is the number of classes and M is the number of observations. Each column of the matrix must be in one-of-N (one-hot) form, where a single element equal to 1 indicates the true label and all other elements equal 0.

outputs — Predicted class labels

categorical vector | matrix

Predicted class labels, specified one of the following:

- A categorical vector, where each element is the class label of one observation. The `outputs` and `targets` arguments must have the same number of elements. If the categorical vectors define underlying classes, then `plotconfusion` displays all the underlying classes, even if there are no observations of some of the underlying classes. If the arguments are ordinal categorical vectors, then they must both define the same underlying categories, in the same order.
- An N-by-M matrix, where N is the number of classes and M is the number of observations. Each column of the matrix can be in one-of-N (one-hot) form, where a single element equal to 1 indicates the predicted label, or in the form of probabilities that sum to one.

name — Name of the confusion matrix

category array

Name of the confusion matrix, specified as a character array. `plotconfusion` adds the specified `name` to the beginning of the plot title.

Data Types: char

See Also

`trainNetwork` | `trainingOptions`

Introduced in R2008a
plotep

Plot weight-bias position on error surface

Syntax

H = plotep(W,B,E)
H = plotep(W,B,E,H)

Description

plotep is used to show network learning on a plot created by plotes.

H = plotep(W,B,E) takes these arguments,

<table>
<thead>
<tr>
<th>W</th>
<th>Current weight value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Current bias value</td>
</tr>
<tr>
<td>E</td>
<td>Current error</td>
</tr>
</tbody>
</table>

and returns a cell array H, containing information for continuing the plot.

H = plotep(W,B,E,H) continues plotting using the cell array H returned by the last call to plotep.

H contains handles to dots plotted on the error surface, so they can be deleted next time; as well as points on the error contour, so they can be connected.

See Also

errsurf | plotes

Introduced before R2006a
ploterrcorr

Plot autocorrelation of error time series

Syntax

ploterrcorr(error)
ploterrcorr(errors, 'outputIndex', outIdx)

Description

ploterrcorr(error) takes an error time series and plots the autocorrelation of errors across varying lags.

ploterrcorr(errors, 'outputIndex', outIdx) uses the optional property name/value pair to define which output error autocorrelation is plotted. The default is 1.

Examples

Plot Autocorrelation of Errors

Here a NARX network is used to solve a time series problem.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
Y = net(Xs,Xi,Ai);
E = gsubtract(Ts,Y);
ploterrcorr(E)
See Also
plotinerrcorr | plotresponse

Introduced in R2010b
ploterrhist

Plot error histogram

Syntax

ploterrhist(e)
ploterrhist(e1,'name1',e2,'name2',...)
ploterrhist(...,'bins',bins)

Description

ploterrhist(e) plots a histogram of error values e.

ploterrhist(e1,'name1',e2,'name2',...) takes any number of errors and names and plots each pair.

ploterrhist(...,'bins',bins) takes an optional property name/value pair which defines the number of bins to use in the histogram plot. The default is 20.

Examples

Plot Histogram of Error Values

Here a feedforward network is used to solve a simple fitting problem:

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
e = t - y;
ploterrhist(e,'bins',30)
See Also
plotconfusion | ploterrcorr | plotinerrcorr

Introduced in R2010b
plotes

Plot error surface of single-input neuron

Syntax

`plotes(WV,BV,ES,V)`

Description

`plotes(WV,BV,ES,V)` takes these arguments,

<table>
<thead>
<tr>
<th>WV</th>
<th>1-by-N row vector of values of W</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV</td>
<td>1-by-M row vector of values of B</td>
</tr>
<tr>
<td>ES</td>
<td>M-by-N matrix of error vectors</td>
</tr>
<tr>
<td>V</td>
<td>View (default = [-37.5, 30])</td>
</tr>
</tbody>
</table>

and plots the error surface with a contour underneath.

Calculate the error surface ES with `errsurf`.

Examples

Plot Error Surface of Single-Input Neuron

```matlab
p = [3 2];
t = [0.4 0.8];
wv = -4:0.4:4;
bv = wv;
ES = errsurf(p,t,wv,bv,'logsig');
plotes(wv,bv,ES,[60 30])
```
See Also

errsurf

Introduced before R2006a
plotfit

Plot function fit

Syntax

plotfit(net,inputs,targets)
plotfit(net,inputs1,targets1,name1,inputs2,targets2,name2,...)
plotfit(...,'outputIndex',outputIndex)

Description

plotfit(net,inputs,targets) plots the output function of a network across the range of the inputs inputs and also plots target targets and output data points associated with values in inputs. Error bars show the difference between outputs and targets.

The plot appears only for networks with one input.

Only the first output/targets appear if the network has more than one output.

plotfit(net,inputs1,targets1,name1,inputs2,targets2,name2,...) plots multiple sets of data.

plotfit(...,'outputIndex',outputIndex) plots using an optional parameter that overrides the default index of the output element.

Examples

Plot Output and Target Values

This example shows how to use a feed-forward network to solve a simple fitting problem.

[x,t] = simplefit_dataset;
net = feedforwardnet(10);
net = train(net,x,t);
plotfit(net,x,t)
See Also
plottrainstate

Introduced in R2008a
plotinerrcorr

Plot input to error time-series cross-correlation

Syntax

plotinerrcorr(x,e)
plotinerrcorr(...,'inputIndex',inputIndex)
plotinerrcorr(...,'outputIndex',outputIndex)

Description

plotinerrcorr(x,e) takes an input time series x and an error time series e, and plots the cross-correlation of inputs to errors across varying lags.

plotinerrcorr(...,'inputIndex',inputIndex) optionally defines which input element is being correlated and plotted. The default is 1.

plotinerrcorr(...,'outputIndex',outputIndex) optionally defines which error element is being correlated and plotted. The default is 1.

Examples

Plot Cross-Correlation of Inputs to Errors

Here a NARX network is used to solve a time series problem.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
Y = net(Xs,Xi,Ai);
E = gsubtract(Ts,Y);
plotinerrcorr(Xs,E)
See Also
ploterrcorr | ploterrhist | plotresponse

Introduced in R2010b
plotpc

Plot classification line on perceptron vector plot

Syntax

```matlab
plotpc(W,B)
plotpc(W,B,H)
```

Description

`plotpc(W,B)` takes these inputs,

<table>
<thead>
<tr>
<th>W</th>
<th>S-by-R weight matrix (R must be 3 or less)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>S-by-1 bias vector</td>
</tr>
</tbody>
</table>

and returns a handle to a plotted classification line.

`plotpc(W,B,H)` takes an additional input,

| H | Handle to last plotted line |

and deletes the last line before plotting the new one.

This function does not change the current axis and is intended to be called after `plotpv`.

Examples

Plot Classification Line

The code below defines and plots the inputs and targets for a perceptron:

```matlab
p = [0 1 1; 0 1 0 1];
t = [0 0 0 1];
plotpv(p,t)
```

```matlab
plotpc(W,B,H)
```
The following code creates a perceptron, assigns values to its weights and biases, and plots the resulting classification line.

```matlab
net = perceptron;
net = configure(net,p,t);
net.iw{1,1} = [-1.2 -0.5];
net.b{1} = 1;
plotpc(net.iw{1,1},net.b{1})
```
See Also
plotpv

Introduced before R2006a
plotperform

Plot network performance

Syntax

plotperform(TR)

Description

plotperform(TR) plots error vs. epoch for the training, validation, and test performances of the training record TR returned by the function train.

Examples

Plot Validation Performance of Network

This example shows how to use plotperform to obtain a plot of training record error values against the number of training epochs.

```
[x,t] = bodyfat_dataset;
net = feedforwardnet(10);
[net,tr] = train(net,x,t);
plotperform(tr)
```
Generally, the error reduces after more epochs of training, but might start to increase on the validation data set as the network starts overfitting the training data. In the default setup, the training stops after six consecutive increases in validation error, and the best performance is taken from the epoch with the lowest validation error.

See Also
plottrainstate

Introduced in R2008a
plotpv

Plot perceptron input/target vectors

Syntax

plotpv(P,T)
plotpv(P,T,V)

Description

plotpv(P,T) takes these inputs,

<table>
<thead>
<tr>
<th>P</th>
<th>R-by-Q matrix of input vectors (R must be 3 or less)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>S-by-Q matrix of binary target vectors (S must be 3 or less)</td>
</tr>
</tbody>
</table>

and plots column vectors in P with markers based on T.

plotpv(P,T,V) takes an additional input,

| V | Graph limits = [x_min x_max y_min y_max] |

and plots the column vectors with limits set by V.

Examples

Plot Inputs and Targets for Perceptron

This example shows how to define and plot the inputs and targets for a perceptron.

```matlab
p = [0 0 1 1; 0 1 0 1];
t = [0 0 0 1];
plotpv(p,t)
```
Vectors to be Classified

See Also
plotpc

Introduced before R2006a
plotregression

Plot linear regression

Syntax

```
plotregression(targets,outputs)
plotregression(targs1,outs1,'name1',targs2,outs2,'name2',...)
```

Description

`plotregression(targets,outputs)` plots the linear regression of `targets` relative to `outputs`.

`plotregression(targs1,outs1,'name1',targs2,outs2,'name2',...)` generates multiple plots.

Examples

Plot Linear Regression

```
[x,t] = simplefit_dataset;
net = feedforwardnet(10);
net = train(net,x,t);
y = net(x);
y = net(x);
plotregression(t,y,'Regression')
```
See Also
plottrainstate

Introduced in R2008a
plotresponse

Plot dynamic network time series response

Syntax

plotresponse(t,y)
plotresponse(t1,'name',t2,'name2',...,y)
plotresponse(...,'outputIndex',outputIndex)

Description

plotresponse(t,y) takes a target time series t and an output time series y, and plots them on the same axis showing the errors between them.

plotresponse(t1,'name',t2,'name2',...,y) takes multiple target/name pairs, typically defining training, validation and testing targets, and the output. It plots the responses with colors indicating the different target sets.

plotresponse(...,'outputIndex',outputIndex) optionally defines which error element is being correlated and plotted. The default is 1.

Examples

Plot Target and Output Time Series Data

This example shows how to use a NARX network to solve a time series problem.

[X,T] = simplesnarx_dataset;
net = narxnet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
Y = net(Xs,Xi,Ai);
plotresponse(Ts,Y)
See Also

ploterrcorr | ploterrhist | plotinerrcorr

Introduced in R2010b
plotroc

Plot receiver operating characteristic

Syntax

plotroc(targets,outputs)

plotroc(targets1,outputs2,'name1',...)

Description

plotroc(targets,outputs) plots the receiver operating characteristic for each output class. The more each curve hugs the left and top edges of the plot, the better the classification.

plotroc(targets1,outputs2,'name1',...) generates multiple plots.

Examples

Plot Receiver Operating Characteristic

load simplecluster_dataset
net = patternnet(20);
net = train(net,simpleclusterInputs,simpleClusterTargets);
simpleclusterOutputs = sim(net,simpleclusterInputs);
plotroc(simpleclusterTargets,simpleclusterOutputs)
See Also

roc

Introduced in R2008a
plotsom

Plot self-organizing map

Syntax

plotsom(pos)
plotsom(W,D,ND)

Description

plotsom(pos) takes one argument,

| POS | N-by-S matrix of S N-dimension neural positions |

and plots the neuron positions with red dots, linking the neurons within a Euclidean distance of 1.

plotsom(W,D,ND) takes three arguments,

W	S-by-R weight matrix
D	S-by-S distance matrix
ND	Neighborhood distance (default = 1)

and plots the neuron’s weight vectors with connections between weight vectors whose neurons are within a distance of 1.

Examples

Plot Self-Organizing Maps

These examples generate plots of various layer topologies.

```matlab
pos = hextop([5 6]);
plotsom(pos)
```
pos = gridtop([4 5]);
plotsom(pos)
pos = randtop([18 12]);
plotsom(pos)
pos = gridtop([4 5 2]);
plotsom(pos)
pos = hextop([4 4 3]);
plotsom(pos)
See plotsompos for an example of plotting a layer’s weight vectors with the input vectors they map.

See Also

learnsom

Introduced before R2006a
plotsomhits

Plot self-organizing map sample hits

Syntax

plotsomhits(net,inputs)

Description

plotsomhits(net,inputs) plots a SOM layer, with each neuron showing the number of input vectors that it classifies. The relative number of vectors for each neuron is shown via the size of a colored patch.

This plot supports SOM networks with hextop and gridtop topologies, but not tritop or randtop.

Examples

Plot SOM Sample Hits

x = iris_dataset;
net = selforgmap([5 5]);
net = train(net,x);
plotsomhits(net,x)
See Also
plotsomplanes

Introduced in R2008a
plotsomnc

Plot self-organizing map neighbor connections

Syntax

`plotsomnc(net)`

Description

`plotsomnc(net)` plots a SOM layer showing neurons as gray-blue patches and their direct neighbor relations with red lines.

This plot supports SOM networks with `hextop` and `gridtop` topologies, but not `tritop` or `randtop`.

Examples

Plot SOM Neighbor Connections

```matlab
x = iris_dataset;
net = selforgmap([8 8]);
net = train(net,x);
plotsomnc(net)
```

![SOM Neighbor Connections](image)
See Also
plotsomhits | plotsomnd | plotsomplanes

Introduced in R2008a
plotsomnd
Plot self-organizing map neighbor distances

Syntax
plotsomnd(net)

Description
plotsomnd(net) plots a SOM layer showing neurons as gray-blue patches and their direct neighbor relations with red lines. The neighbor patches are colored from black to yellow to show how close each neuron’s weight vector is to its neighbors.

This plot supports SOM networks with hextop and gridtop topologies, but not tritop or randtop.

Examples
Plot SOM Neighbor Distances

x = iris_dataset;
net = selforgmap([5 5]);
net = train(net,x);
plotsomnd(net)
See Also
plotsomhits | plotsomnc | plotsomplanes

Introduced in R2008a
plotsomplanes

Plot self-organizing map weight planes

Syntax

```
plotsomplanes(net)
```

Description

`plotsomplanes(net)` generates a set of subplots. Each ith subplot shows the weights from the ith input to the layer's neurons, with the most negative connections shown as black, zero connections as red, and the strongest positive connections as yellow.

The plot is only shown for layers organized in one or two dimensions.

This plot supports SOM networks with hextop and gridtop topologies, but not tritop or randtop.

This function can also be called with standardized plotting function arguments used by the function `train`.

Examples

Plot SOM Weight Planes

```matlab
x = iris_dataset;
net = selforgmap([5 5]);
net = train(net,x);
plotsomplanes(net)
```
See Also
plotsomhits | plotsomnc | plotsomnd

Introduced in R2008a
plotsompos

Plot self-organizing map weight positions

Syntax

`plotsompos(net)`
`plotsompos(net,inputs)`

Description

`plotsompos(net)` plots the input vectors as green dots and shows how the SOM classifies the input space by showing blue-gray dots for each neuron’s weight vector and connecting neighboring neurons with red lines.

`plotsompos(net,inputs)` plots the input data alongside the weights.

Examples

Plot SOM Weight Positions

```matlab
x = iris_dataset;
net = selforgmap([10 10]);
net = train(net,x);
net = train(net,x);
plotsompos(net,x)
```
See Also
plotsomhits | plotsomnd | plotsomplanes

Introduced in R2008a
plotsomtop

Plot self-organizing map topology

Syntax

plotsomtop(net)

Description

plotsomtop(net) plots the topology of a SOM layer.

This plot supports SOM networks with hextop and gridtop topologies, but not tritop or randtop.

Examples

Plot SOM Topology

x = iris_dataset;
net = selforgmap([8 8]);
plotsomtop(net)
See Also
plotsomhits | plotsomnd | plotsomplanes

Introduced in R2008a
plottrainstate

Plot training state values

Syntax

plottrainstate(tr)

Description

plottrainstate(tr) plots the training state from a training record tr returned by train.

Examples

Plot Training State Values

This example shows how to plot training state values using plottrainstate.

[x, t] = bodyfat_dataset;
net = feedforwardnet(10);
[net, tr] = train(net, x, t);
plottrainstate(tr)
See Also
plotfit | plotperform | plotregression

Introduced in R2008a
plotv
Plot vectors as lines from origin

Syntax

plotv(M,T)

Description

plotv(M,T) takes a matrix of column vectors, M, and the line plotting type, T, and plots the column vectors of M.

Examples

Plot Vectors Using the plotv Function

This example shows how to plot three 2-element vectors.

M = [-0.4 0.7 0.2 ;
 -0.5 0.1 0.5];
plotv(M,'-')
Input Arguments

M — Matrix to plot

matrix

Matrix of column vectors to plot, specified as a \(R \)-by-\(Q \) matrix of \(Q \) column vectors with \(R \) elements. \(R \) must be 2 or greater. If \(R \) is greater than 2, this function only uses the first two rows of \(M \) for the plot.

T — Line plotting type

character vector | string

Line style, marker, and color, specified as a character vector or string containing symbols. The symbols can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the nodes and no edges between them.

Example: ' -o ' is a red dashed line with circle markers.

<table>
<thead>
<tr>
<th>Line Style</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Solid line (default)</td>
</tr>
<tr>
<td>--</td>
<td>Dashed line</td>
</tr>
<tr>
<td>:</td>
<td>Dotted line</td>
</tr>
<tr>
<td>- .</td>
<td>Dash-dot line</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marker</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>o</td>
<td>Circle</td>
</tr>
<tr>
<td>+</td>
<td>Plus sign</td>
</tr>
<tr>
<td>*</td>
<td>Asterisk</td>
</tr>
<tr>
<td>.</td>
<td>Point</td>
</tr>
<tr>
<td>x</td>
<td>Cross</td>
</tr>
<tr>
<td>s</td>
<td>Square</td>
</tr>
<tr>
<td>d</td>
<td>Diamond</td>
</tr>
<tr>
<td>^</td>
<td>Upward-pointing triangle</td>
</tr>
<tr>
<td>v</td>
<td>Downward-pointing triangle</td>
</tr>
<tr>
<td>></td>
<td>Right-pointing triangle</td>
</tr>
<tr>
<td><</td>
<td>Left-pointing triangle</td>
</tr>
<tr>
<td>p</td>
<td>Pentagram</td>
</tr>
<tr>
<td>h</td>
<td>Hexagram</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>Yellow</td>
</tr>
<tr>
<td>m</td>
<td>Magenta</td>
</tr>
<tr>
<td>Color</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>c</td>
<td>Cyan</td>
</tr>
<tr>
<td>r</td>
<td>Red</td>
</tr>
<tr>
<td>g</td>
<td>Green</td>
</tr>
<tr>
<td>b</td>
<td>Blue</td>
</tr>
<tr>
<td>w</td>
<td>White</td>
</tr>
<tr>
<td>k</td>
<td>Black</td>
</tr>
</tbody>
</table>

See Also

plotfit | plotvec

Introduced before R2006a
plotvec

Plot vectors with different colors

Syntax

`plotvec(X,C,M)`

Description

`plotvec(X,C,M)` takes these inputs,

<table>
<thead>
<tr>
<th>X</th>
<th>Matrix of (column) vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Row vector of color coordinates</td>
</tr>
<tr>
<td>M</td>
<td>Marker (default = '+')</td>
</tr>
</tbody>
</table>

and plots each ith vector in X with a marker M, using the ith value in C as the color coordinate.

`plotvec(X)` only takes a matrix X and plots each ith vector in X with marker '+' using the index i as the color coordinate.

Examples

Plot Vectors with Different Colors

This example shows how to plot four 2-element vectors.

```plaintext
x = [ 0 1 0.5 0.7 ; ... 
     -1 2 0.5 0.1];
c = [1 2 3 4];
plotvec(x,c)
```
Introduced before R2006a
plotwb

Plot Hinton diagram of weight and bias values

Syntax

```matlab
plotwb(net)
plotwb(IW,LW,B)
plotwb(...,'toLayers',toLayers)
plotwb(...,'fromInputs',fromInputs)
plotwb(...,'fromLayers',fromLayers)
plotwb(...,'root',root)
```

Description

`plotwb(net)` takes a neural network and plots all its weights and biases.

`plotwb(IW,LW,B)` takes a neural networks input weights, layer weights and biases and plots them.

`plotwb(...,'toLayers',toLayers)` optionally defines which destination layers whose input weights, layer weights and biases will be plotted.

`plotwb(...,'fromInputs',fromInputs)` optionally defines which inputs will have their weights plotted.

`plotwb(...,'fromLayers',fromLayers)` optionally defines which layers will have weights coming from them plotted.

`plotwb(...,'root',root)` optionally defines the root used to scale the weight/bias patch sizes. The default is 2, which makes the 2-dimensional patch sizes scale directly with absolute weight and bias sizes. Larger values of root magnify the relative patch sizes of smaller weights and biases, making differences in smaller values easier to see.

Examples

Plot Weights and Biases

Here a cascade-forward network is configured for particular data and its weights and biases are plotted in several ways.

```matlab
[x,t] = simplefit_dataset;
net = cascadeforwardnet([15 5]);
net = configure(net,x,t);
plotwb(net)
```
plotwb(net,'root',3)
plotwb(net,'root',4)
plotwb(net,'toLayers',2)
plotwb(net,'fromLayers',1)
plotwb(net,'toLayers',2,'fromInputs',1)
See Also
plotsomplanes

Introduced in R2010b
pnormc

Pseudonormalize columns of matrix

Syntax

```matlab
pnormc(X,R)
```

Description

`pnormc(X,R)` takes these arguments,

<table>
<thead>
<tr>
<th>X</th>
<th>M-by-N matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>(Optional) radius to normalize columns to (default = 1)</td>
</tr>
</tbody>
</table>

and returns `X` with an additional row of elements, which results in new column vector lengths of `R`.

Caution For this function to work properly, the columns of `X` must originally have vector lengths less than `R`.

Examples

```matlab
x = [0.1 0.6; 0.3 0.1];
y = pnormc(x)
```

See Also

`normc` | `normr`

Introduced before R2006a
poslin

Positive linear transfer function

Graph and Symbol

![Graph of poslin transfer function]

\[a = \text{poslin}(n) \]

Positive Linear Transfer Function

Syntax

\[
A = \text{poslin}(N,FP) \\
\text{info} = \text{poslin}('code')
\]

Description

poslin is a neural transfer function. Transfer functions calculate a layer's output from its net input.

\[
A = \text{poslin}(N,FP) \text{ takes } N \text{ and optional function parameters,}
\]

<table>
<thead>
<tr>
<th>N</th>
<th>S-by-Q matrix of net input (column) vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP</td>
<td>Struct of function parameters (ignored)</td>
</tr>
</tbody>
</table>

and returns \(A \), the \(S \)-by-\(Q \) matrix of \(N \)'s elements clipped to \([0, \text{inf}]\).

\[
\text{info} = \text{poslin}('code') \text{ returns information about this function. The following codes are supported:}
\]

- poslin('name') returns the name of this function.
- poslin('output',FP) returns the \([\text{min} \ \text{max}]\) output range.
- poslin('active',FP) returns the \([\text{min} \ \text{max}]\) active range.
- poslin('fullderiv') returns 1 or 0, depending on whether \(\frac{\text{d}A}{\text{d}N} \) is \(S \)-by-\(S \)-by-\(Q \) or \(S \)-by-\(Q \).
- poslin('fpnames') returns the names of the function parameters.
- poslin('fpdefaults') returns the default function parameters.

Examples

Here is the code to create a plot of the poslin transfer function.

poslin
n = -5:0.1:5;
a = poslin(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'poslin';

Network Use

To change a network so that a layer uses poslin, set net.layers{i}.transferFcn to 'poslin'.

Call sim to simulate the network with poslin.

Algorithms

The transfer function poslin returns the output n if n is greater than or equal to zero and 0 if n is less than or equal to zero.

\[
\text{poslin}(n) = \begin{cases}
 n, & \text{if } n \geq 0 \\
 0, & \text{if } n \leq 0
\end{cases}
\]

See Also

purelin | satlin | satlins | sim

Introduced before R2006a
preparets

Prepare input and target time series data for network simulation or training

Syntax

\[[Xs, Xi, Ai, Ts, EWs, shift] = preparets(net, Xnf, Tnf, Tf, EW) \]

Description

This function simplifies the normally complex and error prone task of reformatting input and target time series. It automatically shifts input and target time series as many steps as are needed to fill the initial input and layer delay states. If the network has open-loop feedback, then it copies feedback targets into the inputs as needed to define the open-loop inputs.

Each time a new network is designed, with different numbers of delays or feedback settings, preparets can reformat input and target data accordingly. Also, each time a network is transformed with `openloop`, `closeloop`, `removedelay` or `adddelay`, this function can reformat the data accordingly.

\[[Xs, Xi, Ai, Ts, EWs, shift] = preparets(net, Xnf, Tnf, Tf, EW) \] takes these arguments,

<table>
<thead>
<tr>
<th>net</th>
<th>Neural network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xnf</td>
<td>Non-feedback inputs</td>
</tr>
<tr>
<td>Tnf</td>
<td>Non-feedback targets</td>
</tr>
<tr>
<td>Tf</td>
<td>Feedback targets</td>
</tr>
<tr>
<td>EW</td>
<td>Error weights (default = {1})</td>
</tr>
</tbody>
</table>

and returns,

<table>
<thead>
<tr>
<th>Xs</th>
<th>Shifted inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xi</td>
<td>Initial input delay states</td>
</tr>
<tr>
<td>Ai</td>
<td>Initial layer delay states</td>
</tr>
<tr>
<td>Ts</td>
<td>Shifted targets</td>
</tr>
<tr>
<td>EWs</td>
<td>Shifted error weights</td>
</tr>
<tr>
<td>shift</td>
<td>The number of timesteps truncated from the front of X and T in order to properly fill Xi and Ai.</td>
</tr>
</tbody>
</table>

Examples

Prepare Data for Open- and Closed-Loop Networks

Here a time-delay network with 20 hidden neurons is created, trained and simulated.

\[[X, T] = simpleseries_dataset; \]
\[net = timedelaynet(1:2, 20); \]
\[[Xs, Xi, Ai, Ts] = preparets(net, X, T); \]
Here a NARX network is designed. The NARX network has a standard input and an open-loop feedback output to an associated feedback input.

```matlab
[X,T] = simplenarx_dataset;
net = narxnet(1:2, 1:2, 20);
[Xs,Xi,Ai,Ts] = preparets(net, X, {}, T);
net = train(net, Xs, Ts, Xi, Ai);
view(net)
y = net(Xs, Xi, Ai);
```

Now the network is converted to closed loop, and the data is reformatted to simulate the network’s closed-loop response.

```matlab
net = closeloop(net);
view(net)
[Xs,Xi,Ai] = preparets(net, X, {}, T);
y = net(Xs, Xi, Ai);
```
See Also
adddelay | closeloop | narnet | narxnet | openloop | removedelay | timedelaynet

Introduced in R2010b
processpca

Process columns of matrix with principal component analysis

Syntax

[Y,PS] = processpca(X,maxfrac)
[Y,PS] = processpca(X,FP)
Y = processpca('apply',X,PS)
X = processpca('reverse',Y,PS)
name = processpca('name')
fp = processpca('pdefaults')
names = processpca('pdesc')
processpca('pcheck',fp);

Description

processpca processes matrices using principal component analysis so that each row is uncorrelated, the rows are in the order of the amount they contribute to total variation, and rows whose contribution to total variation are less than maxfrac are removed.

\[Y,PS\] = processpca(X,maxfrac) takes \(X\) and an optional parameter,

<table>
<thead>
<tr>
<th>X</th>
<th>N-by-Q matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>maxfrac</td>
<td>Maximum fraction of variance for removed rows (default is 0)</td>
</tr>
</tbody>
</table>

and returns

<table>
<thead>
<tr>
<th>Y</th>
<th>M-by-Q matrix with (N - M) rows deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS</td>
<td>Process settings that allow consistent processing of values</td>
</tr>
</tbody>
</table>

\[Y,PS\] = processpca(X,FP) takes parameters as a struct: FP.maxfrac.

\(Y = \text{processpca('apply',X,PS)}\) returns \(Y\), given \(X\) and settings \(PS\).

\(X = \text{processpca('reverse',Y,PS)}\) returns \(X\), given \(Y\) and settings \(PS\).

name = processpca('name') returns the name of this process method.

fp = processpca('pdefaults') returns default process parameter structure.

names = processpca('pdesc') returns the process parameter descriptions.

processpca('pcheck',fp); throws an error if any parameter is illegal.

Examples

Here is how to format a matrix with an independent row, a correlated row, and a completely redundant row so that its rows are uncorrelated and the redundant row is dropped.
x1_independent = rand(1,5)
x1_correlated = rand(1,5) + x1_independent;
x1_redundant = x1_independent + x1_correlated
x1 = [x1_independent; x1_correlated; x1_redundant]
[y1,ps] = processpca(x1)

Next, apply the same processing settings to new values.

x2_independent = rand(1,5)
x2_correlated = rand(1,5) + x1_independent;
x2_redundant = x1_independent + x1_correlated
x2 = [x2_independent; x2_correlated; x2_redundant];
y2 = processpca('apply',x2,ps)

Reverse the processing of y1 to get x1 again.

x1_again = processpca('reverse',y1,ps)

More About

Reduce Input Dimensionality Using processpca

In some situations, the dimension of the input vector is large, but the components of the vectors are highly correlated (redundant). It is useful in this situation to reduce the dimension of the input vectors. An effective procedure for performing this operation is principal component analysis. This technique has three effects: it orthogonalizes the components of the input vectors (so that they are uncorrelated with each other), it orders the resulting orthogonal components (principal components) so that those with the largest variation come first, and it eliminates those components that contribute the least to the variation in the data set. The following code illustrates the use of processpca, which performs a principal-component analysis using the processing setting maxfrac of 0.02.

[pn,ps1] = mapstd(p);
[ptrans,ps2] = processpca(pn,0.02);

The input vectors are first normalized, using mapstd, so that they have zero mean and unity variance. This is a standard procedure when using principal components. In this example, the second argument passed to processpca is 0.02. This means that processpca eliminates those principal components that contribute less than 2% to the total variation in the data set. The matrix ptrans contains the transformed input vectors. The settings structure ps2 contains the principal component transformation matrix. After the network has been trained, these settings should be used to transform any future inputs that are applied to the network. It effectively becomes a part of the network, just like the network weights and biases. If you multiply the normalized input vectors pn by the transformation matrix transMat, you obtain the transformed input vectors ptrans.

If processpca is used to preprocess the training set data, then whenever the trained network is used with new inputs, you should preprocess them with the transformation matrix that was computed for the training set, using ps2. The following code applies a new set of inputs to a network already trained.

pnewn = mapstd('apply',pnew,ps1);
pnewtrans = processpca('apply',pnewn,ps2);
a = sim(net,pnewtrans);

Principal component analysis is not reliably reversible. Therefore it is only recommended for input processing. Outputs require reversible processing functions.
Principal component analysis is not part of the default processing for `feedforwardnet`. You can add this with the following command:

```matlab
net.inputs{1}.processFcns{end+1} = 'processpca';
```

Algorithms

Values in rows whose elements are not all the same value are set to

```matlab
y = 2*(x-minx)/(maxx-minx) - 1;
```

Values in rows with all the same value are set to 0.

See Also

`fixunknowns` | `mapminmax` | `mapstd`

Introduced in R2006a
prune

Delete neural inputs, layers, and outputs with sizes of zero

Syntax

[net,pi,pl,po] = prune(net)

Description

This function removes zero-sized inputs, layers, and outputs from a network. This leaves a network which may have fewer inputs and outputs, but which implements the same operations, as zero-sized inputs and outputs do not convey any information.

One use for this simplification is to prepare a network with zero sized subobjects for Simulink, where zero sized signals are not supported.

The companion function **prunedata** can prune data to remain consistent with the transformed network.

[net,pi,pl,po] = prune(net) takes a neural network and returns

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>net</td>
<td>The same network with zero-sized subobjects removed</td>
</tr>
<tr>
<td>pi</td>
<td>Indices of pruned inputs</td>
</tr>
<tr>
<td>pl</td>
<td>Indices of pruned layers</td>
</tr>
<tr>
<td>po</td>
<td>Indices of pruned outputs</td>
</tr>
</tbody>
</table>

Examples

Here a NARX dynamic network is created which has one external input and a second input which feeds back from the output.

```matlab
net = narxnet(20);
view(net)
```

The network is then trained on a single random time-series problem with 50 timesteps. The external input happens to have no elements.

```matlab
X = nndata(0,1,50);
T = nndata(1,1,50);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts);
```

The network and data are then pruned before generating a Simulink diagram and initializing its input and layer states.

```
[net2,pi,pl,po] = prune(net);
view(net);
[Xs2,Xi2,Ai2,Ts2] = prunedata(net,pi,pl,po,Xs,Xi,Ai,Ts)
[sysName,netName] = gensim(net);
setsiminit(sysName,netName,Xi2,Ai2)
```
See Also
gensim | prunedata

Introduced in R2010b
prunedata

Prune data for consistency with pruned network

Syntax

\[
[X_p,X_{ip},A_{ip},T_p] = \text{prunedata}(pi,pl,po,X,Xi,Ai,T)
\]

Description

This function prunes data to be consistent with a network whose zero-sized inputs, layers, and outputs have been removed with `prune`.

One use for this simplification is to prepare a network with zero-sized subobjects for Simulink, where zero-sized signals are not supported.

\[[X_p,X_{ip},A_{ip},T_p] = \text{prunedata}(pi,pl,po,X,Xi,Ai,T) \]

takes these arguments,

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pi</td>
<td>Indices of pruned inputs</td>
</tr>
<tr>
<td>pl</td>
<td>Indices of pruned layers</td>
</tr>
<tr>
<td>po</td>
<td>Indices of pruned outputs</td>
</tr>
<tr>
<td>X</td>
<td>Input data</td>
</tr>
<tr>
<td>Xi</td>
<td>Initial input delay states</td>
</tr>
<tr>
<td>Ai</td>
<td>Initial layer delay states</td>
</tr>
<tr>
<td>T</td>
<td>Target data</td>
</tr>
</tbody>
</table>

and returns the pruned inputs, input and layer delay states, and targets.

Examples

Here a NARX dynamic network is created which has one external input and a second input which feeds back from the output.

```matlab
net = narxnet(20);
view(net)
```

The network is then trained on a single random time-series problem with 50 timesteps. The external input happens to have no elements.

```matlab
X = nndata(0,1,50);
T = nndata(1,1,50);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts);
```

The network and data are then pruned before generating a Simulink diagram and initializing its input and layer states.

```matlab
[net2,pi,pl,po] = prune(net);
view(net)
```
[Xs2,Xi2,Ai2,Ts2] = prunedata(net,pi,pl,po,Xs,Xi,Ai,Ts)
[sysName,netName] = gensim(net);
setsiminit(sysName,netName,Xi2,Ai2)

See Also
gensim | prune

Introduced in R2010b
purelin
Linear transfer function

Graph and Symbol

\[a = \text{purelin}(n) \]

Linear Transfer Function

Syntax

\[
\begin{align*}
A &= \text{purelin}(N,FP) \\
\text{info} &= \text{purelin('code')} \\
\end{align*}
\]

Description

purelin is a neural transfer function. Transfer functions calculate a layer’s output from its net input.

\[A = \text{purelin}(N,FP) \] takes \(N \) and optional function parameters,

<table>
<thead>
<tr>
<th>(N)</th>
<th>S-by-Q matrix of net input (column) vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>(FP)</td>
<td>Struct of function parameters (ignored)</td>
</tr>
</tbody>
</table>

and returns \(A \), an S-by-Q matrix equal to \(N \).

\[
\text{info} = \text{purelin('code')} \]
returns useful information for each supported code character vector:

purelin('name') returns the name of this function.
purelin('output',FP) returns the \([\text{min} \ \text{max}]\) output range.
purelin('active',FP) returns the \([\text{min} \ \text{max}]\) active input range.
purelin('fullderiv') returns 1 or 0, depending on whether \(dA/dN \) is S-by-S-by-Q or S-by-Q.
purelin('fpnames') returns the names of the function parameters.
purelin('fpdefaults') returns the default function parameters.

Examples

Here is the code to create a plot of the purelin transfer function.
n = -5:0.1:5;
a = purelin(n);
plot(n,a)

Assign this transfer function to layer i of a network.
net.layers{i}.transferFcn = 'purelin';

Algorithms

a = purelin(n) = n

See Also
satlin|satlins|sim

Introduced before R2006a
quant
Discretize values as multiples of quantity

Syntax
quant(X,Q)

Description
quant(X,Q) takes two inputs,

<table>
<thead>
<tr>
<th>X</th>
<th>Matrix, vector, or scalar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>Minimum value</td>
</tr>
</tbody>
</table>

and returns values from X rounded to nearest multiple of Q.

Examples

x = [1.333 4.756 -3.897];
y = quant(x, 0.1)

Introduced before R2006a
radbas

Radial basis transfer function

Graph and Symbol

![Graph of radbas transfer function]

Radial Basis Function

Syntax

\[A = \text{radbas}(N, FP) \]

Description

`radbas` is a neural transfer function. Transfer functions calculate a layer's output from its net input.

\[A = \text{radbas}(N, FP) \]

takes one or two inputs,

- \(N \): S-by-Q matrix of net input (column) vectors
- \(FP \): Struct of function parameters (ignored)

and returns \(A \), an S-by-Q matrix of the radial basis function applied to each element of \(N \).

Examples

Here you create a plot of the `radbas` transfer function.

\[
\begin{align*}
 n &= -5:0.1:5; \\
 a &= \text{radbas}(n); \\
 \text{plot}(n,a)
\end{align*}
\]

Assign this transfer function to layer \(i \) of a network.

\[
\text{net.layers\{i\}.transferFcn = 'radbas';}
\]

Algorithms

\[a = \text{radbas}(n) = \exp(-n^2) \]

See Also

`radbasn` | `sim` | `tribas`
Introduced before R2006a
radbasn

Normalized radial basis transfer function

Graph and Symbol

![Graph and Symbol](image)

Syntax

```matlab
A = radbasn(N,FP)
```

Description

`radbasn` is a neural transfer function. Transfer functions calculate a layer's output from its net input. This function is equivalent to `radbas`, except that output vectors are normalized by dividing by the sum of the pre-normalized values.

```matlab
A = radbasn(N,FP)
```
takes one or two inputs,

<table>
<thead>
<tr>
<th>N</th>
<th>S-by-Q matrix of net input (column) vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP</td>
<td>Struct of function parameters (ignored)</td>
</tr>
</tbody>
</table>

and returns `A`, an `S`-by-`Q` matrix of the radial basis function applied to each element of `N`.

Examples

Here six random 3-element vectors are passed through the radial basis transform and normalized.

```matlab
n = rand(3,6)
a = radbasn(n)
```

Assign this transfer function to layer `i` of a network.

```matlab
net.layers{i}.transferFcn = 'radbasn';
```

Algorithms

```matlab
a = radbasn(n) = exp(-n^2) / sum(exp(-n^2))
```

See Also

`radbas` | `sim` | `tribas`
Introduced in R2010b
randnc

Normalized column weight initialization function

Syntax

\[W = \text{randnc}(S, PR) \]

Description

randnc is a weight initialization function.

\[W = \text{randnc}(S, PR) \]

takes two inputs,

<table>
<thead>
<tr>
<th>(S)</th>
<th>Number of rows (neurons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(PR)</td>
<td>(R)-by-2 matrix of input value ranges = ([P_{\text{min}} \ P_{\text{max}}])</td>
</tr>
</tbody>
</table>

and returns an \(S \)-by-\(R \) random matrix with normalized columns.

You can also call this in the form \(\text{randnc}(S, R) \).

Examples

A random matrix of four normalized three-element columns is generated:

\[M = \text{randnc}(3, 4) \]

\[M = \begin{bmatrix}
-0.6007 & -0.4715 & -0.2724 & 0.5596 \\
-0.7628 & -0.6967 & -0.9172 & 0.7819 \\
-0.2395 & 0.5406 & -0.2907 & 0.2747
\end{bmatrix} \]

See Also

randnr

Introduced before R2006a
randnr

Normalized row weight initialization function

Syntax

\[W = \text{randnr}(S,PR) \]

Description

`randnr` is a weight initialization function.

\[W = \text{randnr}(S,PR) \]

takes two inputs,

<table>
<thead>
<tr>
<th>S</th>
<th>Number of rows (neurons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR</td>
<td>R-by-2 matrix of input value ranges = [Pmin Pmax]</td>
</tr>
</tbody>
</table>

and returns an S-by-R random matrix with normalized rows.

You can also call this in the form `randnr(S,R)`.

Examples

A matrix of three normalized four-element rows is generated:

\[
M = \text{randnr}(3,4)
\]

\[
M =
\begin{bmatrix}
0.9713 & 0.0800 & -0.1838 & -0.1282 \\
0.8228 & 0.0338 & 0.1797 & 0.5381 \\
-0.3042 & -0.5725 & 0.5436 & 0.5331 \\
\end{bmatrix}
\]

See Also

`randnc`

Introduced before R2006a
rands

Symmetric random weight/bias initialization function

Syntax

\[
W = \text{rands}(S,PR) \\
M = \text{rands}(S,R) \\
v = \text{rands}(S)
\]

Description

rands is a weight/bias initialization function.

\[W = \text{rands}(S,PR)\] takes

<table>
<thead>
<tr>
<th>S</th>
<th>Number of neurons</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR</td>
<td>R-by-2 matrix of R input ranges</td>
</tr>
</tbody>
</table>

and returns an S-by-R weight matrix of random values between -1 and 1.

\[M = \text{rands}(S,R)\] returns an S-by-R matrix of random values. \[v = \text{rands}(S)\] returns an S-by-1 vector of random values.

Examples

Here, three sets of random values are generated with *rands*.

\[
\begin{align*}
\text{rands}(4,[0 1; -2 2]) \\
\text{rands}(4) \\
\text{rands}(2,3)
\end{align*}
\]

Network Use

To prepare the weights and the bias of layer i of a custom network to be initialized with *rands*,

1. Set net.initFcn to 'initlay'. (net.initParam automatically becomes initlay's default parameters.)
2. Set net.layers{i}.initFcn to 'initwb'.
3. Set each net.inputWeights{i,j}.initFcn to 'rands'.
4. Set each net.layerWeights{i,j}.initFcn to 'rands'.
5. Set each net.biases{i}.initFcn to 'rands'.

To initialize the network, call init.

See Also

init | initlay | initwb | randnc | randnr | randsmall
Introduced before R2006a
randsmall

Small random weight/bias initialization function

Syntax

\[
W = \text{randsmall}(S,PR) \\
M = \text{rands}(S,R) \\
v = \text{rands}(S)
\]

Description

randsmall is a weight/bias initialization function.

\[
W = \text{randsmall}(S,PR) \text{ takes}
\]

<table>
<thead>
<tr>
<th>S</th>
<th>Number of neurons</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR</td>
<td>R-by-2 matrix of R input ranges</td>
</tr>
</tbody>
</table>

and returns an S-by-R weight matrix of small random values between -0.1 and 0.1.

\[
M = \text{rands}(S,R) \text{ returns an S-by-R matrix of random values.} \\
v = \text{rands}(S) \text{ returns an S-by-1 vector of random values.}
\]

Examples

Here three sets of random values are generated with **rands**.

\[
\text{randsmall}(4,[0 1; -2 2]) \\
\text{randsmall}(4) \\
\text{randsmall}(2,3)
\]

Network Use

To prepare the weights and the bias of layer \(i \) of a custom network to be initialized with **rands**, do:

1. Set `net.initFcn` to 'initlay'. (`net.initParam` automatically becomes `initlay`'s default parameters.)
2. Set `net.layers{i}.initFcn` to 'initwb'.
3. Set each `net.inputWeights{i,j}.initFcn` to 'randsmall'.
4. Set each `net.layerWeights{i,j}.initFcn` to 'randsmall'.
5. Set each `net.biases{i}.initFcn` to 'randsmall'.

To initialize the network, call **init**.

See Also

`init` | `initlay` | `initwb` | `randnc` | `randnr` | `rands`
Introduced in R2010b
randtop

Random layer topology function

Syntax

pos = randtop(dimensions)

Description

randtop calculates the neuron positions for layers whose neurons are arranged in an N-dimensional random pattern.

pos = randtop(dimensions) takes one argument:

| dimensions | Row vector of dimension sizes |

and returns an N-by-S matrix of N coordinate vectors, where N is the number of dimensions and S is the product of dimensions.

Examples

Display Layer with Random Pattern

This shows how to display a two-dimensional layer with neurons arranged in a random pattern.

pos = randtop([18 12]);
plotsom(pos)
See Also
gridtop | hextop | tritop

Introduced before R2006a
regression

(Not recommended) Perform linear regression of shallow network outputs on targets

Note regression is not recommended. Use fitlm instead. For more information, see "Compatibility Considerations".

Syntax

\[[r,m,b] = \text{regression}(t,y) \]
\[[r,m,b] = \text{regression}(t,y,'one') \]

Description

\([r,m,b] = \text{regression}(t,y)\) calculates the linear regression between each element of the network response and the corresponding target.

This function takes cell array or matrix target \(t\) and output \(y\), each with total matrix rows of \(N\), and returns the regression values, \(r\), the slopes of regression fit, \(m\), and the y-intercepts, \(b\), for each of the \(N\) matrix rows.

\([r,m,b] = \text{regression}(t,y,'one')\) combines all matrix rows before regressing, and returns single scalar regression, slope, and offset values.

Examples

Fit Regression Model and Plot Fitted Values versus Targets

This example shows how to train a feedforward network and calculate and plot the regression between its targets and outputs.

Load the training data.

\([x,t] = \text{simplefit_dataset};\)

The 1-by-94 matrix \(x\) contains the input values and the 1-by-94 matrix \(t\) contains the associated target output values.

Construct a feedforward neural network with one hidden layer of size 20.

\(\text{net} = \text{feedforwardnet}(20);\)

Train the network \(\text{net}\) using the training data.

\(\text{net} = \text{train}(\text{net},x,t);\)

Estimate the targets using the trained network.

\(y = \text{net}(x);\)
Calculate and plot the regression between its targets and outputs.

\[[r,m,b] = \text{regression}(t,y) \]

\[r = 1.0000 \]
\[m = 1.0000 \]
\[b = 1.0878 \times 10^{-04} \]

\text{plotregression}(t,y)

\textbf{Input Arguments}

\textbf{t — Target}
matrix | cell array

Network targets, specified as a matrix or cell array.

\textbf{y — Output}
scalar
Network outputs, specified as a matrix or cell array.

Output Arguments

- **r** — Regression value

 Scalar

 Regression value, returned as a scalar.

- **m** — Slope

 Scalar

 Slope of regression fit, returned as a scalar.

- **b** — Offset

 Scalar

 Offset of regression fit, returned as a scalar.

Compatibility Considerations

regression is not recommended

Not recommended starting in R2020b

regression is not recommended. To fit a linear regression model, use `fitlm` instead.

See Also

- confusion
- fitlm
- plotregression

Introduced in R2010b
removeconstantrows

Process matrices by removing rows with constant values

Syntax

\[
[Y,PS] = \text{removeconstantrows}(X,\text{max_range})
\]

\[
[Y,PS] = \text{removeconstantrows}(X,FP)
\]

\[
Y = \text{removeconstantrows}('apply',X,PS)
\]

\[
X = \text{removeconstantrows}('reverse',Y,PS)
\]

Description

`removeconstantrows` processes matrices by removing rows with constant values.

\[
[Y,PS] = \text{removeconstantrows}(X,\text{max_range})\]

takes \(X\) and an optional parameter,

<table>
<thead>
<tr>
<th>(X)</th>
<th>N-by-Q matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{max_range})</td>
<td>Maximum range of values for row to be removed (default is 0)</td>
</tr>
</tbody>
</table>

and returns

<table>
<thead>
<tr>
<th>(Y)</th>
<th>M-by-Q matrix with (N - M) rows deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>(PS)</td>
<td>Process settings that allow consistent processing of values</td>
</tr>
</tbody>
</table>

\[
[Y,PS] = \text{removeconstantrows}(X,FP)\]

takes parameters as a struct: \(FP.\text{max_range}\).

\[
Y = \text{removeconstantrows}('apply',X,PS)\]

returns \(Y\), given \(X\) and settings \(PS\).

\[
X = \text{removeconstantrows}('reverse',Y,PS)\]

returns \(X\), given \(Y\) and settings \(PS\).

Any NaN values in the input matrix are treated as missing data, and are not considered as unique values. So, for example, `removeconstantrows` removes the first row from the matrix \([1\ 1\ 1\ \text{NaN};\ 1\ 1\ 1\ 2]\).

Examples

Format a matrix so that the rows with constant values are removed.

\[
x1 = [1\ 2\ 4;\ 1\ 1\ 1;\ 3\ 2\ 2;\ 0\ 0\ 0];
\]

\[
y1,PS = \text{removeconstantrows}(x1);
\]

\[
y1 =
\begin{bmatrix}
1 & 2 & 4 \\
3 & 2 & 2
\end{bmatrix}
\]

\[
PS =
\begin{bmatrix}
\text{max_range: 0} \\
\text{keep: [1 3]} \\
\text{remove: [2 4]} \\
\text{value: [2x1 double]}
\end{bmatrix}
\]
Next, apply the same processing settings to new values.

\[
x_2 = \begin{bmatrix} 5 & 2 & 3; \\ 1 & 1 & 1; \\ 6 & 7 & 3; \\ 0 & 0 & 0 \end{bmatrix};
\]

\[
y_2 = \text{removeconstantrows('apply',}x_2,\text{PS)}
\]

\[
\begin{array}{ccc}
5 & 2 & 3 \\
6 & 7 & 3 \\
\end{array}
\]

Reverse the processing of \(y_1\) to get the original \(x_1\) matrix.

\[
x_1\text{_again} = \text{removeconstantrows('reverse',}y_1,\text{PS)}
\]

\[
\begin{array}{ccc}
1 & 2 & 4 \\
1 & 1 & 1 \\
3 & 2 & 2 \\
0 & 0 & 0 \\
\end{array}
\]

See Also

fixunknowns | mapminmax | mapstd | processpca

Introduced in R2006a
removedelay

Remove delay to neural network’s response

Syntax

```matlab
net = removedelay(net,n)
```

Description

`net = removedelay(net,n)` takes these arguments,

<table>
<thead>
<tr>
<th>net</th>
<th>Neural network</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Number of delays</td>
</tr>
</tbody>
</table>

and returns the network with input delay connections decreased, and output feedback delays increased, by the specified number of delays `n`. The result is a network which behaves identically, except that outputs are produced `n` timesteps earlier.

If the number of delays `n` is not specified, a default of one delay is used.

Examples

Remove and Add Delay to Network

This example creates, trains, and simulates a time delay network in its original form, on an input time series `X` and target series `T`. Then the delay is removed and later added back. The first and third outputs will be identical, while the second result will include a new prediction for the following step.

```matlab
[X,T] = simpleseries_dataset;
net1 = timelayer(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net1,X,T);
net1 = train(net1,Xs,Ts,Xi);
y1 = net1(Xs,Xi);
view(net1)

net2 = removedelay(net1);
[Xs,Xi,Ai,Ts] = preparets(net2,X,T);
y2 = net2(Xs,Xi);
view(net2)
```
net3 = adddelay(net2);
[Xs,Xi,Ai,Ts] = preparets(net3,X,T);
y3 = net3(Xs,Xi);
view(net3)

See Also
adddelay|closeloop|openloop

Introduced in R2010b
removerows

Process matrices by removing rows with specified indices

Syntax

```
[Y,PS] = removerows(X,'ind',ind)
[Y,PS] = removerows(X,FP)
Y = removerows('apply',X,PS)
X = removerows('reverse',Y,PS)
dx_dy = removerows('dx',X,Y,PS)
dx_dy = removerows('dx',X,[],PS)
name = removerows('name')
fp = removerows('pdefaults')
names = removerows('pdesc')
removerows('pcheck',FP)
```

Description

removerows processes matrices by removing rows with the specified indices.

```
[Y,PS] = removerows(X,'ind',ind) takes X and an optional parameter,
```

<table>
<thead>
<tr>
<th>X</th>
<th>N-by-Q matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>ind</td>
<td>Vector of row indices to remove (default is [])</td>
</tr>
</tbody>
</table>

and returns

<table>
<thead>
<tr>
<th>Y</th>
<th>M-by-Q matrix, where M == N-length(ind)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS</td>
<td>Process settings that allow consistent processing of values</td>
</tr>
</tbody>
</table>

```
[Y,PS] = removerows(X,FP) takes parameters as a struct: FP.ind.
Y = removerows('apply',X,PS) returns Y, given X and settings PS.
X = removerows('reverse',Y,PS) returns X, given Y and settings PS.
dx_dy = removerows('dx',X,Y,PS) returns the M-by-N-by-Q derivative of Y with respect to X.
dx_dy = removerows('dx',X,[],PS) returns the derivative, less efficiently.
name = removerows('name') returns the name of this process method.
fp = removerows('pdefaults') returns the default process parameter structure.
names = removerows('pdesc') returns the process parameter descriptions.
removerows('pcheck',FP) throws an error if any parameter is illegal.

```
Examples

Here is how to format a matrix so that rows 2 and 4 are removed:

\[
x_1 = \begin{bmatrix} 1 & 2 & 4; & 1 & 1 & 1; & 3 & 2 & 2; & 0 & 0 & 0 \end{bmatrix}
\]

[y1,ps] = removerows(x1,’ind’,[2 4])

Next, apply the same processing settings to new values.

\[
x_2 = \begin{bmatrix} 5 & 2 & 3; & 1 & 1 & 1; & 6 & 7 & 3; & 0 & 0 & 0 \end{bmatrix}
\]

y2 = removerows(’apply’,x2,ps)

Reverse the processing of y1 to get x1 again.

x1_again = removerows(’reverse’,y1,ps)

Algorithms

In the reverse calculation, the unknown values of replaced rows are represented with NaN values.

See Also

fixunknowns | mapminmax | mapstd | processpca

Introduced in R2006a
revert

Change network weights and biases to previous initialization values

Syntax

net = revert (net)

Description

net = revert (net) returns neural network net with weight and bias values restored to the values generated the last time the network was initialized.

If the network is altered so that it has different weight and bias connections or different input or layer sizes, then revert cannot set the weights and biases to their previous values and they are set to zeros instead.

Examples

Here a perceptron is created with input size set to 2 and number of neurons to 1.

net = perceptron;
net.inputs{1}.size = 2;
net.layers{1}.size = 1;

The initial network has weights and biases with zero values.

net.iw{1,1}, net.b{1}

Change these values as follows:

net.iw{1,1} = [1 2];
net.b{1} = 5;
net.iw{1,1}, net.b{1}

You can recover the network’s initial values as follows:

net = revert(net);
net.iw{1,1}, net.b{1}

See Also
adapt | init | sim | train

Introduced before R2006a
roc

Receiver operating characteristic

Syntax

\[
[tpr,fpr,thresholds] = roc(targets,outputs)
\]

Description

The receiver operating characteristic is a metric used to check the quality of classifiers. For each class of a classifier, roc applies threshold values across the interval \([0,1]\) to outputs. For each threshold, two values are calculated, the True Positive Ratio (TPR) and the False Positive Ratio (FPR). For a particular class \(i\), TPR is the number of outputs whose actual and predicted class is class \(i\), divided by the number of outputs whose predicted class is class \(i\). FPR is the number of outputs whose actual class is not class \(i\), but predicted class is class \(i\), divided by the number of outputs whose predicted class is not class \(i\).

You can visualize the results of this function with plotroc.

[tpr,fpr,thresholds] = roc(targets,outputs) takes these arguments:

<table>
<thead>
<tr>
<th>targets</th>
<th>S-by-Q matrix, where each column vector contains a single 1 value, with all other elements 0. The index of the 1 indicates which of S categories that vector represents.</th>
</tr>
</thead>
<tbody>
<tr>
<td>outputs</td>
<td>S-by-Q matrix, where each column contains values in the range ([0,1]). The index of the largest element in the column indicates which of S categories that vector presents. Alternately, 1-by-Q vector, where values greater or equal to 0.5 indicate class membership, and values below 0.5, nonmembership.</td>
</tr>
</tbody>
</table>

and returns these values:

<table>
<thead>
<tr>
<th>tpr</th>
<th>1-by-S cell array of 1-by-N true-positive/positive ratios.</th>
</tr>
</thead>
<tbody>
<tr>
<td>fpr</td>
<td>1-by-S cell array of 1-by-N false-positive/negative ratios.</td>
</tr>
<tr>
<td>thresholds</td>
<td>1-by-S cell array of 1-by-N thresholds over interval ([0,1]).</td>
</tr>
</tbody>
</table>

roc(targets,outputs) takes these arguments:

<table>
<thead>
<tr>
<th>targets</th>
<th>1-by-Q matrix of Boolean values indicating class membership.</th>
</tr>
</thead>
<tbody>
<tr>
<td>outputs</td>
<td>S-by-Q matrix, of values in ([0,1]) interval, where values greater than or equal to 0.5 indicate class membership.</td>
</tr>
</tbody>
</table>

and returns these values:

<table>
<thead>
<tr>
<th>tpr</th>
<th>1-by-N vector of true-positive/positive ratios.</th>
</tr>
</thead>
<tbody>
<tr>
<td>fpr</td>
<td>1-by-N vector of false-positive/negative ratios.</td>
</tr>
<tr>
<td>thresholds</td>
<td>1-by-N vector of thresholds over interval [0,1].</td>
</tr>
</tbody>
</table>

Examples

```matlab
data = load iris_dataset;
net = patternnet(20);
net = train(net,irisInputs,irisTargets);
irisOutputs = sim(net,irisInputs);
[tpr,fpr,thresholds] = roc(irisTargets,irisOutputs)
```

See Also

confusion | plotroc

Introduced in R2008a
sae

Sum absolute error performance function

Syntax

perf = sae(net,t,y,ew)
[...] = sae(...,'regularization',regularization)
[...] = sae(...,'normalization',normalization)
[...] = sae(...,FP)

Description

sae is a network performance function. It measures performance according to the sum of squared errors.

`perf = sae(net,t,y,ew)` takes these input arguments and optional function parameters,

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>net</td>
<td>Neural network</td>
</tr>
<tr>
<td>t</td>
<td>Matrix or cell array of target vectors</td>
</tr>
<tr>
<td>y</td>
<td>Matrix or cell array of output vectors</td>
</tr>
<tr>
<td>ew</td>
<td>Error weights (default = {1})</td>
</tr>
</tbody>
</table>

and returns the sum squared error.

This function has two optional function parameters that can be defined with parameter name/pair arguments, or as a structure `FP` argument with fields having the parameter name and assigned the parameter values:

- `regularization` — can be set to any value between the default of 0 and 1. The greater the regularization value, the more squared weights and biases are taken into account in the performance calculation.
- `normalization` —
 - `'none'` — performs no normalization, the default.
 - `'standard'` — normalizes outputs and targets to [-1, +1], and therefore normalizes errors to [-2, +2].
 - `'percent'` — normalizes outputs and targets to [-0.5, +0.5], and therefore normalizes errors to [-1, +1].

Examples

Here a network is trained to fit a simple data set and its performance calculated
[x,t] = simplefit_dataset;
net = fitnet(10,'trainscg');
net.performFcn = 'sae';
net = train(net,x,t)
y = net(x)
e = t-y
perf = sae(net,t,y)

Network Use

To prepare a custom network to be trained with sae, set net.performFcn to 'sae'. This automatically sets net.performParam to the default function parameters.

Then calling train, adapt or perform will result in sae being used to calculate performance.

Introduced in R2010b
satlin

Saturating linear transfer function

Graph and Symbol

![Satlin Transfer Function](image)

\[a = \text{satlin}(n) \]

Satlin Transfer Function

Syntax

\[A = \text{satlin}(N,FP) \]

Description

satlin is a neural transfer function. Transfer functions calculate a layer's output from its net input.

\[A = \text{satlin}(N,FP) \]

takes one input,

<table>
<thead>
<tr>
<th>N</th>
<th>S-by-Q matrix of net input (column) vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP</td>
<td>Struct of function parameters (ignored)</td>
</tr>
</tbody>
</table>

and returns \(A \), the S-by-Q matrix of \(N \)'s elements clipped to \([0, 1]\).

\[\text{info} = \text{satlin}('code') \]

returns useful information for each supported code character vector:

- \text{satlin}('name') returns the name of this function.
- \text{satlin}('output',FP) returns the \([\text{min} \ \text{max}]\) output range.
- \text{satlin}('active',FP) returns the \([\text{min} \ \text{max}]\) active input range.
- \text{satlin}('fullderiv') returns 1 or 0, depending on whether \(\frac{dA}{dN} \) is S-by-S-by-Q or S-by-Q.
- \text{satlin}('fpnames') returns the names of the function parameters.
- \text{satlin}('fpdefaults') returns the default function parameters.

Examples

Here is the code to create a plot of the satlin transfer function.
n = -5:0.1:5;
a = satlin(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'satlin';

Algorithms

\[
a = \text{satlin}(n) = \begin{cases}
0, & \text{if } n \leq 0 \\
n, & \text{if } 0 \leq n \leq 1 \\
1, & \text{if } 1 \leq n
\end{cases}
\]

See Also

poslin | purelin | satlins | sim

Introduced before R2006a
satlins

Symmetric saturating linear transfer function

Graph and Symbol

\[
\begin{align*}
\text{Graph:} & \quad \text{satlins}(n) \\
\text{Symbol:} & \quad a = \text{satlins}(n)
\end{align*}
\]

Satlins Transfer Function

Syntax

\[A = \text{satlins}(N, \text{FP}) \]

Description

satlins is a neural transfer function. Transfer functions calculate a layer’s output from its net input.

\[A = \text{satlins}(N, \text{FP}) \] takes \(N \) and an optional argument,

\[
\begin{array}{|c|}
\hline
\text{N} & \text{S-by-Q matrix of net input (column) vectors} \\
\hline
\text{FP} & \text{Struct of function parameters (optional, ignored)} \\
\hline
\end{array}
\]

and returns \(A \), the S-by-Q matrix of \(N \)'s elements clipped to \([-1, 1]\).

\[\text{info} = \text{satlins('code')} \] returns useful information for each supported code character vector:

satlins('name') returns the name of this function.

satlins('output', FP) returns the [min max] output range.

satlins('active', FP) returns the [min max] active input range.

satlins('fullderiv') returns 1 or 0, depending on whether \(dA_dN \) is S-by-S-by-Q or S-by-Q.

satlins('fpnames') returns the names of the function parameters.

satlins('fpdefaults') returns the default function parameters.

Examples

Here is the code to create a plot of the satlins transfer function.
n = -5:0.1:5;
a = satlins(n);
plot(n,a)

Algorithms

satlins(n) = -1, if n <= -1
n, if -1 <= n <= 1
1, if 1 <= n

See Also
poslin|purelin|satlin|sim

Introduced before R2006a
scalprod

Scalar product weight function

Syntax

Z = scalprod(W,P)
dim = scalprod('size',S,R,FP)
dw = scalprod('dw',W,P,Z,FP)

Description

scalprod is the scalar product weight function. Weight functions apply weights to an input to get weighted inputs.

\[Z = \text{scalprod}(W, P) \]

takes these inputs,

\[
\begin{array}{c|c}
W & 1\text{-by-1 weight matrix} \\
P & R\text{-by-}Q \text{ matrix of } Q \text{ input (column) vectors}
\end{array}
\]

and returns the R-by-Q scalar product of \(W \) and \(P \) defined by \(Z = w*P \).

\[\text{dim} = \text{scalprod}('size',S,R,FP) \]

takes the layer dimension \(S \), input dimension \(R \), and function parameters, and returns the weight size \([1\text{-by-1}]\).

\[\text{dw} = \text{scalprod}('dw',W,P,Z,FP) \]

returns the derivative of \(Z \) with respect to \(W \).

Examples

Here you define a random weight matrix \(W \) and input vector \(P \) and calculate the corresponding weighted input \(Z \).

\[
\begin{align*}
W &= \text{rand}(1,1); \\
P &= \text{rand}(3,1); \\
Z &= \text{scalprod}(W,P)
\end{align*}
\]

Network Use

To change a network so an input weight uses scalprod, set \(\text{net.inputWeights}\{i,j\}.weightFcn \) to 'scalprod'.

For a layer weight, set \(\text{net.layerWeights}\{i,j\}.weightFcn \) to 'scalprod'.

In either case, call \(\text{sim} \) to simulate the network with scalprod.

See Also

dist | dotprod | negdist | normprod | sim
Introduced in R2006a
selforgmap

Self-organizing map

Syntax

selforgmap(dimensions, coverSteps, initNeighbor, topologyFcn, distanceFcn)

Description

Self-organizing maps learn to cluster data based on similarity, topology, with a preference (but no guarantee) of assigning the same number of instances to each class.

Self-organizing maps are used both to cluster data and to reduce the dimensionality of data. They are inspired by the sensory and motor mappings in the mammal brain, which also appear to automatically organizing information topologically.

selforgmap(dimensions, coverSteps, initNeighbor, topologyFcn, distanceFcn) takes these arguments,

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dimensions</td>
<td>Row vector of dimension sizes (default = [8 8])</td>
</tr>
<tr>
<td>coverSteps</td>
<td>Number of training steps for initial covering of the input space (default = 100)</td>
</tr>
<tr>
<td>initNeighbor</td>
<td>Initial neighborhood size (default = 3)</td>
</tr>
<tr>
<td>topologyFcn</td>
<td>Layer topology function (default = 'hextop')</td>
</tr>
<tr>
<td>distanceFcn</td>
<td>Neuron distance function (default = 'linkdist')</td>
</tr>
</tbody>
</table>

and returns a self-organizing map.

Examples

Use Self-Organizing Map to Cluster Data

Here a self-organizing map is used to cluster a simple set of data.

```matlab
x = simplecluster_dataset;
net = selforgmap([8 8]);
net = train(net, x);
view(net)
y = net(x);
classes = vec2ind(y);
```

![Diagram](image-url)
See Also
competlayer | lvqnet | nctool

Introduced in R2010b

separatewb

Separate biases and weight values from weight/bias vector

Syntax

\[
[b,IW,LW] = separatewb(net,wb)
\]

Description

\[b,IW,LW] = separatewb(net,wb)\] takes two arguments,

<table>
<thead>
<tr>
<th>net</th>
<th>Neural network</th>
</tr>
</thead>
<tbody>
<tr>
<td>wb</td>
<td>Weight/bias vector</td>
</tr>
</tbody>
</table>

and returns

b	Cell array of bias vectors
IW	Cell array of input weight matrices
LW	Cell array of layer weight matrices

Examples

Here a feedforward network is trained to fit some data, then its bias and weight values formed into a vector. The single vector is then redivided into the original biases and weights.

\[
[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
w = formwb(net,net.b,net.iw,net.lw)
[b,iw,lw] = separatewb(net,w)
\]

See Also

formwb | getwb | setwb

Introduced in R2010b
seq2con

Convert sequential vectors to concurrent vectors

Syntax

b = seq2con(s)

Description

Deep Learning Toolbox software represents batches of vectors with a matrix, and sequences of vectors with multiple columns of a cell array.

seq2con and con2seq allow concurrent vectors to be converted to sequential vectors, and back again.

b = seq2con(s) takes one input,

| s | N-by-TS cell array of matrices with M columns |

and returns

| b | N-by-1 cell array of matrices with M*TS columns |

Examples

Here three sequential values are converted to concurrent values.

p1 = {1 4 2}
p2 = seq2con(p1)

Here two sequences of vectors over three time steps are converted to concurrent vectors.

p1 = {[1; 1] [5; 4] [1; 2]; [3; 9] [4; 1] [9; 8]}
p2 = seq2con(p1)

See Also

con2seq | concur

Introduced before R2006a
setelements

Set neural network data elements

Syntax

setelements(x,i,v)

Description

setelements(x,i,v) takes these arguments,

<table>
<thead>
<tr>
<th>x</th>
<th>Neural network matrix or cell array data</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Indices</td>
</tr>
<tr>
<td>v</td>
<td>Neural network data to store into x</td>
</tr>
</tbody>
</table>

and returns the original data x with the data v stored in the elements indicated by the indices i.

Examples

This code sets elements 1 and 3 of matrix data:

```plaintext
x = [1 2; 3 4; 7 4]
v = [10 11; 12 13];
y = setelements(x,[1 3],v)
```

This code sets elements 1 and 3 of cell array data:

```plaintext
x = {{[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}}
v = {{[20 21 22; 23 24 25] [26 27 28; 29 30 31]}}
y = setelements(x,[1 3],v)
```

See Also

catelements|getelements|nndata|numelements|setsamples|setsignals|settimesteps

Introduced in R2010b
setsamples

Set neural network data samples

Syntax

setsamples(x,i,v)

Description

setsamples(x,i,v) takes these arguments,

<table>
<thead>
<tr>
<th>x</th>
<th>Neural network matrix or cell array data</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Indices</td>
</tr>
<tr>
<td>v</td>
<td>Neural network data to store into x</td>
</tr>
</tbody>
</table>

and returns the original data x with the data v stored in the samples indicated by the indices i.

Examples

This code sets samples 1 and 3 of matrix data:

```matlab
x = [1 2 3; 4 7 4]
v = [10 11; 12 13];
y = setsamples(x,[1 3],v)
```

This code sets samples 1 and 3 of cell array data:

```matlab
x = {{1:3; 4:6} [7:9; 10:12]; [13:15] [16:18]}
v = {{20 21; 22 23} [24 25; 26 27]; [28 29] [30 31]}
y = setsamples(x,[1 3],v)
```

See Also
catsamples | getsamples | nndata | numsamples | setelements | setsignals | settimesteps

Introduced in R2010b
setsignals

Set neural network data signals

Syntax

setsignals(x,i,v)

Description

setsignals(x,i,v) takes these arguments,

<table>
<thead>
<tr>
<th>x</th>
<th>Neural network matrix or cell array data</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Indices</td>
</tr>
<tr>
<td>v</td>
<td>Neural network data to store into x</td>
</tr>
</tbody>
</table>

and returns the original data x with the data v stored in the signals indicated by the indices i.

Examples

This code sets signal 2 of cell array data:

```matlab
x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
v = {[20:22] [23:25]}
y = setsignals(x,2,v)
```

See Also

catsignals | getsignals | nndata | numsignals | setelements | setsamples | settimesteps

Introduced in R2010b
setsiminit

Set neural network Simulink block initial conditions

Syntax

setsiminit(sysName,netName,net,xi,ai,Q)

Description

setsiminit(sysName,netName,net,xi,ai,Q) takes these arguments,

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sysName</td>
<td>The name of the Simulink system containing the neural network block</td>
</tr>
<tr>
<td>netName</td>
<td>The name of the Simulink neural network block</td>
</tr>
<tr>
<td>net</td>
<td>The original neural network</td>
</tr>
<tr>
<td>xi</td>
<td>Initial input delay states</td>
</tr>
<tr>
<td>ai</td>
<td>Initial layer delay states</td>
</tr>
<tr>
<td>Q</td>
<td>Sample number (default is 1)</td>
</tr>
</tbody>
</table>

and sets the Simulink neural network blocks initial conditions as specified.

Examples

Here a NARX network is designed. The NARX network has a standard input and an open loop feedback output to an associated feedback input.

```matlab
[x,t] = simplenarx_dataset;
net = narxnet(1:2,1:2,20);
view(net)
[xs,xi,ai,ts] = preparets(net,x,{},t);
net = train(net,xs,ts,xi,ai);
y = net(xs,xi,ai);
```

Now the network is converted to closed loop, and the data is reformatted to simulate the network’s closed loop response.

```matlab
net = closeloop(net);
view(net)
[xs,xi,ai,ts] = preparets(net,x,{},t);
y = net(xs,xi,ai);
```

Here the network is converted to a Simulink system with workspace input and output ports. Its delay states are initialized, inputs X1 defined in the workspace, and it is ready to be simulated in Simulink.

```matlab
[sysName,netName] = gensim(net,'InputMode','Workspace', ...
    'OutputMode','Workspace','SolverMode','Discrete');
setsiminit(sysName,netName,net,xi,ai,1);
x1 = nndata2sim(x,1,1);
```

Finally the initial input and layer delays are obtained from the Simulink model. (They will be identical to the values set with setsiminit.)
[xi,ai] = getsiminit(sysName,netName,net);

See Also
 gensim | getsiminit | nndata2sim | sim2nndata

Introduced in R2010b
settimesteps

Set neural network data timesteps

Syntax

settimesteps(x,i,v)

Description

settimesteps(x,i,v) takes these arguments,

<table>
<thead>
<tr>
<th>x</th>
<th>Neural network matrix or cell array data</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Indices</td>
</tr>
<tr>
<td>v</td>
<td>Neural network data to store into x</td>
</tr>
</tbody>
</table>

and returns the original data x with the data v stored in the timesteps indicated by the indices i.

Examples

This code sets timestep 2 of cell array data:

```matlab
x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
v = {[20:22; 23:25]; [25:27]}
y = settimesteps(x,2,v)
```

See Also

cattimesteps | gettimesteps | nndata | numtimesteps | setelements | setsamples | setsignals

Introduced in R2010b
setwb

Set all network weight and bias values with single vector

Syntax

```matlab
net = setwb(net,wb)
```

Description

This function sets a network’s weight and biases to a vector of values.

```matlab
net = setwb(net,wb)
```
takes the following inputs:

<table>
<thead>
<tr>
<th>net</th>
<th>Neural network</th>
</tr>
</thead>
<tbody>
<tr>
<td>wb</td>
<td>Vector of weight and bias values</td>
</tr>
</tbody>
</table>

Examples

Set Network's Weights and Biases

This example shows how to set and view a network's weight and bias values.

Create and configure a network.

```matlab
[x,t] = simplefit_dataset;
net = feedforwardnet(3);
net = configure(net,x,t);
view(net)
```

This network has three weights and three biases in the first layer, and three weights and one bias in the second layer. So, the total number of weight and bias values in the network is 10. Set the weights and biases to random values.

```matlab
net = setwb(net,rand(10,1));
```

View the weight and bias values

```matlab
net.IW{1,1}
net.b{1}
```
ans =
0.1576
0.9706
0.9572

ans =
0.5469
0.9575
0.9649

See Also
formwb | getwb | separatewb

Introduced in R2010b
sim

Simulate neural network

Syntax

\[
[Y,Xf,Af] = \text{sim}(\text{net},X,Xi,Ai,T) \\
[Y,Xf,Af] = \text{sim}(\text{net},\{Q \ TS\},Xi,Ai) \\
[Y,...] = \text{sim}(\text{net},...,\text{'useParallel',...}) \\
[Y,...] = \text{sim}(\text{net},...,\text{'useGPU',...}) \\
[Y,...] = \text{sim}(\text{net},...,\text{'showResources',...}) \\
[Ycomposite,...] = \text{sim}(\text{net},Xcomposite,...) \\
[Ygpu,...] = \text{sim}(\text{net},Xgpu,...)
\]

To Get Help

Type `help network/sim`.

Description

`sim` simulates neural networks.

\[
[Y,Xf,Af] = \text{sim}(\text{net},X,Xi,Ai,T)
\]

takes

<table>
<thead>
<tr>
<th>net</th>
<th>Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Network inputs</td>
</tr>
<tr>
<td>Xi</td>
<td>Initial input delay conditions (default = zeros)</td>
</tr>
<tr>
<td>Ai</td>
<td>Initial layer delay conditions (default = zeros)</td>
</tr>
<tr>
<td>T</td>
<td>Network targets (default = zeros)</td>
</tr>
</tbody>
</table>

and returns

<table>
<thead>
<tr>
<th>Y</th>
<th>Network outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xf</td>
<td>Final input delay conditions</td>
</tr>
<tr>
<td>Af</td>
<td>Final layer delay conditions</td>
</tr>
</tbody>
</table>

`sim` is usually called implicitly by calling the neural network as a function. For instance, these two expressions return the same result:

\[
y = \text{sim}(\text{net},x,xi,ai) \\
y = \text{net}(x,xi,ai)
\]

Note that arguments `Xi`, `Ai`, `Xf`, and `Af` are optional and need only be used for networks that have input or layer delays.

The signal arguments can have two formats: cell array or matrix.

The cell array format is easiest to describe. It is most convenient for networks with multiple inputs and outputs, and allows sequences of inputs to be presented:
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>N_i-by-TS cell array</td>
</tr>
<tr>
<td>Xi</td>
<td>N_i-by-ID cell array</td>
</tr>
<tr>
<td>Ai</td>
<td>N_l-by-LD cell array</td>
</tr>
<tr>
<td>T</td>
<td>N_o-by-TS cell array</td>
</tr>
<tr>
<td>Xf</td>
<td>N_i-by-ID cell array</td>
</tr>
<tr>
<td>Af</td>
<td>N_l-by-LD cell array</td>
</tr>
</tbody>
</table>

Each element $X{i,ts}$ is an R_i-by-Q matrix.
Each element $Xi{i,k}$ is an R_i-by-Q matrix.
Each element $Ai{i,k}$ is an S_i-by-Q matrix.
Each element $Xf{i,k}$ is an R_i-by-Q matrix.
Each element $Af{i,k}$ is an S_i-by-Q matrix.

The columns of Xi, Ai, Xf, and Af are ordered from oldest delay condition to most recent:

- $Xi{i,k}$ = Input i at time $ts = k - ID$
- $Xf{i,k}$ = Input i at time $ts = TS + k - ID$
- $Ai{i,k}$ = Layer output i at time $ts = k - LD$
- $Af{i,k}$ = Layer output i at time $ts = TS + k - LD$

The matrix format can be used if only one time step is to be simulated ($TS = 1$). It is convenient for networks with only one input and output, but can also be used with networks that have more.

Each matrix argument is found by storing the elements of the corresponding cell array argument in a single matrix:

- X = $\text{(sum of } R_i)\text{-by-}Q\text{ matrix}$
- Xi = $\text{(sum of } R_i)\text{-by-}Q\text{(ID*Q) matrix}$
- Ai = $\text{(sum of } S_i)\text{-by-}Q\text{(LD*Q) matrix}$
- T = $\text{(sum of } U_i)\text{-by-}Q\text{ matrix}$
- Y = $\text{(sum of } U_i)\text{-by-}Q\text{ matrix}$
- Xf = $\text{(sum of } R_i)\text{-by-}Q\text{(ID*Q) matrix}$
- Af = $\text{(sum of } S_i)\text{-by-}Q\text{(LD*Q) matrix}$

$[Y,Xf,Af] = \text{sim}(net,\{Q \ TS\}, Xi, Ai)$ is used for networks that do not have an input when cell array notation is used.

where

- $N_i = \text{net.numInputs}$
- $N_l = \text{net.numLayers}$
- $N_o = \text{net.numOutputs}$
- $ID = \text{net.numInputDelays}$
- $LD = \text{net.numLayerDelays}$
- $TS = \text{Number of time steps}$
- $Q = \text{Batch size}$
- $R_i = \text{net.inputs{i}.size}$
- $S_i = \text{net.layers{i}.size}$
- $U_i = \text{net.outputs{i}.size}$

The columns of Xi, Ai, Xf, and Af are ordered from oldest delay condition to most recent:
[Y,...] = sim(net,...,'useParallel',...), [Y,...] = sim(net,...,'useGPU',...),
or [Y,...] = sim(net,...,'showResources',...) (or the network called as a function)
accepts optional name/value pair arguments to control how calculations are performed. Two of these
options allow training to happen faster or on larger datasets using parallel workers or GPU devices if
Parallel Computing Toolbox is available. These are the optional name/value pairs:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'useParallel','no'</td>
<td>Calculations occur on normal MATLAB thread. This is the default 'useParallel' setting.</td>
</tr>
<tr>
<td>'useParallel','yes'</td>
<td>Calculations occur on parallel workers if a parallel pool is open. Otherwise calculations occur on the normal MATLAB thread.</td>
</tr>
<tr>
<td>'useGPU','no'</td>
<td>Calculations occur on the CPU. This is the default 'useGPU' setting.</td>
</tr>
<tr>
<td>'useGPU','yes'</td>
<td>Calculations occur on the current gpuDevice if it is a supported GPU (See Parallel Computing Toolbox for GPU requirements.) If the current gpuDevice is not supported, calculations remain on the CPU. If 'useParallel' is also 'yes' and a parallel pool is open, then each worker with a unique GPU uses that GPU, other workers run calculations on their respective CPU cores.</td>
</tr>
<tr>
<td>'useGPU','only'</td>
<td>If no parallel pool is open, then this setting is the same as 'yes'. If a parallel pool is open, but no supported GPUs are available, then calculations revert to performing on all worker CPUs.</td>
</tr>
<tr>
<td>'showResources','no'</td>
<td>Do not display computing resources used at the command line. This is the default setting.</td>
</tr>
<tr>
<td>'showResources','yes'</td>
<td>Show at the command line a summary of the computing resources actually used. The actual resources may differ from the requested resources, if parallel or GPU computing is requested but a parallel pool is not open or a supported GPU is not available. When parallel workers are used, each worker’s computation mode is described, including workers in the pool that are not used.</td>
</tr>
</tbody>
</table>

[Ycomposite,...] = sim(net,Xcomposite,...) takes Composite data and returns Composite results. If Composite data is used, then 'useParallel' is automatically set to 'yes'.

[Ygpu,...] = sim(net,Xgpu,...) takes gpuArray data and returns gpuArray results. If gpuArray data is used, then 'useGPU' is automatically set to 'yes'.

Examples

In the following examples, the `sim` function is called implicitly by calling the neural network object (`net`) as a function.

Simulate Feedforward Networks

This example loads a dataset that maps anatomical measurements `x` to body fat percentages `t`. A feedforward network with 10 neurons is created and trained on that data, then simulated.

```matlab
[x,t] = bodyfat_dataset;
net = feedforwardnet(10);
net = train(net,x,t);
y = net(x);
```
Simulate NARX Time Series Networks

This example trains an open-loop nonlinear-autoregressive network with external input, to model a levitated magnet system defined by a control current x and the magnet’s vertical position response t, then simulates the network. The function `preparets` prepares the data before training and simulation. It creates the open-loop network’s combined inputs x_0, which contains both the external input x and previous values of position t. It also prepares the delay states x_i.

```matlab
[x,t] = maglev_dataset;
net = narxnet(10);
[xo,xi,~,to] = preparets(net,x,{},t);
net = train(net,xo,to,xi);
y = net(xo,xi)
```

This same system can also be simulated in closed-loop form.

```matlab
netc = closeloop(net);
view(netc)
[xc,xi,ai,tc] = preparets(netc,x,{},t);
yc = netc(xc,xi,ai);
```

Simulate in Parallel on a Parallel Pool

With Parallel Computing Toolbox you can simulate and train networks faster and on larger datasets than can fit on one PC. Here training and simulation happens across parallel MATLAB workers.

```matlab
parpool
[X,T] = vinyl_dataset;
net = feedforwardnet(10);
net = train(net,X,T,'useParallel','yes','showResources','yes');
Y = net(X,'useParallel','yes');
```

Simulate on GPUs

Use Composite values to distribute the data manually, and get back the results as a Composite value. If the data is loaded as it is distributed, then while each piece of the dataset must fit in RAM, the entire dataset is limited only by the total RAM of all the workers.

```matlab
Xc = Composite;
for i=1:numel(Xc)
    Xc{i} = X+rand(size(X))*0.1;  % Use real data instead of random
end
Yc = net(Xc,'showResources','yes');
```

Networks can be simulated using the current GPU device, if it is supported by Parallel Computing Toolbox.

```matlab
gpuDevice  % Check if there is a supported GPU
Y = net(X,'useGPU','yes','showResources','yes');
```

To put the data on a GPU manually, and get the results on the GPU:

```matlab
Xgpu = gpuArray(X);
Ygpu = net(Xgpu,'showResources','yes');
Y = gather(Ygpu);
```

To run in parallel, with workers associated with unique GPUs taking advantage of that hardware, while the rest of the workers use CPUs:
Y = net(X,'useParallel','yes','useGPU','yes','showResources','yes');

Using only workers with unique GPUs might result in higher speeds, as CPU workers might not keep up.

Y = net(X,'useParallel','yes','useGPU','only','showResources','yes');

Algorithms

sim uses these properties to simulate a network net.

- net.numInputs, net.numLayers
- net.outputConnect, net.biasConnect
- net.inputConnect, net.layerConnect

These properties determine the network’s weight and bias values and the number of delays associated with each weight:

- net.IW{i,j}
- net.LW{i,j}
- net.b{i}
- net.inputWeights{i,j}.delays
- net.layerWeights{i,j}.delays

These function properties indicate how sim applies weight and bias values to inputs to get each layer’s output:

- net.inputWeights{i,j}.weightFcn
- net.layerWeights{i,j}.weightFcn
- net.layers{i}.netInputFcn
- net.layers{i}.transferFcn

See Also

- adapt
- init
- revert
- train

Introduced before R2006a
sim2nndata

Convert Simulink time series to neural network data

Syntax

`sim2nndata(x)`

Description

`sim2nndata(x)` takes either a column vector of values or a Simulink time series structure and converts it to a neural network data time series.

Examples

Here a random Simulink 20-step time series is created and converted.

```matlab
simts = rands(20,1);
nnts = sim2nndata(simts)
```

Here a similar time series is defined with a Simulink structure and converted.

```matlab
simts.time = 0:19
simts.signals.values = rands(20,1);
simts.dimensions = 1;
nnts = sim2nndata(simts)
```

See Also

`nndata` | `nndata2sim`

Introduced in R2010b
softmax

Soft max transfer function

Graph and Symbol

![Graph of softmax function]

Syntax

\[A = \text{softmax}(N,FP) \]

Description

softmax is a neural transfer function. Transfer functions calculate a layer’s output from its net input.

\[A = \text{softmax}(N,FP) \]

takes \(N \) and optional function parameters,

- \(N \): \(S \)-by-\(Q \) matrix of net input (column) vectors
- \(FP \): Struct of function parameters (ignored)

and returns \(A \), the \(S \)-by-\(Q \) matrix of the softmax competitive function applied to each column of \(N \).

info = softmax('code') returns information about this function. The following codes are defined:

- softmax('name') returns the name of this function.
- softmax('output',FP) returns the \([\text{min} \ \text{max}]\) output range.
- softmax('active',FP) returns the \([\text{min} \ \text{max}]\) active input range.
- softmax('fullderiv') returns 1 or 0, depending on whether \(\frac{dA}{dN} \) is \(S \)-by-\(S \)-by-\(Q \) or \(S \)-by-\(Q \).
- softmax('fpnames') returns the names of the function parameters.
- softmax('fpdefaults') returns the default function parameters.

Examples

Here you define a net input vector \(N \), calculate the output, and plot both with bar graphs.

\[n = [0; 1; -0.5; 0.5]; \]
\[a = \text{softmax}(n); \]
subplot(2,1,1), bar(n), ylabel('n')
subplot(2,1,2), bar(a), ylabel('a')

Assign this transfer function to layer i of a network.
net.layers{i}.transferFcn = 'softmax';

Algorithms

\[a = \text{softmax}(n) = \frac{\exp(n)}{\sum \exp(n)} \]

See Also
compet | sim

Introduced before R2006a
srchbac

1-D minimization using backtracking

Syntax

\[[a,gX,perf,retcode,delta,tol] = srchbac(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,TOL,ch_perf)\]

Description

srchbac is a linear search routine. It searches in a given direction to locate the minimum of the performance function in that direction. It uses a technique called backtracking.

\[[a,gX,perf,retcode,delta,tol] = srchbac(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,TOL,ch_perf)\] takes these inputs,

<table>
<thead>
<tr>
<th>net</th>
<th>Neural network</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Vector containing current values of weights and biases</td>
</tr>
<tr>
<td>Pd</td>
<td>Delayed input vectors</td>
</tr>
<tr>
<td>Tl</td>
<td>Layer target vectors</td>
</tr>
<tr>
<td>Ai</td>
<td>Initial input delay conditions</td>
</tr>
<tr>
<td>Q</td>
<td>Batch size</td>
</tr>
<tr>
<td>TS</td>
<td>Time steps</td>
</tr>
<tr>
<td>dX</td>
<td>Search direction vector</td>
</tr>
<tr>
<td>gX</td>
<td>Gradient vector</td>
</tr>
<tr>
<td>perf</td>
<td>Performance value at current X</td>
</tr>
<tr>
<td>dperf</td>
<td>Slope of performance value at current X in direction of dX</td>
</tr>
<tr>
<td>delta</td>
<td>Initial step size</td>
</tr>
<tr>
<td>tol</td>
<td>Tolerance on search</td>
</tr>
<tr>
<td>ch_perf</td>
<td>Change in performance on previous step</td>
</tr>
</tbody>
</table>

and returns

<table>
<thead>
<tr>
<th>a</th>
<th>Step size that minimizes performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>gX</td>
<td>Gradient at new minimum point</td>
</tr>
<tr>
<td>perf</td>
<td>Performance value at new minimum point</td>
</tr>
<tr>
<td>retcode</td>
<td>Return code that has three elements. The first two elements correspond to the number of function evaluations in the two stages of the search. The third element is a return code. These have different meanings for different search algorithms. Some might not be used in this function.</td>
</tr>
</tbody>
</table>
Parameters used for the backstepping algorithm are

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>Scale factor that determines sufficient reduction in perf</td>
</tr>
<tr>
<td>beta</td>
<td>Scale factor that determines sufficiently large step size</td>
</tr>
<tr>
<td>low_lim</td>
<td>Lower limit on change in step size</td>
</tr>
<tr>
<td>up_lim</td>
<td>Upper limit on change in step size</td>
</tr>
<tr>
<td>maxstep</td>
<td>Maximum step length</td>
</tr>
<tr>
<td>minstep</td>
<td>Minimum step length</td>
</tr>
<tr>
<td>scale_tol</td>
<td>Parameter that relates the tolerance tol to the initial step size delta, usually set to 20</td>
</tr>
</tbody>
</table>

The defaults for these parameters are set in the training function that calls them. See `traincfg`, `traincgb`, `traincgp`, `trainbfg`, and `trainoss`.

Dimensions for these variables are

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd</td>
<td>No-by-Ni-by-TS cell array Each element $P(i,j,ts)$ is a Dij-by-Q matrix.</td>
</tr>
<tr>
<td>Tl</td>
<td>Nl-by-TS cell array Each element $P(i,ts)$ is a Vi-by-Q matrix.</td>
</tr>
<tr>
<td>V</td>
<td>Nl-by-LD cell array Each element $A(i,k)$ is a Si-by-Q matrix.</td>
</tr>
</tbody>
</table>

where

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
<td>= net.numInputs</td>
</tr>
<tr>
<td>Nl</td>
<td>= net.numLayers</td>
</tr>
<tr>
<td>LD</td>
<td>= net.numLayerDelays</td>
</tr>
<tr>
<td>Ri</td>
<td>= net.inputs{i}.size</td>
</tr>
<tr>
<td>Si</td>
<td>= net.layers{i}.size</td>
</tr>
<tr>
<td>Vi</td>
<td>= net.targets{i}.size</td>
</tr>
<tr>
<td>Dij</td>
<td>= Ri * length(net.inputWeights{i,j}.delays)</td>
</tr>
</tbody>
</table>

More About

Backtracking Search

The backtracking search routine `srchbac` is best suited to use with the quasi-Newton optimization algorithms. It begins with a step multiplier of 1 and then backtracks until an acceptable reduction in the performance is obtained. On the first step it uses the value of performance at the current point and a step multiplier of 1. It also uses the value of the derivative of performance at the current point
to obtain a quadratic approximation to the performance function along the search direction. The minimum of the quadratic approximation becomes a tentative optimum point (under certain conditions) and the performance at this point is tested. If the performance is not sufficiently reduced, a cubic interpolation is obtained and the minimum of the cubic interpolation becomes the new tentative optimum point. This process is continued until a sufficient reduction in the performance is obtained.

The backtracking algorithm is described in Dennis and Schnabel. It is used as the default line search for the quasi-Newton algorithms, although it might not be the best technique for all problems.

Algorithms

srchbac locates the minimum of the performance function in the search direction dX, using the backtracking algorithm described on page 126 and 328 of Dennis and Schnabel’s book, noted below.

References

See Also
srchcha | srchgol | srchhyb

Introduced before R2006a
srchbre

1-D interval location using Brent's method

Syntax

\[
[a,gX,perf,retcode,delta,tol] =
\text{srchbre}(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)
\]

Description

srchbre is a linear search routine. It searches in a given direction to locate the minimum of the performance function in that direction. It uses a technique called Brent’s technique.

\[
[a,gX,perf,retcode,delta,tol] =
\text{srchbre}(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)
\]
takes these inputs, and returns

<table>
<thead>
<tr>
<th>net</th>
<th>Neural network</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Vector containing current values of weights and biases</td>
</tr>
<tr>
<td>Pd</td>
<td>Delayed input vectors</td>
</tr>
<tr>
<td>Tl</td>
<td>Layer target vectors</td>
</tr>
<tr>
<td>Ai</td>
<td>Initial input delay conditions</td>
</tr>
<tr>
<td>Q</td>
<td>Batch size</td>
</tr>
<tr>
<td>TS</td>
<td>Time steps</td>
</tr>
<tr>
<td>dX</td>
<td>Search direction vector</td>
</tr>
<tr>
<td>gX</td>
<td>Gradient vector</td>
</tr>
<tr>
<td>perf</td>
<td>Performance value at current X</td>
</tr>
<tr>
<td>dperf</td>
<td>Slope of performance value at current X in direction of dX</td>
</tr>
<tr>
<td>delta</td>
<td>Initial step size</td>
</tr>
<tr>
<td>tol</td>
<td>Tolerance on search</td>
</tr>
<tr>
<td>ch_perf</td>
<td>Change in performance on previous step</td>
</tr>
</tbody>
</table>

a	Step size that minimizes performance
gX	Gradient at new minimum point
perf	Performance value at new minimum point

retcode

Return code that has three elements. The first two elements correspond to the number of function evaluations in the two stages of the search. The third element is a return code. These have different meanings for different search algorithms. Some might not be used in this function.
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal</td>
</tr>
<tr>
<td>1</td>
<td>Minimum step taken</td>
</tr>
<tr>
<td>2</td>
<td>Maximum step taken</td>
</tr>
<tr>
<td>3</td>
<td>Beta condition not met</td>
</tr>
<tr>
<td>delta</td>
<td>New initial step size, based on the current step size</td>
</tr>
<tr>
<td>tol</td>
<td>New tolerance on search</td>
</tr>
</tbody>
</table>

Parameters used for the Brent algorithm are

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>Scale factor that determines sufficient reduction in perf</td>
</tr>
<tr>
<td>beta</td>
<td>Scale factor that determines sufficiently large step size</td>
</tr>
<tr>
<td>bmax</td>
<td>Largest step size</td>
</tr>
<tr>
<td>scale_tol</td>
<td>Parameter that relates the tolerance tol to the initial step size delta, usually set to 20</td>
</tr>
</tbody>
</table>

The defaults for these parameters are set in the training function that calls them. See `traincrgf`, `traincgb`, `traincgp`, `trainbfg`, and `trainoss`.

Dimensions for these variables are

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd</td>
<td>No-by-Ni-by-TS cell array</td>
<td>Each element $P_{i,j,ts}$ is a D_{ij}-by-Q matrix.</td>
</tr>
<tr>
<td>Tl</td>
<td>Nl-by-TS cell array</td>
<td>Each element $P_{i,ts}$ is a V_i-by-Q matrix.</td>
</tr>
<tr>
<td>Ai</td>
<td>Nl-by-LD cell array</td>
<td>Each element $A_{i,k}$ is an S_i-by-Q matrix.</td>
</tr>
</tbody>
</table>

where

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni =</td>
<td>net.numInputs</td>
</tr>
<tr>
<td>Nl =</td>
<td>net.numLayers</td>
</tr>
<tr>
<td>LD =</td>
<td>net.numLayerDelays</td>
</tr>
<tr>
<td>Ri =</td>
<td>net.inputs{i}.size</td>
</tr>
<tr>
<td>Si =</td>
<td>net.layers{i}.size</td>
</tr>
<tr>
<td>Vi =</td>
<td>net.targets{i}.size</td>
</tr>
<tr>
<td>Dij =</td>
<td>$R_i * \text{length}(\text{net.inputWeights}{i,j}.\text{delays})$</td>
</tr>
</tbody>
</table>

More About

Brent’s Search

Brent’s search is a linear search that is a hybrid of the golden section search and a quadratic interpolation. Function comparison methods, like the golden section search, have a first-order rate of convergence, while polynomial interpolation methods have an asymptotic rate that is faster than superlinear. On the other hand, the rate of convergence for the golden section search starts when the algorithm is initialized, whereas the asymptotic behavior for the polynomial interpolation methods can take many iterations to become apparent. Brent’s search attempts to combine the best features of both approaches.
For Brent’s search, you begin with the same interval of uncertainty used with the golden section search, but some additional points are computed. A quadratic function is then fitted to these points and the minimum of the quadratic function is computed. If this minimum is within the appropriate interval of uncertainty, it is used in the next stage of the search and a new quadratic approximation is performed. If the minimum falls outside the known interval of uncertainty, then a step of the golden section search is performed.

See [Bren73] for a complete description of this algorithm. This algorithm has the advantage that it does not require computation of the derivative. The derivative computation requires a backpropagation through the network, which involves more computation than a forward pass. However, the algorithm can require more performance evaluations than algorithms that use derivative information.

Algorithms

`srbre` brackets the minimum of the performance function in the search direction dX, using Brent’s algorithm, described on page 46 of Scales (see reference below). It is a hybrid algorithm based on the golden section search and the quadratic approximation.

References

See Also

`srbac | srbcha | srbgol | srbhyb`

Introduced before R2006a
srchcha

1-D minimization using Charalambous' method

Syntax

```matlab
[a,gX,perf,retcode,delta,tol] = srchcha(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)
```

Description

srchcha is a linear search routine. It searches in a given direction to locate the minimum of the performance function in that direction. It uses a technique based on Charalambous’ method.

```matlab
[a,gX,perf,retcode,delta,tol] = srchcha(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)
```
takes these inputs,

<table>
<thead>
<tr>
<th>net</th>
<th>Neural network</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Vector containing current values of weights and biases</td>
</tr>
<tr>
<td>Pd</td>
<td>Delayed input vectors</td>
</tr>
<tr>
<td>Tl</td>
<td>Layer target vectors</td>
</tr>
<tr>
<td>Ai</td>
<td>Initial input delay conditions</td>
</tr>
<tr>
<td>Q</td>
<td>Batch size</td>
</tr>
<tr>
<td>TS</td>
<td>Time steps</td>
</tr>
<tr>
<td>dX</td>
<td>Search direction vector</td>
</tr>
<tr>
<td>gX</td>
<td>Gradient vector</td>
</tr>
<tr>
<td>perf</td>
<td>Performance value at current X</td>
</tr>
<tr>
<td>dperf</td>
<td>Slope of performance value at current X in direction of dX</td>
</tr>
<tr>
<td>delta</td>
<td>Initial step size</td>
</tr>
<tr>
<td>tol</td>
<td>Tolerance on search</td>
</tr>
<tr>
<td>ch_perf</td>
<td>Change in performance on previous step</td>
</tr>
</tbody>
</table>

and returns

<table>
<thead>
<tr>
<th>a</th>
<th>Step size that minimizes performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>gX</td>
<td>Gradient at new minimum point</td>
</tr>
<tr>
<td>perf</td>
<td>Performance value at new minimum point</td>
</tr>
<tr>
<td>retcode</td>
<td>Return code that has three elements. The first two elements correspond to the number of function evaluations in the two stages of the search. The third element is a return code. These have different meanings for different search algorithms. Some might not be used in this function.</td>
</tr>
</tbody>
</table>
The method of Charalambous, `srchcha`, was designed to be used in combination with a conjugate gradient algorithm for neural network training. Like `srchbre` and `srchhyb`, it is a hybrid search. It uses a cubic interpolation together with a type of sectioning. See [Char92] for a description of Charalambous' search. This routine is used as the default search for most of the conjugate gradient algorithms because it appears to produce excellent results for many different problems. It does require the computation of the derivatives (backpropagation) in addition to the computation of performance, but it overcomes this limitation by locating the minimum with
fewer steps. This is not true for all problems, and you might want to experiment with other line searches.

Algorithms

srchcha locates the minimum of the performance function in the search direction dX, using an algorithm based on the method described in Charalambous (see reference below).

References

See Also

srchbac | srchbre | srchgol | srchhyb

Introduced before R2006a
srchgol

1-D minimization using golden section search

Syntax

\[[a,gX,perf,retcode,delta,tol] = srchgol(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf) \]

Description

srchgol is a linear search routine. It searches in a given direction to locate the minimum of the performance function in that direction. It uses a technique called the golden section search.

\[[a,gX,perf,retcode,delta,tol] = srchgol(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf) \]

srchgol takes these inputs, and returns these outputs:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>net</td>
<td>Neural network</td>
</tr>
<tr>
<td>X</td>
<td>Vector containing current values of weights and biases</td>
</tr>
<tr>
<td>Pd</td>
<td>Delayed input vectors</td>
</tr>
<tr>
<td>Tl</td>
<td>Layer target vectors</td>
</tr>
<tr>
<td>Ai</td>
<td>Initial input delay conditions</td>
</tr>
<tr>
<td>Q</td>
<td>Batch size</td>
</tr>
<tr>
<td>TS</td>
<td>Time steps</td>
</tr>
<tr>
<td>dX</td>
<td>Search direction vector</td>
</tr>
<tr>
<td>gX</td>
<td>Gradient vector</td>
</tr>
<tr>
<td>perf</td>
<td>Performance value at current X</td>
</tr>
<tr>
<td>dperf</td>
<td>Slope of performance value at current X in direction of dX</td>
</tr>
<tr>
<td>delta</td>
<td>Initial step size</td>
</tr>
<tr>
<td>tol</td>
<td>Tolerance on search</td>
</tr>
<tr>
<td>ch_perf</td>
<td>Change in performance on previous step</td>
</tr>
</tbody>
</table>

Step size that minimizes performance

Gradient at new minimum point

Performance value at new minimum point

Return code that has three elements. The first two elements correspond to the number of function evaluations in the two stages of the search. The third element is a return code. These have different meanings for different search algorithms. Some might not be used in this function.
Parameters used for the golden section algorithm are

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>Scale factor that determines sufficient reduction in perf</td>
</tr>
<tr>
<td>bmax</td>
<td>Largest step size</td>
</tr>
<tr>
<td>scale_tol</td>
<td>Parameter that relates the tolerance tol to the initial step size delta, usually set to 20</td>
</tr>
</tbody>
</table>

The defaults for these parameters are set in the training function that calls them. See traincfg, traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd</td>
<td>No-by-Ni-by-TS cell array Each element P{i,j,ts} is a Dij-by-Q matrix.</td>
</tr>
<tr>
<td>Tl</td>
<td>Nl-by-TS cell array Each element P{i,ts} is a Vi-by-Q matrix.</td>
</tr>
<tr>
<td>Ai</td>
<td>Nl-by-LD cell array Each element Ai{i,k} is an Si-by-Q matrix.</td>
</tr>
</tbody>
</table>

where

<table>
<thead>
<tr>
<th></th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
<td>net.numInputs</td>
</tr>
<tr>
<td>Nl</td>
<td>net.numLayers</td>
</tr>
<tr>
<td>LD</td>
<td>net.numLayerDelays</td>
</tr>
<tr>
<td>Ri</td>
<td>net.inputs{i}.size</td>
</tr>
<tr>
<td>Si</td>
<td>net.layers{i}.size</td>
</tr>
<tr>
<td>Vi</td>
<td>net.targets{i}.size</td>
</tr>
<tr>
<td>Dij</td>
<td>Ri * length(net.inputWeights{i,j}.delays)</td>
</tr>
</tbody>
</table>

More About

Golden Section Search

The golden section search `srchgol` is a linear search that does not require the calculation of the slope. This routine begins by locating an interval in which the minimum of the performance function occurs. This is accomplished by evaluating the performance at a sequence of points, starting at a distance of `delta` and doubling in distance each step, along the search direction. When the performance increases between two successive iterations, a minimum has been bracketed. The next step is to reduce the size of the interval containing the minimum. Two new points are located within the initial interval. The values of the performance at these two points determine a section of the interval that can be discarded, and a new interior point is placed within the new interval. This procedure is continued until the interval of uncertainty is reduced to a width of `tol`, which is equal to `delta/scale_tol`.

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>delta</td>
<td>New initial step size, based on the current step size</td>
</tr>
<tr>
<td>tol</td>
<td>New tolerance on search</td>
</tr>
</tbody>
</table>
See [HDB96], starting on page 12-16, for a complete description of the golden section search. Try the *Neural Network Design* demonstration nnd12sd1 [HDB96] for an illustration of the performance of the golden section search in combination with a conjugate gradient algorithm.

Algorithms

`srchgol` locates the minimum of the performance function in the search direction dX, using the golden section search. It is based on the algorithm as described on page 33 of Scales (see reference below).

References

See Also

`srchbac` | `srchbre` | `srchcha` | `srchhyb`
srchhyb

1-D minimization using a hybrid bisection-cubic search

Syntax

\[
[a,gX,perf,retcode,\delta,\text{tol}] = \text{srchhyb}(\text{net},X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,\delta,\text{tol},\text{ch_perf})
\]

Description

srchhyb is a linear search routine. It searches in a given direction to locate the minimum of the performance function in that direction. It uses a technique that is a combination of a bisection and a cubic interpolation.

\[
[a,gX,perf,retcode,\delta,\text{tol}] = \text{srchhyb}(\text{net},X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,\delta,\text{tol},\text{ch_perf})
\] takes these inputs,

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>net</td>
<td>Neural network</td>
</tr>
<tr>
<td>X</td>
<td>Vector containing current values of weights and biases</td>
</tr>
<tr>
<td>Pd</td>
<td>Delayed input vectors</td>
</tr>
<tr>
<td>Tl</td>
<td>Layer target vectors</td>
</tr>
<tr>
<td>Ai</td>
<td>Initial input delay conditions</td>
</tr>
<tr>
<td>Q</td>
<td>Batch size</td>
</tr>
<tr>
<td>TS</td>
<td>Time steps</td>
</tr>
<tr>
<td>dX</td>
<td>Search direction vector</td>
</tr>
<tr>
<td>gX</td>
<td>Gradient vector</td>
</tr>
<tr>
<td>perf</td>
<td>Performance value at current X</td>
</tr>
<tr>
<td>dperf</td>
<td>Slope of performance value at current X in direction of dX</td>
</tr>
<tr>
<td>\delta</td>
<td>Initial step size</td>
</tr>
<tr>
<td>\text{tol}</td>
<td>Tolerance on search</td>
</tr>
<tr>
<td>\text{ch_perf}</td>
<td>Change in performance on previous step</td>
</tr>
</tbody>
</table>

and returns

<table>
<thead>
<tr>
<th>Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Step size that minimizes performance</td>
</tr>
<tr>
<td>gX</td>
<td>Gradient at new minimum point</td>
</tr>
<tr>
<td>perf</td>
<td>Performance value at new minimum point</td>
</tr>
<tr>
<td>retcode</td>
<td>Return code that has three elements. The first two elements correspond to the number of function evaluations in the two stages of the search. The third element is a return code. These have different meanings for different search algorithms. Some might not be used in this function.</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>Normal</td>
</tr>
<tr>
<td>1</td>
<td>Minimum step taken</td>
</tr>
<tr>
<td>2</td>
<td>Maximum step taken</td>
</tr>
<tr>
<td>3</td>
<td>Beta condition not met</td>
</tr>
<tr>
<td>delta</td>
<td>New initial step size, based on the current step size</td>
</tr>
<tr>
<td>tol</td>
<td>New tolerance on search</td>
</tr>
</tbody>
</table>

Parameters used for the hybrid bisection-cubic algorithm are

<table>
<thead>
<tr>
<th>alpha</th>
<th>Scale factor that determines sufficient reduction in perf</th>
</tr>
</thead>
<tbody>
<tr>
<td>beta</td>
<td>Scale factor that determines sufficiently large step size</td>
</tr>
<tr>
<td>bmax</td>
<td>Largest step size</td>
</tr>
<tr>
<td>scale_tol</td>
<td>Parameter that relates the tolerance tol to the initial step size delta, usually set to 20</td>
</tr>
</tbody>
</table>

The defaults for these parameters are set in the training function that calls them. See traincfg, traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

<table>
<thead>
<tr>
<th>Pd</th>
<th>No-by-Ni-by-TS cell array Each element P{i,j,ts} is a Dij-by-Q matrix.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tl</td>
<td>Nl-by-TS cell array Each element P{i,ts} is a Vi-by-Q matrix.</td>
</tr>
<tr>
<td>Ai</td>
<td>Nl-by-LD cell array Each element Ai{i,k} is an Si-by-Q matrix.</td>
</tr>
</tbody>
</table>

where

<table>
<thead>
<tr>
<th>Ni</th>
<th>= net.numInputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nl</td>
<td>= net.numLayers</td>
</tr>
<tr>
<td>LD</td>
<td>= net.numLayerDelays</td>
</tr>
<tr>
<td>Ri</td>
<td>= net.inputs{i}.size</td>
</tr>
<tr>
<td>Si</td>
<td>= net.layers{i}.size</td>
</tr>
<tr>
<td>Vi</td>
<td>= net.targets{i}.size</td>
</tr>
<tr>
<td>Dij</td>
<td>= Ri * length(net.inputWeights{i,j}.delays)</td>
</tr>
</tbody>
</table>

More About

Hybrid Bisection Cubic Search

Like Brent’s search, srchhyb is a hybrid algorithm. It is a combination of bisection and cubic interpolation. For the bisection algorithm, one point is located in the interval of uncertainty, and the
performance and its derivative are computed. Based on this information, half of the interval of uncertainty is discarded. In the hybrid algorithm, a cubic interpolation of the function is obtained by using the value of the performance and its derivative at the two endpoints. If the minimum of the cubic interpolation falls within the known interval of uncertainty, then it is used to reduce the interval of uncertainty. Otherwise, a step of the bisection algorithm is used.

See [Scal85] for a complete description of the hybrid bisection-cubic search. This algorithm does require derivative information, so it performs more computations at each step of the algorithm than the golden section search or Brent’s algorithm.

Algorithms

srchhyb locates the minimum of the performance function in the search direction dX, using the hybrid bisection-cubic interpolation algorithm described on page 50 of Scales (see reference below).

References

See Also

srchbac | srchbre | srchcha | srchgol

Introduced before R2006a
sse

Sum squared error performance function

Syntax

```matlab
perf = sse(net,t,y,ew)
[...] = sse(...,'regularization',regularization)
[...] = sse(...,'normalization',normalization)
[...] = sse(...,FP)
```

Description

`sse` is a network performance function. It measures performance according to the sum of squared errors.

`perf = sse(net,t,y,ew)` takes these input arguments and optional function parameters,

<table>
<thead>
<tr>
<th>net</th>
<th>Neural network</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>Matrix or cell array of target vectors</td>
</tr>
<tr>
<td>y</td>
<td>Matrix or cell array of output vectors</td>
</tr>
<tr>
<td>ew</td>
<td>Error weights (default = {1})</td>
</tr>
</tbody>
</table>

and returns the sum squared error.

This function has two optional function parameters which can be defined with parameter name/pair arguments, or as a structure `FP` argument with fields having the parameter name and assigned the parameter values.

```matlab
[...] = sse(...,'regularization',regularization)
[...] = sse(...,'normalization',normalization)
[...] = sse(...,FP)
```

- **regularization** — can be set to any value between the default of 0 and 1. The greater the regularization value, the more squared weights and biases are taken into account in the performance calculation.
- **normalization**
 - 'none' — performs no normalization, the default.
 - 'standard' — normalizes outputs and targets to [-1, +1], and therefore normalizes errors to [-2, +2].
 - 'percent' — normalizes outputs and targets to [-0.5, +0.5], and therefore normalizes errors to [-1, +1].

Examples

Here a network is trained to fit a simple data set and its performance calculated
[x,t] = simplefit_dataset;
net = fitnet(10);
net.performFcn = 'sse';
net = train(net,x,t)
y = net(x)
e = t-y
perf = sse(net,t,y)

Network Use

To prepare a custom network to be trained with sse, set net.performFcn to 'sse'. This automatically sets net.performParam to the default function parameters.

Then calling train, adapt or perform will result in sse being used to calculate performance.

Introduced before R2006a
staticderiv

Static derivative function

Syntax

staticderiv('dperf_dwb',net,X,T,Xi,Ai,EW)
staticderiv('de_dwb',net,X,T,Xi,Ai,EW)

Description

This function calculates derivatives using the chain rule from the networks performance or outputs back to its inputs. For time series data and dynamic networks this function ignores the delay connections resulting in a approximation (which may be good or not) of the actual derivative. This function is used by Elman networks (elmannet) which is a dynamic network trained by the static derivative approximation when full derivative calculations are not available. As full derivatives are calculated by all the other derivative functions, this function is not recommended for dynamic networks except for research into training algorithms.

staticderiv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

<table>
<thead>
<tr>
<th>net</th>
<th>Neural network</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)</td>
</tr>
<tr>
<td>T</td>
<td>Targets, an SxQ matrix (or MxTS cell array of SixQ matrices)</td>
</tr>
<tr>
<td>Xi</td>
<td>Initial input delay states (optional)</td>
</tr>
<tr>
<td>Ai</td>
<td>Initial layer delay states (optional)</td>
</tr>
<tr>
<td>EW</td>
<td>Error weights (optional)</td>
</tr>
</tbody>
</table>

and returns the gradient of performance with respect to the network's weights and biases, where R and S are the number of input and output elements and Q is the number of samples (and N and M are the number of input and output signals, Ri and Si are the number of each input and outputs elements, and TS is the number of timesteps).

staticderiv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of errors with respect to the network's weights and biases.

Examples

Here a feedforward network is trained and both the gradient and Jacobian are calculated.

```
[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
gwb = staticderiv('dperf_dwb',net,x,t)
jwb = staticderiv('de_dwb',net,x,t)
```
See Also
bttderiv | defaultderiv | fpderiv | num2deriv

Introduced in R2010b
sumabs

Sum of absolute elements of matrix or matrices

Syntax

\[
[s,n] = \text{sumabs}(x)
\]

Description

\[
[s,n] = \text{sumabs}(x)
\]

takes a matrix or cell array of matrices and returns,

<table>
<thead>
<tr>
<th></th>
<th>Sum of all absolute finite values</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>Number of finite values</td>
</tr>
</tbody>
</table>

If \(x \) contains no finite values, the sum returned is 0.

Examples

\[
m = \text{sumabs}([1 \ 2; 3 \ 4])
\]

\[
[m,n] = \text{sumabs}({[1 \ 2; \text{NaN} \ 4], \ [4 \ 5; 2 \ 3]})
\]

See Also

meanabs | meansqr | sumsqr

Introduced in R2010b
sumsqr

Sum of squared elements of matrix or matrices

Syntax

\[[s,n] = \text{sumsqr}(x) \]

Description

\[[s,n] = \text{sumsqr}(x) \]

takes a matrix or cell array of matrices, \(x \), and returns the sum, \(s \), of all squared finite values in \(x \), and the number of finite values, \(n \).

If \(x \) does not contain finite values, the sum returned is 0.

Examples

Calculate the Sum of Squared Elements Using the sumsqr Function

This example shows how to calculate the sum of squared elements of a matrix and a cell array using the sumsqr function.

\[
\begin{align*}
m &= \text{sumsqr}([1 \ 2; 3 \ 4]) \\
m &= 30 \\
[m,n] &= \text{sumsqr}({[1 \ 2; \text{NaN} \ 4], \ [4 \ 5; 2 \ 3]}) \\
m &= 75 \\
n &= 7
\end{align*}
\]

Input Arguments

\(x \) — Input matrix

matrix | cell array of matrices

Input elements, specified as a matrix or cell array of matrices.

Output Arguments

\(s \) — Sum of squared elements

scalar

Sum of all squared elements in \(x \), returned as a scalar.

\(n \) — Number of finite values

scalar

Number of finite values in \(x \), returned as a scalar.
See Also
meanabs | meansqr | sumabs

Introduced before R2006a
tansig

Hyperbolic tangent sigmoid transfer function

Graph and Symbol

\[a = \text{tansig}(n) \]

Tan-Sigmoid Transfer Function

Syntax

\[A = \text{tansig}(N,\text{FP}) \]

Description

tansig is a neural transfer function. Transfer functions calculate a layer's output from its net input.

\[A = \text{tansig}(N,\text{FP}) \] takes \(N \) and optional function parameters,

<table>
<thead>
<tr>
<th>(N)</th>
<th>S-by-Q matrix of net input (column) vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{FP})</td>
<td>Struct of function parameters (ignored)</td>
</tr>
</tbody>
</table>

and returns \(A \), the S-by-Q matrix of \(N \)'s elements squashed into \([-1, 1]\).

Examples

Here is the code to create a plot of the tansig transfer function.

\[
\begin{align*}
\text{n} &= -5:0.1:5; \\
\text{a} &= \text{tansig}(\text{n}); \\
\text{plot}(\text{n}, \text{a})
\end{align*}
\]

Assign this transfer function to layer \(i \) of a network.

\[
\text{net.layers}\{i\}.\text{transferFcn} = \text{'}tansig'\;
\]

Algorithms

\[a = \frac{2}{1+\exp(-2n)} - 1 \]

This is mathematically equivalent to \(\text{tanh}(N) \). It differs in that it runs faster than the MATLAB implementation of \(\text{tanh} \), but the results can have very small numerical differences. This function is a good tradeoff for neural networks, where speed is important and the exact shape of the transfer function is not.
References

See Also

logsig | sim

Introduced before R2006a
tapdelay

Shift neural network time series data for tap delay

Syntax

tapdelay(x,i,ts,delays)

Description

tapdelay(x,i,ts,delays) takes these arguments,

<table>
<thead>
<tr>
<th>x</th>
<th>Neural network time series data</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Signal index</td>
</tr>
<tr>
<td>ts</td>
<td>Timestep index</td>
</tr>
<tr>
<td>delays</td>
<td>Row vector of increasing zero or positive delays</td>
</tr>
</tbody>
</table>

and returns the tap delay values of signal i at timestep ts given the specified tap delays.

Examples

Here a random signal x consisting of eight timesteps is defined, and a tap delay with delays of [0 1 4] is simulated at timestep 6.

\[
x = \text{num2cell(rand}(1,8));
y = \text{tapdelay}(x,1,6,[0 1 4])
\]

See Also

extendts | nndata | preparets

Introduced in R2010b
timedelaynet

Time delay neural network

Syntax

timedelaynet(inputDelays,hiddenSizes,trainFcn)

Description

Time delay networks are similar to feedforward networks, except that the input weight has a tap delay line associated with it. This allows the network to have a finite dynamic response to time series input data. This network is also similar to the distributed delay neural network (distdelaynet), which has delays on the layer weights in addition to the input weight.

timedelaynet(inputDelays,hiddenSizes,trainFcn) takes these arguments,

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>inputDelays</td>
<td>Row vector of increasing 0 or positive delays (default = 1:2)</td>
</tr>
<tr>
<td>hiddenSizes</td>
<td>Row vector of one or more hidden layer sizes (default = 10)</td>
</tr>
<tr>
<td>trainFcn</td>
<td>Training function (default = 'trainlm')</td>
</tr>
</tbody>
</table>

and returns a time delay neural network.

Examples

Train Time Delay Network and Predict on New Data

Partition the training set. Use Xnew to do prediction in closed loop mode later.

[X,T] = simpleseries_dataset;
Xnew = X(81:100);
X = X(1:80);
T = T(1:80);

Train a time delay network, and simulate it on the first 80 observations.

net = timedelaynet(1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Calculate the network performance.

\[
[Y, Xf, Af] = \text{net}(Xs, Xi, Ai);
\]
\[
\text{perf} = \text{perform}(\text{net}, Ts, Y);
\]

Run the prediction for 20 timesteps ahead in closed loop mode.

\[
[\text{netc}, Xic, Aic] = \text{closeloop}(\text{net}, Xf, Af);
\]
\[
\text{view}(\text{netc})
\]

\[
y2 = \text{netc}(Xnew, Xic, Aic);
\]

See Also

distdelaynet | narnet | narxnet | preparets | removedelay

Introduced in R2010b
tonndata

Convert data to standard neural network cell array form

Syntax

\[[y,\text{wasMatrix}] = \text{tonndata}(x,\text{columnSamples},\text{cellTime}) \]

Description

\[[y,\text{wasMatrix}] = \text{tonndata}(x,\text{columnSamples},\text{cellTime}) \]
takes these arguments,
\[x \]
Matrix or cell array of matrices
\[\text{columnSamples} \]
True if original samples are oriented as columns, false if rows
\[\text{cellTime} \]
True if original samples are columns of a cell array, false if they are stored in a matrix

and returns
\[y \]
Original data transformed into standard neural network cell array form
\[\text{wasMatrix} \]
True if original data was a matrix (as opposed to cell array)

If \(\text{columnSamples} \) is false, then matrix \(x \) or matrices in cell array \(x \) will be transposed, so row samples will now be stored as column vectors.

If \(\text{cellTime} \) is false, then matrix samples will be separated into columns of a cell array so time originally represented as vectors in a matrix will now be represented as columns of a cell array.

The returned value \(\text{wasMatrix} \) can be used by \text{fromnndata} to reverse the transformation.

Examples

Here data consisting of six timesteps of 5-element vectors, originally represented as a matrix with six columns, is converted to standard neural network representation and back.

\[x = \text{rands}(5,6) \]
\[\text{columnSamples} = \text{true}; \quad \% \text{ samples are by columns.} \]
\[\text{cellTime} = \text{false}; \quad \% \text{ time-steps in matrix, not cell array.} \]
\[[y,\text{wasMatrix}] = \text{tonndata}(x,\text{columnSamples},\text{cellTime}) \]
\[x2 = \text{fromnndata}(y,\text{wasMatrix},\text{columnSamples},\text{cellTime}) \]

See Also

fromnndata | nndata | nndata2sim | sim2nndata

Introduced in R2010b
train

Train shallow neural network

Syntax

trainedNet = train(net,X,T,Xi,Ai,EW)

[trainedNet,tr] = train(net,X,T,Xi,Ai,EW)

[trainedNet,tr] = train(net,X,T,Xi,Ai,EW,Name,Value)

Description

This function trains a shallow neural network. For deep learning with convolutional or LSTM neural networks, see `trainNetwork` instead.

trainedNet = train(net,X,T,Xi,Ai,EW) trains a network `net` according to `net.trainFcn` and `net.trainParam`.

[trainedNet,tr] = train(net,X,T,Xi,Ai,EW) also returns a training record.

[trainedNet,tr] = train(net,X,T,Xi,Ai,EW,Name,Value) trains a network with additional options specified by one or more name-value pair arguments.

Examples

Train and Plot Networks

Here input `x` and targets `t` define a simple function that you can plot:

```matlab
x = [0 1 2 3 4 5 6 7 8];
t = [0 0.84 0.91 0.14 -0.77 -0.96 -0.28 0.66 0.99];
plot(x,t,'o')
```

Here `feedforwardnet` creates a two-layer feed-forward network. The network has one hidden layer with ten neurons.

```matlab
net = feedforwardnet(10);
net = configure(net,x,t);
y1 = net(x)
pplot(x,t,'o',x,y1,'x')
```

The network is trained and then resimulated.

```matlab
net = train(net,x,t);
y2 = net(x)
pplot(x,t,'o',x,y1,'x',x,y2,'*')
```

Train NARX Time Series Network

This example trains an open-loop nonlinear-autoregressive network with external input, to model a levitated magnet system defined by a control current `x` and the magnet’s vertical position response `t`,

```matlab
```
then simulates the network. The function `preparets` prepares the data before training and simulation. It creates the open-loop network's combined inputs x_o, which contains both the external input x and previous values of position t. It also prepares the delay states x_i.

```matlab
[x,t] = maglev_dataset;
net = narxnet(10);
[xo,xi,~,to] = preparets(net,x,{},t);
net = train(net,xo,to,xi);
y = net(xo,xi)
```

This same system can also be simulated in closed-loop form.

```matlab
netc = closeloop(net);
view(netc)
[xc,xi,ai,tc] = preparets(netc,x,{},t);
yc = netc(xc,xi,ai);
```

Train a Network in Parallel on a Parallel Pool

Parallel Computing Toolbox allows Deep Learning Toolbox to simulate and train networks faster and on larger datasets than can fit on one PC. Parallel training is currently supported for backpropagation training only, not for self-organizing maps.

Here training and simulation happens across parallel MATLAB workers.

```matlab
parpool
[X,T] = vinyl_dataset;
net = feedforwardnet(10);
et = train(net,X,T,'useParallel','yes','showResources','yes');
Y = net(X);
```

Use Composite values to distribute the data manually, and get back the results as a Composite value. If the data is loaded as it is distributed then while each piece of the dataset must fit in RAM, the entire dataset is limited only by the total RAM of all the workers.

```matlab
[X,T] = vinyl_dataset;
Q = size(X,2);
Xc = Composite;
Tc = Composite;
numWorkers = numel(Xc);
ind = [0 ceil((1:numWorkers)*(Q/numWorkers))];
for i=1:numWorkers
    indi = (ind(i)+1):ind(i+1);
    Xc{i} = X(:,indi);
    Tc{i} = T(:,indi);
end
net = feedforwardnet;
net = configure(net,X,T);
et = train(net,Xc,Tc);
Yc = net(Xc);
```

Note in the example above the function `configure` was used to set the dimensions and processing settings of the network's inputs. This normally happens automatically when `train` is called, but when providing composite data this step must be done manually with non-Composite data.
Train a Network on GPUs

Networks can be trained using the current GPU device, if it is supported by Parallel Computing Toolbox. GPU training is currently supported for backpropagation training only, not for self-organizing maps.

```matlab
[X,T] = vinyl_dataset;
net = feedforwardnet(10);
net = train(net,X,T,'useGPU','yes');
y = net(X);
```

To put the data on a GPU manually:

```matlab
[X,T] = vinyl_dataset;
Xgpu = gpuArray(X);
Tgpu = gpuArray(T);
net = configure(net,X,T);
net = train(net,Xgpu,Tgpu);
Ygpu = net(Xgpu);
Y = gather(Ygpu);
```

Note in the example above the function `configure` was used to set the dimensions and processing settings of the network's inputs. This normally happens automatically when `train` is called, but when providing `gpuArray` data this step must be done manually with non-`gpuArray` data.

To run in parallel, with workers each assigned to a different unique GPU, with extra workers running on CPU:

```matlab
net = train(net,X,T,'useParallel','yes','useGPU','yes');
y = net(X);
```

Using only workers with unique GPUs might result in higher speed, as CPU workers might not keep up.

```matlab
net = train(net,X,T,'useParallel','yes','useGPU','only');
Y = net(X);
```

Train Network Using Checkpoint Saves

Here a network is trained with checkpoints saved at a rate no greater than once every two minutes.

```matlab
[x,t] = vinyl_dataset;
net = fitnet([60 30]);
net = train(net,x,t,'CheckpointFile','MyCheckpoint','CheckpointDelay',120);
```

After a computer failure, the latest network can be recovered and used to continue training from the point of failure. The checkpoint file includes a structure variable `checkpoint`, which includes the network, training record, filename, time, and number.

```matlab
[x,t] = vinyl_dataset;
load MyCheckpoint
net = checkpoint.net;
net = train(net,x,t,'CheckpointFile','MyCheckpoint');
```

Another use for the checkpoint feature is when you stop a parallel training session (started with the `'UseParallel'` parameter) even though the Neural Network Training Tool is not available during
parallel training. In this case, set a ‘CheckpointFile’, use Ctrl+C to stop training any time, then load your checkpoint file to get the network and training record.

Input Arguments

net — Input network

`network` object

Input network, specified as a `network` object. To create a `network` object, use for example, `feedforwardnet` or `narxnet`.

X — Network inputs

matrix | cell array | composite data | gpuArray

Network inputs, specified as an \(R \)-by-\(Q \) matrix or an \(Ni \)-by-\(TS \) cell array, where

- \(R \) is the input size
- \(Q \) is the batch size
- \(Ni = net.numInputs \)
- \(TS \) is the number of time steps

`train` arguments can have two formats: matrices, for static problems and networks with single inputs and outputs, and cell arrays for multiple timesteps and networks with multiple inputs and outputs.

- The matrix format can be used if only one time step is to be simulated (\(TS = 1 \)). It is convenient for networks with only one input and output, but can be used with networks that have more. When the network has multiple inputs, the matrix size is (sum of \(Ri \))-by-\(Q \).
- The cell array format is more general, and more convenient for networks with multiple inputs and outputs, allowing sequences of inputs to be presented. Each element \(X{i,ts} \) is an \(Ri \)-by-\(Q \) matrix, where \(Ri = net.inputs{i}.size \).

If Composite data is used, then `useParallel` is automatically set to 'yes'. The function takes Composite data and returns Composite results.

If gpuArray data is used, then `useGPU` is automatically set to 'yes'. The function takes gpuArray data and returns gpuArray results.

Note If a column of \(X \) contains at least one NaN, `train` does not use that column for training, testing, or validation. If a target value in \(T \) is a NaN, then `train` ignores that row, and uses the other rows for training, testing, or validation.

T — Network targets

zeros (default) | matrix | cell array | composite data | gpuArray

Network targets, specified as a \(U \)-by-\(Q \) matrix or an \(No \)-by-\(TS \) cell array, where

- \(U \) is the output size
- \(Q \) is the batch size
- \(No = net.numOutputs \)
• **TS** is the number of time steps

train arguments can have two formats: matrices, for static problems and networks with single inputs and outputs, and cell arrays for multiple timesteps and networks with multiple inputs and outputs.

- The matrix format can be used if only one time step is to be simulated (\(TS = 1\)). It is convenient for networks with only one input and output, but can be used with networks that have more. When the network has multiple inputs, the matrix size is \((\text{sum of } \text{U}i)-by-\text{Q}\).

- The cell array format is more general, and more convenient for networks with multiple inputs and outputs, allowing sequences of inputs to be presented. Each element \(T\{i,ts\}\) is a \(\text{U}i\)-by-\(\text{Q}\) matrix, where \(\text{U}i = \text{net.outputs}\{i\}.\text{size}\).

If Composite data is used, then '*useParallel'* is automatically set to '*yes*'. The function takes Composite data and returns Composite results.

If gpuArray data is used, then '*useGPU*' is automatically set to '*yes*'. The function takes gpuArray data and returns gpuArray results.

Note that \(T\) is optional and need only be used for networks that require targets.

Note Any NaN values in the inputs \(X\) or the targets \(T\), are treated as missing data. If a column of \(X\) or \(T\) contains at least one NaN, that column is not used for training, testing, or validation.

Xi — Initial input delay conditions

zeros (default) | cell array | matrix

Initial input delay conditions, specified as an \(\text{Ni}\)-by-\(\text{ID}\) cell array or an \(\text{R}\)-by-\((\text{ID}\times\text{Q})\) matrix, where

- \(\text{ID} = \text{net.numInputDelays}\)
- \(\text{Ni} = \text{net.numInputs}\)
- \(\text{R}\) is the input size
- \(\text{Q}\) is the batch size

For cell array input, the columns of \(Xi\) are ordered from the oldest delay condition to the most recent: \(Xi\{i,k\}\) is the input \(i\) at time \(ts = k - \text{ID}\).

\(Xi\) is also optional and need only be used for networks that have input or layer delays.

Ai — Initial layer delay conditions

zeros (default) | cell array | matrix

Initial layer delay conditions, specified as a \(\text{Nl}\)-by-\(\text{LD}\) cell array or a \((\text{sum of } \text{Si})\)-by-\((\text{LD}\times\text{Q})\) matrix, where

- \(\text{Nl} = \text{net.numLayers}\)
- \(\text{LD} = \text{net.numLayerDelays}\)
- \(\text{Si} = \text{net.layers}\{i\}.\text{size}\)
- \(\text{Q}\) is the batch size
For cell array input, the columns of \(A_i \) are ordered from the oldest delay condition to the most recent: \(A_i\{i,k\} \) is the layer output \(i \) at time \(t_s = k - LD \).

EW — Error weights

cell array

Error weights, specified as a \(No \)-by-\(TS \) cell array or a (sum of \(U_i \))-by-\(Q \) matrix, where

- \(No = \) net.numOutputs
- \(TS \) is the number of time steps
- \(U_i = \) net.outputs\{i\}.size
- \(Q \) is the batch size

For cell array input, each element \(EW\{i,ts\} \) is a \(U_i \)-by-\(Q \) matrix, where

- \(U_i = \) net.outputs\{i\}.size
- \(Q \) is the batch size

The error weights \(EW \) can also have a size of 1 in place of all or any of \(No, TS, U_i \) or \(Q \). In that case, \(EW \) is automatically dimension extended to match the targets \(T \). This allows for conveniently weighting the importance in any dimension (such as per sample) while having equal importance across another (such as time, with \(TS=1 \)). If all dimensions are 1, for instance if \(EW = \{1\} \), then all target values are treated with the same importance. That is the default value of \(EW \).

As noted above, the error weights \(EW \) can be of the same dimensions as the targets \(T \), or have some dimensions set to 1. For instance if \(EW \) is 1-by-\(Q \), then target samples will have different importances, but each element in a sample will have the same importance. If \(EW \) is (sum of \(U_i \))-by-1, then each output element has a different importance, with all samples treated with the same importance.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1,...,NameN, ValueN.

Example: ‘useParallel’, ‘yes’

useParallel — Option to specify parallel calculations

‘no’ (default) | ‘yes’

Option to specify parallel calculations, specified as ‘yes’ or ‘no’.

- ‘no’ - Calculations occur on normal MATLAB thread. This is the default ‘useParallel’ setting.
- ‘yes’ - Calculations occur on parallel workers if a parallel pool is open. Otherwise calculations occur on the normal MATLAB thread.

useGPU — Option to specify GPU calculations

‘no’ (default) | ‘yes’ | ‘only’

Option to specify GPU calculations, specified as ‘yes’, ‘no’, or ‘only’.

- ‘no’ - Calculations occur on the CPU. This is the default ‘useGPU’ setting.
- ‘yes’ - Calculations occur on the current \(gpuDevice \) if it is a supported GPU (See Parallel Computing Toolbox for GPU requirements.) If the current \(gpuDevice \) is not supported,
calculations remain on the CPU. If `useParallel` is also `yes` and a parallel pool is open, then each worker with a unique GPU uses that GPU, other workers run calculations on their respective CPU cores.

- `only` – If no parallel pool is open, then this setting is the same as `yes`. If a parallel pool is open then only workers with unique GPUs are used. However, if a parallel pool is open, but no supported GPUs are available, then calculations revert to performing on all worker CPUs.

showResources — Option to show resources

- `no` (default) | `yes`

Option to show resources, specified as `yes` or `no`.

- `no` – Do not display computing resources used at the command line. This is the default setting.
- `yes` – Show at the command line a summary of the computing resources actually used. The actual resources may differ from the requested resources, if parallel or GPU computing is requested but a parallel pool is not open or a supported GPU is not available. When parallel workers are used, each worker's computation mode is described, including workers in the pool that are not used.

reduction — Memory reduction

- `1` (default) | positive integer

Memory reduction, specified as a positive integer.

For most neural networks, the default CPU training computation mode is a compiled MEX algorithm. However, for large networks the calculations might occur with a MATLAB calculation mode. This can be confirmed using `showResources`. If MATLAB is being used and memory is an issue, setting the reduction option to a value N greater than 1, reduces much of the temporary storage required to train by a factor of N, in exchange for longer training times.

CheckpointFile — Checkpoint file

- `''` (default) | character vector

Checkpoint file, specified as a character vector.

The value for `CheckpointFile` can be set to a filename to save in the current working folder, to a file path in another folder, or to an empty string to disable checkpoint saves (the default value).

CheckpointDelay — Checkpoint delay

- `60` (default) | nonnegative integer

Checkpoint delay, specified as a nonnegative integer.

The optional parameter `CheckpointDelay` limits how often saves happen. Limiting the frequency of checkpoints can improve efficiency by keeping the amount of time saving checkpoints low compared to the time spent in calculations. It has a default value of 60, which means that checkpoint saves do not happen more than once per minute. Set the value of `CheckpointDelay` to 0 if you want checkpoint saves to occur only once every epoch.

Output Arguments

trainedNet — Trained network

- network object

2-392
Trained network, returned as a network object.

tr — Training record
structure

Training record (epoch and perf), returned as a structure whose fields depend on the network training function (net.NET.trainFcn). It can include fields such as:

- Training, data division, and performance functions and parameters
- Data division indices for training, validation and test sets
- Data division masks for training validation and test sets
- Number of epochs (num_epochs) and the best epoch (best_epoch).
- A list of training state names (states).
- Fields for each state name recording its value throughout training
- Performances of the best network (best_perf, best_vperf, best_tperf)

Algorithms

train calls the function indicated by net.trainFcn, using the training parameter values indicated by net.trainParam.

Typically one epoch of training is defined as a single presentation of all input vectors to the network. The network is then updated according to the results of all those presentations.

Training occurs until a maximum number of epochs occurs, the performance goal is met, or any other stopping condition of the function net.trainFcn occurs.

Some training functions depart from this norm by presenting only one input vector (or sequence) each epoch. An input vector (or sequence) is chosen randomly for each epoch from concurrent input vectors (or sequences). competlayer returns networks that use trainru, a training function that does this.

See Also

adapt | init | revert | sim

Introduced before R2006a
trainb

Batch training with weight and bias learning rules

Syntax

```matlab
net.trainFcn = 'trainb'
[net,tr] = train(net,...)
```

Description

`trainb` is not called directly. Instead it is called by `train` for networks whose `net.trainFcn` property is set to `'trainb'`, thus:

- `net.trainFcn = 'trainb'` sets the network `trainFcn` property.
- `[net,tr] = train(net,...)` trains the network with `trainb`.

`trainb` trains a network with weight and bias learning rules with batch updates. The weights and biases are updated at the end of an entire pass through the input data.

Training occurs according to `trainb`'s training parameters, shown here with their default values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>net.trainParam.epochs</code></td>
<td>1000</td>
<td>Maximum number of epochs to train</td>
</tr>
<tr>
<td><code>net.trainParam.goal</code></td>
<td>0</td>
<td>Performance goal</td>
</tr>
<tr>
<td><code>net.trainParam.max_fail</code></td>
<td>6</td>
<td>Maximum validation failures</td>
</tr>
<tr>
<td><code>net.trainParam.min_grad</code></td>
<td>1e-6</td>
<td>Minimum performance gradient</td>
</tr>
<tr>
<td><code>net.trainParam.show</code></td>
<td>25</td>
<td>Epochs between displays (NaN for no displays)</td>
</tr>
<tr>
<td><code>net.trainParam.showCommandLine</code></td>
<td>false</td>
<td>Generate command-line output</td>
</tr>
<tr>
<td><code>net.trainParam.showWindow</code></td>
<td>true</td>
<td>Show training GUI</td>
</tr>
<tr>
<td><code>net.trainParam.time</code></td>
<td>inf</td>
<td>Maximum time to train in seconds</td>
</tr>
</tbody>
</table>

Network Use

You can create a standard network that uses `trainb` by calling `linearlayer`.

To prepare a custom network to be trained with `trainb`,

1. Set `net.trainFcn` to `'trainb'`. This sets `net.trainParam` to `trainb`'s default parameters.
2. Set each `net.inputWeights{i,j}.learnFcn` to a learning function. Set each `net.layerWeights{i,j}.learnFcn` to a learning function. Set each `net.biases{i}.learnFcn` to a learning function. (Weight and bias learning parameters are automatically set to default values for the given learning function.)

To train the network,

1. Set `net.trainParam` properties to desired values.
2 Set weight and bias learning parameters to desired values.
3 Call `train`.

Algorithms

Each weight and bias is updated according to its learning function after each epoch (one pass through the entire set of input vectors).

Training stops when any of these conditions is met:

- The maximum number of epochs (repetitions) is reached.
- Performance is minimized to the goal.
- The maximum amount of time is exceeded.
- Validation performance has increased more than `max_fail` times since the last time it decreased (when using validation).

See Also

`linearlayer | train`

Introduced before R2006a
trainbfg

BFGS quasi-Newton backpropagation

Syntax

```matlab
net.trainFcn = 'trainbfg'
[net,tr] = train(net,...)
```

Description

`trainbfg` is a network training function that updates weight and bias values according to the BFGS quasi-Newton method.

`net.trainFcn = 'trainbfg'` sets the network `trainFcn` property.

`[net,tr] = train(net,...)` trains the network with `trainbfg`.

Training occurs according to `trainbfg` training parameters, shown here with their default values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>net.trainParam.epochs</code></td>
<td>1000</td>
<td>Maximum number of epochs to train</td>
</tr>
<tr>
<td><code>net.trainParam.showWindow</code></td>
<td>true</td>
<td>Show training window</td>
</tr>
<tr>
<td><code>net.trainParam.show</code></td>
<td>25</td>
<td>Epochs between displays (NaN for no displays)</td>
</tr>
<tr>
<td><code>net.trainParam.showCommandLine</code></td>
<td>false</td>
<td>Generate command-line output</td>
</tr>
<tr>
<td><code>net.trainParam.goal</code></td>
<td>0</td>
<td>Performance goal</td>
</tr>
<tr>
<td><code>net.trainParam.time</code></td>
<td>inf</td>
<td>Maximum time to train in seconds</td>
</tr>
<tr>
<td><code>net.trainParam.min_grad</code></td>
<td>1e-6</td>
<td>Minimum performance gradient</td>
</tr>
<tr>
<td><code>net.trainParam.max_fail</code></td>
<td>6</td>
<td>Maximum validation failures</td>
</tr>
<tr>
<td><code>net.trainParam.searchFcn</code></td>
<td>'srchbac'</td>
<td>Name of line search routine to use</td>
</tr>
</tbody>
</table>

Parameters related to line search methods (not all used for all methods):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>net.trainParam.scal_tol</code></td>
<td>20</td>
<td>Divide into <code>delta</code> to determine tolerance for linear search.</td>
</tr>
<tr>
<td><code>net.trainParam.alpha</code></td>
<td>0.001</td>
<td>Scale factor that determines sufficient reduction in <code>perf</code></td>
</tr>
<tr>
<td><code>net.trainParam.beta</code></td>
<td>0.1</td>
<td>Scale factor that determines sufficiently large step size</td>
</tr>
<tr>
<td><code>net.trainParam.delta</code></td>
<td>0.01</td>
<td>Initial step size in interval location step</td>
</tr>
<tr>
<td><code>net.trainParam.gama</code></td>
<td>0.1</td>
<td>Parameter to avoid small reductions in performance, usually set to 0.1 (see <code>srch_cha</code>)</td>
</tr>
<tr>
<td><code>net.trainParam.low_lim</code></td>
<td>0.1</td>
<td>Lower limit on change in step size</td>
</tr>
<tr>
<td><code>net.trainParam.up_lim</code></td>
<td>0.5</td>
<td>Upper limit on change in step size</td>
</tr>
<tr>
<td><code>net.trainParam.maxstep</code></td>
<td>100</td>
<td>Maximum step length</td>
</tr>
<tr>
<td><code>net.trainParam.minstep</code></td>
<td>1.0e-6</td>
<td>Minimum step length</td>
</tr>
</tbody>
</table>
Network Use

You can create a standard network that uses trainbfg with feedforwardnet or cascadeforwardnet. To prepare a custom network to be trained with trainbfg:

1. Set NET.trainFcn to 'trainbfg'. This sets NET.trainParam to trainbfg's default parameters.
2. Set NET.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with trainbfg.

Examples

Train Neural Network Using trainbfg Train Function

This example shows how to train a neural network using the trainbfg train function.

Here a neural network is trained to predict body fat percentages.

```matlab
[x, t] = bodyfat_dataset;
net = feedforwardnet(10, 'trainbfg');
net = train(net, x, t);
y = net(x);
```

More About

BFGS Quasi-Newton Backpropagation

Newton’s method is an alternative to the conjugate gradient methods for fast optimization. The basic step of Newton’s method is

\[x_{k+1} = x_k - A_k^{-1}g_k \]

where \(A_k^{-1} \) is the Hessian matrix (second derivatives) of the performance index at the current values of the weights and biases. Newton’s method often converges faster than conjugate gradient methods. Unfortunately, it is complex and expensive to compute the Hessian matrix for feedforward neural networks. There is a class of algorithms that is based on Newton’s method, but which does not require calculation of second derivatives. These are called quasi-Newton (or secant) methods. They update an approximate Hessian matrix at each iteration of the algorithm. The update is computed as a function of the gradient. The quasi-Newton method that has been most successful in published studies is the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update. This algorithm is implemented in the trainbfg routine.
The BFGS algorithm is described in [DeSc83]. This algorithm requires more computation in each iteration and more storage than the conjugate gradient methods, although it generally converges in fewer iterations. The approximate Hessian must be stored, and its dimension is $n \times n$, where n is equal to the number of weights and biases in the network. For very large networks it might be better to use Rprop or one of the conjugate gradient algorithms. For smaller networks, however, `trainbfg` can be an efficient training function.

Algorithms

`trainbfg` can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance `perf` with respect to the weight and bias variables X. Each variable is adjusted according to the following:

$$X = X + a \cdot dX;$$

where dX is the search direction. The parameter a is selected to minimize the performance along the search direction. The line search function `searchFcn` is used to locate the minimum point. The first search direction is the negative of the gradient of performance. In succeeding iterations the search direction is computed according to the following formula:

$$dX = -H \cdot gX;$$

where gX is the gradient and H is an approximate Hessian matrix. See page 119 of Gill, Murray, and Wright (*Practical Optimization*, 1981) for a more detailed discussion of the BFGS quasi-Newton method.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below `min_grad`.
- Validation performance has increased more than `max_fail` times since the last time it decreased (when using validation).

References

See Also

`cascadeforwardnet` | `feedforwardnet` | `traincgb` | `traincfg` | `traincgp` | `traingda` | `traingdm` | `traingdx` | `trainlm` | `trainoss` | `trainrp` | `trainscg`
trainbfgc

BFGS quasi-Newton backpropagation for use with NN model reference adaptive controller

Syntax

\[
[\text{net}, \text{TR}, \text{Y}, \text{E}, \text{Pf}, \text{Af}, \text{flag_stop}] = \text{trainbfgc}(\text{net}, \text{P}, \text{T}, \text{Pi}, \text{Ai}, \text{epochs}, \text{TS}, \text{Q})
\]

\[
\text{info} = \text{trainbfgc}(\text{code})
\]

Description

`trainbfgc` is a network training function that updates weight and bias values according to the BFGS quasi-Newton method. This function is called from `nnmodref`, a GUI for the model reference adaptive control Simulink block.

\[
[\text{net}, \text{TR}, \text{Y}, \text{E}, \text{Pf}, \text{Af}, \text{flag_stop}] = \text{trainbfgc}(\text{net}, \text{P}, \text{T}, \text{Pi}, \text{Ai}, \text{epochs}, \text{TS}, \text{Q})
\]

takes these inputs,

<table>
<thead>
<tr>
<th>net</th>
<th>Neural network</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Delayed input vectors</td>
</tr>
<tr>
<td>T</td>
<td>Layer target vectors</td>
</tr>
<tr>
<td>Pi</td>
<td>Initial input delay conditions</td>
</tr>
<tr>
<td>Ai</td>
<td>Initial layer delay conditions</td>
</tr>
<tr>
<td>epochs</td>
<td>Number of iterations for training</td>
</tr>
<tr>
<td>TS</td>
<td>Time steps</td>
</tr>
<tr>
<td>Q</td>
<td>Batch size</td>
</tr>
</tbody>
</table>

and returns

<table>
<thead>
<tr>
<th>net</th>
<th>Trained network</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR</td>
<td>Training record of various values over each epoch:</td>
</tr>
<tr>
<td></td>
<td>\text{TR._epoch} Epoch number</td>
</tr>
<tr>
<td></td>
<td>\text{TR._perf} Training performance</td>
</tr>
<tr>
<td></td>
<td>\text{TR._vperf} Validation performance</td>
</tr>
<tr>
<td></td>
<td>\text{TR._tperf} Test performance</td>
</tr>
<tr>
<td>Y</td>
<td>Network output for last epoch</td>
</tr>
<tr>
<td>E</td>
<td>Layer errors for last epoch</td>
</tr>
<tr>
<td>Pf</td>
<td>Final input delay conditions</td>
</tr>
<tr>
<td>Af</td>
<td>Collective layer outputs for last epoch</td>
</tr>
<tr>
<td>flag_stop</td>
<td>Indicates if the user stopped the training</td>
</tr>
</tbody>
</table>

Training occurs according to `trainbfgc`'s training parameters, shown here with their default values:
net.trainParam.epochs 100 Maximum number of epochs to train
net.trainParam.show 25 Epochs between displays (NaN for no displays)
net.trainParam.goal 0 Performance goal
net.trainParam.time inf Maximum time to train in seconds
net.trainParam.min_grad 1e-6 Minimum performance gradient
net.trainParam.max_fail 5 Maximum validation failures
net.trainParam.searchFcn 'srchbacx' Name of line search routine to use

Parameters related to line search methods (not all used for all methods):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>net.trainParam.scal_tol</td>
<td>20</td>
<td>Divide into delta to determine tolerance for linear search.</td>
</tr>
<tr>
<td>net.trainParam.alpha</td>
<td>0.001</td>
<td>Scale factor that determines sufficient reduction in perf</td>
</tr>
<tr>
<td>net.trainParam.beta</td>
<td>0.1</td>
<td>Scale factor that determines sufficiently large step size</td>
</tr>
<tr>
<td>net.trainParam.delta</td>
<td>0.01</td>
<td>Initial step size in interval location step</td>
</tr>
<tr>
<td>net.trainParam.gama</td>
<td>0.1</td>
<td>Parameter to avoid small reductions in performance, usually set to 0.1 (see srch_cha)</td>
</tr>
<tr>
<td>net.trainParam.low_lim</td>
<td>0.1</td>
<td>Lower limit on change in step size</td>
</tr>
<tr>
<td>net.trainParam.up_lim</td>
<td>0.5</td>
<td>Upper limit on change in step size</td>
</tr>
<tr>
<td>net.trainParam.maxstep</td>
<td>100</td>
<td>Maximum step length</td>
</tr>
<tr>
<td>net.trainParam.minstep</td>
<td>1.0e-6</td>
<td>Minimum step length</td>
</tr>
<tr>
<td>net.trainParam.bmax</td>
<td>26</td>
<td>Maximum step size</td>
</tr>
</tbody>
</table>

info = trainbfgc(code) returns useful information for each code character vector:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'pnames'</td>
<td>Names of training parameters</td>
<td></td>
</tr>
<tr>
<td>'pdefaults'</td>
<td>Default training parameters</td>
<td></td>
</tr>
</tbody>
</table>

Algorithms

trainbfgc can train any network as long as its weight, net input, and transfer functions have derivative functions. Backpropagation is used to calculate derivatives of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to the following:

\[X = X + a \cdot dX; \]

where dX is the search direction. The parameter a is selected to minimize the performance along the search direction. The line search function searchFcn is used to locate the minimum point. The first search direction is the negative of the gradient of performance. In succeeding iterations the search direction is computed according to the following formula:

\[dX = -H \cdot gX; \]

where gX is the gradient and H is an approximate Hessian matrix. See page 119 of Gill, Murray, and Wright (Practical Optimization, 1981) for a more detailed discussion of the BFGS quasi-Newton method.
Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_{grad}.
- Precision problems have occurred in the matrix inversion.

References

Introduced in R2006a
trainbr

Bayesian regularization backpropagation

Syntax

net.trainFcn = 'trainbr'
[net,tr] = train(net,...)

Description

trainbr is a network training function that updates the weight and bias values according to
Levenberg-Marquardt optimization. It minimizes a combination of squared errors and weights, and
then determines the correct combination so as to produce a network that generalizes well. The
process is called Bayesian regularization.

net.trainFcn = 'trainbr' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainbr.

Training occurs according to trainbr training parameters, shown here with their default values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>net.trainParam.epochs</td>
<td>1000</td>
<td>Maximum number of epochs to train</td>
</tr>
<tr>
<td>net.trainParam.goal</td>
<td>0</td>
<td>Performance goal</td>
</tr>
<tr>
<td>net.trainParam.mu</td>
<td>0.005</td>
<td>Marquardt adjustment parameter</td>
</tr>
<tr>
<td>net.trainParam.mu_dec</td>
<td>0.1</td>
<td>Decrease factor for mu</td>
</tr>
<tr>
<td>net.trainParam.mu_inc</td>
<td>10</td>
<td>Increase factor for mu</td>
</tr>
<tr>
<td>net.trainParam.mu_max</td>
<td>1e10</td>
<td>Maximum value for mu</td>
</tr>
<tr>
<td>net.trainParam.max_fail</td>
<td>inf</td>
<td>Maximum validation failures</td>
</tr>
<tr>
<td>net.trainParam.min_grad</td>
<td>1e-7</td>
<td>Minimum performance gradient</td>
</tr>
<tr>
<td>net.trainParam.show</td>
<td>25</td>
<td>Epochs between displays (NaN for no displays)</td>
</tr>
<tr>
<td>net.trainParam.showCommandLine</td>
<td>false</td>
<td>Generate command-line output</td>
</tr>
<tr>
<td>net.trainParam.showWindow</td>
<td>true</td>
<td>Show training GUI</td>
</tr>
<tr>
<td>net.trainParam.time</td>
<td>inf</td>
<td>Maximum time to train in seconds</td>
</tr>
</tbody>
</table>

Validation stops are disabled by default (max_fail = inf) so that training can continue until an
optimal combination of errors and weights is found. However, some weight/bias minimization can still
be achieved with shorter training times if validation is enabled by setting max_fail to 6 or some
other strictly positive value.

Network Use

You can create a standard network that uses trainbr with feedforwardnet or
cascadeforwardnet. To prepare a custom network to be trained with trainbr,
Set NET.trainFcn to 'trainbr'. This sets NET.trainParam to trainbr's default parameters.

Set NET.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with trainbr. See feedforwardnet and cascadeforwardnet for examples.

Examples

Here is a problem consisting of inputs p and targets t to be solved with a network. It involves fitting a noisy sine wave.

\[
p = [-1:.05:1];\]
\[
t = \sin(2\pi p) + 0.1*\text{randn}(\text{size}(p));\]

A feed-forward network is created with a hidden layer of 2 neurons.

\[
\text{net} = \text{feedforwardnet}(2, 'trainbr');\]

Here the network is trained and tested.

\[
\text{net} = \text{train} (\text{net}, p, t);\]
\[
a = \text{net}(p)\]

Limitations

This function uses the Jacobian for calculations, which assumes that performance is a mean or sum of squared errors. Therefore networks trained with this function must use either the mse or sse performance function.

Algorithms

trainbr can train any network as long as its weight, net input, and transfer functions have derivative functions.

Bayesian regularization minimizes a linear combination of squared errors and weights. It also modifies the linear combination so that at the end of training the resulting network has good generalization qualities. See MacKay (Neural Computation, Vol. 4, No. 3, 1992, pp. 415 to 447) and Foresee and Hagan (Proceedings of the International Joint Conference on Neural Networks, June, 1997) for more detailed discussions of Bayesian regularization.

This Bayesian regularization takes place within the Levenberg-Marquardt algorithm. Backpropagation is used to calculate the Jacobian jX of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to Levenberg-Marquardt,

\[
\begin{align*}
jj &= jX \times jX \\
je &= jX \times E \\
dX &= -(jj+I*\mu) \backslash je \\
\end{align*}
\]

where E is all errors and I is the identity matrix.

The adaptive value \mu is increased by mu_inc until the change shown above results in a reduced performance value. The change is then made to the network, and \mu is decreased by mu_dec.
Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below \(\text{min}_\text{grad} \).
- \(\mu \) exceeds \(\mu_\text{max} \).

References

See Also
cascadeforwardnet | feedforwardnet | trainbfg | traincgb | traincgl | traincgf | traincgp | traingda | traingdm | traingdx | trainlm | trainrp | trainscg

Introduced before R2006a
trainbu

Batch unsupervised weight/bias training

Syntax

```plaintext
net.trainFcn = 'trainbu'
[net,tr] = train(net,...)
```

Description

`trainbu` trains a network with weight and bias learning rules with batch updates. Weights and biases updates occur at the end of an entire pass through the input data.

`trainbu` is not called directly. Instead the `train` function calls it for networks whose `NET.trainFcn` property is set to 'trainbu', thus:

- `net.trainFcn = 'trainbu'` sets the network `trainFcn` property.
- `[net,tr] = train(net,...)` trains the network with `trainbu`.

Training occurs according to `trainbu` training parameters, shown here with the following default values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>net.trainParam.epochs</code></td>
<td>1000</td>
<td>Maximum number of epochs to train</td>
</tr>
<tr>
<td><code>net.trainParam.show</code></td>
<td>25</td>
<td>Epochs between displays (NaN for no displays)</td>
</tr>
<tr>
<td><code>net.trainParam.showCommandLine</code></td>
<td>false</td>
<td>Generate command-line output</td>
</tr>
<tr>
<td><code>net.trainParam.showWindow</code></td>
<td>true</td>
<td>Show training GUI</td>
</tr>
<tr>
<td><code>net.trainParam.time</code></td>
<td>inf</td>
<td>Maximum time to train in seconds</td>
</tr>
</tbody>
</table>

Validation and test vectors have no impact on training for this function, but act as independent measures of network generalization.

Network Use

You can create a standard network that uses `trainbu` by calling `selforgmap`. To prepare a custom network to be trained with `trainbu`:

1. Set `NET.trainFcn` to 'trainbu'. (This option sets `NET.trainParam` to `trainbu` default parameters.)
2. Set each `NET.inputWeights{i,j}.learnFcn` to a learning function.
3. Set each `NET.layerWeights{i,j}.learnFcn` to a learning function.
4. Set each `NET.biases{i}.learnFcn` to a learning function. (Weight and bias learning parameters are automatically set to default values for the given learning function.)

To train the network:

1. Set `NET.trainParam` properties to desired values.
2 Set weight and bias learning parameters to desired values.
3 Call `train`.

See `selforgmap` for training examples.

Algorithms

Each weight and bias updates according to its learning function after each epoch (one pass through the entire set of input vectors).

Training stops when any of these conditions is met:

- The maximum number of epochs (repetitions) is reached.
- Performance is minimized to the goal.
- The maximum amount of time is exceeded.
- Validation performance has increased more than `max_fail` times since the last time it decreased (when using validation).

See Also

`train` | `trainb`

Introduced in R2010b
trainc

Cyclical order weight/bias training

Syntax

```matlab
net.trainFcn = 'trainc'
[net,tr] = train(net,...)
```

Description

`trainc` is not called directly. Instead it is called by `train` for networks whose `net.trainFcn` property is set to 'trainc', thus:

- `net.trainFcn = 'trainc'` sets the network `trainFcn` property.
- `[net,tr] = train(net,...)` trains the network with `trainc`.

`trainc` trains a network with weight and bias learning rules with incremental updates after each presentation of an input. Inputs are presented in cyclic order.

Training occurs according to `trainc` training parameters, shown here with their default values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>net.trainParam.epochs</code></td>
<td>1000</td>
<td>Maximum number of epochs to train</td>
</tr>
<tr>
<td><code>net.trainParam.goal</code></td>
<td>0</td>
<td>Performance goal</td>
</tr>
<tr>
<td><code>net.trainParam.max_fail</code></td>
<td>6</td>
<td>Maximum validation failures</td>
</tr>
<tr>
<td><code>net.trainParam.show</code></td>
<td>25</td>
<td>Epochs between displays (NaN for no displays)</td>
</tr>
<tr>
<td><code>net.trainParam.showCommandLine</code></td>
<td>false</td>
<td>Generate command-line output</td>
</tr>
<tr>
<td><code>net.trainParam.showWindow</code></td>
<td>true</td>
<td>Show training GUI</td>
</tr>
<tr>
<td><code>net.trainParam.time</code></td>
<td>inf</td>
<td>Maximum time to train in seconds</td>
</tr>
</tbody>
</table>

Network Use

You can create a standard network that uses `trainc` by calling `competlayer`. To prepare a custom network to be trained with `trainc`,

1. Set `net.trainFcn` to 'trainc'. This sets `net.trainParam` to `trainc`'s default parameters.
2. Set each `net.inputWeights{i,j}.learnFcn` to a learning function. Set each `net.layerWeights{i,j}.learnFcn` to a learning function. Set each `net.biases{i}.learnFcn` to a learning function. (Weight and bias learning parameters are automatically set to default values for the given learning function.)

To train the network,

1. Set `net.trainParam` properties to desired values.
2. Set weight and bias learning parameters to desired values.
3. Call `train`.
See perceptron for training examples.

Algorithms

For each epoch, each vector (or sequence) is presented in order to the network, with the weight and bias values updated accordingly after each individual presentation.

Training stops when any of these conditions is met:

- The maximum number of epochs (repetitions) is reached.
- Performance is minimized to the goal.
- The maximum amount of time is exceeded.

See Also

competlayer | train

Introduced before R2006a
traincgb

Conjugate gradient backpropagation with Powell-Beale restarts

Syntax

```plaintext
net.trainFcn = 'traincgb'
[net,tr] = train(net,...)
```

Description

`traincgb` is a network training function that updates weight and bias values according to the conjugate gradient backpropagation with Powell-Beale restarts.

`net.trainFcn = 'traincgb'` sets the network `trainFcn` property.

`[net,tr] = train(net,...)` trains the network with `traincgb`.

Training occurs according to `traincgb` training parameters, shown here with their default values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>net.trainParam.epochs</code></td>
<td>1000</td>
<td>Maximum number of epochs to train</td>
</tr>
<tr>
<td><code>net.trainParam.show</code></td>
<td>25</td>
<td>Epochs between displays (NaN for no displays)</td>
</tr>
<tr>
<td><code>net.trainParam.showCommandLine</code></td>
<td>false</td>
<td>Generate command-line output</td>
</tr>
<tr>
<td><code>net.trainParam.showWindow</code></td>
<td>true</td>
<td>Show training GUI</td>
</tr>
<tr>
<td><code>net.trainParam.goal</code></td>
<td>0</td>
<td>Performance goal</td>
</tr>
<tr>
<td><code>net.trainParam.time</code></td>
<td>inf</td>
<td>Maximum time to train in seconds</td>
</tr>
<tr>
<td><code>net.trainParam.min_grad</code></td>
<td>1e-10</td>
<td>Minimum performance gradient</td>
</tr>
<tr>
<td><code>net.trainParam.max_fail</code></td>
<td>6</td>
<td>Maximum validation failures</td>
</tr>
<tr>
<td><code>net.trainParam.searchFcn</code></td>
<td>'srchch'</td>
<td>Name of line search routine to use</td>
</tr>
</tbody>
</table>

Parameters related to line search methods (not all used for all methods):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>net.trainParam.scal_tol</code></td>
<td>20</td>
<td>Divide into delta to determine tolerance for linear search.</td>
</tr>
<tr>
<td><code>net.trainParam.alpha</code></td>
<td>0.001</td>
<td>Scale factor that determines sufficient reduction in perf</td>
</tr>
<tr>
<td><code>net.trainParam.beta</code></td>
<td>0.1</td>
<td>Scale factor that determines sufficiently large step size</td>
</tr>
<tr>
<td><code>net.trainParam.delta</code></td>
<td>0.01</td>
<td>Initial step size in interval location step</td>
</tr>
<tr>
<td><code>net.trainParam.gama</code></td>
<td>0.1</td>
<td>Parameter to avoid small reductions in performance, usually set to 0.1 (see srch_cha)</td>
</tr>
<tr>
<td><code>net.trainParam.low_lim</code></td>
<td>0.1</td>
<td>Lower limit on change in step size</td>
</tr>
<tr>
<td><code>net.trainParam.up_lim</code></td>
<td>0.5</td>
<td>Upper limit on change in step size</td>
</tr>
<tr>
<td><code>net.trainParam.maxstep</code></td>
<td>100</td>
<td>Maximum step length</td>
</tr>
<tr>
<td><code>net.trainParam.minstep</code></td>
<td>1.0e-6</td>
<td>Minimum step length</td>
</tr>
</tbody>
</table>
Network Use

You can create a standard network that uses traincgb with feedforwardnet or cascadeforwardnet.

To prepare a custom network to be trained with traincgb,

1. Set net.trainFcn to 'traincgb'. This sets net.trainParam to traincgb's default parameters.
2. Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with traincgb.

Examples

Train Neural Network Using traincgb Train Function

This example shows how to train a neural network using the traincgb train function.

Here a neural network is trained to predict body fat percentages.

```matlab
[x, t] = bodyfat_dataset;
net = feedforwardnet(10, 'traincgb');
net = train(net, x, t);
y = net(x);
```

More About

Powell-Beale Algorithm

For all conjugate gradient algorithms, the search direction is periodically reset to the negative of the gradient. The standard reset point occurs when the number of iterations is equal to the number of network parameters (weights and biases), but there are other reset methods that can improve the efficiency of training. One such reset method was proposed by Powell [Powe77], based on an earlier version proposed by Beale [Beal72]. This technique restarts if there is very little orthogonality left between the current gradient and the previous gradient. This is tested with the following inequality:

\[|g_k^T g_k| \geq 0.2 \|g_k\|^2 \]

If this condition is satisfied, the search direction is reset to the negative of the gradient.

The traincgb routine has somewhat better performance than traincgp for some problems, although performance on any given problem is difficult to predict. The storage requirements for the Powell-Beale algorithm (six vectors) are slightly larger than for Polak-Ribière (four vectors).
Algorithms

traincgb can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance *perf* with respect to the weight and bias variables *X*. Each variable is adjusted according to the following:

\[X = X + a * dX; \]

where *dX* is the search direction. The parameter *a* is selected to minimize the performance along the search direction. The line search function *searchFcn* is used to locate the minimum point. The first search direction is the negative of the gradient of performance. In succeeding iterations the search direction is computed from the new gradient and the previous search direction according to the formula

\[dX = -gX + dX_{old}*Z; \]

where *gX* is the gradient. The parameter *Z* can be computed in several different ways. The Powell-Beale variation of conjugate gradient is distinguished by two features. First, the algorithm uses a test to determine when to reset the search direction to the negative of the gradient. Second, the search direction is computed from the negative gradient, the previous search direction, and the last search direction before the previous reset. See Powell, *Mathematical Programming*, Vol. 12, 1977, pp. 241 to 254, for a more detailed discussion of the algorithm.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below *min_grad*.
- Validation performance has increased more than *max_fail* times since the last time it decreased (when using validation).

References

See Also

trainbfg | *traincfg* | *traincgp* | *traingda* | *traingdm* | *traingdx* | *trainlm* | *trainoss* | *trainscg*

Introduced before R2006a
traincgf
Conjugate gradient backpropagation with Fletcher-Reeves updates

Syntax

net.trainFcn = 'traincgf'
[net,tr] = train(net,...)

Description

traincgf is a network training function that updates weight and bias values according to conjugate gradient backpropagation with Fletcher-Reeves updates.

net.trainFcn = 'traincgf' sets the network trainFcn property.
[net,tr] = train(net,...) trains the network with traincgf.

Training occurs according to traincgf training parameters, shown here with their default values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>net.trainParam.epochs</td>
<td>1000</td>
<td>Maximum number of epochs to train</td>
</tr>
<tr>
<td>net.trainParam.show</td>
<td>25</td>
<td>Epochs between displays (NaN for no displays)</td>
</tr>
<tr>
<td>net.trainParam.showCommandLine</td>
<td>false</td>
<td>Generate command-line output</td>
</tr>
<tr>
<td>net.trainParam.showWindow</td>
<td>true</td>
<td>Show training GUI</td>
</tr>
<tr>
<td>net.trainParam.goal</td>
<td>0</td>
<td>Performance goal</td>
</tr>
<tr>
<td>net.trainParam.time</td>
<td>inf</td>
<td>Maximum time to train in seconds</td>
</tr>
<tr>
<td>net.trainParam.min_grad</td>
<td>1e-10</td>
<td>Minimum performance gradient</td>
</tr>
<tr>
<td>net.trainParam.max_fail</td>
<td>6</td>
<td>Maximum validation failures</td>
</tr>
<tr>
<td>net.trainParam.searchFcn</td>
<td>'srchcha','</td>
<td>Name of line search routine to use</td>
</tr>
</tbody>
</table>

Parameters related to line search methods (not all used for all methods):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>net.trainParam.scal_tol</td>
<td>20</td>
<td>Divide into delta to determine tolerance for linear search.</td>
</tr>
<tr>
<td>net.trainParam.alpha</td>
<td>0.001</td>
<td>Scale factor that determines sufficient reduction in perf</td>
</tr>
<tr>
<td>net.trainParam.beta</td>
<td>0.1</td>
<td>Scale factor that determines sufficiently large step size</td>
</tr>
<tr>
<td>net.trainParam.delta</td>
<td>0.01</td>
<td>Initial step size in interval location step</td>
</tr>
<tr>
<td>net.trainParam.gama</td>
<td>0.1</td>
<td>Parameter to avoid small reductions in performance, usually set to 0.1 (see srch_cha)</td>
</tr>
<tr>
<td>net.trainParam.low_lim</td>
<td>0.1</td>
<td>Lower limit on change in step size</td>
</tr>
<tr>
<td>net.trainParam.up_lim</td>
<td>0.5</td>
<td>Upper limit on change in step size</td>
</tr>
<tr>
<td>net.trainParam.maxstep</td>
<td>100</td>
<td>Maximum step length</td>
</tr>
<tr>
<td>net.trainParam.minstep</td>
<td>1.0e-6</td>
<td>Minimum step length</td>
</tr>
</tbody>
</table>
Network Use

You can create a standard network that uses traincfg with feedforwardnet or cascadeforwardnet.

To prepare a custom network to be trained with traincfg,

1. Set net.trainFcn to 'traincfg'. This sets net.trainParam to traincfg’s default parameters.
2. Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with traincfg.

Examples

Train Neural Network Using traincfg Train Function

This example shows how to train a neural network using the traincfg train function.

Here a neural network is trained to predict body fat percentages.

```matlab
[x, t] = bodyfat_dataset;
net = feedforwardnet(10, 'traincfg');
net = train(net, x, t);
y = net(x);
```

More About

Conjugate Gradient Algorithms

All the conjugate gradient algorithms start out by searching in the steepest descent direction (negative of the gradient) on the first iteration.

\[p_0 = -g_0 \]

A line search is then performed to determine the optimal distance to move along the current search direction:

\[x_{k+1} = x_k + \alpha_k p_k \]

Then the next search direction is determined so that it is conjugate to previous search directions. The general procedure for determining the new search direction is to combine the new steepest descent direction with the previous search direction:

\[p_k = -g_k + \beta_k p_{k-1} \]

The various versions of the conjugate gradient algorithm are distinguished by the manner in which the constant \(\beta_k \) is computed. For the Fletcher-Reeves update the procedure is
\[
\beta_k = \frac{g_k^T g_k}{g_{k-1}^T g_{k-1}}
\]

This is the ratio of the norm squared of the current gradient to the norm squared of the previous gradient.

See [FlRe64] or [HDB96] for a discussion of the Fletcher-Reeves conjugate gradient algorithm.

The conjugate gradient algorithms are usually much faster than variable learning rate backpropagation, and are sometimes faster than \texttt{trainrp}, although the results vary from one problem to another. The conjugate gradient algorithms require only a little more storage than the simpler algorithms. Therefore, these algorithms are good for networks with a large number of weights.

Try the \textit{Neural Network Design} demonstration \texttt{nnd12cg} [HDB96] for an illustration of the performance of a conjugate gradient algorithm.

\section*{Algorithms}

\texttt{traincgf} can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance function \(perf \) with respect to the weight and bias variables \(X \). Each variable is adjusted according to the following:

\[X = X + a \cdot dX; \]

where \(dX \) is the search direction. The parameter \(a \) is selected to minimize the performance along the search direction. The line search function \texttt{searchFcn} is used to locate the minimum point. The first search direction is the negative of the gradient of performance. In succeeding iterations the search direction is computed from the new gradient and the previous search direction, according to the formula

\[dX = -gX + dX_{old} \cdot Z; \]

where \(gX \) is the gradient. The parameter \(Z \) can be computed in several different ways. For the Fletcher-Reeves variation of conjugate gradient it is computed according to

\[Z = \frac{\text{normnew}_\text{sqr}}{\text{norm}_\text{sqr}}; \]

where \(\text{norm}_\text{sqr} \) is the norm square of the previous gradient and \(\text{normnew}_\text{sqr} \) is the norm square of the current gradient. See page 78 of Scales (\textit{Introduction to Non-Linear Optimization}) for a more detailed discussion of the algorithm.

Training stops when any of these conditions occurs:

- The maximum number of \texttt{epochs} (repetitions) is reached.
- The maximum amount of \texttt{time} is exceeded.
- Performance is minimized to the \texttt{goal}.
- The performance gradient falls below \texttt{min_grad}.
- Validation performance has increased more than \texttt{max_fail} times since the last time it decreased (when using validation).
References

See Also
trainbfg | traincgf | traincg | traingda | traingdm | traingdx | trainlm | trainoss | trainscg

Introduced before R2006a
traincgp

Conjugate gradient backpropagation with Polak-Ribiére updates

Syntax

net.trainFcn = 'traincgp'
[net,tr] = train(net,...)

Description

traincgp is a network training function that updates weight and bias values according to conjugate gradient backpropagation with Polak-Ribiére updates.

net.trainFcn = 'traincgp' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with traincgp.

Training occurs according to traincgp training parameters, shown here with their default values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>net.trainParam.epochs</td>
<td>1000</td>
<td>Maximum number of epochs to train</td>
</tr>
<tr>
<td>net.trainParam.show</td>
<td>25</td>
<td>Epochs between displays (NaN for no displays)</td>
</tr>
<tr>
<td>net.trainParam.showCommandLine</td>
<td>false</td>
<td>Generate command-line output</td>
</tr>
<tr>
<td>net.trainParam.showWindow</td>
<td>true</td>
<td>Show training GUI</td>
</tr>
<tr>
<td>net.trainParam.goal</td>
<td>0</td>
<td>Performance goal</td>
</tr>
<tr>
<td>net.trainParam.time</td>
<td>inf</td>
<td>Maximum time to train in seconds</td>
</tr>
<tr>
<td>net.trainParam.min_grad</td>
<td>1e-10</td>
<td>Minimum performance gradient</td>
</tr>
<tr>
<td>net.trainParam.max_fail</td>
<td>6</td>
<td>Maximum validation failures</td>
</tr>
<tr>
<td>net.trainParam.searchFcn</td>
<td>'srchcha'</td>
<td>Name of line search routine to use</td>
</tr>
</tbody>
</table>

Parameters related to line search methods (not all used for all methods):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>net.trainParam.scal_tol</td>
<td>20</td>
<td>Divide into delta to determine tolerance for linear search.</td>
</tr>
<tr>
<td>net.trainParam.alpha</td>
<td>0.001</td>
<td>Scale factor that determines sufficient reduction in perf</td>
</tr>
<tr>
<td>net.trainParam.beta</td>
<td>0.1</td>
<td>Scale factor that determines sufficiently large step size</td>
</tr>
<tr>
<td>net.trainParam.delta</td>
<td>0.01</td>
<td>Initial step size in interval location step</td>
</tr>
<tr>
<td>net.trainParam.gama</td>
<td>0.1</td>
<td>Parameter to avoid small reductions in performance, usually set to 0.1 (see srch_cha)</td>
</tr>
<tr>
<td>net.trainParam.low_lim</td>
<td>0.1</td>
<td>Lower limit on change in step size</td>
</tr>
<tr>
<td>net.trainParam.up_lim</td>
<td>0.5</td>
<td>Upper limit on change in step size</td>
</tr>
<tr>
<td>net.trainParam.maxstep</td>
<td>100</td>
<td>Maximum step length</td>
</tr>
<tr>
<td>net.trainParam.minstep</td>
<td>1.0e-6</td>
<td>Minimum step length</td>
</tr>
</tbody>
</table>
Network Use

You can create a standard network that uses traincgp with feedforwardnet or cascadeforwardnet. To prepare a custom network to be trained with traincgp,

1. Set net.trainFcn to 'traincgp'. This sets net.trainParam to traincgp's default parameters.
2. Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with traincgp.

Examples

Train Neural Network Using traincgp Train Function

This example shows how to train a neural network using the traincgp train function.

Here a neural network is trained to predict body fat percentages.

```
[x, t] = bodyfat_dataset;
net = feedforwardnet(10, 'traincgp');
net = train(net, x, t);
y = net(x);
```

More About

Conjugate Gradient Backpropagation with Polak-Ribiére Updates

Another version of the conjugate gradient algorithm was proposed by Polak and Ribiére. As with the Fletcher-Reeves algorithm, traincgf, the search direction at each iteration is determined by

\[p_k = -g_k + \beta_k p_{k-1} \]

For the Polak-Ribiére update, the constant \(\beta_k \) is computed by

\[\beta_k = \frac{\nabla g_k^T (\nabla g_k - \nabla g_{k-1})}{\nabla g_{k-1}^T \nabla g_{k-1}} \]

This is the inner product of the previous change in the gradient with the current gradient divided by the norm squared of the previous gradient. See [FlRe64] or [HDB96] for a discussion of the Polak-Ribiére conjugate gradient algorithm.

The traincgp routine has performance similar to traincgf. It is difficult to predict which algorithm will perform best on a given problem. The storage requirements for Polak-Ribiére (four vectors) are slightly larger than for Fletcher-Reeves (three vectors).
Algorithms

traincgp can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to the following:

\[X = X + a \cdot dX; \]

where \(dX \) is the search direction. The parameter \(a \) is selected to minimize the performance along the search direction. The line search function searchFcn is used to locate the minimum point. The first search direction is the negative of the gradient of performance. In succeeding iterations the search direction is computed from the new gradient and the previous search direction according to the formula

\[dX = -gX + dX_{\text{old}} \cdot Z; \]

where \(gX \) is the gradient. The parameter \(Z \) can be computed in several different ways. For the Polak-Ribiére variation of conjugate gradient, it is computed according to

\[Z = \frac{((gX - gX_{\text{old}})' \cdot gX) / \text{norm}_sqr}{\text{norm}_sqr}; \]

where \(\text{norm}_sqr \) is the norm square of the previous gradient, and \(gX_{\text{old}} \) is the gradient on the previous iteration. See page 78 of Scales (Introduction to Non-Linear Optimization, 1985) for a more detailed discussion of the algorithm.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below \(\text{min}_\text{grad} \).
- Validation performance has increased more than \(\text{max}_\text{fail} \) times since the last time it decreased (when using validation).

References

See Also

trainbfg | traincgb | traincfgf | traingda | traingdm | traingdf | trainlm | trainoss | trainrp | trainscg

Introduced before R2006a
traingd

Gradient descent backpropagation

Syntax

```matlab
net.trainFcn = 'traingd'
[net, tr] = train(net, ...)
```

Description

`traingd` is a network training function that updates weight and bias values according to gradient descent.

`net.trainFcn = 'traingd'` sets the network `trainFcn` property.

`[net, tr] = train(net, ...)` trains the network with `traingd`.

Training occurs according to `traingd` training parameters, shown here with their default values:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>net.trainParam.epochs</code></td>
<td>1000</td>
<td>Maximum number of epochs to train</td>
</tr>
<tr>
<td><code>net.trainParam.goal</code></td>
<td>0</td>
<td>Performance goal</td>
</tr>
<tr>
<td><code>net.trainParam.showCommandLine</code></td>
<td>false</td>
<td>Generate command-line output</td>
</tr>
<tr>
<td><code>net.trainParam.showWindow</code></td>
<td>true</td>
<td>Show training GUI</td>
</tr>
<tr>
<td><code>net.trainParam.lr</code></td>
<td>0.01</td>
<td>Learning rate</td>
</tr>
<tr>
<td><code>net.trainParam.max_fail</code></td>
<td>6</td>
<td>Maximum validation failures</td>
</tr>
<tr>
<td><code>net.trainParam.min_grad</code></td>
<td>1e-5</td>
<td>Minimum performance gradient</td>
</tr>
<tr>
<td><code>net.trainParam.show</code></td>
<td>25</td>
<td>Epochs between displays (NaN for no displays)</td>
</tr>
<tr>
<td><code>net.trainParam.time</code></td>
<td>inf</td>
<td>Maximum time to train in seconds</td>
</tr>
</tbody>
</table>

Network Use

You can create a standard network that uses `traingd` with `feedforwardnet` or `cascadeforwardnet`. To prepare a custom network to be trained with `traingd`,

1. Set `net.trainFcn` to `'traingd'`. This sets `net.trainParam` to `traingd`'s default parameters.
2. Set `net.trainParam` properties to desired values.

In either case, calling `train` with the resulting network trains the network with `traingd`.

See `help feedforwardnet` and `help cascadeforwardnet` for examples.
More About

Gradient Descent Backpropagation

The batch steepest descent training function is \textit{traingd}. The weights and biases are updated in the direction of the negative gradient of the performance function. If you want to train a network using batch steepest descent, you should set the network \textit{trainFcn} to \textit{traingd}, and then call the function \textit{train}. There is only one training function associated with a given network.

There are seven training parameters associated with \textit{traingd}:

- \textit{epochs}
- \textit{show}
- \textit{goal}
- \textit{time}
- \textit{min}_\textit{grad}
- \textit{max}_\textit{fail}
- \textit{lr}

The learning rate \textit{lr} is multiplied times the negative of the gradient to determine the changes to the weights and biases. The larger the learning rate, the bigger the step. If the learning rate is made too large, the algorithm becomes unstable. If the learning rate is set too small, the algorithm takes a long time to converge. See page 12-8 of [HDB96] for a discussion of the choice of learning rate.

The training status is displayed for every \textit{show} iterations of the algorithm. (If \textit{show} is set to NaN, then the training status is never displayed.) The other parameters determine when the training stops. The training stops if the number of iterations exceeds \textit{epochs}, if the performance function drops below \textit{goal}, if the magnitude of the gradient is less than \textit{mingrad}, or if the training time is longer than \textit{time} seconds. \textit{max}_\textit{fail}, which is associated with the early stopping technique, is discussed in Improving Generalization.

The following code creates a training set of inputs \textit{p} and targets \textit{t}. For batch training, all the input vectors are placed in one matrix.

\begin{verbatim}
p = [-1 -1 2 2; 0 5 0 5];
t = [-1 -1 1 1];
\end{verbatim}

Create the feedforward network.

\begin{verbatim}
net = feedforwardnet(3,'traingd');
\end{verbatim}

In this simple example, turn off a feature that is introduced later.

\begin{verbatim}
net.divideFcn = '';
\end{verbatim}

At this point, you might want to modify some of the default training parameters.

\begin{verbatim}
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
\end{verbatim}

If you want to use the default training parameters, the preceding commands are not necessary.
Now you are ready to train the network.

\[\text{[net, tr]} = \text{train(net, p, t)}; \]

The training record \(\text{tr} \) contains information about the progress of training.

Now you can simulate the trained network to obtain its response to the inputs in the training set.

\[\text{a} = \text{net(p)} \]

\[\text{a} = \]

\[\begin{array}{cccc}
-1.0026 & -0.9962 & 1.0010 & 0.9960 \\
\end{array} \]

Try the *Neural Network Design* demonstration **nnd12sd1** [HDB96] for an illustration of the performance of the batch gradient descent algorithm.

Algorithms

traingd can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance \(\text{perf} \) with respect to the weight and bias variables \(X \). Each variable is adjusted according to gradient descent:

\[dX = \text{lr} \times \frac{d\text{perf}}{dX} \]

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below \(\text{min_grad} \).
- Validation performance has increased more than \(\text{max_fail} \) times since the last time it decreased (when using validation).

See Also

traingda | traingdm | traingdx | trainlm

Introduced before R2006a
traingda

Gradient descent with adaptive learning rate backpropagation

Syntax

```matlab
net.trainFcn = 'traingda'
[net,tr] = train(net,...)
```

Description

traingda is a network training function that updates weight and bias values according to gradient descent with adaptive learning rate.

`net.trainFcn = 'traingda'` sets the network `trainFcn` property.

`[net,tr] = train(net,...)` trains the network with **traingda**.

Training occurs according to **traingda** training parameters, shown here with their default values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>net.trainParam.epochs</code></td>
<td>1000</td>
<td>Maximum number of epochs to train</td>
</tr>
<tr>
<td><code>net.trainParam.goal</code></td>
<td>0</td>
<td>Performance goal</td>
</tr>
<tr>
<td><code>net.trainParam.lr</code></td>
<td>0.01</td>
<td>Learning rate</td>
</tr>
<tr>
<td><code>net.trainParam.lr_inc</code></td>
<td>1.05</td>
<td>Ratio to increase learning rate</td>
</tr>
<tr>
<td><code>net.trainParam.lr_dec</code></td>
<td>0.7</td>
<td>Ratio to decrease learning rate</td>
</tr>
<tr>
<td><code>net.trainParam.max_fail</code></td>
<td>6</td>
<td>Maximum validation failures</td>
</tr>
<tr>
<td><code>net.trainParam.max_perf_inc</code></td>
<td>1.04</td>
<td>Maximum performance increase</td>
</tr>
<tr>
<td><code>net.trainParam.min_grad</code></td>
<td>1e-5</td>
<td>Minimum performance gradient</td>
</tr>
<tr>
<td><code>net.trainParam.show</code></td>
<td>25</td>
<td>Epochs between displays (NaN for no displays)</td>
</tr>
<tr>
<td><code>net.trainParam.showCommandLine</code></td>
<td>false</td>
<td>Generate command-line output</td>
</tr>
<tr>
<td><code>net.trainParam.showWindow</code></td>
<td>true</td>
<td>Show training GUI</td>
</tr>
<tr>
<td><code>net.trainParam.time</code></td>
<td>inf</td>
<td>Maximum time to train in seconds</td>
</tr>
</tbody>
</table>

Network Use

You can create a standard network that uses traingda with `feedforwardnet` or `cascadeforwardnet`. To prepare a custom network to be trained with **traingda**,

1. Set `net.trainFcn` to `'traingda'`. This sets `net.trainParam` to **traingda**’s default parameters.
2. Set `net.trainParam` properties to desired values.

In either case, calling `train` with the resulting network trains the network with **traingda**.

See `help feedforwardnet` and `help cascadeforwardnet` for examples.
More About

Gradient Descent with Adaptive Learning Rate Backpropagation

With standard steepest descent, the learning rate is held constant throughout training. The performance of the algorithm is very sensitive to the proper setting of the learning rate. If the learning rate is set too high, the algorithm can oscillate and become unstable. If the learning rate is too small, the algorithm takes too long to converge. It is not practical to determine the optimal setting for the learning rate before training, and, in fact, the optimal learning rate changes during the training process, as the algorithm moves across the performance surface.

You can improve the performance of the steepest descent algorithm if you allow the learning rate to change during the training process. An adaptive learning rate attempts to keep the learning step size as large as possible while keeping learning stable. The learning rate is made responsive to the complexity of the local error surface.

An adaptive learning rate requires some changes in the training procedure used by traingd. First, the initial network output and error are calculated. At each epoch new weights and biases are calculated using the current learning rate. New outputs and errors are then calculated.

As with momentum, if the new error exceeds the old error by more than a predefined ratio, max_perf_inc (typically 1.04), the new weights and biases are discarded. In addition, the learning rate is decreased (typically by multiplying by lr_dec = 0.7). Otherwise, the new weights, etc., are kept. If the new error is less than the old error, the learning rate is increased (typically by multiplying by lr_inc = 1.05).

This procedure increases the learning rate, but only to the extent that the network can learn without large error increases. Thus, a near-optimal learning rate is obtained for the local terrain. When a larger learning rate could result in stable learning, the learning rate is increased. When the learning rate is too high to guarantee a decrease in error, it is decreased until stable learning resumes.

Try the Neural Network Design demonstration nnd12vl [HDB96] for an illustration of the performance of the variable learning rate algorithm.

Backpropagation training with an adaptive learning rate is implemented with the function traingda, which is called just like traingd, except for the additional training parameters max_perf_inc, lr_dec, and lr_inc. Here is how it is called to train the previous two-layer network:

```matlab
p = [-1 -1 2 2; 0 5 0 5];
t = [-1 -1 1 1];
net = feedforwardnet(3,'traingda');
net.trainParam.lr = 0.05;
net.trainParam.lr_inc = 1.05;
net = train(net,p,t);
y = net(p)
```

Algorithms

traingda can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance dperf with respect to the weight and bias variables X. Each variable is adjusted according to gradient descent:

\[dX = lr \cdot d\text{perf}/dX \]
At each epoch, if performance decreases toward the goal, then the learning rate is increased by the factor lr_inc. If performance increases by more than the factor max_perf_inc, the learning rate is adjusted by the factor lr_dec and the change that increased the performance is not made.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_grad.
- Validation performance has increased more than max_fail times since the last time it decreased (when using validation).

See Also
traingd | traingdm | traingdx | trainlm

Introduced before R2006a
traingdm

Gradient descent with momentum backpropagation

Syntax

net.trainFcn = 'traingdm'
[net,tr] = train(net,...)

Description

traingdm is a network training function that updates weight and bias values according to gradient descent with momentum.

net.trainFcn = 'traingdm' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with traingdm.

Training occurs according to traingdm training parameters, shown here with their default values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>net.trainParam.epochs</td>
<td>1000</td>
<td>Maximum number of epochs to train</td>
</tr>
<tr>
<td>net.trainParam.goal</td>
<td>0</td>
<td>Performance goal</td>
</tr>
<tr>
<td>net.trainParam.lr</td>
<td>0.01</td>
<td>Learning rate</td>
</tr>
<tr>
<td>net.trainParam.max_fail</td>
<td>6</td>
<td>Maximum validation failures</td>
</tr>
<tr>
<td>net.trainParam.mc</td>
<td>0.9</td>
<td>Momentum constant</td>
</tr>
<tr>
<td>net.trainParam.min_grad</td>
<td>1e-5</td>
<td>Minimum performance gradient</td>
</tr>
<tr>
<td>net.trainParam.show</td>
<td>25</td>
<td>Epochs between showing progress</td>
</tr>
<tr>
<td>net.trainParam.showCommandLine</td>
<td>false</td>
<td>Generate command-line output</td>
</tr>
<tr>
<td>net.trainParam.showWindow</td>
<td>true</td>
<td>Show training GUI</td>
</tr>
<tr>
<td>net.trainParam.time</td>
<td>inf</td>
<td>Maximum time to train in seconds</td>
</tr>
</tbody>
</table>

Network Use

You can create a standard network that uses traingdm with feedforwardnet or cascadeforwardnet. To prepare a custom network to be trained with traingdm,

1. Set net.trainFcn to 'traingdm'. This sets net.trainParam to traingdm's default parameters.
2. Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with traingdm.

See help feedforwardnet and help cascadeforwardnet for examples.
More About

Gradient Descent with Momentum

In addition to \texttt{traingd}, there are three other variations of gradient descent.

Gradient descent with momentum, implemented by \texttt{traingdm}, allows a network to respond not only to the local gradient, but also to recent trends in the error surface. Acting like a lowpass filter, momentum allows the network to ignore small features in the error surface. Without momentum a network can get stuck in a shallow local minimum. With momentum a network can slide through such a minimum. See page 12–9 of [HDB96] for a discussion of momentum.

Gradient descent with momentum depends on two training parameters. The parameter \texttt{lr} indicates the learning rate, similar to the simple gradient descent. The parameter \texttt{mc} is the momentum constant that defines the amount of momentum. \texttt{mc} is set between 0 (no momentum) and values close to 1 (lots of momentum). A momentum constant of 1 results in a network that is completely insensitive to the local gradient and, therefore, does not learn properly.

\begin{verbatim}
p = [-1 -1 2 2; 0 5 0 5];
t = [-1 -1 1 1];
net = feedforwardnet(3,'traingdm');
net.trainParam.lr = 0.05;
net.trainParam.mc = 0.9;
net = train(net,p,t);
y = net(p)
\end{verbatim}

Try the \textit{Neural Network Design} demonstration nnd12mo [HDB96] for an illustration of the performance of the batch momentum algorithm.

Algorithms

\texttt{traingdm} can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance \texttt{perf} with respect to the weight and bias variables \texttt{X}. Each variable is adjusted according to gradient descent with momentum,

\[dX = mc*dXprev + lr*(1-mc)*dperf/dX \]

where \texttt{dXprev} is the previous change to the weight or bias.

Training stops when any of these conditions occurs:

- The maximum number of \texttt{epochs} (repetitions) is reached.
- The maximum amount of \texttt{time} is exceeded.
- Performance is minimized to the \texttt{goal}.
- The performance gradient falls below \texttt{min_grad}.
- Validation performance has increased more than \texttt{max_fail} times since the last time it decreased (when using validation).

See Also

\texttt{traingd} | \texttt{traingda} | \texttt{traingdx} | \texttt{trainlm}
Introduced before R2006a
traingdx

Gradient descent with momentum and adaptive learning rate backpropagation

Syntax

```matlab
net.trainFcn = 'traingdx'
[net,tr] = train(net,...)
```

Description

`traingdx` is a network training function that updates weight and bias values according to gradient descent momentum and an adaptive learning rate.

`net.trainFcn = 'traingdx'` sets the network `trainFcn` property.

`[net,tr] = train(net,...)` trains the network with `traingdx`.

Training occurs according to `traingdx` training parameters, shown here with their default values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>net.trainParam.epochs</code></td>
<td>1000</td>
<td>Maximum number of epochs to train</td>
</tr>
<tr>
<td><code>net.trainParam.goal</code></td>
<td>0</td>
<td>Performance goal</td>
</tr>
<tr>
<td><code>net.trainParam.lr</code></td>
<td>0.01</td>
<td>Learning rate</td>
</tr>
<tr>
<td><code>net.trainParam.lr_inc</code></td>
<td>1.05</td>
<td>Ratio to increase learning rate</td>
</tr>
<tr>
<td><code>net.trainParam.lr_dec</code></td>
<td>0.7</td>
<td>Ratio to decrease learning rate</td>
</tr>
<tr>
<td><code>net.trainParam.max_fail</code></td>
<td>6</td>
<td>Maximum validation failures</td>
</tr>
<tr>
<td><code>net.trainParam.max_perf_inc</code></td>
<td>1.04</td>
<td>Maximum performance increase</td>
</tr>
<tr>
<td><code>net.trainParam.mc</code></td>
<td>0.9</td>
<td>Momentum constant</td>
</tr>
<tr>
<td><code>net.trainParam.min_grad</code></td>
<td>1e-5</td>
<td>Minimum performance gradient</td>
</tr>
<tr>
<td><code>net.trainParam.show</code></td>
<td>25</td>
<td>Epochs between displays (NaN for no displays)</td>
</tr>
<tr>
<td><code>net.trainParam.showCommandLine</code></td>
<td>false</td>
<td>Generate command-line output</td>
</tr>
<tr>
<td><code>net.trainParam.showWindow</code></td>
<td>true</td>
<td>Show training GUI</td>
</tr>
<tr>
<td><code>net.trainParam.time</code></td>
<td>inf</td>
<td>Maximum time to train in seconds</td>
</tr>
</tbody>
</table>

Network Use

You can create a standard network that uses `traingdx` with `feedforwardnet` or `cascadeforwardnet`. To prepare a custom network to be trained with `traingdx`,

1. Set `net.trainFcn` to `'traingdx'`. This sets `net.trainParam` to `traingdx`'s default parameters.
2. Set `net.trainParam` properties to desired values.

In either case, calling `train` with the resulting network trains the network with `traingdx`.

See `help feedforwardnet` and `help cascadeforwardnet` for examples.
Algorithms

The function traingdx combines adaptive learning rate with momentum training. It is invoked in the same way as traingda, except that it has the momentum coefficient mc as an additional training parameter.

traingdx can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to gradient descent with momentum,

\[dX = mc \cdot dX_{prev} + lr \cdot mc \cdot dperf/dX \]

where \(dX_{prev} \) is the previous change to the weight or bias.

For each epoch, if performance decreases toward the goal, then the learning rate is increased by the factor \(lr_inc \). If performance increases by more than the factor \(max_perf_inc \), the learning rate is adjusted by the factor \(lr_dec \) and the change that increased the performance is not made.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below \(min_grad \).
- Validation performance has increased more than \(max_fail \) times since the last time it decreased (when using validation).

See Also

traingd | traingda | traingdm | trainlm

Introduced before R2006a
trainlm

Levenberg-Marquardt backpropagation

Syntax

net.trainFcn = 'trainlm'
[net,tr] = train(net,...)

Description

trainlm is a network training function that updates weight and bias values according to Levenberg-Marquardt optimization.

trainlm is often the fastest backpropagation algorithm in the toolbox, and is highly recommended as a first-choice supervised algorithm, although it does require more memory than other algorithms.

net.trainFcn = 'trainlm' sets the network trainFcn property.
[net,tr] = train(net,...) trains the network with trainlm.

Training occurs according to trainlm training parameters, shown here with their default values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>net.trainParam.epochs</td>
<td>1000</td>
<td>Maximum number of epochs to train</td>
</tr>
<tr>
<td>net.trainParam.goal</td>
<td>0</td>
<td>Performance goal</td>
</tr>
<tr>
<td>net.trainParam.max_fail</td>
<td>6</td>
<td>Maximum validation failures</td>
</tr>
<tr>
<td>net.trainParam.min_grad</td>
<td>1e-7</td>
<td>Minimum performance gradient</td>
</tr>
<tr>
<td>net.trainParam.mu</td>
<td>0.001</td>
<td>Initial mu</td>
</tr>
<tr>
<td>net.trainParam.mu_dec</td>
<td>0.1</td>
<td>mu decrease factor</td>
</tr>
<tr>
<td>net.trainParam.mu_inc</td>
<td>10</td>
<td>mu increase factor</td>
</tr>
<tr>
<td>net.trainParam.mu_max</td>
<td>1e10</td>
<td>Maximum mu</td>
</tr>
<tr>
<td>net.trainParam.showCommandLine</td>
<td>false</td>
<td>Generate command-line output</td>
</tr>
<tr>
<td>net.trainParam.showWindow</td>
<td>true</td>
<td>Show training GUI</td>
</tr>
<tr>
<td>net.trainParam.time</td>
<td>inf</td>
<td>Maximum time to train in seconds</td>
</tr>
</tbody>
</table>

Validation vectors are used to stop training early if the network performance on the validation vectors fails to improve or remains the same for max_fail epochs in a row. Test vectors are used as a further check that the network is generalizing well, but do not have any effect on training.

Network Use

You can create a standard network that uses trainlm with feedforwardnet or cascadeforwardnet.

To prepare a custom network to be trained with trainlm,
1 Set `net.trainFcn` to `'trainlm'`. This sets `net.trainParam` to `trainlm`'s default parameters.
2 Set `net.trainParam` properties to desired values.
 In either case, calling `train` with the resulting network trains the network with `trainlm`.

See `help feedforwardnet` and `help cascadeforwardnet` for examples.

Examples

Train Neural Network Using `trainlm` Train Function

This example shows how to train a neural network using the `trainlm` train function.

Here a neural network is trained to predict body fat percentages.

```matlab
[x, t] = bodyfat_dataset;
net = feedforwardnet(10, 'trainlm');
net = train(net, x, t);
y = net(x);
```

Limitations

This function uses the Jacobian for calculations, which assumes that performance is a mean or sum of squared errors. Therefore, networks trained with this function must use either the `mse` or `sse` performance function.

More About

Levenberg-Marquardt Algorithm

Like the quasi-Newton methods, the Levenberg-Marquardt algorithm was designed to approach second-order training speed without having to compute the Hessian matrix. When the performance function has the form of a sum of squares (as is typical in training feedforward networks), then the Hessian matrix can be approximated as

\[
H = J^T J
\]

and the gradient can be computed as

\[
g = J^T e
\]

where \(J \) is the Jacobian matrix that contains first derivatives of the network errors with respect to the weights and biases, and \(e \) is a vector of network errors. The Jacobian matrix can be computed through a standard backpropagation technique (see [HaMe94]) that is much less complex than computing the Hessian matrix.

The Levenberg-Marquardt algorithm uses this approximation to the Hessian matrix in the following Newton-like update:

\[
x_{k+1} = x_k - [J^T J + \mu I]^{-1} J^T e
\]
When the scalar \(\mu \) is zero, this is just Newton’s method, using the approximate Hessian matrix. When \(\mu \) is large, this becomes gradient descent with a small step size. Newton’s method is faster and more accurate near an error minimum, so the aim is to shift toward Newton’s method as quickly as possible. Thus, \(\mu \) is decreased after each successful step (reduction in performance function) and is increased only when a tentative step would increase the performance function. In this way, the performance function is always reduced at each iteration of the algorithm.

The original description of the Levenberg-Marquardt algorithm is given in [Marq63]. The application of Levenberg-Marquardt to neural network training is described in [HaMe94] and starting on page 12-19 of [HDB96]. This algorithm appears to be the fastest method for training moderate-sized feedforward neural networks (up to several hundred weights). It also has an efficient implementation in MATLAB® software, because the solution of the matrix equation is a built-in function, so its attributes become even more pronounced in a MATLAB environment.

Try the Neural Network Design demonstration nnd12m [HDB96] for an illustration of the performance of the batch Levenberg-Marquardt algorithm.

Algorithms

`trainlm` supports training with validation and test vectors if the network’s `NET.divideFcn` property is set to a data division function. Validation vectors are used to stop training early if the network performance on the validation vectors fails to improve or remains the same for `max_fail` epochs in a row. Test vectors are used as a further check that the network is generalizing well, but do not have any effect on training.

`trainlm` can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate the Jacobian \(jX \) of performance \(\text{perf} \) with respect to the weight and bias variables \(X \). Each variable is adjusted according to Levenberg-Marquardt,

\[
\begin{align*}
jj &= jX \ast jX \\
je &= jX \ast \text{E} \\
dX &= -(jj+I*\mu) \backslash je
\end{align*}
\]

where \(\text{E} \) is all errors and \(I \) is the identity matrix.

The adaptive value \(\mu \) is increased by \(\mu\text{_inc} \) until the change above results in a reduced performance value. The change is then made to the network and \(\mu \) is decreased by \(\mu\text{_dec} \).

Training stops when any of these conditions occurs:

- The maximum number of `epochs` (repetitions) is reached.
- The maximum amount of `time` is exceeded.
- Performance is minimized to the `goal`.
- The performance gradient falls below `min_grad`.
- \(\mu \) exceeds `mu_max`.
- Validation performance has increased more than `max_fail` times since the last time it decreased (when using validation).

Introduced before R2006a
trainoss

One-step secant backpropagation

Syntax

```
net.trainFcn = 'trainoss'
[net, tr] = train(net, ...)
```

Description

trainoss is a network training function that updates weight and bias values according to the one-step secant method.

```
net.trainFcn = 'trainoss'
```
sets the network trainFcn property.

```
[net, tr] = train(net, ...)
```
trains the network with trainoss.

Training occurs according to trainoss training parameters, shown here with their default values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>net.trainParam.epochs</td>
<td>1000</td>
<td>Maximum number of epochs to train</td>
</tr>
<tr>
<td>net.trainParam.goal</td>
<td>0</td>
<td>Performance goal</td>
</tr>
<tr>
<td>net.trainParam.max_fail</td>
<td>6</td>
<td>Maximum validation failures</td>
</tr>
<tr>
<td>net.trainParam.min_grad</td>
<td>1e-10</td>
<td>Minimum performance gradient</td>
</tr>
<tr>
<td>net.trainParam.searchFcn</td>
<td>'srchbac'</td>
<td>Name of line search routine to use</td>
</tr>
<tr>
<td>net.trainParam.show</td>
<td>25</td>
<td>Epochs between displays (NaN for no displays)</td>
</tr>
<tr>
<td>net.trainParam.showCommandLine</td>
<td>false</td>
<td>Generate command-line output</td>
</tr>
<tr>
<td>net.trainParam.showWindow</td>
<td>true</td>
<td>Show training GUI</td>
</tr>
<tr>
<td>net.trainParam.time</td>
<td>inf</td>
<td>Maximum time to train in seconds</td>
</tr>
</tbody>
</table>

Parameters related to line search methods (not all used for all methods):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>net.trainParam.scal_tol</td>
<td>20</td>
<td>Divide into delta to determine tolerance for linear search.</td>
</tr>
<tr>
<td>net.trainParam.alpha</td>
<td>0.001</td>
<td>Scale factor that determines sufficient reduction in perf</td>
</tr>
<tr>
<td>net.trainParam.beta</td>
<td>0.1</td>
<td>Scale factor that determines sufficiently large step size</td>
</tr>
<tr>
<td>net.trainParam.delta</td>
<td>0.01</td>
<td>Initial step size in interval location step</td>
</tr>
<tr>
<td>net.trainParam.gama</td>
<td>0.1</td>
<td>Parameter to avoid small reductions in performance, usually set to 0.1 (see srch_cha)</td>
</tr>
<tr>
<td>net.trainParam.low_lim</td>
<td>0.1</td>
<td>Lower limit on change in step size</td>
</tr>
<tr>
<td>net.trainParam.up_lim</td>
<td>0.5</td>
<td>Upper limit on change in step size</td>
</tr>
<tr>
<td>net.trainParam.maxstep</td>
<td>100</td>
<td>Maximum step length</td>
</tr>
<tr>
<td>net.trainParam.minstep</td>
<td>1.0e-6</td>
<td>Minimum step length</td>
</tr>
</tbody>
</table>
Network Use

You can create a standard network that uses trainoss with feedforwardnet or cascadeforwardnet. To prepare a custom network to be trained with trainoss:

1. Set `net.trainFcn` to `'trainoss'`. This sets `net.trainParam` to `trainoss`'s default parameters.
2. Set `net.trainParam` properties to desired values.

In either case, calling `train` with the resulting network trains the network with `trainoss`.

Examples

Train Neural Network Using trainoss Train Function

This example shows how to train a neural network using the `trainoss` train function.

Here a neural network is trained to predict body fat percentages.

```matlab
[x, t] = bodyfat_dataset;
net = feedforwardnet(10, 'trainoss');
net = train(net, x, t);
y = net(x);
```

More About

One Step Secant Method

Because the BFGS algorithm requires more storage and computation in each iteration than the conjugate gradient algorithms, there is need for a secant approximation with smaller storage and computation requirements. The one step secant (OSS) method is an attempt to bridge the gap between the conjugate gradient algorithms and the quasi-Newton (secant) algorithms. This algorithm does not store the complete Hessian matrix; it assumes that at each iteration, the previous Hessian was the identity matrix. This has the additional advantage that the new search direction can be calculated without computing a matrix inverse.

The one step secant method is described in [Batt92]. This algorithm requires less storage and computation per epoch than the BFGS algorithm. It requires slightly more storage and computation per epoch than the conjugate gradient algorithms. It can be considered a compromise between full quasi-Newton algorithms and conjugate gradient algorithms.

Algorithms

`trainoss` can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance `perf` with respect to the weight and bias variables `X`. Each variable is adjusted according to the following:
\[X = X + a \cdot dX; \]

where \(dX \) is the search direction. The parameter \(a \) is selected to minimize the performance along the search direction. The line search function `searchFcn` is used to locate the minimum point. The first search direction is the negative of the gradient of performance. In succeeding iterations the search direction is computed from the new gradient and the previous steps and gradients, according to the following formula:

\[dX = -gX + A\cdot X_{\text{step}} + B\cdot dgX; \]

where \(gX \) is the gradient, \(X_{\text{step}} \) is the change in the weights on the previous iteration, and \(dgX \) is the change in the gradient from the last iteration. See Battiti (Neural Computation, Vol. 4, 1992, pp. 141-166) for a more detailed discussion of the one-step secant algorithm.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below \(\text{min}_\text{grad} \).
- Validation performance has increased more than \(\text{max}_\text{fail} \) times since the last time it decreased (when using validation).

References

See Also

`trainbfg` | `traincgb` | `traincfg` | `traincgf` | `traincgp` | `traingda` | `traingdm` | `traingdx` | `trainlm` | `trainrp` | `trainscg`

Introduced before R2006a
trainr

Random order incremental training with learning functions

Syntax

```matlab
net.trainFcn = 'trainr'
[net,tr] = train(net,...)
```

Description

`trainr` is not called directly. Instead it is called by `train` for networks whose `net.trainFcn` property is set to `'trainr'`, thus:

- `net.trainFcn = 'trainr'` sets the network `trainFcn` property.
- `[net,tr] = train(net,...)` trains the network with `trainr`.

`trainr` trains a network with weight and bias learning rules with incremental updates after each presentation of an input. Inputs are presented in random order.

Training occurs according to `trainr` training parameters, shown here with their default values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>net.trainParam.epochs</code></td>
<td>1000</td>
<td>Maximum number of epochs to train</td>
</tr>
<tr>
<td><code>net.trainParam.goal</code></td>
<td>0</td>
<td>Performance goal</td>
</tr>
<tr>
<td><code>net.trainParam.max_fail</code></td>
<td>6</td>
<td>Maximum validation failures</td>
</tr>
<tr>
<td><code>net.trainParam.show</code></td>
<td>25</td>
<td>Epochs between displays (NaN for no displays)</td>
</tr>
<tr>
<td><code>net.trainParam.showCommandLine</code></td>
<td>false</td>
<td>Generate command-line output</td>
</tr>
<tr>
<td><code>net.trainParam.showWindow</code></td>
<td>true</td>
<td>Show training GUI</td>
</tr>
<tr>
<td><code>net.trainParam.time</code></td>
<td>inf</td>
<td>Maximum time to train in seconds</td>
</tr>
</tbody>
</table>

Network Use

You can create a standard network that uses `trainr` by calling `competlayer` or `selforgmap`. To prepare a custom network to be trained with `trainr`:

1. Set `net.trainFcn` to `'trainr'`. This sets `net.trainParam` to `trainr`’s default parameters.
2. Set each `net.inputWeights{i,j}.learnFcn` to a learning function.
3. Set each `net.layerWeights{i,j}.learnFcn` to a learning function.
4. Set each `net.biases{i}.learnFcn` to a learning function. (Weight and bias learning parameters are automatically set to default values for the given learning function.)

To train the network,

1. Set `net.trainParam` properties to desired values.
2. Set weight and bias learning parameters to desired values.
3 Call train.

See help competlayer and help selforgmap for training examples.

Algorithms

For each epoch, all training vectors (or sequences) are each presented once in a different random order, with the network and weight and bias values updated accordingly after each individual presentation.

Training stops when any of these conditions is met:

- The maximum number of *epochs* (repetitions) is reached.
- Performance is minimized to the *goal*.
- The maximum amount of *time* is exceeded.

See Also

train

Introduced before R2006a
trainrp

Resilient backpropagation

Syntax

```matlab
net.trainFcn = 'trainrp'
[net,tr] = train(net,...)
```

Description

`trainrp` is a network training function that updates weight and bias values according to the resilient backpropagation algorithm (Rprop).

`net.trainFcn = 'trainrp'` sets the network `trainFcn` property.

`[net,tr] = train(net,...)` trains the network with `trainrp`.

Training occurs according to `trainrp` training parameters, shown here with their default values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>net.trainParam.epochs</code></td>
<td>1000</td>
<td>Maximum number of epochs to train</td>
</tr>
<tr>
<td><code>net.trainParam.show</code></td>
<td>25</td>
<td>Epochs between displays (NaN for no displays)</td>
</tr>
<tr>
<td><code>net.trainParam.showCommandLine</code></td>
<td>false</td>
<td>Generate command-line output</td>
</tr>
<tr>
<td><code>net.trainParam.showWindow</code></td>
<td>true</td>
<td>Show training GUI</td>
</tr>
<tr>
<td><code>net.trainParam.goal</code></td>
<td>0</td>
<td>Performance goal</td>
</tr>
<tr>
<td><code>net.trainParam.time</code></td>
<td>inf</td>
<td>Maximum time to train in seconds</td>
</tr>
<tr>
<td><code>net.trainParam.min_grad</code></td>
<td>1e-5</td>
<td>Minimum performance gradient</td>
</tr>
<tr>
<td><code>net.trainParam.max_fail</code></td>
<td>6</td>
<td>Maximum validation failures</td>
</tr>
<tr>
<td><code>net.trainParam.lr</code></td>
<td>0.01</td>
<td>Learning rate</td>
</tr>
<tr>
<td><code>net.trainParam.delt_inc</code></td>
<td>1.2</td>
<td>Increment to weight change</td>
</tr>
<tr>
<td><code>net.trainParam.delt_dec</code></td>
<td>0.5</td>
<td>Decrement to weight change</td>
</tr>
<tr>
<td><code>net.trainParam.delta0</code></td>
<td>0.07</td>
<td>Initial weight change</td>
</tr>
<tr>
<td><code>net.trainParam.deltamax</code></td>
<td>50.0</td>
<td>Maximum weight change</td>
</tr>
</tbody>
</table>

Network Use

You can create a standard network that uses `trainrp` with `feedforwardnet` or `cascadeforwardnet`.

To prepare a custom network to be trained with `trainrp`,

1. Set `net.trainFcn` to `'trainrp'`. This sets `net.trainParam` to `trainrp`'s default parameters.
2. Set `net.trainParam` properties to desired values.

In either case, calling `train` with the resulting network trains the network with `trainrp`.

2-438
Examples

Here is a problem consisting of inputs \(p \) and targets \(t \) to be solved with a network.

\[
p = [0 \ 1 \ 2 \ 3 \ 4 \ 5]; \]
\[
t = [0 \ 0 \ 0 \ 1 \ 1 \ 1];
\]

A two-layer feed-forward network with two hidden neurons and this training function is created.

Create and test a network.

\[
net = feedforwardnet(2,'trainrp');
\]

Here the network is trained and retested.

\[
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
n = train(net,p,t);
a = net(p)
\]

See \texttt{help feedforwardnet} and \texttt{help cascadeforwardnet} for other examples.

More About

Resilient Backpropagation

Multilayer networks typically use sigmoid transfer functions in the hidden layers. These functions are often called “squashing” functions, because they compress an infinite input range into a finite output range. Sigmoid functions are characterized by the fact that their slopes must approach zero as the input gets large. This causes a problem when you use steepest descent to train a multilayer network with sigmoid functions, because the gradient can have a very small magnitude and, therefore, cause small changes in the weights and biases, even though the weights and biases are far from their optimal values.

The purpose of the resilient backpropagation (Rprop) training algorithm is to eliminate these harmful effects of the magnitudes of the partial derivatives. Only the sign of the derivative can determine the direction of the weight update; the magnitude of the derivative has no effect on the weight update. The size of the weight change is determined by a separate update value. The update value for each weight and bias is increased by a factor \(\text{delt inc} \) whenever the derivative of the performance function with respect to that weight has the same sign for two successive iterations. The update value is decreased by a factor \(\text{delt dec} \) whenever the derivative with respect to that weight changes sign from the previous iteration. If the derivative is zero, the update value remains the same. Whenever the weights are oscillating, the weight change is reduced. If the weight continues to change in the same direction for several iterations, the magnitude of the weight change increases. A complete description of the Rprop algorithm is given in [RiBr93].

The following code recreates the previous network and trains it using the Rprop algorithm. The training parameters for \texttt{trainrp} are \texttt{epochs}, \texttt{show}, \texttt{goal}, \texttt{time}, \texttt{min_grad}, \texttt{max_fail}, \texttt{delt inc}, \texttt{delt dec}, \texttt{delta0}, and \texttt{deltamax}. The first eight parameters have been previously discussed. The last two are the initial step size and the maximum step size, respectively. The performance of Rprop is not very sensitive to the settings of the training parameters. For the example below, the training parameters are left at the default values:

\[
p = [-1 \ -1 \ 2 \ 2;0 \ 5 \ 0 \ 5];
\]
\[
t = [-1 \ -1 \ 1 \ 1];
\]
net = feedforwardnet(3,'trainrp');
net = train(net,p,t);
y = net(p)

rprop is generally much faster than the standard steepest descent algorithm. It also has the nice
property that it requires only a modest increase in memory requirements. You do need to store the
update values for each weight and bias, which is equivalent to storage of the gradient.

Algorithms

trainrp can train any network as long as its weight, net input, and transfer functions have
derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and
bias variables X. Each variable is adjusted according to the following:

dX = deltaX.*sign(gX);

where the elements of deltaX are all initialized to delta0, and gX is the gradient. At each iteration
the elements of deltaX are modified. If an element of gX changes sign from one iteration to the next,
then the corresponding element of deltaX is decreased by delta_dec. If an element of gX
maintains the same sign from one iteration to the next, then the corresponding element of deltaX is
increased by delta_inc. See Riedmiller, M., and H. Braun, “A direct adaptive method for faster
backpropagation learning: The RPROP algorithm,” Proceedings of the IEEE International Conference
on Neural Networks, 1993, pp. 586–591.

Training stops when any of these conditions occurs:
• The maximum number of epochs (repetitions) is reached.
• The maximum amount of time is exceeded.
• Performance is minimized to the goal.
• The performance gradient falls below min_grad.
• Validation performance has increased more than max_fail times since the last time it decreased
 (when using validation).

References

Riedmiller, M., and H. Braun, “A direct adaptive method for faster backpropagation learning: The
586–591.

See Also

trainbfg | traincgb | traincfg | traincgf | traincgp | traingda | traingdm | traingdx | trainlm |
trainoss | trainscg

Introduced before R2006a
trainru

Unsupervised random order weight/bias training

Syntax

```matlab
net.trainFcn = 'trainru'
[net,tr] = train(net,...)
```

Description

`trainru` is not called directly. Instead it is called by `train` for networks whose `net.trainFcn` property is set to 'trainru', thus:

```matlab
net.trainFcn = 'trainru' sets the network trainFcn property.
[net,tr] = train(net,...) trains the network with trainru.
```

`trainru` trains a network with weight and bias learning rules with incremental updates after each presentation of an input. Inputs are presented in random order.

Training occurs according to `trainru` training parameters, shown here with their default values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>net.trainParam.epochs</code></td>
<td>1000</td>
<td>Maximum number of epochs to train</td>
</tr>
<tr>
<td><code>net.trainParam.show</code></td>
<td>25</td>
<td>Epochs between displays (NaN for no displays)</td>
</tr>
<tr>
<td><code>net.trainParam.showCommandLine</code></td>
<td>false</td>
<td>Generate command-line output</td>
</tr>
<tr>
<td><code>net.trainParam.showWindow</code></td>
<td>true</td>
<td>Show training GUI</td>
</tr>
<tr>
<td><code>net.trainParam.time</code></td>
<td>Inf</td>
<td>Maximum time to train in seconds</td>
</tr>
</tbody>
</table>

Network Use

To prepare a custom network to be trained with `trainru`,

1. Set `net.trainFcn` to 'trainru'. This sets `net.trainParam` to `trainru`'s default parameters.
2. Set each `net.inputWeights{i,j}.learnFcn` to a learning function.
3. Set each `net.layerWeights{i,j}.learnFcn` to a learning function.
4. Set each `net.biases{i}.learnFcn` to a learning function. (Weight and bias learning parameters are automatically set to default values for the given learning function.)

To train the network,

1. Set `net.trainParam` properties to desired values.
2. Set weight and bias learning parameters to desired values.
3. Call `train`.
Algorithms

For each epoch, all training vectors (or sequences) are each presented once in a different random order, with the network and weight and bias values updated accordingly after each individual presentation.

Training stops when any of these conditions is met:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.

See Also

train | trainr

Introduced in R2010b
trains

Sequential order incremental training with learning functions

Syntax

net.trainFcn = 'trains'
[net,tr] = train(net,...)

Description

trains is not called directly. Instead it is called by train for networks whose net.trainFcn property is set to 'trains', thus:

net.trainFcn = 'trains' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trains.

trains trains a network with weight and bias learning rules with sequential updates. The sequence of inputs is presented to the network with updates occurring after each time step.

This incremental training algorithm is commonly used for adaptive applications.

Training occurs according to trains training parameters, shown here with their default values:

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>net.trainParam.epochs</td>
<td>1000</td>
<td>Maximum number of epochs to train</td>
</tr>
<tr>
<td>net.trainParam.goal</td>
<td>0</td>
<td>Performance goal</td>
</tr>
<tr>
<td>net.trainParam.show</td>
<td>25</td>
<td>Epochs between displays (NaN for no displays)</td>
</tr>
<tr>
<td>net.trainParam.showCommandLine</td>
<td>false</td>
<td>Generate command-line output</td>
</tr>
<tr>
<td>net.trainParam.showWindow</td>
<td>true</td>
<td>Show training GUI</td>
</tr>
<tr>
<td>net.trainParam.time</td>
<td>Inf</td>
<td>Maximum time to train in seconds</td>
</tr>
</tbody>
</table>

Network Use

You can create a standard network that uses trains for adapting by calling perceptron or linearlayer.

To prepare a custom network to adapt with trains,

1. Set net.adaptFcn to 'trains'. This sets net.adaptParam to trains's default parameters.
2. Set each net.inputWeights{i,j}.learnFcn to a learning function. Set each net.layerWeights{i,j}.learnFcn to a learning function. Set each net.biases{i}.learnFcn to a learning function. (Weight and bias learning parameters are automatically set to default values for the given learning function.)

To allow the network to adapt,

1. Set weight and bias learning parameters to desired values.
Call adapt.

See help perceptron and help linearlayer for adaptation examples.

Algorithms

Each weight and bias is updated according to its learning function after each time step in the input sequence.

See Also

train | trainb | trainc | trainr

Introduced before R2006a
trainscg

Scaled conjugate gradient backpropagation

Syntax

net.trainFcn = 'trainscg'
[net,tr] = train(net,...)

Description

trainscg is a network training function that updates weight and bias values according to the scaled conjugate gradient method.

net.trainFcn = 'trainscg' sets the network trainFcn property.

[net,tr] = train(net,...) trains the network with trainscg.

Training occurs according to trainscg training parameters, shown here with their default values:

<table>
<thead>
<tr>
<th>net.trainParam.epochs</th>
<th>1000</th>
<th>Maximum number of epochs to train</th>
</tr>
</thead>
<tbody>
<tr>
<td>net.trainParam.show</td>
<td>25</td>
<td>Epochs between displays (NaN for no displays)</td>
</tr>
<tr>
<td>net.trainParam.showCommandLine</td>
<td>false</td>
<td>Generate command-line output</td>
</tr>
<tr>
<td>net.trainParam.showWindow</td>
<td>true</td>
<td>Show training GUI</td>
</tr>
<tr>
<td>net.trainParam.goal</td>
<td>0</td>
<td>Performance goal</td>
</tr>
<tr>
<td>net.trainParam.time</td>
<td>inf</td>
<td>Maximum time to train in seconds</td>
</tr>
<tr>
<td>net.trainParam.min_grad</td>
<td>1e-6</td>
<td>Minimum performance gradient</td>
</tr>
<tr>
<td>net.trainParam.max_fail</td>
<td>6</td>
<td>Maximum validation failures</td>
</tr>
<tr>
<td>net.trainParam.sigma</td>
<td>5.0e-5</td>
<td>Determine change in weight for second derivative approximation</td>
</tr>
<tr>
<td>net.trainParam.lambda</td>
<td>5.0e-7</td>
<td>Parameter for regulating the indefiniteness of the Hessian</td>
</tr>
</tbody>
</table>

Network Use

You can create a standard network that uses trainscg with feedforwardnet or cascadeforwardnet. To prepare a custom network to be trained with trainscg,

1. Set net.trainFcn to 'trainscg'. This sets net.trainParam to trainscg's default parameters.
2. Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network with trainscg.
Examples

Here is a problem consisting of inputs \(p \) and targets \(t \) to be solved with a network.

\[
p = [0 1 2 3 4 5]; \\
t = [0 0 0 1 1 1];
\]

A two-layer feed-forward network with two hidden neurons and this training function is created.

\[
\text{net} = \text{feedforwardnet}(2,'\text{trainscg}'); \\
\text{Here the network is trained and retested.}
\]

\[
\text{net} = \text{train(net,p,t);} \\
a = \text{net(p)}
\]

See `help feedforwardnet` and `help cascadeforwardnet` for other examples.

Algorithms

`trainscg` can train any network as long as its weight, net input, and transfer functions have derivative functions. Backpropagation is used to calculate derivatives of performance \(\text{perf} \) with respect to the weight and bias variables \(X \).

The scaled conjugate gradient algorithm is based on conjugate directions, as in `traincgp`, `traincgf`, and `traincgb`, but this algorithm does not perform a line search at each iteration. See Moller (Neural Networks, Vol. 6, 1993, pp. 525-533) for a more detailed discussion of the scaled conjugate gradient algorithm.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below \(\text{min}_\text{grad} \).
- Validation performance has increased more than \(\text{max}_\text{fail} \) times since the last time it decreased (when using validation).

References

Moller, Neural Networks, Vol. 6, 1993, pp. 525-533

See Also

`trainbfg`, `traincgb`, `traincgf`, `traincgp`, `traingda`, `traingdm`, `traingdx`, `trainlm`, `trainoss`, `trainrp`

Introduced before R2006a
tribas

Triangular basis transfer function

Graph and Symbol

![Graph of tribas function]

\[a = \text{tribas}(n) \]

Triangular Basis Function

Syntax

\[A = \text{tribas}(N, FP) \]

Description

tribas is a neural transfer function. Transfer functions calculate a layer's output from its net input.

\[A = \text{tribas}(N, FP) \] takes \(N \) and optional function parameters,

<table>
<thead>
<tr>
<th>(N)</th>
<th>S-by-Q matrix of net input (column) vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP</td>
<td>Struct of function parameters (ignored)</td>
</tr>
</tbody>
</table>

and returns \(A \), an S-by-Q matrix of the triangular basis function applied to each element of \(N \).

\(\text{info} = \text{tribas}('\text{code}') \) can take the following forms to return specific information:

- \(\text{tribas}('\text{name}') \) returns the name of this function.
- \(\text{tribas}('\text{output}', FP) \) returns the [min max] output range.
- \(\text{tribas}('\text{active}', FP) \) returns the [min max] active input range.
- \(\text{tribas}('\text{fullderiv}') \) returns 1 or 0, depending on whether \(dA_dN \) is S-by-S-by-Q or S-by-Q.
- \(\text{tribas}('\text{fpnames}') \) returns the names of the function parameters.
- \(\text{tribas}('\text{fpdefaults}') \) returns the default function parameters.

Examples

Here you create a plot of the *tribas* transfer function.
n = -5:0.1:5;
a = tribas(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'tribas';

Algorithms

$a = \text{tribas}(n) = 1 - \text{abs}(n),$ if $-1 \leq n \leq 1$

$= 0,$ otherwise

See Also

radbas | sim

Introduced before R2006a
tritop

Triangle layer topology function

Syntax

`pos = tritop(dimensions)`

Description

`tritop` calculates neuron positions for layers whose neurons are arranged in an N-dimensional triangular grid.

`pos = tritop(dimensions)` takes one argument:

<table>
<thead>
<tr>
<th>dimensions</th>
<th>Row vector of dimension sizes</th>
</tr>
</thead>
</table>

and returns an N-by-S matrix of N coordinate vectors, where N is the number of dimensions and S is the product of `dimensions`.

Examples

Display Layer with Triangular Pattern

This example shows how to display a two-dimensional layer with 40 neurons arranged in an 8-by-5 triangular grid.

```matlab
pos = tritop([8 5]);
plotsom(pos)
```
See Also
gridtop | hextop | randtop

Introduced in R2010b
unconfigure

Unconfigure network inputs and outputs

Syntax

unconfigure(net)
unconfigure(net, 'inputs', i)
unconfigure(net, 'outputs', i)

Description

unconfigure(net) returns a network with its input and output sizes set to 0, its input and output processing settings and related weight initialization settings set to values consistent with zero-sized signals. The new network will be ready to be reconfigured for data of the same or different dimensions than it was previously configured for.

unconfigure(net, 'inputs', i) unconfigures the inputs indicated by the indices i. If no indices are specified, all inputs are unconfigured.

unconfigure(net, 'outputs', i) unconfigures the outputs indicated by the indices i. If no indices are specified, all outputs are unconfigured.

Examples

Here a network is configured for a simple fitting problem, and then unconfigured.

```
[x,t] = simplefit_dataset;
net = fitnet(10);
view(net)
net = configure(net,x,t);
view(net)
net = unconfigure(net)
view(net)
```

See Also

configure | isconfigured

Introduced in R2010b
vec2ind

Convert vectors to indices

Syntax

\[
[ind,n] = \text{vec2ind}(\text{vec})
\]

Description

`ind2vec` and `vec2ind` allow indices to be represented either by themselves or as vectors containing a 1 in the row of the index they represent.

\[
[ind,n] = \text{vec2ind}(\text{vec})
\]

takes one argument,

\[
\text{vec} \quad \text{Matrix of vectors, each containing a single 1}
\]

and returns

\[
\text{ind} \quad \text{The indices of the 1s}
\]
\[
\text{n} \quad \text{The number of rows in vec}
\]

Examples

Here three vectors are converted to indices and back, while preserving the number of rows.

\[
\text{vec} = [0 \ 0 \ 1 \ 0; \ 1 \ 0 \ 0 \ 0; \ 0 \ 1 \ 0 \ 0]'
\]

\[
\text{vec} =
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

\[
[ind,n] = \text{vec2ind}(\text{vec})
\]

\[
\text{ind} =
\begin{bmatrix}
3 & 1 & 2
\end{bmatrix}
\]

\[
\text{n} = 4
\]

\[
\text{vec2} = \text{full}(\text{ind2vec}(\text{ind},n))
\]

\[
\text{vec2} =
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

See Also

`ind2sub` | `ind2vec` | `sub2ind`
Introduced before R2006a
view

View shallow neural network

Syntax

view(net)

Description

view(net) opens a window that shows your shallow neural network (specified in net) as a graphical diagram.

Tip To visualize deep learning networks, see Deep Network Designer.

Example

View Neural Network

This example shows how to view the diagram of a pattern recognition network.

[x,t] = iris_dataset;
net = patternnet;
net = configure(net,x,t);
view(net)

Introduced in R2008a
Neural Net Fitting

Fit data by training a two-layer feed-forward network

Description
The Neural Net Fitting app leads you through solving a data-fitting problem using a two-layer feed-forward network. It helps you select data, divide it into training, validation, and testing sets, define the network architecture, and train the network. You can select your own data from the MATLAB workspace or use one of the example datasets. After training the network, evaluate its performance using mean squared error and regression analysis. Further analyze the results using visualization tools such as a regression fit or histogram of the errors. You can then evaluate the performance of the network on a test set. If you are not satisfied with the results, you can retrain the network with modified settings or on a larger data set.

You can generate MATLAB scripts to reproduce results or customize the training process. You can also save the trained network to test on new data or use for solving similar fitting problems. The app also provides the option to generate various deployable versions of your trained network. For example, you can deploy the trained network using MATLAB Compiler, MATLAB Coder, or Simulink Coder tools.

Required Products

• MATLAB
• Deep Learning Toolbox

Open the Neural Net Fitting App

• MATLAB Toolstrip: On the Apps tab, under Machine Learning, click the app icon.
• MATLAB command prompt: Enter nftool.

Examples

• “Fit Data with a Shallow Neural Network”

See Also

Apps
Neural Net Time Series | Neural Net Clustering | Neural Net Pattern Recognition

Functions
feedforwardnet | fitnet | trainbr | trainlm | trainscg

Topics
“Fit Data with a Shallow Neural Network”
Neural Net Clustering

Cluster data by training a self-organizing maps network

Description

The **Neural Net Clustering** app leads you through solving a clustering problem using a self-organizing map (SOM). It helps you select data, define the network architecture, and train the network. You can select your own data from the MATLAB workspace or use one of the example datasets. After training the network, analyze the results using various visualization tools. You can then evaluate the performance of the network on a test set. If you are not satisfied with the results, you can retrain the network with modified settings or on a larger data set.

You can generate MATLAB scripts to reproduce results or customize the training process. You can also save the trained network to test on new data or use for solving similar clustering problems. The app also provides the option to generate various deployable versions of your trained network. For example, you can deploy the trained network using MATLAB Compiler, MATLAB Coder, or Simulink Coder tools.

Required Products

- MATLAB
- Deep Learning Toolbox

Open the Neural Net Clustering App

- MATLAB Toolstrip: On the **Apps** tab, under **Machine Learning**, click the app icon.
- MATLAB command prompt: Enter `nctool`.

Examples

- “Cluster Data with a Self-Organizing Map”

See Also

Apps
- Neural Net Fitting | Neural Net Pattern Recognition | Neural Net Time Series

Functions
- `learnsomb` | `selforgmap` | `trainbu`

Topics
- “Cluster Data with a Self-Organizing Map”
Neural Net Pattern Recognition

Classify data by training a two-layer feed-forward network

Description
The Neural Net Pattern Recognition app leads you through solving a data classification problem using a two-layer feed-forward network. It helps you select data, divide it into training, validation, and testing sets, define the network architecture, and train the network. You can select your own data from the MATLAB workspace or use one of the example datasets. After training the network, evaluate its performance using cross-entropy and percent misclassification error. Further analyze the results using visualization tools such as confusion matrices and receiver operating characteristic curves. You can then evaluate the performance of the network on a test set. If you are not satisfied with the results, you can retrain the network with modified settings or on a larger data set.

You can generate MATLAB scripts to reproduce results or customize the training process. You can also save the trained network to test on new data or use for solving similar classification problems. The app also provides the option to generate various deployable versions of your trained network. For example, you can deploy the trained network using MATLAB Compiler, MATLAB Coder, or SimulinkCoder tools.

Required Products
• MATLAB
• Deep Learning Toolbox

Open the Neural Net Pattern Recognition App
• MATLAB Toolstrip: On the Apps tab, under Machine Learning, click the app icon.
• MATLAB command prompt: Enter nprtool.

Examples
• “Classify Patterns with a Shallow Neural Network”

See Also

Apps
Neural Net Fitting | Neural Net Clustering | Neural Net Time Series

Functions
patternnet | trainlm

Topics
“Classify Patterns with a Shallow Neural Network”
Neural Net Time Series

Solve a nonlinear time series problem by training a dynamic neural network

Description

The Neural Net Time Series app leads you through solving three different kinds of nonlinear time series problems using a dynamic network. It helps you select data, divide it into training, validation, and testing sets, define the network architecture, and train the network. You can select your own data from the MATLAB workspace or use one of the example datasets. After training the network, evaluate its performance using mean squared error and regression analysis. Further analyze the results using visualization tools such as an error autocorrelation plot or histogram of the errors. You can then evaluate the performance of the network on a test set. If you are not satisfied with the results, retrain the network with modified settings or on a larger data set.

You can generate MATLAB scripts to reproduce results or customize the training process. You can also save the trained network to test on new data or use for solving similar classification problems. The app also provides the option to generate various deployable versions of your trained network. For example, you can deploy the trained network using MATLAB Compiler, MATLAB Coder, or Simulink Coder tools.

Required Products

- MATLAB
- Deep Learning Toolbox

Open the Neural Net Time Series App

- MATLAB Toolstrip: On the Apps tab, under Machine Learning, click the app icon.
- MATLAB command prompt: Enter ntstool.

Examples

- “Shallow Neural Network Time-Series Prediction and Modeling”

See Also

- Apps
 - Neural Net Fitting | Neural Net Clustering | Neural Net Pattern Recognition

- Functions
 - narnet | narxnet

- Topics
 - “Shallow Neural Network Time-Series Prediction and Modeling”
matlab.io.datastore.MiniBatchable class

Package: `matlab.io.datastore`

Add mini-batch support to datastore

Description

`matlab.io.datastore.MiniBatchable` is an abstract mixin class that adds support for mini-batches to your custom datastore for use with Deep Learning Toolbox. A mini-batch datastore contains training and test data sets for use in Deep Learning Toolbox training, prediction, and classification.

To use this mixin class, you must inherit from the `matlab.io.datastore.MiniBatchable` class in addition to inheriting from the `matlab.io.Datastore` base class. Type the following syntax as the first line of your class definition file:

```matlab
classdef MyDatastore < matlab.io.Datastore & ...
    matlab.io.datastore.MiniBatchable
end
```

To add support for mini-batches to your datastore:

- Inherit from an additional class `matlab.io.datastore.MiniBatchable`
- Define two additional properties: `MiniBatchSize` and `NumObservations`.

For more details and steps to create your custom mini-batch datastore to optimize performance during training, prediction, and classification, see “Develop Custom Mini-Batch Datastore”.

Properties

MiniBatchSize — Number of observations in each batch

positive integer

Number of observations that are returned in each batch, or call of the `read` function. For training, prediction, and classification, the `MiniBatchSize` property is set to the mini-batch size defined in `trainingOptions`.

Attributes:

- `Abstract` : `true`
- `Access` : `Public`

NumObservations — Total number of observations in the datastore

positive integer

Total number of observations contained within the datastore. This number of observations is the length of one training epoch.

Attributes:
Abstract true
SetAccess Protected
ReadAccess Public

Attributes

Abstract true
Sealed false

For information on class attributes, see “Class Attributes”.

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Train Network Using Out-of-Memory Sequence Data

This example shows how to train a deep learning network on out-of-memory sequence data by transforming and combining datastores.

A transformed datastore transforms or processes data read from an underlying datastore. You can use a transformed datastore as a source of training, validation, test, and prediction data sets for deep learning applications. Use transformed datastores to read out-of-memory data or to perform specific preprocessing operations when reading batches of data. When you have separate datastores containing predictors and labels, you can combine them so you can input the data into a deep learning network.

When training the network, the software creates mini-batches of sequences of the same length by padding, truncating, or splitting the input data. For in-memory data, the trainingOptions function provides options to pad and truncate input sequences, however, for out-of-memory data, you must pad and truncate the sequences manually.

Load Training Data

Load the Japanese Vowels data set as described in [1] and [2]. The zip file japaneseVowels.zip contains sequences of varying length. The sequences are divided into two folders, Train and Test, which contain training sequences and test sequences, respectively. In each of these folders, the sequences are divided into subfolders, which are numbered from 1 to 9. The names of these subfolders are the label names. A MAT file represents each sequence. Each sequence is a matrix with 12 rows, with one row for each feature, and a varying number of columns, with one column for each time step. The number of rows is the sequence dimension and the number of columns is the sequence length.

Unzip the sequence data.

```matlab
filename = "japaneseVowels.zip";
outputFolder = fullfile(tempdir,"japaneseVowels");
unzip(filename,outputFolder);
```
For the training predictors, create a file datastore and specify the read function to be the `load` function. The `load` function, loads the data from the MAT-file into a structure array. To read files from the subfolders in the training folder, set the `'IncludeSubfolders'` option to true.

```
folderTrain = fullfile(outputFolder,"Train");
fdsPredictorTrain = fileDatastore(folderTrain, ...
    'ReadFcn',@load, ...  
    'IncludeSubfolders',true);
```

Preview the datastore. The returned struct contains a single sequence from the first file.

```
preview(fdsPredictorTrain)
ans = struct with fields:
    X: [12x20 double]
```

For the labels, create a file datastore and specify the read function to be the `readLabel` function, defined at the end of the example. The `readLabel` function extracts the label from the subfolder name.

```
classNames = string(1:9);
fdsLabelTrain = fileDatastore(folderTrain, ...  
    'ReadFcn',@(filename) readLabel(filename,classNames), ...  
    'IncludeSubfolders',true);
```

Preview the datastore. The output corresponds to the label of the first file.

```
preview(fdsLabelTrain)
ans = categorical
    1
```

Transform and Combine Datastores

To input the sequence data from the datastore of predictors to a deep learning network, the mini-batches of the sequences must have the same length. Transform the datastore using the `padSequence` function, defined at the end of the datastore, that pads or truncates the sequences to have length 20.

```
sequenceLength = 20;
tdsTrain = transform(fdsPredictorTrain,@(data) padSequence(data,sequenceLength));
```

Preview the transformed datastore. The output corresponds to the padded sequence from the first file.

```
X = preview(tdsTrain)
X = 1x1 cell array
    {12x20 double}
```

To input both the predictors and labels from both datastores into a deep learning network, combine them using the `combine` function.

```
cdsTrain = combine(tdsTrain,fdsLabelTrain);
```
Preview the combined datastore. The datastore returns a 1-by-2 cell array. The first element corresponds to the predictors. The second element corresponds to the label.

```matlab
preview(cdsTrain)
ans = 1x2 cell array
    {12x20 double}    {[1]}
```

Define LSTM Network Architecture

Define the LSTM network architecture. Specify the number of features of the input data as the input size. Specify an LSTM layer with 100 hidden units and to output the last element of the sequence. Finally, specify a fully connected layer with output size equal to the number of classes, followed by a softmax layer and a classification layer.

```matlab
numFeatures = 12;
numClasses = numel(classNames);
numHiddenUnits = 100;

layers = [...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];
```

Specify the training options. Set the solver to 'adam' and 'GradientThreshold' to 2. Set the mini-batch size to 27 and set the maximum number of epochs to 75. The datastores do not support shuffling, so set 'Shuffle' to 'never'.

```matlab
miniBatchSize = 27;
options = trainingOptions('adam', ...
    'ExecutionEnvironment','cpu', ...
    'MaxEpochs',75, ...
    'MiniBatchSize',miniBatchSize, ...
    'GradientThreshold',2, ...
    'Shuffle','never',...
    'Verbose',0, ...
    'Plots','training-progress');
```

Train the LSTM network with the specified training options.

```matlab
net = trainNetwork(cdsTrain,layers,options);
```
Test the Network

Create a transformed datastore containing the held-out test data using the same steps as for the training data.

```matlab
folderTest = fullfile(outputFolder,"Test");

fdsPredictorTest = fileDatastore(folderTest, ...
    'ReadFcn',@load, ...  
    'IncludeSubfolders',true);

tdsTest = transform(fdsPredictorTest, @(data) padSequence(data,sequenceLength));

Make predictions on the test data using the trained network.

YPred = classify(net,tdsTest,'MiniBatchSize',miniBatchSize);

Calculate the classification accuracy on the test data. To get the labels of the test set, create a file datastore with the read function `readLabel` and specify to include subfolders. Specify that the outputs are vertically concatenateable by setting the 'UniformRead' option to true.

```matlab
dfsLabelTest = fileDatastore(folderTest, ...
 'ReadFcn',@(filename) readLabel(filename,classNames), ...
 'IncludeSubfolders',true, ...
 'UniformRead',true);

YTest = readall(dfsLabelTest);

accuracy = mean(YPred == YTest)
```

accuracy = 0.9351
Functions

The readLabel function extracts the label from the specified filename over the categories inclassNames.

```matlab
function label = readLabel(filename,classNames)

filepath = fileparts(filename);
[-,label] = fileparts(filepath);
label = categorical(string(label),classNames);
end
```

The padSequence function pads or truncates the sequence in data.X to have the specified sequence length and returns the result in a 1-by-1 cell.

```matlab
function sequence = padSequence(data,sequenceLength)

sequence = data.X;
[C,S] = size(sequence);
if S < sequenceLength
 padding = zeros(C,sequenceLength-S);
 sequence = [sequence padding];
else
 sequence = sequence(:,1:sequenceLength);
end
sequence = {sequence};
end
```

Compatibility Considerations

matlab.io.datastore.MiniBatchable is not recommended for custom image preprocessing

Not recommended starting in R2019a

Starting in R2019a, matlab.io.datastore.MiniBatchable is not recommended for custom image processing. Use the transform and combine functions with built-in datastores instead. For more information, see “Preprocess Images for Deep Learning”.

References


See Also

Topics
“Deep Learning in MATLAB”
“Develop Custom Mini-Batch Datastore”

Introduced in R2018a
read

Class: matlab.io.datastore.MiniBatchable
Package: matlab.io.datastore

Read data from mini-batch datastore

Note The read method of matlab.io.datastore.MiniBatchable is not recommended. For more information, see Compatibility Considerations.

Syntax

data = read(ds)
[data,info] = read(ds)

Description

data = read(ds) returns data from a mini-batch datastore. Subsequent calls to the read function continue reading from the endpoint of the previous call.

[data,info] = read(ds) also returns information about the extracted data in info, including metadata.

Input Arguments

mbds — Mini-batch datastore
datastore | custom MiniBatchable datastore | ...

Mini-batch datastore, specified as a built-in datastore or custom mini-batch datastore. For more information, see “Datastores for Deep Learning”.

Output Arguments

data — Output data
table

Output data, returned as a table with MiniBatchSize number of rows. For the last mini-batch of data in the datastore, if NumObservations is not evenly divisible by MiniBatchSize, then data should contain the remaining observations in the datastore (a partial batch smaller than MiniBatchSize).

The table should have two columns, with predictors in the first column and responses in the second column.

info — Information about read data
structure array

Information about read data, returned as a structure array.
Attributes

Hidden true

To learn about attributes of methods, see Method Attributes.

Compatibility Considerations

read is not recommended
Not recommended starting in R2019a

Before R2018a, to perform custom image preprocessing for training deep learning networks, you had to specify a custom read function using the readFcn property of imageDatastore. However, reading files using a custom read function was slow because imageDatastore did not prefetch files.

In R2018a, four classes including matlab.io.datastore.MiniBatchable were introduced as a solution to perform custom image preprocessing with support for prefetching, shuffling, and parallel training. Implementing a custom mini-batch datastore using matlab.io.datastore.MiniBatchable has several challenges and limitations.

• In addition to specifying the preprocessing operations, you must also define properties and methods to support reading data in batches, reading data by index, and partitioning and shuffling data.
• You must specify a value for the NumObservations property, but this value may be ill-defined or difficult to define in real-world applications.
• Custom mini-batch datastores are not flexible enough to support common deep learning workflows, such as deployed workflows using GPU Coder.

Starting in R2019a, built-in datastores natively support prefetch, shuffling, and parallel training when reading batches of data. The transform function is the preferred way to perform custom data preprocessing, or transformations. The combine function is the preferred way to concatenate read data from multiple datastores, including transformed datastores. Concatenated data can serve as the network inputs and expected responses for training deep learning networks. The transform and combine functions have several advantages over matlab.io.datastore.MiniBatchable.

• The functions enable data preprocessing and concatenation for all types of datastores, including imageDatastore.
• The transform function only requires you to define the data processing pipeline.
• When used on a deterministic datastore, the functions support tall data types and MapReduce.
• The functions support deployed workflows.

Note The recommended solution to transform data with basic image preprocessing operations, including resizing, rotation, and reflection, is augmentedImageDatastore. For more information, see “Preprocess Images for Deep Learning”.

There are no plans to remove the read method of matlab.io.datastore.MiniBatchable at this time.
See Also
combine|matlab.io.Datastore|matlab.io.datastore.MiniBatchable|read
(Datastore)|transform

Topics
“Datastores for Deep Learning”
“Preprocess Images for Deep Learning”
“Deep Learning in MATLAB”

Introduced in R2018a
matlab.io.datastore.BackgroundDispatchable class

Package: matlab.io.datastore

(Not recommended) Add prefetch reading support to datastore

**Note** matlab.io.datastore.BackgroundDispatchable is not recommended. For more information, see Compatibility Considerations.

**Description**

matlab.io.datastore.BackgroundDispatchable is an abstract mixin class that adds support for prefetch reading to your custom datastore for use with Deep Learning Toolbox.

To use this mixin class, you must inherit from the matlab.io.datastore.BackgroundDispatchable class in addition to inheriting from the matlab.io.Datastore base class. Type the following syntax as the first line of your class definition file:

```matlab
classdef MyDatastore < matlab.io.Datastore & ...
 matlab.io.datastore.BackgroundDispatchable
end
```

To add support for parallel processing to your custom datastore, you must:

- Inherit from an additional class matlab.io.datastore.BackgroundDispatchable
- Define the additional method: `readByIndex`

For more details and steps to create your custom datastore to optimize performance during training, prediction, and classification, see “Develop Custom Mini-Batch Datastore”.

**Properties**

**DispatchInBackground — Dispatch observations in background**

`true` (default) | `false`

Dispatch observations in the background during training, prediction, or classification, specified as `true` or `false`. To use background dispatching, you must have Parallel Computing Toolbox.

**Attributes:**

- **Public**: `true`

**Methods**

- **readByIndex** (Not recommended) Return observations from a datastore specified by index
Attributes

Abstract true
Sealed false

For information on class attributes, see “Class Attributes”.

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects.

Compatibility Considerations

`matlab.io.datastore.BackgroundDispatchable` is not recommended
Not recommended starting in R2019a

Before R2018a, to perform custom image preprocessing for training deep learning networks, you had to specify a custom read function using the `readFcn` property of `imageDatastore`. However, reading files using a custom read function was slow because `imageDatastore` did not prefetch files.

In R2018a, four classes including `matlab.io.datastore.MiniBatchable` and `matlab.io.datastore.BackgroundDispatchable` were introduced as a solution to perform custom image preprocessing with support for prefetching, shuffling, and parallel training. Implementing a custom mini-batch datastore using `matlab.io.datastore.MiniBatchable` has several challenges and limitations.

- In addition to specifying the preprocessing operations, you must also define properties and methods to support reading data in batches, reading data by index, and partitioning and shuffling data.
- You must specify a value for the `NumObservations` property, but this value may be ill-defined or difficult to define in real-world applications.
- Custom mini-batch datastores are not flexible enough to support common deep learning workflows, such as deployed workflows using GPU Coder.

Starting in R2019a, datastores natively support prefetch, shuffling, and parallel training when reading batches of data. The `transform` function is the preferred way to perform custom data preprocessing, or transformations. The `combine` function is the preferred way to concatenate read data from multiple datastores, including transformed datastores. Concatenated data can serve as the network inputs and expected responses for training deep learning networks. The `transform` and `combine` functions have several advantages over `matlab.io.datastore.MiniBatchable` and `matlab.io.datastore.BackgroundDispatchable`.

- The functions enable data preprocessing and concatenation for all types of datastores, including `imageDatastore`.
- The `transform` function only requires you to define the data processing pipeline.
- When used on a deterministic datastore, the functions support `tall` data types and `MapReduce`.
- The functions support deployed workflows.
Note The recommended solution to transform data with basic image preprocessing operations, including resizing, rotation, and reflection, is augmentedImageDatastore. For more information, see “Preprocess Images for Deep Learning”.

There are no plans to remove matlab.io.datastore.BackgroundDispatchable at this time.

See Also
combine | matlab.io.Datastore | matlab.io.datastore.Partitionable |
matlab.io.datastore.Shuffleable | transform

Topics
“Preprocess Images for Deep Learning”
“Deep Learning in MATLAB”

Introduced in R2018a
readByIndex

Class: `matlab.io.datastore.BackgroundDispatchable`
Package: `matlab.io.datastore`

(Not recommended) Return observations from a datastore specified by index

**Note** readByIndex is not recommended. For more information, see Compatibility Considerations.

**Syntax**

```
[data,info] = readByIndex(ds,ind)
```

**Description**

```
[data,info] = readByIndex(ds,ind)
```
returns a subset of observations in a datastore, `ds`. The desired observations are specified by indices, `ind`.

**Input Arguments**

- **ds** — Input datastore
  Datastore object
  Input datastore, specified as a `Datastore` object.

- **ind** — Indices
  vector of positive integers
  Indices of observations, specified as a vector of positive integers.

**Output Arguments**

- **data** — Observations from datastore
  table
  Observations from the datastore, returned as a table or an array according to the `read` method of the datastore. For example, when `ds` is a custom mini-batch datastore, then `data` is a table with the same format as returned by the `read` (MiniBatchable) method.

- **info** — Information about read data
  structure array
  Information about read data, returned as a structure array. The structure array can contain the following fields.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filename</td>
<td>Filename is a fully resolved path containing the path string, name of the file, and file extension.</td>
</tr>
<tr>
<td>Field Name</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>FileSize</td>
<td>Total file size, in bytes. For MAT-files, FileSize is the total number of key-value pairs in the file.</td>
</tr>
</tbody>
</table>

**Attributes**

Abstract: true  
Access: Public

To learn about attributes of methods, see Method Attributes.

**Tips**

- You must implement the `readByIndex` method by deriving a subclass from the `matlab.io.datastore.BackgroundDispatchable` class.

**Compatibility Considerations**

**readByIndex is not recommended**  
*Not recommended starting in R2019a*

Before R2018a, to perform custom image preprocessing for training deep learning networks, you had to specify a custom read function using the `readFcn` property of `imageDatastore`. However, reading files using a custom read function was slow because `imageDatastore` did not prefetch files.

In R2018a, four classes including `matlab.io.datastore.MiniBatchable` and `matlab.io.datastore.BackgroundDispatchable` were introduced as a solution to perform custom image preprocessing with support for prefetching, shuffling, and parallel training. Implementing a custom mini-batch datastore using `matlab.io.datastore.MiniBatchable` has several challenges and limitations.

- In addition to specifying the preprocessing operations, you must also define properties and methods to support reading data in batches, reading data by index, and partitioning and shuffling data.
- You must specify a value for the `NumObservations` property, but this value may be ill-defined or difficult to define in real-world applications.
- Custom mini-batch datastores are not flexible enough to support common deep learning workflows, such as deployed workflows using GPU Coder.

Starting in R2019a, datastores natively support prefetch, shuffling, and parallel training when reading batches of data. The `transform` function is the preferred way to perform custom data preprocessing, or transformations. The `combine` function is the preferred way to concatenate read data from multiple datastores, including transformed datastores. Concatenated data can serve as the network inputs and expected responses for training deep learning networks. The `transform` and `combine` functions have several advantages over `matlab.io.datastore.MiniBatchable` and `matlab.io.datastore.BackgroundDispatchable`.

- The functions enable data preprocessing and concatenation for all types of datastores, including `imageDatastore`. 

2-473
• The `transform` function only requires you to define the data processing pipeline.
• When used on a deterministic datastore, the functions support `tall` data types and MapReduce.
• The functions support deployed workflows.

**Note** The recommended solution to transform data with basic image preprocessing operations, including resizing, rotation, and reflection, is `augmentedImageDatastore`. For more information, see “Preprocess Images for Deep Learning”.

There are no plans to remove `matlab.io.datastore.BackgroundDispatchable` class or the `readByIndex` method at this time.

**See Also**
`combine` | `matlab.io.Datastore` | `read` | `readall` | `transform`

**Topics**
“Preprocess Images for Deep Learning”
“Deep Learning in MATLAB”

**Introduced in R2018a**
matlab.io.datastore.PartitionableByIndex class

Package: matlab.io.datastore

(Not recommended) Add parallelization support to datastore

Note matlab.io.datastore.PartitionableByIndex is not recommended. For more information, see Compatibility Considerations.

Description

matlab.io.datastore.PartitionableByIndex is an abstract mixin class that adds parallelization support to your custom datastore for use with Deep Learning Toolbox. This class requires Parallel Computing Toolbox.

To use this mixin class, you must inherit from the matlab.io.datastore.PartitionableByIndex class in addition to inheriting from the matlab.io.Datastore base class. Type the following syntax as the first line of your class definition file:

classdef MyDatastore < matlab.io.Datastore & ...
    matlab.io.datastore.PartitionableByIndex
...
end

To add support for parallel processing to your custom datastore, you must:

• Inherit from an additional class matlab.io.datastore.PartitionableByIndex
• Define the additional method: partitionByIndex

For more details and steps to create your custom datastore with parallel processing support, see “Develop Custom Mini-Batch Datastore”.

Methods

partitionByIndex  (Not recommended) Partition a datastore according to indices

Attributes

Abstract        true
Sealed          false

For information on class attributes, see “Class Attributes”.

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects.
Compatibility Considerations

**matlab.io.datastore.PartitionableByIndex is not recommended**

*Not recommended starting in R2019a*

Before R2018a, to perform custom image preprocessing for training deep learning networks, you had to specify a custom read function using the readFcn property of imageDatastore. However, reading files using a custom read function was slow because imageDatastore did not prefetch files.

In R2018a, four classes including matlab.io.datastore.MiniBatchable and matlab.io.datastore.PartitionableByIndex were introduced as a solution to perform custom image preprocessing with support for prefetching, shuffling, and parallel training. Implementing a custom mini-batch datastore using matlab.io.datastore.MiniBatchable has several challenges and limitations.

- In addition to specifying the preprocessing operations, you must also define properties and methods to support reading data in batches, reading data by index, and partitioning and shuffling data.
- You must specify a value for the NumObservations property, but this value may be ill-defined or difficult to define in real-world applications.
- Custom mini-batch datastores are not flexible enough to support common deep learning workflows, such as deployed workflows using GPU Coder.

Starting in R2019a, datastores natively support prefetch, shuffling, and parallel training when reading batches of data. The transform function is the preferred way to perform custom data preprocessing, or transformations. The combine function is the preferred way to concatenate read data from multiple datastores, including transformed datastores. Concatenated data can serve as the network inputs and expected responses for training deep learning networks. The transform and combine functions have several advantages over matlab.io.datastore.MiniBatchable and matlab.io.datastore.PartitionableByIndex.

- The functions enable data preprocessing and concatenation for all types of datastores, including imageDatastore.
- The transform function only requires you to define the data processing pipeline.
- When used on a deterministic datastore, the functions support tall data types and MapReduce.
- The functions support deployed workflows.

**Note** The recommended solution to transform data with basic image preprocessing operations, including resizing, rotation, and reflection, is augmentedImageDatastore. For more information, see “Preprocess Images for Deep Learning”.

There are no plans to remove matlab.io.datastore.PartitionableByIndex at this time.

**See Also**


**Topics**

“Preprocess Images for Deep Learning”
“Deep Learning in MATLAB”
Introduced in R2018a
partitionByIndex

(Not recommended) Partition a datastore according to indices

**Note** partitionByIndex is not recommended. For more information, see Compatibility Considerations.

**Syntax**

```matlab
ds2 = partitionByIndex(ds,ind)
```

**Description**

`ds2 = partitionByIndex(ds,ind)` partitions a subset of observations in a datastore, `ds`, into a new datastore, `ds2`. The desired observations are specified by indices, `ind`.

**Input Arguments**

- `ds` — Input datastore
  Datastore object
  Input datastore, specified as a `Datastore` object.

- `ind` — Indices
  vector of positive integers
  Indices of observations, specified as a vector of positive integers.

**Output Arguments**

- `ds2` — Partitioned datastore
  Datastore object
  Partitioned datastore, returned as a `Datastore` object.

**Attributes**

- `Abstract` : true
- `Access` : Public

To learn about attributes of methods, see Method Attributes.

**Tips**

- You must implement the `partitionByIndex` method by deriving a subclass from the `matlab.io.datastore.Partitionable` class.
Compatibility Considerations

**partitionByIndex is not recommended**

*Not recommended starting in R2019a*

Before R2018a, to perform custom image preprocessing for training deep learning networks, you had to specify a custom read function using the `readFcn` property of `imageDatastore`. However, reading files using a custom read function was slow because `imageDatastore` did not prefetch files.

In R2018a, four classes including `matlab.io.datastore.MiniBatchable` and `matlab.io.datastore.PartitionableByIndex` were introduced as a solution to perform custom image preprocessing with support for prefetching, shuffling, and parallel training. Implementing a custom mini-batch datastore using `matlab.io.datastore.MiniBatchable` has several challenges and limitations.

- In addition to specifying the preprocessing operations, you must also define properties and methods to support reading data in batches, reading data by index, and partitioning and shuffling data.
- You must specify a value for the `NumObservations` property, but this value may be ill-defined or difficult to define in real-world applications.
- Custom mini-batch datastores are not flexible enough to support common deep learning workflows, such as deployed workflows using GPU Coder.

Starting in R2019a, datastores natively support prefetch, shuffling, and parallel training when reading batches of data. The `transform` function is the preferred way to perform custom data preprocessing, or transformations. The `combine` function is the preferred way to concatenate read data from multiple datastores, including transformed datastores. Concatenated data can serve as the network inputs and expected responses for training deep learning networks. The `transform` and `combine` functions have several advantages over `matlab.io.datastore.MiniBatchable` and `matlab.io.datastore.PartitionableByIndex`.

- The functions enable data preprocessing and concatenation for all types of datastores, including `imageDatastore`.
- The `transform` function only requires you to define the data processing pipeline.
- When used on a deterministic datastore, the functions support `tall` data types and MapReduce.
- The functions support deployed workflows.

**Note** The recommended solution to transform data with basic image preprocessing operations, including resizing, rotation, and reflection, is `augmentedImageDatastore`. For more information, see "Preprocess Images for Deep Learning".

There are no plans to remove `partitionByIndex` at this time.

**See Also**
`combine` | `matlab.io.Datastore` | `transform`

**Topics**
"Preprocess Images for Deep Learning"
"Deep Learning in MATLAB"
Introduced in R2018a
trainAutoencoder

Train an autoencoder

Syntax

autoenc = trainAutoencoder(X)
autoenc = trainAutoencoder(X,hiddenSize)
autoenc = trainAutoencoder(___,Name,Value)

Description

autoenc = trainAutoencoder(X) returns an autoencoder, autoenc, trained using the training data in X.

autoenc = trainAutoencoder(X,hiddenSize) returns an autoencoder autoenc, with the hidden representation size of hiddenSize.

autoenc = trainAutoencoder(___,Name,Value) returns an autoencoder autoenc, for any of the above input arguments with additional options specified by one or more Name,Value pair arguments.

For example, you can specify the sparsity proportion or the maximum number of training iterations.

Examples

Train Sparse Autoencoder

Load the sample data.

X = abalone_dataset;

X is an 8-by-4177 matrix defining eight attributes for 4177 different abalone shells: sex (M, F, and I (for infant)), length, diameter, height, whole weight, shucked weight, viscera weight, shell weight. For more information on the dataset, type help abalone_dataset in the command line.

Train a sparse autoencoder with default settings.

autoenc = trainAutoencoder(X);

Reconstruct the abalone shell ring data using the trained autoencoder.

XReconstructed = predict(autoenc,X);

Compute the mean squared reconstruction error.

mseError = mse(X-XReconstructed)

mseError = 0.0167
Train Autoencoder with Specified Options

Load the sample data.

```matlab
X = abalone_dataset;
```

`X` is an 8-by-4177 matrix defining eight attributes for 4177 different abalone shells: sex (M, F, and I (for infant)), length, diameter, height, whole weight, shucked weight, viscera weight, shell weight. For more information on the dataset, type `help abalone_dataset` in the command line.

Train a sparse autoencoder with hidden size 4, 400 maximum epochs, and linear transfer function for the decoder.

```matlab
autoenc = trainAutoencoder(X,4,'MaxEpochs',400,...
'DecoderTransferFunction','purelin');
```

Reconstruct the abalone shell ring data using the trained autoencoder.

```matlab
XReconstructed = predict(autoenc,X);
```

Compute the mean squared reconstruction error.

```matlab
mseError = mse(X-XReconstructed)
```

```matlab
mseError = 0.0043
```

Reconstruct Observations Using Sparse Autoencoder

Generate the training data.

```matlab
rng(0,'twister'); % For reproducibility
n = 1000;
r = linspace(-10,10,n)';
x = 1 + r*5e-2 + sin(r)./r + 0.2*randn(n,1);
```

Train autoencoder using the training data.

```matlab
hiddenSize = 25;
autoenc = trainAutoencoder(x',hiddenSize,...
'EncoderTransferFunction','satlin',...
'DecoderTransferFunction','purelin',...
'L2WeightRegularization',0.01,...
'SparsityRegularization',4,...
'SparsityProportion',0.10);
```

Generate the test data.

```matlab
n = 1000;
r = sort(-10 + 20*rand(n,1));
xtest = 1 + r*5e-2 + sin(r)./r + 0.4*randn(n,1);
```

Predict the test data using the trained autoencoder, `autoenc`.

```matlab
xReconstructed = predict(autoenc,xtest');
```

Plot the actual test data and the predictions.
Reconstruct Handwritten Digit Images Using Sparse Autoencoder

Load the training data.

```matlab
XTrain = digitTrainCellArrayData;
```

The training data is a 1-by-5000 cell array, where each cell containing a 28-by-28 matrix representing a synthetic image of a handwritten digit.

Train an autoencoder with a hidden layer containing 25 neurons.

```matlab
hiddenSize = 25;
autoenc = trainAutoencoder(XTrain,hiddenSize,...
 'L2WeightRegularization',0.004,...
 'SparsityRegularization',4,...
 'SparsityProportion',0.15);
```

Load the test data.

```matlab
XTest = digitTestCellArrayData;
```
The test data is a 1-by-5000 cell array, with each cell containing a 28-by-28 matrix representing a synthetic image of a handwritten digit.

Reconstruct the test image data using the trained autoencoder, `autoenc`.

```matlab
xReconstructed = predict(autoenc,XTest);
```

View the actual test data.

```matlab
figure;
for i = 1:20
 subplot(4,5,i);
 imshow(XTest{i});
end
```

View the reconstructed test data.

```matlab
figure;
for i = 1:20
 subplot(4,5,i);
 imshow(xReconstructed{i});
end
```
Input Arguments

X — Training data
matrix | cell array of image data

Training data, specified as a matrix of training samples or a cell array of image data. If X is a matrix, then each column contains a single sample. If X is a cell array of image data, then the data in each cell must have the same number of dimensions. The image data can be pixel intensity data for gray images, in which case, each cell contains an m-by-n matrix. Alternatively, the image data can be RGB data, in which case, each cell contains an m-by-n-3 matrix.

Data Types: single | double | cell

hiddenSize — Size of hidden representation of the autoencoder
10 (default) | positive integer value

Size of hidden representation of the autoencoder, specified as a positive integer value. This number is the number of neurons in the hidden layer.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: ‘EncoderTransferFunction’, ‘satlin’, ‘L2WeightRegularization’, 0.05 specifies the transfer function for the encoder as the positive saturating linear transfer function and the L2 weight regularization as 0.05.

**EncoderTransferFunction — Transfer function for the encoder**

'logsig' (default) | 'satlin'

Transfer function for the encoder, specified as the comma-separated pair consisting of 'EncoderTransferFunction' and one of the following.

<table>
<thead>
<tr>
<th>Transfer Function Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>'logsig'</td>
<td>Logistic sigmoid function ( f(z) = \frac{1}{1 + e^{-z}} )</td>
</tr>
<tr>
<td>'satlin'</td>
<td>Positive saturating linear transfer function ( f(z) = \begin{cases} 0, &amp; \text{if } z \leq 0 \ z, &amp; \text{if } 0 &lt; z &lt; 1 \ 1, &amp; \text{if } z \geq 1 \end{cases} )</td>
</tr>
</tbody>
</table>

Example: ‘EncoderTransferFunction’, ‘satlin’

**DecoderTransferFunction — Transfer function for the decoder**

'logsig' (default) | 'satlin' | 'purelin'

Transfer function for the decoder, specified as the comma-separated pair consisting of 'DecoderTransferFunction' and one of the following.

<table>
<thead>
<tr>
<th>Transfer Function Option</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>'logsig'</td>
<td>Logistic sigmoid function ( f(z) = \frac{1}{1 + e^{-z}} )</td>
</tr>
<tr>
<td>'satlin'</td>
<td>Positive saturating linear transfer function ( f(z) = \begin{cases} 0, &amp; \text{if } z \leq 0 \ z, &amp; \text{if } 0 &lt; z &lt; 1 \ 1, &amp; \text{if } z \geq 1 \end{cases} )</td>
</tr>
<tr>
<td>'purelin'</td>
<td>Linear transfer function ( f(z) = z )</td>
</tr>
</tbody>
</table>

Example: 'DecoderTransferFunction', 'purelin'

**MaxEpochs — Maximum number of training epochs**

1000 (default) | positive integer value

Maximum number of training epochs or iterations, specified as the comma-separated pair consisting of 'MaxEpochs' and a positive integer value.

Example: 'MaxEpochs', 1200
**L2WeightRegularization — The coefficient for the L₂ weight regularizer**
0.001 (default) | a positive scalar value

The coefficient for the L₂ weight regularizer on page 2-489 in the cost function (LossFunction), specified as the comma-separated pair consisting of 'L2WeightRegularization' and a positive scalar value.

Example: 'L2WeightRegularization', 0.05

**LossFunction — Loss function to use for training**
'msesparse' (default)

Loss function to use for training, specified as the comma-separated pair consisting of 'LossFunction' and 'msesparse'. It corresponds to the mean squared error function adjusted for training a sparse autoencoder on page 2-489 as follows:

\[
E = \frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} \left( (x_{kn} - \hat{x}_{kn})^2 + \lambda^* \Omega_{weights}^{L2} + \beta^* \Omega_{sparsity}^{sparsity} \right)
\]

where \(\lambda\) is the coefficient for the \(L_2\) regularization term on page 2-489 and \(\beta\) is the coefficient for the sparsity regularization term on page 2-489. You can specify the values of \(\lambda\) and \(\beta\) by using the L2WeightRegularization and SparsityRegularization name-value pair arguments, respectively, while training an autoencoder.

**ShowProgressWindow — Indicator to show the training window**
true (default) | false

Indicator to show the training window, specified as the comma-separated pair consisting of 'ShowProgressWindow' and either true or false.

Example: 'ShowProgressWindow', false

**SparsityProportion — Desired proportion of training examples a neuron reacts to**
0.05 (default) | positive scalar value in the range from 0 to 1

Desired proportion of training examples a neuron reacts to, specified as the comma-separated pair consisting of 'SparsityProportion' and a positive scalar value. Sparsity proportion is a parameter of the sparsity regularizer. It controls the sparsity of the output from the hidden layer. A low value for SparsityProportion usually leads to each neuron in the hidden layer “specializing” by only giving a high output for a small number of training examples. Hence, a low sparsity proportion encourages higher degree of sparsity. See Sparse Autoencoders on page 2-489.

Example: 'SparsityProportion', 0.01 is equivalent to saying that each neuron in the hidden layer should have an average output of 0.1 over the training examples.

**SparsityRegularization — Coefficient that controls the impact of the sparsity regularizer**
1 (default) | a positive scalar value

Coefficient that controls the impact of the sparsity regularizer on page 2-489 in the cost function, specified as the comma-separated pair consisting of 'SparsityRegularization' and a positive scalar value.

Example: 'SparsityRegularization', 1.6
TrainingAlgorithm — The algorithm to use for training the autoencoder
' trainscg' (default)

The algorithm to use for training the autoencoder, specified as the comma-separated pair consisting of 'TrainingAlgorithm' and 'trainscg'. It stands for scaled conjugate gradient descent [1].

ScaleData — Indicator to rescale the input data
true (default) | false

Indicator to rescale the input data, specified as the comma-separated pair consisting of 'ScaleData' and either true or false.

Autoencoders attempt to replicate their input at their output. For it to be possible, the range of the input data must match the range of the transfer function for the decoder. trainAutoencoder automatically scales the training data to this range when training an autoencoder. If the data was scaled while training an autoencoder, the predict, encode, and decode methods also scale the data.

Example: 'ScaleData',false

UseGPU — Indicator to use GPU for training
false (default) | true

Indicator to use GPU for training, specified as the comma-separated pair consisting of 'UseGPU' and either true or false.

Example: 'UseGPU',true

Output Arguments

autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned as an Autoencoder object. For information on the properties and methods of this object, see Autoencoder class page.

More About

Autoencoders

An autoencoder is a neural network which is trained to replicate its input at its output. Autoencoders can be used as tools to learn deep neural networks. Training an autoencoder is unsupervised in the sense that no labeled data is needed. The training process is still based on the optimization of a cost function. The cost function measures the error between the input x and its reconstruction at the output \( \hat{x} \).

An autoencoder is composed of an encoder and a decoder. The encoder and decoder can have multiple layers, but for simplicity consider that each of them has only one layer.

If the input to an autoencoder is a vector \( x \in \mathbb{R}^D \), then the encoder maps the vector \( x \) to another vector \( z \in \mathbb{R}^{D_1} \) as follows:

\[
z = h^{(1)}(W^{(1)}x + b^{(1)}),
\]
where the superscript (1) indicates the first layer. \( h^{(1)}: \mathbb{R}^{D_1} \rightarrow \mathbb{R}^{D_1} \) is a transfer function for the encoder, \( W^{(1)} \in \mathbb{R}^{D_1 \times D_x} \) is a weight matrix, and \( b^{(1)} \in \mathbb{R}^{D_1} \) is a bias vector. Then, the decoder maps the encoded representation \( z \) back into an estimate of the original input vector, \( x \), as follows:

\[
\hat{x} = h^{(2)}(W^{(2)}z + b^{(2)}),
\]

where the superscript (2) represents the second layer. \( h^{(2)}: \mathbb{R}^{D_x} \rightarrow \mathbb{R}^{D_x} \) is the transfer function for the decoder, \( W^{(1)} \in \mathbb{R}^{D_x \times D_1} \) is a weight matrix, and \( b^{(2)} \in \mathbb{R}^{D_x} \) is a bias vector.

**Sparse Autoencoders**

Encouraging sparsity of an autoencoder is possible by adding a regularizer to the cost function [2]. This regularizer is a function of the average output activation value of a neuron. The average output activation measure of a neuron \( i \) is defined as:

\[
\hat{\rho}_i = \frac{1}{n} \sum_{j=1}^{n} \hat{z}_i^{(1)}(x_j) = \frac{1}{n} \sum_{j=1}^{n} h(w_i^{(1)T}x_j + b_i^{(1)}),
\]

where \( n \) is the total number of training examples. \( x_j \) is the \( j \)th training example, \( w_i^{(1)T} \) is the \( i \)th row of the weight matrix \( W^{(1)} \), and \( b_i^{(1)} \) is the \( i \)th entry of the bias vector, \( b^{(1)} \). A neuron is considered to be ‘firing’, if its output activation value is high. A low output activation value means that the neuron in the hidden layer fires in response to a small number of the training examples. Adding a term to the cost function that constrains the values of \( \hat{\rho}_i \) to be low encourages the autoencoder to learn a representation, where each neuron in the hidden layer fires to a small number of training examples. That is, each neuron specializes by responding to some feature that is only present in a small subset of the training examples.

**Sparsity Regularization**

Sparsity regularizer attempts to enforce a constraint on the sparsity of the output from the hidden layer. Sparsity can be encouraged by adding a regularization term that takes a large value when the average activation value, \( \hat{\rho}_i \), of a neuron \( i \) and its desired value, \( \rho \), are not close in value [2]. One such sparsity regularization term can be the Kullback-Leibler divergence.

\[
\Omega_{\text{sparsity}} = \sum_{i=1}^{D_1} KL(\rho \parallel \hat{\rho}_i) = \sum_{i=1}^{D_1} \rho \log \left( \frac{\rho}{\hat{\rho}_i} \right) + (1 - \rho) \log \left( \frac{1 - \rho}{1 - \hat{\rho}_i} \right)
\]

Kullback-Leibler divergence is a function for measuring how different two distributions are. In this case, it takes the value zero when \( \rho \) and \( \hat{\rho}_i \) are equal to each other, and becomes larger as they diverge from each other. Minimizing the cost function forces this term to be small, hence \( \rho \) and \( \hat{\rho}_i \) to be close to each other. You can define the desired value of the average activation value using the `SparsityProportion` name-value pair argument while training an autoencoder.

**L2 Regularization**

When training a sparse autoencoder, it is possible to make the sparsity regulariser small by increasing the values of the weights \( w^{(1)} \) and decreasing the values of \( z^{(1)} \) [2]. Adding a regularization term on the weights to the cost function prevents it from happening. This term is called the L2 regularization term and is defined by:
\[ \Omega_{\text{weights}} = \frac{1}{2} L \sum_{l} \sum_{j} \sum_{i} w_i^{(l)}^2, \]

where \( L \) is the number of hidden layers, \( n \) is the number of observations (examples), and \( k \) is the number of variables in the training data.

**Cost Function**

The cost function for training a sparse autoencoder on page 2-489 is an adjusted mean squared error function as follows:

\[
E = \frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} (\hat{x}_{kn} - \hat{x}_{kn})^2 + \lambda* \Omega_{\text{weights}} + \beta* \Omega_{\text{sparsity}},
\]

where \( \lambda \) is the coefficient for the \( L_2 \) regularization term on page 2-489 and \( \beta \) is the coefficient for the sparsity regularization term on page 2-489. You can specify the values of \( \lambda \) and \( \beta \) by using the \texttt{L2WeightRegularization} and \texttt{SparsityRegularization} name-value pair arguments, respectively, while training an autoencoder.

**References**


**See Also**

Autoencoder | encode | stack | trainSoftmaxLayer

**Topics**

“Train Stacked Autoencoders for Image Classification”

**Introduced in R2015b**
**trainSoftmaxLayer**

Train a softmax layer for classification

**Syntax**

```matlab
net = trainSoftmaxLayer(X,T)
net = trainSoftmaxLayer(X,T,Name,Value)
```

**Description**

`net = trainSoftmaxLayer(X,T)` trains a softmax layer, `net`, on the input data `X` and the targets `T`.

`net = trainSoftmaxLayer(X,T,Name,Value)` trains a softmax layer, `net`, with additional options specified by one or more of the `Name,Value` pair arguments.

For example, you can specify the loss function.

**Examples**

**Classify Using Softmax Layer**

Load the sample data.

```matlab
[X,T] = iris_dataset;
```

`X` is a 4x150 matrix of four attributes of iris flowers: Sepal length, sepal width, petal length, petal width.

`T` is a 3x150 matrix of associated class vectors defining which of the three classes each input is assigned to. Each row corresponds to a dummy variable representing one of the iris species (classes). In each column, a 1 in one of the three rows represents the class that particular sample (observation or example) belongs to. There is a zero in the rows for the other classes that the observation does not belong to.

Train a softmax layer using the sample data.

```matlab
net = trainSoftmaxLayer(X,T);
```

Classify the observations into one of the three classes using the trained softmax layer.

```matlab
Y = net(X);
```

Plot the confusion matrix using the targets and the classifications obtained from the softmax layer.

```matlab
plotconfusion(T,Y);
```
Input Arguments

\( X \) — Training data

\( m \)-by-\( n \) matrix

Training data, specified as an \( m \)-by-\( n \) matrix, where \( m \) is the number of variables in training data, and \( n \) is the number of observations (examples). Hence, each column of \( X \) represents a sample.

Data Types: single | double

\( T \) — Target data

\( k \)-by-\( n \) matrix
Target data, specified as a $k$-by-$n$ matrix, where $k$ is the number of classes, and $n$ is the number of observations. Each row is a dummy variable representing a particular class. In other words, each column represents a sample, and all entries of a column are zero except for a single one in a row. This single entry indicates the class for that sample.

Data Types: `single` | `double`

**Name-Value Pair Arguments**

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Example: `'MaxEpochs',400,'ShowProgressWindow',false` specifies the maximum number of iterations as 400 and hides the training window.

**MaxEpochs — Maximum number of training iterations**

1000 (default) | positive integer value

Maximum number of training iterations, specified as the comma-separated pair consisting of `'MaxEpochs'` and a positive integer value.

Example: `'MaxEpochs',500`

Data Types: `single` | `double`

**LossFunction — Loss function for the softmax layer**

'crossentropy' (default) | 'mse'

Loss function for the softmax layer, specified as the comma-separated pair consisting of `'LossFunction'` and either 'crossentropy' or 'mse'.

 mse stands for mean squared error function, which is given by:

$$ E = \frac{1}{n} \sum_{j=1}^{n} \sum_{i=1}^{k} (t_{ij} - y_{ij})^2, $$

where $n$ is the number of training examples, and $k$ is the number of classes. $t_{ij}$ is the $ij$th entry of the target matrix, $T$, and $y_{ij}$ is the $i$th output from the autoencoder when the input vector is $x_j$.

The cross entropy function is given by:

$$ E = \frac{1}{n} \sum_{j=1}^{n} \sum_{i=1}^{k} t_{ij} \ln y_{ij} + (1 - t_{ij}) \ln (1 - y_{ij}). $$

Example: `'LossFunction','mse'`

**ShowProgressWindow — Indicator to display the training window**

true (default) | false

Indicator to display the training window during training, specified as the comma-separated pair consisting of `'ShowProgressWindow'` and either `true` or `false`.

Example: `'ShowProgressWindow',false`
TrainingAlgorithm — Training algorithm
'trainscg' (default)

Training algorithm used to train the softmax layer, specified as the comma-separated pair consisting of 'TrainingAlgorithm' and 'trainscg', which stands for scaled conjugate gradient.

Example: 'TrainingAlgorithm','trainscg'

Output Arguments

net — Softmax layer for classification
network object

Softmax layer for classification, returned as a network object. The softmax layer, net, is the same size as the target T.

See Also

stack | trainAutoencoder

Introduced in R2015b
Autoencoder class

Autoencoder class

Description

An Autoencoder object contains an autoencoder network, which consists of an encoder and a decoder. The encoder maps the input to a hidden representation. The decoder attempts to map this representation back to the original input.

Construction

autoenc = trainAutoencoder(X) returns an autoencoder trained using the training data in X.

autoenc = trainAutoencoder(X,hiddenSize) returns an autoencoder with the hidden representation size of hiddenSize.

autoenc = trainAutoencoder(___,Name,Value) returns an autoencoder for any of the above input arguments with additional options specified by one or more name-value pair arguments.

Input Arguments

X — Training data
matrix | cell array of image data

Training data, specified as a matrix of training samples or a cell array of image data. If X is a matrix, then each column contains a single sample. If X is a cell array of image data, then the data in each cell must have the same number of dimensions. The image data can be pixel intensity data for gray images, in which case, each cell contains an m-by-n matrix. Alternatively, the image data can be RGB data, in which case, each cell contains an m-by-n-3 matrix.

Data Types: single | double | cell

hiddenSize — Size of hidden representation of the autoencoder
10 (default) | positive integer value

Size of hidden representation of the autoencoder, specified as a positive integer value. This number is the number of neurons in the hidden layer.

Data Types: single | double

Properties

HiddenSize — Size of the hidden representation

a positive integer value

Size of the hidden representation in the hidden layer of the autoencoder, stored as a positive integer value.

Data Types: double
EncoderTransferFunction — Name of the transfer function for the encoder
string
Name of the transfer function for the encoder, stored as a string.
Data Types: char

EncoderWeights — Weights for the encoder
matrix
Weights for the encoder, stored as a matrix.
Data Types: double

EncoderBiases — Bias values for the encoder
vector
Bias values for the encoder, stored as a vector.
Data Types: double

DecoderTransferFunction — Name of the transfer function for the decoder
string
Name of the transfer function for the decoder, stored as a string.
Data Types: char

DecoderWeights — Weights for the decoder
matrix
Weights for the decoder, stored as a matrix.
Data Types: double

DecoderBiases — Bias values for the decoder
vector
Bias values for the decoder, stored as a vector.
Data Types: double

TrainingParameters — Parameters that trainAutoencoder uses for training the
autoencoder
structure
Parameters that trainAutoencoder uses for training the autoencoder, stored as a structure.
Data Types: struct

ScaleData — Indicator for data that is rescaled
true or 1 (default) | false or 0
Indicator for data that is rescaled while passing to the autoencoder, stored as either true or false.

Autoencoders attempt to replicate their input at their output. For it to be possible, the range of the
input data must match the range of the transfer function for the decoder. trainAutoencoder
automatically scales the training data to this range when training an autoencoder. If the data was
scaled while training an autoencoder, the predict, encode, and decode methods also scale the data.

Data Types: logical

### Methods

- **decode**: Decode encoded data
- **encode**: Encode input data
- **generateFunction**: Generate a MATLAB function to run the autoencoder
- **generateSimulink**: Generate a Simulink model for the autoencoder
- **network**: Convert Autoencoder object into network object
- **plotWeights**: Plot a visualization of the weights for the encoder of an autoencoder
- **predict**: Reconstruct the inputs using trained autoencoder
- **stack**: Stack encoders from several autoencoders together
- **view**: View autoencoder

### Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects.

### See Also

- **trainAutoencoder**

### Topics

- Class Attributes
- Property Attributes

### Introduced in R2015b
decode

Class: Autoencoder

Decode encoded data

Syntax

$Y = \text{decode}(\text{autoenc}, Z)$

Description

$Y = \text{decode}(\text{autoenc}, Z)$ returns the decoded data on page 2-499, using the autoencoder \text{autoenc}.

Input Arguments

\text{autoenc} — Trained autoencoder

Autoencoder object

Trained autoencoder, returned by the \text{trainAutoencoder} function as an object of the \text{Autoencoder} class.

\text{Z} — Data encoded by autoenc

matrix

Data encoded by \text{autoenc}, specified as a matrix. Each column of \text{Z} represents an encoded sample (observation).

Data Types: single | double

Output Arguments

\text{Y} — Decoded data

matrix | cell array of image data

Decoded data, returned as a matrix or a cell array of image data.

If the autoencoder \text{autoenc} was trained on a cell array of image data, then \text{Y} is also a cell array of images.

If the autoencoder \text{autoenc} was trained on a matrix, then \text{Y} is also a matrix, where each column of \text{Y} corresponds to one sample or observation.

Examples

Decode Encoded Data For New Images

Load the training data.
X = digitTrainCellArrayData;

X is a 1-by-5000 cell array, where each cell contains a 28-by-28 matrix representing a synthetic image of a handwritten digit.

Train an autoencoder using the training data with a hidden size of 15.

hiddenSize = 15;
autoenc = trainAutoencoder(X,hiddenSize);

Extract the encoded data for new images using the autoencoder.

Xnew = digitTestCellArrayData;
features = encode(autoenc,Xnew);

Decode the encoded data from the autoencoder.

Y = decode(autoenc,features);

Y is a 1-by-5000 cell array, where each cell contains a 28-by-28 matrix representing a synthetic image of a handwritten digit.

**Algorithms**

If the input to an autoencoder is a vector $x \in \mathbb{R}^{Dx}$, then the encoder maps the vector $x$ to another vector $z \in \mathbb{R}^{D(1)}$ as follows:

$$ z = h^{(1)}(W^{(1)}x + b^{(1)}), $$

where the superscript (1) indicates the first layer. $h^{(1)}: \mathbb{R}^{D(1)} \rightarrow \mathbb{R}^{D(1)}$ is a transfer function for the encoder, $W^{(1)} \in \mathbb{R}^{D(1) \times Dx}$ is a weight matrix, and $b^{(1)} \in \mathbb{R}^{D(1)}$ is a bias vector. Then, the decoder maps the encoded representation $z$ back into an estimate of the original input vector, $x$, as follows:

$$ \hat{x} = h^{(2)}(W^{(2)}z + b^{(2)}), $$

where the superscript (2) represents the second layer. $h^{(2)}: \mathbb{R}^{Dx} \rightarrow \mathbb{R}^{Dx}$ is the transfer function for the decoder, $W^{(1)} \in \mathbb{R}^{Dx \times D(1)}$ is a weight matrix, and $b^{(2)} \in \mathbb{R}^{Dx}$ is a bias vector.

**See Also**

encode | trainAutoencoder

*Introduced in R2015b*
**encode**

**Class:** Autoencoder

Encode input data

**Syntax**

\[ Z = \text{encode}(\text{autoenc}, \text{Xnew}) \]

**Description**

\[ Z = \text{encode}(\text{autoenc}, \text{Xnew}) \] returns the encoded data on page 2-501, \( Z \), for the input data \( \text{Xnew} \), using the autoencoder, \( \text{autoenc} \).

**Input Arguments**

- **autoenc** — Trained autoencoder
  
  Autoencoder object
  
  Trained autoencoder, returned as an object of the **Autoencoder** class.

- **Xnew** — Input data
  
  matrix | cell array of image data | array of single image data

  Input data, specified as a matrix of samples, a cell array of image data, or an array of single image data.

  If the autoencoder \( \text{autoenc} \) was trained on a matrix, where each column represents a single sample, then \( \text{Xnew} \) must be a matrix, where each column represents a single sample.

  If the autoencoder \( \text{autoenc} \) was trained on a cell array of images, then \( \text{Xnew} \) must either be a cell array of image data or an array of single image data.

  Data Types: `single` | `double` | `cell`

**Output Arguments**

- **Z** — Data encoded by \( \text{autoenc} \)
  
  matrix

  Data encoded by \( \text{autoenc} \), specified as a matrix. Each column of \( Z \) represents an encoded sample (observation).

  Data Types: `single` | `double`

**Examples**
**Encode Decoded Data for New Images**

Load the sample data.

```matlab
X = digitTrainCellArrayData;
```

X is a 1-by-5000 cell array, where each cell contains a 28-by-28 matrix representing a synthetic image of a handwritten digit.

Train an autoencoder with a hidden size of 50 using the training data.

```matlab
autoenc = trainAutoencoder(X,50);
```

Encode decoded data for new image data.

```matlab
Xnew = digitTestCellArrayData;
Z = encode(autoenc,Xnew);
```

Xnew is a 1-by-5000 cell array. Z is a 50-by-5000 matrix, where each column represents the image data of one handwritten digit in the new data Xnew.

**Algorithms**

If the input to an autoencoder is a vector \( x \in \mathbb{R}^{D_x} \), then the encoder maps the vector \( x \) to another vector \( z \in \mathbb{R}^{D_1} \) as follows:

\[
z = h^{(1)}(W^{(1)}x + b^{(1)}),
\]

where the superscript (1) indicates the first layer. \( h^{(1)}: \mathbb{R}^{D_1} \to \mathbb{R}^{D_1} \) is a transfer function for the encoder, \( W^{(1)} \in \mathbb{R}^{D_1 \times D_x} \) is a weight matrix, and \( b^{(1)} \in \mathbb{R}^{D_1} \) is a bias vector.

**See Also**

decode | stack | trainAutoencoder

**Introduced in R2015b**
generateFunction

Class: Autoencoder

Generate a MATLAB function to run the autoencoder

Syntax

generateFunction(autoenc)
generateFunction(autoenc,pathname)
generateFunction(autoenc,pathname,Name,Value)

Description

generateFunction(autoenc) generates a complete stand-alone function in the current directory, to run the autoencoder autoenc on input data.

generateFunction(autoenc,pathname) generates a complete stand-alone function to run the autoencoder autoenc on input data in the location specified by pathname.

generateFunction(autoenc,pathname,Name,Value) generates a complete stand-alone function with additional options specified by the Name,Value pair argument.

Input Arguments

autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned as an object of the Autoencoder class.

pathname — Location for generated function
string

Location for generated function, specified as a string.

Example: 'C:\MyDocuments\Autoencoders'

Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

ShowLinks — Indicator to display the links to the generated code
false (default) | true

Indicator to display the links to the generated code in the command window, specified as the comma-separated pair consisting of 'ShowLinks' and either true or false.

Example: 'ShowLinks',true
Data Types: logical

Examples

Generate MATLAB Function for Running Autoencoder

Load the sample data.

\[ X = \text{iris}\_dataset; \]

Train an autoencoder with 4 neurons in the hidden layer.

\[ \text{autoenc} = \text{trainAutoencoder}(X,4); \]

Generate the code for running the autoencoder. Show the links to the MATLAB function.

\[ \text{generateFunction(autoenc)} \]

MATLAB function generated: neural\_function.m
To view generated function code: edit neural\_function
For examples of using function: help neural\_function

Generate the code for the autoencoder in a specific path.

\[ \text{generateFunction(autoenc,'H:\Documents\Autoencoder')} \]

MATLAB function generated: H:\Documents\Autoencoder.m
To view generated function code: edit Autoencoder
For examples of using function: help Autoencoder

Tips

- If you do not specify the path and the file name, \text{generateFunction}, by default, creates the code in an m-file with the name neural\_function.m. You can change the file name after \text{generateFunction} generates it. Or you can specify the path and file name using the \text{pathname} input argument in the call to \text{generateFunction}.

See Also

genFunction | generateSimulink

Introduced in R2015b
**generateSimulink**

**Class:** Autoencoder

Generate a Simulink model for the autoencoder

**Syntax**

generateSimulink(autoenc)

**Description**

generateSimulink(autoenc) creates a Simulink model for the autoencoder, autoenc.

**Input Arguments**

**autoenc** — Trained autoencoder  
Autoencoder object

Trained autoencoder, returned as an object of the Autoencoder class.

**Examples**

**Generate Simulink Model for Autoencoder**

Load the training data.

```matlab
X = digitsmall_dataset;
```

The training data is a 1-by-500 cell array, where each cell containing a 28-by-28 matrix representing a synthetic image of a handwritten digit.

Train an autoencoder with a hidden layer containing 25 neurons.

```matlab
hiddenSize = 25;
autoenc = trainAutoencoder(X,hiddenSize,
 'L2WeightRegularization',0.004,
 'SparsityRegularization',4,
 'SparsityProportion',0.15);
```

Create a Simulink model for the autoencoder, autoenc.

```matlab
generateSimulink(autoenc)
```
See Also
trainAutoencoder

Introduced in R2015b
network

Class: Autoencoder

Convert Autoencoder object into network object

Syntax

net = network(autoenc)

Description

net = network(autoenc) returns a network object which is equivalent to the autoencoder, autoenc.

Input Arguments

autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned as an object of the Autoencoder class.

Output Arguments

net — Neural network
network object

Neural network, that is equivalent to the autoencoder autoenc, returned as an object of the network class.

Examples

Create Network from Autoencoder

Load the sample data.

X = bodyfat_dataset;

X = bodyfat_dataset;

X is a 13-by-252 matrix defining thirteen attributes of 252 different neighborhoods. For more information on the data, type help house_dataset in the command line.

Train an autoencoder on the attribute data.

autoenc = trainAutoencoder(X);

Create a network object from the autoencoder, autoenc.
net = network(autoenc);

Predict the attributes using the network, net.

Xpred = net(X);

Fit a linear regression model between the actual and estimated attributes data. Compute the estimated Pearson correlation coefficient, the slope and the intercept (bias) of the regression model, using all attribute data as one data set.

[C, S, B] = regression(X, Xpred, 'one')

C = 0.9997
S = 0.9983
B = 0.1130

The correlation coefficient is almost 1, which indicates that the attributes data and the estimations from the neural network are highly close to each other.

Plot the actual data and the fitted line.

plotregression(X, Xpred);

: R=0.99968

Data
Fit
Y = T

Target

Output ~ 1*Target + 0.11
The data appears to be on the fitted line, which visually supports the conclusion that the predictions are very close to the actual data.

See Also
Autoencoder | trainAutoencoder

Introduced in R2015b
plotWeights

Class: Autoencoder

Plot a visualization of the weights for the encoder of an autoencoder

Syntax

plotWeights(autoenc)
h = plotWeights(autoenc)

Description

plotWeights(autoenc) visualizes the weights for the autoencoder, autoenc.

h = plotWeights(autoenc) returns a function handle h, for the visualization of the encoder
weights for the autoencoder, autoenc.

Input Arguments

autoenc — Trained autoencoder
Autoencoder object

Trained autoencoder, returned as an object of the Autoencoder class.

Output Arguments

h — Image object
handle

Image object, returned as a handle.

Examples

Visualize Learned Features

Load the training data.

X = digitTrainCellArrayData;

The training data is a 1-by-5000 cell array, where each cell contains a 28-by-28 matrix representing a
synthetic image of a handwritten digit.

Train an autoencoder with a hidden layer of 25 neurons.

hiddenSize = 25;
autoenc = trainAutoencoder(X,hiddenSize, ...
   'L2WeightRegularization',0.004, ...
   'SparsityRegularization',4, ... 
   'SparsityProportion',0.2);
Visualize the learned features.

```
plotWeights(autoenc);
```

**Tips**

- `plotWeights` allows the visualization of the features that the autoencoder learns. Use it when the autoencoder is trained on image data. The visualization of the weights has the same dimensions as the images used for training.

**See Also**

- `trainAutoencoder`

*Introduced in R2015b*
**predict**

Class: Autoencoder

Reconstruct the inputs using trained autoencoder

**Syntax**

\[ Y = \text{predict}(\text{autoenc}, X) \]

**Description**

\[ Y = \text{predict}(\text{autoenc}, X) \] returns the predictions \( Y \) for the input data \( X \), using the autoencoder \( \text{autoenc} \). The result \( Y \) is a reconstruction of \( X \).

**Input Arguments**

- **autoenc** — Trained autoencoder
  Autoencoder object
  
  Trained autoencoder, returned as an object of the Autoencoder class.

- **Xnew** — Input data
  matrix | cell array of image data | array of single image data
  
  Input data, specified as a matrix of samples, a cell array of image data, or an array of single image data.
  
  If the autoencoder \( \text{autoenc} \) was trained on a matrix, where each column represents a single sample, then \( Xnew \) must be a matrix, where each column represents a single sample.
  
  If the autoencoder \( \text{autoenc} \) was trained on a cell array of images, then \( Xnew \) must either be a cell array of image data or an array of single image data.

  Data Types: single | double | cell

**Output Arguments**

- **Y** — Predictions for the input data \( Xnew \)
  matrix | cell array of image data | array of single image data
  
  Predictions for the input data \( Xnew \), returned as a matrix or a cell array of image data.
  
  - If \( Xnew \) is a matrix, then \( Y \) is also a matrix, where each column corresponds to a single sample (observation or example).
  
  - If \( Xnew \) is a cell array of image data, then \( Y \) is also a cell array of image data, where each cell contains the data for a single image.
  
  - If \( Xnew \) is an array of a single image data, then \( Y \) is also an array of a single image data.
Examples

Predict Continuous Measurements Using Trained Autoencoder

Load the training data.

```matlab
X = iris_dataset;
```

The training data contains measurements on four attributes of iris flowers: Sepal length, sepal width, petal length, petal width.

Train an autoencoder on the training data using the positive saturating linear transfer function in the encoder and linear transfer function in the decoder.

```matlab
autoenc = trainAutoencoder(X,'EncoderTransferFunction','satlin','DecoderTransferFunction','purelin');
```

Reconstruct the measurements using the trained network, `autoenc`.

```matlab
xReconstructed = predict(autoenc,X);
```

Plot the predicted measurement values along with the actual values in the training dataset.

```matlab
for i = 1:4
 h(i) = subplot(1,4,i);
 plot(X(i,:),'r.');
 hold on
 plot(xReconstructed(i,:),'go');
 hold off;
end
```

```matlab
title(h(1),{'Sepal';'Length'});
title(h(2),{'Sepal';'Width'});
title(h(3),{'Petal';'Length'});
title(h(4),{'Petal';'Width'});
```
The red dots represent the training data and the green circles represent the reconstructed data.

**Reconstruct Handwritten Digit Images Using Sparse Autoencoder**

Load the training data.

XTrain = digitTrainCellArrayData;

The training data is a 1-by-5000 cell array, where each cell containing a 28-by-28 matrix representing a synthetic image of a handwritten digit.

Train an autoencoder with a hidden layer containing 25 neurons.

hiddenSize = 25;
autoenc = trainAutoencoder(XTrain,hiddenSize,...
 'L2WeightRegularization',0.004,...
 'SparsityRegularization',4,...
 'SparsityProportion',0.15);

Load the test data.

XTest = digitTestCellArrayData;

The test data is a 1-by-5000 cell array, with each cell containing a 28-by-28 matrix representing a synthetic image of a handwritten digit.
Reconstruct the test image data using the trained autoencoder, `autoenc`.

```matlab
xReconstructed = predict(autoenc,XTest);
```

View the actual test data.

```matlab
figure;
for i = 1:20
 subplot(4,5,i);
 imshow(XTest{i});
end
```

View the reconstructed test data.

```matlab
figure;
for i = 1:20
 subplot(4,5,i);
 imshow(xReconstructed{i});
end
```
See Also
trainAutoencoder

Introduced in R2015b
**stack**

**Class:** Autoencoder

Stack encoders from several autoencoders together

**Syntax**

```matlab
stackednet = stack(autoenc1,autoenc2,...)
stackednet = stack(autoenc1,autoenc2,...,net1)
```

**Description**

`stackednet = stack(autoenc1,autoenc2,...)` returns a network object created by stacking the encoders of the autoencoders, `autoenc1`, `autoenc2`, and so on.

`stackednet = stack(autoenc1,autoenc2,...,net1)` returns a network object created by stacking the encoders of the autoencoders and the network object `net1`.

The autoencoders and the network object can be stacked only if their dimensions match.

**Input Arguments**

- **autoenc1 — Trained autoencoder**
  
  `Autoencoder` object

  Trained autoencoder, specified as an `Autoencoder` object.

- **autoenc2 — Trained autoencoder**
  
  `Autoencoder` object

  Trained autoencoder, specified as an `Autoencoder` object.

- **net1 — Trained neural network**
  
  `network` object

  Trained neural network, specified as a `network` object. `net1` can be a softmax layer, trained using the `trainSoftmaxLayer` function.

**Output Arguments**

- **stackednet — Stacked neural network**
  
  `network` object

  Stacked neural network (deep network), returned as a `network` object

**Examples**
Create a Stacked Network

Load the training data.

\[
[X,T] = iris\_dataset;
\]

Train an autoencoder with a hidden layer of size 5 and a linear transfer function for the decoder. Set the L2 weight regularizer to 0.001, sparsity regularizer to 4 and sparsity proportion to 0.05.

\[
\text{hiddenSize} = 5;
\text{autoenc} = \text{trainAutoencoder}(X, \text{hiddenSize}, ... \nonumber
\text{'L2WeightRegularization'}, 0.001, ... \nonumber
\text{'SparsityRegularization'}, 4, ... \nonumber
\text{'SparsityProportion'}, 0.05, ... \nonumber
\text{'DecoderTransferFunction'}, \text{'purelin'}); \nonumber
\]

Extract the features in the hidden layer.

\[
\text{features} = \text{encode}(\text{autoenc}, X); \nonumber
\]

Train a softmax layer for classification using the features.

\[
\text{softnet} = \text{trainSoftmaxLayer}(\text{features}, T); \nonumber
\]

Stack the encoder and the softmax layer to form a deep network.

\[
\text{stackednet} = \text{stack}(\text{autoenc}, \text{softnet}); \nonumber
\]

View the stacked network.

\[
\text{view}(\text{stackednet}); \nonumber
\]

Tips

- The size of the hidden representation of one autoencoder must match the input size of the next autoencoder or network in the stack.

  The first input argument of the stacked network is the input argument of the first autoencoder. The output argument from the encoder of the first autoencoder is the input of the second autoencoder in the stacked network. The output argument from the encoder of the second autoencoder is the input argument to the third autoencoder in the stacked network, and so on.

- The stacked network object \text{stacknet} inherits its training parameters from the final input argument \text{net1}.  

2-517
See Also
Autoencoder | trainAutoencoder

Topics
"Train Stacked Autoencoders for Image Classification"

Introduced in R2015b
**view**

**Class:** Autoencoder

View autoencoder

**Syntax**

```matlab
textview(autoenc)
```

**Description**

`textview(autoenc)` returns a diagram of the autoencoder, `autoenc`.

**Input Arguments**

- **autoenc** — Trained autoencoder
  
  Autoencoder object
  
  Trained autoencoder, returned as an object of the `Autoencoder` class.

**Examples**

**View Autoencoder**

Load the training data.

```matlab
X = iris_dataset;
```

Train an autoencoder with a hidden layer of size 5 and a linear transfer function for the decoder. Set the L2 weight regularizer to 0.001, sparsity regularizer to 4 and sparsity proportion to 0.05.

```matlab
hiddenSize = 5;
autoenc = trainAutoencoder(X, hiddenSize, ...
 'L2WeightRegularization',0.001, ...
 'SparsityRegularization',4, ...
 'SparsityProportion',0.05, ...
 'DecoderTransferFunction','purelin');
```

View the autoencoder.

```matlab
textview(autoenc)
```
See Also

trainAutoencoder

Introduced in R2015b
**fitnet**

Function fitting neural network

**Syntax**

```matlab
net = fitnet(hiddenSizes)
net = fitnet(hiddenSizes,trainFcn)
```

**Description**

`net = fitnet(hiddenSizes)` returns a function fitting neural network with a hidden layer size of `hiddenSizes`.

`net = fitnet(hiddenSizes,trainFcn)` returns a function fitting neural network with a hidden layer size of `hiddenSizes` and training function, specified by `trainFcn`.

**Examples**

**Construct and Train a Function Fitting Network**

Load the training data.

```matlab
[x,t] = simplefit_dataset;
```

The 1-by-94 matrix `x` contains the input values and the 1-by-94 matrix `t` contains the associated target output values.

Construct a function fitting neural network with one hidden layer of size 10.

```matlab
net = fitnet(10);
```

View the network.

```matlab
view(net)
```

The sizes of the input and output are zero. The software adjusts the sizes of these during training according to the training data.

Train the network `net` using the training data.
net = train(net,x,t);

View the trained network.

view(net)

You can see that the sizes of the input and output are 1.

Estimate the targets using the trained network.

y = net(x);

Assess the performance of the trained network. The default performance function is mean squared error.

perf = perform(net,y,t)

perf =

1.4639e-04

The default training algorithm for a function fitting network is Levenberg-Marquardt ('trainlm'). Use the Bayesian regularization training algorithm and compare the performance results.

net = fitnet(10,'trainbr');
net = train(net,x,t);
y = net(x);
perf = perform(net,y,t)

perf =

3.3261e-10

The Bayesian regularization training algorithm improves the performance of the network in terms of estimating the target values.

**Input Arguments**

hiddenSizes — Size of the hidden layers
10 (default) | row vector
Size of the hidden layers in the network, specified as a row vector. The length of the vector determines the number of hidden layers in the network.

Example: For example, you can specify a network with 3 hidden layers, where the first hidden layer size is 10, the second is 8, and the third is 5 as follows: \([10, 8, 5]\)

The input and output sizes are set to zero. The software adjusts the sizes of these during training according to the training data.

Data Types: `single` | `double`

**trainFcn — Training function name**

`'trainlm'` (default) | `'trainbr'` | `'trainbfg'` | `'trainrp'` | `'trainscg'` | ...

Training function name, specified as one of the following.

<table>
<thead>
<tr>
<th>Training Function</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>'trainlm'</code></td>
<td>Levenberg-Marquardt</td>
</tr>
<tr>
<td><code>'trainbr'</code></td>
<td>Bayesian Regularization</td>
</tr>
<tr>
<td><code>'trainbfg'</code></td>
<td>BFGS Quasi-Newton</td>
</tr>
<tr>
<td><code>'trainrp'</code></td>
<td>Resilient Backpropagation</td>
</tr>
<tr>
<td><code>'trainscg'</code></td>
<td>Scaled Conjugate Gradient</td>
</tr>
<tr>
<td><code>'traincgb'</code></td>
<td>Conjugate Gradient with Powell/Beale Restarts</td>
</tr>
<tr>
<td><code>'traincfgf'</code></td>
<td>Fletcher-Powell Conjugate Gradient</td>
</tr>
<tr>
<td><code>'traincgp'</code></td>
<td>Polak-Ribiére Conjugate Gradient</td>
</tr>
<tr>
<td><code>'trainoss'</code></td>
<td>One Step Secant</td>
</tr>
<tr>
<td><code>'traingdx'</code></td>
<td>Variable Learning Rate Gradient Descent</td>
</tr>
<tr>
<td><code>'traingdm'</code></td>
<td>Gradient Descent with Momentum</td>
</tr>
<tr>
<td><code>'trainld'</code></td>
<td>Gradient Descent</td>
</tr>
</tbody>
</table>

Example: For example, you can specify the variable learning rate gradient descent algorithm as the training algorithm as follows: `'traingdx'`

For more information on the training functions, see “Train and Apply Multilayer Shallow Neural Networks” and “Choose a Multilayer Neural Network Training Function”.

Data Types: `char`

**Output Arguments**

*net — Function fitting network*

`network` object

Function fitting network, returned as a `network` object.

**Tips**

- Function fitting is the process of training a neural network on a set of inputs in order to produce an associated set of target outputs. After you construct the network with the desired hidden layers
and the training algorithm, you must train it using a set of training data. Once the neural network has fit the data, it forms a generalization of the input-output relationship. You can then use the trained network to generate outputs for inputs it was not trained on.

**See Also**
feedforwardnet | network | nftool | perform | train | trainlm

**Topics**
“Fit Data with a Shallow Neural Network”
“Neural Network Object Properties”
“Neural Network Subobject Properties”

**Introduced in R2010b**
Deep Learning Blocks
Predict

Predict responses using a trained deep learning neural network

Library: Deep Learning Toolbox / Deep Neural Networks

Description

The Predict block predicts responses for the data at the input by using the trained network specified through the block parameter. This block allows loading of a pretrained network into the Simulink model from a MAT-file or from a MATLAB function.

Note  The Predict block does not support dlnetwork objects.

Ports

Input

input — Image or sequence or time series data
numeric array

The input ports of the Predict block takes the names of the input layers of the network that loaded. For example, if you specify googlenet for MATLAB function, then the input port of the Predict block is labeled data. Based on the network loaded, the input to the predict block can be image, sequence, or time series data.

The format of the input depend on the type of data.

<table>
<thead>
<tr>
<th>Data</th>
<th>Format of Predictors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-D images</td>
<td>A h-by-w-by-c-by-N numeric array, where h, w, and c are the height, width, and number of channels of the images, respectively, and N is the number of images.</td>
</tr>
<tr>
<td>Vector sequence</td>
<td>c-by-s matrices, where c is the number of features of the sequences and s is the sequence length.</td>
</tr>
<tr>
<td>2-D image sequences</td>
<td>h-by-w-by-c-by-s arrays, where h, w, and c correspond to the height, width, and number of channels of the images, respectively, and s is the sequence length.</td>
</tr>
</tbody>
</table>

If the array contains NaNs, then they are propagated through the network.
Output

output — Predicted scores, responses, or activations

numeric array

The outputs port of the Predict block takes the names of the output layers of the network loaded. For example, if you specify googlenet for MATLAB function, then the output port of the Predict block is labeled output. Based on the network loaded, the output of the Predict block can represent predicted scores or responses.

Predicted scores or responses, returned as a $N$-by-$K$ array, where $N$ is the number of observations, and $K$ is the number of classes.

If you enable Activations for a network layer, the Predict block creates a new output port with the name of the selected network layer. This port outputs the activations from the selected network layer.

The activations from the network layer is returned as a numeric array. The format of output depends on the type of input data and the type of layer output.

For 2-D image output, activations is an $h$-by-$w$-by-$c$-by-$n$ array, where $h$, $w$, and $c$ are the height, width, and number of channels for the output of the chosen layer, respectively, and $n$ is the number of images.

For a single time-step containing vector data, activations is a $c$-by-$n$ matrix, where $n$ is the number of sequences and $c$ is the number of features in the sequence.

For a single time-step containing 2-D image data, activations is a $h$-by-$w$-by-$c$-by-$n$ array, where $n$ is the number of sequences, $h$, $w$, and $c$ are the height, width, and the number of channels of the images, respectively.

Parameters

Network — Source for trained network

Network from MAT-file (default) | Network from MATLAB function | squeezenet

Specify the source for the trained network. Select one of the following:

• Network from MAT-file— Import a trained network from a MAT-file containing a SeriesNetwork or a DAGNetwork object.
• Network from MATLAB function— Import a pretrained network from a MATLAB function. For example, by using the googlenet function.

File path — MAT-file containing trained network

untitled.mat (default) | MAT-file name

This parameter specifies the name of the MAT-file that contains the trained deep learning network to load. If the file is not on the MATLAB path, use the Browse button to locate the file.

Dependencies

To enable this parameter, set the Network parameter to Network from MAT-file.

MATLAB function — MATLAB function name

squeezenet (default) | MATLAB function name
This parameter specifies the name of the MATLAB function for the pretrained deep learning network. For example, use googlenet function to import the pretrained GoogLeNet model.

**Dependencies**

To enable this parameter, set the **Network** parameter to **Network from MATLAB function**.

**Mini-batch size — Size of mini-batches**

128 (default) | positive integer

Size of mini-batches to use for prediction, specified as a positive integer. Larger mini-batch sizes require more memory, but can lead to faster predictions.

**Predictions — Output predicted scores or responses**

off (default) | on

Enable output ports that return predicted scores or responses.

**Activations — Output network activations for a specific layer**

Layers of the network

Use the **Activations** list to select the layer to extract features from. The selected layers appear as an output port of the Predict block.

**Extended Capabilities**

**C/C++ Code Generation**

Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

- The **Language** parameter in the **Configuration Parameters > Code Generation** general category must be set to C++.
- For a list of networks and layers supported for code generation, see “Networks and Layers Supported for C++ Code Generation” (MATLAB Coder).

**GPU Code Generation**

Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

- The **Language** parameter in the **Configuration Parameters > Code Generation** general category must be set to C++.
- For a list of networks and layers supported for CUDA code generation, see “Supported Networks and Layers” (GPU Coder).
- To learn more about generating code for Simulink models containing the Predict block, see “Code Generation for a Deep Learning Simulink Model that Performs Lane and Vehicle Detection” (GPU Coder).

**See Also**

Image Classifier
Introduced in R2020b
Image Classifier

Classify data using a trained deep learning neural network

Library: Deep Learning Toolbox / Deep Neural Networks

Description

The Image Classifier block predicts class labels for the data at the input by using the trained network specified through the block parameter. This block allows loading of a pretrained network into the Simulink model from a MAT-file or from a MATLAB function.

Note The Image Classifier block does not support sequence networks and multiple input and multiple output networks (MIMO).

Ports

Input

image — Image data
numeric array

A h-by-w-by-c-by-N numeric array, where h, w, and c are the height, width, and number of channels of the images, respectively, and N is the number of images. If the array contains NaNs, then they are propagated through the network.

Output

ypred — Predicted class labels
enumerated

Predicted class labels with the highest score, returned as a N-by-1 enumerated vector of labels, where N is the number of observations.

scores — Predicted class scores
matrix

Predicted scores, returned as a N-by-K matrix, where N is the number of observations, and K is the number of classes.

labels — Class labels for predicted scores
matrix

Labels associated with the predicted scores, returned as a N-by-K matrix, where N is the number of observations, and K is the number of classes.
Parameters

Network — Source for trained network

Network from MAT-file (default) | Network from MATLAB function | squeezenet

Specify the source for the trained network. Select one of the following:

- **Network from MAT-file**— Import a trained network from a MAT-file containing a SeriesNetwork or a DAGNetwork object.
- **Network from MATLAB function**— Import a pretrained network from a MATLAB function. For example, by using the googlenet function.

File path — MAT-file containing trained network

untitled.mat (default) | MAT-file name

This parameter specifies the name of the MAT-file that contains the trained deep learning network to load. If the file is not on the MATLAB path, use the Browse button to locate the file.

Dependencies

To enable this parameter, set the **Network** parameter to **Network from MAT-file**.

MATLAB function — MATLAB function name

squeezenet (default) | MATLAB function name

This parameter specifies the name of the MATLAB function for the pretrained deep learning network. For example, use googlenet function to import the pretrained GoogLeNet model.

Dependencies

To enable this parameter, set the **Network** parameter to **Network from MATLAB function**.

Mini-batch size — Size of mini-batches

128 (default) | positive integer

Size of mini-batches to use for prediction, specified as a positive integer. Larger mini-batch sizes require more memory, but can lead to faster predictions.

Resize input — Resize the input dimensions

on (default) | off

Resize the data at the input port to the input size of the network.

Classification — Output predicted label with highest score

on (default) | off

Enable output port ypred that outputs the label with the highest score.

Predictions — Output all scores and associated labels

off (default) | on

Enable output ports scores and labels that output all predicted scores and associated class labels.
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• The Language parameter in the Configuration Parameters > Code Generation general category must be set to C++.

• For ERT-based targets, the Support: variable-size signals parameter in the Code Generation > Interface pane must be enabled.

• For a list of networks and layers supported for code generation, see “Networks and Layers Supported for C++ Code Generation” (MATLAB Coder).

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The Language parameter in the Configuration Parameters > Code Generation general category must be set to C++.

• For a list of networks and layers supported for CUDA code generation, see “Supported Networks and Layers” (GPU Coder).

• To learn more about generating code for Simulink models containing the Image Classifier block, see “Code Generation for a Deep Learning Simulink Model to Classify ECG Signals” (GPU Coder).

See Also
Predict

Introduced in R2020b