
 

 

WHITE PAPER 

Building Key Competencies for 

Autonomous Vehicle Development 
Simulate virtual worlds, build multidisciplinary skills, and deliver 

software for complex autonomous systems 

Automated driving spans a wide range of automation levels, from advanced driver assistance 

systems (ADAS) to fully autonomous driving (AD). As the level of automation increases, the use 

cases become less restricted and testing requirements increase, making the need for simulating 

scenarios in virtual worlds more critical. Developing these automated driving applications 

requires multidisciplinary skills—from planning and controls to perception disciplines such as 

detection, localization, tracking, and fusion—in an environment that supports the design, 

validation, and deployment of increasingly complex software. 

In this white paper, you will learn how automotive engineers can: 

• Manage validation complexity by building virtual worlds and leveraging simulation 

• Develop multidisciplinary skills to navigate fundamental changes to automotive 
engineering 

• Develop software applications to meet ISO 26262 
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ADAS/AD Development  

ADAS/AD engineers ask several common questions: How can I analyze and synthesize 

scenarios? How can I design and deploy algorithms? And at a system level, how can I integrate 

and test the entire AD system?  

Many times conversation on ADAS/AD development quickly gets into perception, which in turn 

gets into AI and AI modeling. However, ADAS/AD development is more than perception. It 

spans virtual worlds and requires multidisciplinary skills for both developing algorithms using 

multiple tools and deploying these algorithms as software applications, as shown in Figure 1. 

 
 

Figure 1. The three-pronged approach engineers should consider for developing AD applications.  

In addition, these engineers often expect to spend a large percentage of their time developing 

and fine-tuning models of the environment, vehicle, and algorithms. Yes, modeling is an 

important step in the workflow, but the model is not the end of the journey. The key element for 

success in practical development of ADAS/AD applications is uncovering any issues early and 

knowing on which aspects of the workflow to focus time and resources for the best results.  

Two important asides should be considered before diving into the typical workflow:  

• ADAS and AD are multidisciplinary domains with many development tools and vendors. 

This, in turn, emphasizes the need for good connectors to enable setup of an integrated 

simulation platform. Integration permits putting together all algorithms (developed in 

many platforms) to perform system simulation to gain insights.  

• In addition to integration, another key requirement is a tool or platform that enables easy 

visualization to assess performance of algorithms across the workflow.  
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Typical ADAS/AD Workflow 

You start with creating a scene. This is followed by creating a scenario that includes the scene, 

actors (vehicles, pedestrians), weather, and light sources. Next, the ego vehicle needs to be 

modeled to include sensors that are part of the AV sensor suite along with the vehicle dynamics 

(for lateral control, longitudinal control, or both). With this preparation, you are now ready to 

begin simulating the scenario, which in turn permits iterative refinement of algorithms for 

perception, planning, and controls. After you gain confidence in these algorithms, you create the 

software. That software code is either generated automatically from tools or handwritten. Then, 

integrate code to perform system-level simulation to gain confidence that the code is functionally 

correct at the system level. Finally, run simulations as a part of testing, either interactively or 

automatically (on your desktop, on a cluster, or on the cloud).  

Simulating Virtual Worlds 

You have probably heard about the notion of running a million scenarios, enabled by simulation. 

And simulation needs to reflect the real world. Before you test scenarios, you need a scene to 

simulate in a virtual world. A scene needs to reflect the real world, which can be complicated, 

with a road intersection representing a challenging road scene. Consider a roundabout that can 

range from a reasonably simple three-entry/exit layout to a complex 12-entry/exit layout, as in 

the Arc de Triomphe in Paris, France.  

With RoadRunner, a real-world road scene can be re-created in a fast and functional way even 

when this reality is quite complex (see Figure 2). For AD, roads are a critical part of the scene. 

 

Figure 2. Re-creating a real-world scene with RoadRunner. 

Re-created scenes need to be in a format such that they can be exported for use with popular 

simulators in the market, such as CARLA, CarMaker®, and NVIDIA® DRIVE Sim®. If you need to 

create long stretches of road scenes, this manual approach can be cumbersome. At this point 

you will benefit from having an approach that is automatic. It is now possible to import longer 

road sections in 3D from HERE HD Live Map. 

You can author driving scenarios based on these scenes. One source for scenarios could be 

from recorded data. Ford developed its Active Park Assist feature through event identification 

https://www.youtube.com/watch?v=JgWhagB4d_g
https://www.mathworks.com/products/roadrunner.html
https://www.mathworks.com/videos/using-matlab-on-apache-spark-for-adas-feature-usage-analysis-and-scenario-generation-1605625064195.html
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and scenario generation from recorded data. Along similar lines, GM generated scenarios from 

recorded vehicle data for validating lane-centering systems. 

You can identify new scenarios from recorded data. In this approach, you extract information 

from your CAN logs or directly from a camera or a lidar. You can visualize data and then label it. 

The labeling can be automated using either public or custom algorithms. You then identify 

scenarios of interest from your recorded and labeled data to re-create simulation test cases. 

This process is typically an open-loop workflow.   

You can also identify new scenarios from scenario variations. In this approach, you create a 

scenario. You then create variations and use simulations to help identify new scenarios of 

interest and add to your regression tests. This process enables a closed-loop workflow. 

Through the above two approaches, you can identify and add new test cases into your design 

and simulation workflows.  

Scenes and scenarios can be created either interactively or programmatically. In addition, you 

can: 

• Import/export a scene to OpenDRIVE, among other formats 

• Import OpenStreetMap® data into a scenario 

• Export a scenario to OpenDRIVE 

• Export a scenario to OpenSCENARIO 

The fidelity of the virtual world can be chosen depending on the need for simulating specific use 

cases. For example, tracked detections from a radar can be used to develop planning and 

controls algorithms, whereas camera detections can be used to develop perception algorithms. 

MathWorks provides two environments for virtual worlds:  

• Cuboid: You can use cuboid world representation to simulate driving scenarios, use 

sensor models, and generate synthetic data to test automated driving algorithms in 

simulated environments, including controls, sensor fusion, and path planning. For 

example, you can use this approach to identify the best location of sensors and number 

of sensors.  

• Unreal Engine®: You can develop, test, and visualize the performance of driving 

algorithms in a 3D simulated environment rendered using the Unreal Engine from Epic 

Games. In addition to the algorithms noted in the cuboid world, you can develop and test 

perception algorithms driven by camera data from different camera models. 

Figure 3 shows the sensors that are part of the typical AV sensor suite.  

 

https://www.mathworks.com/videos/creating-driving-scenarios-from-recorded-vehicle-data-for-validating-lane-centering-systems-in-highway-traffic-1592820033589.html
https://www.asam.net/standards/detail/opendrive/
https://wiki.osmfoundation.org/wiki/Main_Page
https://www.asam.net/standards/detail/opendrive/
https://www.asam.net/standards/detail/openscenario/#:~:text=ASAM%20OpenSCENARIO%20defines%20a,The%20primary&text=use%2Dcase%20of%20OpenSCENARIO%20is,pedestrians%20and%20other%20traffic%20participants.
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Figure 3. Simulating sensors for AD applications.  

Radar, lidar, and camera sensors are used for detecting objects with sensors and detections 

corresponding to different simulation environments. Positional sensors can be used in both 

simulation environments. To simulate vehicle dynamics, you need models of multi-axle vehicles, 

trucks and trailers, the powertrain, steering, suspension, wheels, and tires.  

To reiterate, developing virtual worlds involves creating scenes, creating scenarios, modeling 

sensors, and modeling vehicle dynamics. This process is scalable and gives users the flexibility 

to apply their domain expertise without having to become experts in other domains.  

Building Multidisciplinary Skills 

The multidisciplinary nature of AV development requires ADAS/AD algorithms to exist within a 

larger system and be interoperable with other constituents of the vehicle system. In an 

ADAS/AD application, not only do you have a perception system for detecting objects 

(pedestrians, cars, stop signs), but this system must integrate with other systems for 

localization, path planning, controls, and more. 

Developing this complex system requires multidisciplinary skills to develop algorithms for 

ADAS/AD features such as adaptive cruise control, automatic emergency braking, and higher-

level features such as highway lane change and automated parking/parking valet. Figure 4 

shows a few examples of AD features.  
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Figure 4. Typical planning and control algorithms for AD.  

These algorithms cover planning, controls, and perception disciplines:  

• Planning and controls includes motion planning, decision logic, and longitudinal and 

lateral controls.  

• Perception includes detection, object tracking and sensor fusion, and localization. 

Automated Driving Toolbox™ includes examples that serve as a framework to help you start 

designing your own ADAS/AD features. Engineers new to the automotive industry need an 

understanding of a typical automobile and its constituent subsystems including the control 

system. For example, they can get started quickly with control system design with Control 

System Toolbox™ and vehicle dynamics modeling with Vehicle Dynamics Blockset™. Given the 

complexity of ADAS/AD systems and fast-paced software development cycles, engineers 

moving into this domain from other domains can jumpstart their learning with tools like 

Automated Driving Toolbox and Sensor Fusion and Tracking Toolbox™. In addition, they can 

begin to develop advanced control system algorithms such as model predictive control (MPC) 

with Model Predictive Control Toolbox™.  

Consider the highway lane change example. The workflow for developing this feature takes you 

from synthesizing a scenario in the cuboid world, to designing a planner, to designing controls 

using MPC, to modeling vehicle dynamics, and finally to visualizing results to gain insights 

through simulation.  

Another example covers automated parking valet. The workflow for developing this feature 

takes you from path planning to trajectory generation to vehicle controls. Further examples in 

this area include trajectory generation and tracking using nonlinear MPC and controller for 

automatic search and parking task using reinforcement learning.  

Tools such as MATLAB® and Simulink® offer engineers the support needed in an iterative 

environment. While algorithms and prebuilt models are a good start, they’re not the complete 

picture. Engineers learn how to use these algorithms and find the best approach for their 

specific problem by using examples. 

https://www.mathworks.com/help/driving/examples.html
https://www.mathworks.com/products/control.html
https://www.mathworks.com/products/control.html
https://www.mathworks.com/products/vehicle-dynamics.html
https://www.mathworks.com/products/automated-driving.html
https://www.mathworks.com/products/sensor-fusion-and-tracking.html
https://www.mathworks.com/products/model-predictive-control.html
https://www.mathworks.com/help/driving/ug/highway-lane-change.html
https://www.mathworks.com/help/driving/ug/automated-parking-valet.html
https://www.mathworks.com/help/mpc/ug/parking-valet-using-nonlinear-model-predictive-control.html
https://www.mathworks.com/help/reinforcement-learning/ug/train-ppo-agent-for-automatic-parking-valet.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/simulink.html
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Algorithms for planning and controls are driven by tracking and fusion algorithms. Figure 5 

shows typical detections.  

  

Figure 5. Typical detections for tracking and fusion algorithms for AD.  

You can use examples and tools noted in Figure 5 to design tracking and fusion algorithms to 

convert sensor detections from sensors such as radar, lidar, and camera to track information 

such as objects, lanes, and grids.   

You can design detection and localization algorithms from camera and lidar data. You can also 

enhance localization using maps and inertial fusion. Figure 6 shows design of detection and 

localization algorithms for AD.  

 
Figure 6. Typical detection and localization algorithms for AD. 

Note that lidar is used either for developing higher-level automation features or as an additional 

sensor for validating detections from lower-level automation features. The output from sensor 

detections serves as the input to localization. These outputs are also used for correlation with 

map data to improve localization algorithms. You can take detections from camera and lidar, 

along with HERE HD Live Map data and GPS, to improve the accuracy of vehicle localization. In 
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some cases where map information is not available, you can rely on simultaneous localization 

and mapping (SLAM), which uses data from lidar and camera sensors.  

Delivering ADAS/AD Software  

Simulation and testing for accuracy are key to validating that the system is working properly and 

everything works well together in a system of systems before deployment into the real world.  

To build this level of accuracy and robustness prior to deployment, engineers must ensure that 

the system will respond the way it is supposed to, no matter the situation. Questions you should 

ask at this stage include: 

• What is the overall performance of each algorithm/feature?  

• What is the overall performance of the system?  

• Does it perform as expected in each scenario?  

• Does it cover all edge cases?  

Once the algorithms are functionally correct, they need to be implemented as embedded 

software. Specifications are added to the model before generating code to ensure that the 

simulation model and implemented code remain functionally identical throughout the 

development process.  

The algorithms must be readied in the final language in which they will be implemented. That 

designated hardware environment can range from desktop to the cloud, edge, or deeply 

embedded devices. Implementation flexibility offers engineers leeway to deploy their algorithms 

across a variety of environments without having to rewrite the original code.  

Engineers can deploy their algorithms as standalone executables (including web apps) or code 

(C, C++, CUDA code for GPU, HDL) for service-oriented architectures (ROS, AUTOSAR) and 

real-time hardware (CPUs, GPUs, FPGAs). Using these deployments, you can integrate with 

more than 150 tool interfaces. In addition, you can integrate with CAN, FMI/FMU, Python®, and 

ONNX™. Also, there is a need for tools to fit into common software development workflows, 

such as continuous integration, automated testing, code analysis, and ISO 26262, as shown in 

Figure 7.  
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Figure 7. Developing software applications for AD.  

Putting It Together  

Trust is achieved once you have successfully simulated and tested all cases you expect the 

algorithm/feature and system to see and can verify their performance. A testing workflow should 

include links to requirements, assessment at a unit level, and integration of units, followed by 

assessment at the system level. Assessment should cover both functional assessment and 

code assessment. Engineers can systematically test according to requirements in pure 

simulation mode, software-in-the-loop, processor-in-the-loop, hardware-in-the-loop, or the real 

system itself. With hundreds if not thousands of scenarios needing tests, AD engineers will 

benefit from automating tests instead of running them manually. This automated testing 

example shows how to assess the functionality of an ADAS/AD feature by defining scenarios 

based on requirements and automating testing of components and the generated code for those 

components. This kind of test automation also works well with continuous integration tools, such 

as Jenkins. 

Developing ADAS/AD applications is an exciting space that brings together multiple engineering 

disciplines. These application also introduce complexity the automotive industry hasn’t seen 

before. For automotive engineers to successfully manage this level of complexity while building 

ADAS/AD applications, fundamental changes in automotive engineering, including simulation 

usage, skills of the engineers, and development and deployment of software, are required. 

Engineers need tools to verify that the feature or system works as desired for all anticipated use 

cases, avoiding redesigns that are costly both in money and in time. MATLAB, Simulink, and 

RoadRunner can help engineers navigate these different disciplines and become successful at 

developing and bringing ADAS/AD applications to the market.  

Learn More 

• Explore automated driving solutions 

• Contact us 

https://www.mathworks.com/help/driving/ug/automate-testing-for-highway-lane-following.html
https://www.mathworks.com/help/driving/ug/automate-testing-for-highway-lane-following.html
https://www.mathworks.com/company/newsletters/articles/continuous-integration-for-verification-of-simulink-models.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/roadrunner.html
https://www.mathworks.com/solutions/automated-driving.html
mailto:automated-driving@mathworks.com

