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ABSTRACT 

Commercial vehicle manufacturers face unique 
challenges for the development of vehicle electronics 
systems.  For one, customers typically have unique 
requirements coupled with an expectation of high 
reliability.  Vehicle electronics is often the enabler for 
customized features. Ensuring that the vehicle will 
perform as demanded and promised adds a degree of 
burden on the vehicle manufacturers. Furthermore, the 
verification and testing of a large number of unique 
electronic system configurations is very expensive and 
time-consuming.  This paper will explore how Model-
Based Design can be used to meet these challenges 
and provide a high degree of confidence for both the 
manufacturer and the customer that requirements have 
been met.  It will discuss factors to consider to support 
configurability, approaches for defining a system 
architecture that facilitates reuse, and capabilities for 
modeling state-based systems. 

VEHICLE ELECTRONICS ENGINEERING 
CHALLENGES 

While the powertrain provides the propulsion necessary 
to perform the required work, vehicle electronics, which 
include such functions as lighting, operator comfort and 
assistance, display, power management, and security 
and safety systems, provide important differentiation in 
terms of operator comfort, convenience and productivity. 
As a result, the embedded electronic content in 
commercial vehicles continues to grow, which leads to 
the complexity that comes with managing multiple 
electronic control modules (ECUs).  Additionally, many 
commercial vehicles are developed for a wide range of 
applications requiring significant customization. It is not 
atypical for every vehicle that rolls off the assembly line 
to be unique.  Developing, testing and maintaining a 
large number of custom vehicle configurations pose a 
significant challenge in terms of both cost and time-to-
market. The challenge manifests itself in the need to 
leverage the benefits of vehicle electronics while 
effectively managing the increased system complexity 
and customizations required to service the diverse 
needs of the customers. 

WHAT IS MODEL-BASED DESIGN 

The traditional development process for vehicle 
electronics is characterized by  

� Use of paper specification generated from 
requirements gathered from various sources 

� Building physical prototypes for design. 
� Writing code manually to implement control 

algorithms and complex logic. 
� Dependence on test vehicles for verification and 

validation. 
   

 

Figure 1: Traditional Vehicle Electronics Development 
Process, where design, implementation, and test are 
done by individual team each suffering from barrier of 
communication to its supplier and customer. 

A significant problem with this process is that errors in 
specification are often not discovered until final 
validation, which leads to specification change, re-
design, re-implementation, and re-validation.  
Consequently, cost of fixing errors is high [1].  Because 
of the many vehicle electronics configurations in 
commercial vehicles, complete test coverage of the 
design is practically impossible using test vehicles.  As a 
result, errors may be “leaked” into products, leading to 
field repairs.  

Model-Based Design emerged from the need to reduce 
development cost and improve product quality at the 
same time, while the complexity of vehicle electronics 
multiples.  In Model-Based Design, a model of the 



system being developed serves as the common thread 
throughout the development process, from requirements 
capture to final validation. As an executable 
specification, this system model is refined throughout the 
development process.  Simulation is used at each 
process step to verify whether the design meets the 
requirements. Code generation is used for implementing 
control algorithm and complex logic, thus eliminating 
errors introduced by writing source code by hand.  

 

Figure 2: Development Process with Model-Based 
Design  

Since its introduction, Model-Based Design has become 
widely adopted in the development of electronic control 
systems, powertrain and vehicle alike for commercial 
vehicle applications.  Examples of applying Model-
Based Design to commercial vehicles have been 
extensively highlighted in past SAE technical papers or 
presented at conferences in the automotive industry [2] 
[3] [4]. 

The remaining sections of this paper will provide a set of 
guidelines for applying Model-Based Design to vehicle 
electronics applications, with emphasis on system 
architecture and modeling state-based systems.   
Typical scenarios for implementation and verification are 
also described to provide a complete description of 
Model-Based Design.   

SYSTEM ARCHITECTURE  

MOTIVATION 

The system model is key to Model-Based Design.  Given 
the requirement for customization in commercial vehicle 
electronics applications, it is critical to establish the 
system architecture in the modeling environment such 
that it provides a flexible framework to facilitate re-
configuration and reuse.  As a result, the system level 
models can be quickly customized to support a range of 
applications. 

The design requirements for a system model include 

1. A clear representation of control flow between 
components 

2. A clear representation of signal (information) flow 
between components 

3. A clear system hierarchy 
4. Uniform  / locked down interface between 

components 
5. A simple infrastructure for component integration 
 
Using an architecture with Model Based Design that 
satisfies these design requirements facilitates the 
integration of components (requirements 4 and 5 
above), the debugging of the system (requirements 1 
and 2), the readability and understandability of the 
system (requirements 1, 2, and 3), as well as the 
modularity of the system (requirements 2, 4, and 5). 

An example of top level architecture is represented in 
Figure 3.  It is composed of hardware input and output 
components (A/B), the scheduler (C), fault detection (D) 
and the algorithmic (E) component.  Additionally in this 
case a closed loop test component (F) is included in the 
system architecture; the test system is not required and 
is fully decoupled. 

 

 Figure 3: Top level system architecture 

Additionally, system designs should take into 
consideration product line architecture considerations to 
improve the reusability of the component.  In this case a 
“base” interface is established for all versions of the 
control algorithm.  More advanced versions of the 
algorithm may use additional interface components, 
however they should be able to function using the basic 
interface information. 

ARCHITECTURE FRAMEWORK 

With Model-Based Design, as in standard architectural 
design environments, the system designer performs the 
task of partitioning complex systems into usable 
components.  The partitioning task defines the 
components data interface (e.g. function prototype, local 
/ global data), the function interface (e.g. the call 
method, call rate, scope / access to the functions) and 
the scheduling interface (e.g. execution order and 
interrupt information)   

 



Figure 3 showed an example of the top level model; in 
this case information was passed between components 
in a bus, e.g. a grouped collection of information.  Let’s 
look at an example of the hierarchy of in the algorithm 
component.  There are three layers of architecture for 
the algorithm component, Output data packaging (Figure 
4), Signal routing (Figure 5), and the functional 
component (Figure 6).  The goal of these three layers is 
to 

� Explicitly show the signal flow between components 
� Minimize the visual clutter in the diagram (improve 

readability) 
� Simplify the addition of components to the system 
 

  

Figure 4: Output data packaging 

 

Figure 5: Signal Routing 

Figure 6: Functional component 

Engineers working on functional component start their 
work with a shell model that has the fully defined I/O, 
internal data and triggering mechanism.  The definition 
includes signal name, data type, storage class, and 
ownership; this is known as a “locked down interface”.    

Starting from this point their work can be done 
independent of the system level designers.   

SCHEDULING THE SYSTEM LEVEL MODEL 

An architecture in Model Based Design can be created 
to replicate all standard scheduling methodologies.  The 
most common approaches are the centralized and 
distributed (Parent / Child) scheduling methodologies.  In 
the centralized approach the total execution context is 
controlled from a single scheduling component; this 
enables complete context control of the full system; 
however for large models this approach can be come 
difficult to manage.  By contrast the distributed Parent / 
Child scheduling approach has a single parent 
scheduler that enables multiple child sub-schedulers 
which enable the final execution context.  This approach 
reduces the flexibility of the scheduler however it is more 
modular and easier to maintain.  From component 
developers perspective the two approaches are 
identical.   

 
Figure 7: Central and Distributed Scheduling 
Architectures 

APPROACHES TO MODEL INTEGRATION 

With Model-Based Design, there are three primary 
integration scenarios used for a system level model 

1. Integration of models into models 
2. Integration of C code into models 
3. Integration of automatically generated C from 

models into existing C code. 
 
In all three cases the well defined system architecture 
simplifies this process.  In the first case, integration of 
models into models looking specifically at Simulink from 
The MathWorks there are three integration methods 
supported; libraries, model reference and s-functions 
(compiled C code).  The following table provides a 
summary of the integration / simulation trade off’s for the 
three methods. 

Integrating C code into models or models into C code is 
a relatively simple task when the architecture has used a 
locked down interface; it is a N step process.  
Verification that function interfaces match, collection of 



the required support files, writing “wrapper” functions (if 
required), compiling the complete source code. 

 

  Libraries Model 
Reference 

S-
Function 

Storage as a separate file Y Y Y 

Supports multiple instance in 
parent model 

Y Y N 

Inherits model configuration 
options 

Y N N 

Independent simulation N Y N 

Independent code generation N Y NA 

Obfuscate model for distribution N N Y 

Logging signals during 
simulation (debugging) 

Y Y N 

Simulates as compiled model N Y Y 

Multi-rate / multi-task simulation 
& code generation 

Y Y Y 

Number of input function called 
triggers 

Multiple 1 0 

Can include components of 
type… 

Lib: Y 
MR: Y 
S-F: Y 

Lib: Y 
MR: Y 
S-F: N 

Lib: Y 
MR: N 
S-F: N 

Table 1: Integration Scenarios 

MODELING STATE-BASED SYSTEMS 

Many vehicle electronics systems involve complex logic 
and are inherently state-based.  For example, the 
transmission can be in one of several states or gears.  
Indicator lights can be either on or off.  A trash 
compactor might be active, inactive, or malfunctioning.  
One way to model the states for all of these subsystems 
and how they interact with each other is to use a state 
machine modeling environment.  Stateflow, shown in 
Figure 8, extends Model-Based Design with an 
environment for developing state machines and flow 
charts.   

  

Figure 8: State-Based System Implemented in Stateflow 

The tool provides a graphical design environment that 
allows the user to get a high-level view of the state of 
various subsystems at any given time via the animation 
that takes place during simulation.  In Figure 8, for 
example, the active states are gear_state.third and 
selection_state.steady_state, as shown by the 
highlighted area. 

The most common applications for Stateflow are in the 
areas of mode logic, scheduling, and fault management.  
As mentioned in the previous paragraph, subsystems 
can be in one of several modes, each mode represented 
by a state.  In the system shown in Figure 8, the 
gear_state can either be in the “first”, “second”, “third”, or 
“fourth” state. 

 

Figure 9: Simulink model (left) and Stateflow chart (right) 
illustrating scheduling logic 

Using Stateflow, designers can schedule precisely when 
certain tasks are performed and when specific 
subsystems are enabled or disabled.  An example of a 
scheduling subsystem is depicted in Figure 8.  The 
Stateflow chart “Sequencer” controls when the engine, 
lights, and crane Simulink subsystems are activated by 
broadcasting events out to Simulink (e.g., 
send(engine_on)).  Note that the timing can be 
determined dynamically (e.g., when the engine rpm is 
greater than a specific threshold, turn the lights on) or 
statically (e.g., after 10 seconds, initialize the crane). 

Fault management is used to maintain the system if 
failures occur.  For example, if the drill for a mining 
vehicle malfunctions, an indicator light should turn on 
and the drill should automatically shut down to minimize 
damage to the equipment. 

IMPLEMENTATION AND VERIFICATION 

With Model-Based Design, control algorithms and 
complex logic are captured in model as an executable 
specification, which is elaborated during design.  As a 
result, the code used to implement the ECU is basically 
a byproduct when it is generated from the model using 
production code generation technologies [4] [5].  The 
automated transformation from the executable 
specification to code increases productivity both in terms 



of reducing errors and the ability to quickly investigate 
multiple algorithm alternatives. The impact for the 
commercial vehicle electronics is significant.  Because 
there are relatively few units of each configuration built 
and many vehicle electronic configurations, design 
engineers cannot afford to generate a custom software 
program for each machine. Automatic code generation 
allows engineers to manage these customizations in the 
model by using parameter sets to control what part of 
the software that is active in a specific configuration.  
Production code generation technologies and their 
application have been extensive discussed in previous 
SAE Technical Papers [2] [4]. 

A main benefit of Model-Based Design is that it allows 
verification and validation to start early in the 
development process.  Because various engineering 
teams use models to unambiguously communicate the 
technical design information, at any time in the process, 
the design can be verified against the requirements and 
adjustments can be made to accommodate cost or 
performance issues [6]. For example, in a crash 
avoidance system, tests for the response time created 
during specification development can be re-used during 
the implementation stage for verification to ensure that 
the specific implementation selected for the vehicle 
electronics configuration best meets the requirements.  
Typical verification and validation techniques in Model-
Based Design include 

� Requirements/model traceability 
� Modeling standards checking 
� Model functional testing and automated test 

execution 
� Automated test case generation and model 

structural testing 
� Test coverage collection  
� Model/code and requirements/code traceability 
� Automated report generation 
 
FUTURE TRENDS 

AUTOSAR, or Automotive Open System Architecture, is 
an industry group of over 100 vehicle manufacturers, 
component suppliers and tool providers working together 
to develop a standard architecture for automotive 
embedded software. Although passenger car 
applications remain the focus for AUTOSAR, 
commercial vehicle manufacturers have expressed 
interest in leveraging AUTOSAR to help standardize 
their vehicle electronics system architecture. Working 
with vehicle manufacturers and other tool providers, The 
MathWorks have demonstrated that Model-Based 
Design can be effectively applied for developing 
AUTOSAR compliant software [7].  The development 
approach integrated into Simulink and Real-Time 
Workshop Embedded Coder [8] allows design engineers 
to use one model for both AUTOSAR and non-
AUTOSAR projects, which maximizes the reuse of 
existing models.  a benefit particularly important to 
commercial vehicle manufacturers. 

CONCLUSION 

Model-Based Design provides a range of benefits to 
commercial vehicle electronics development, including 
modeling of control algorithms and complex logic, 
including state-based systems, implementation with 
automatic code generation, and early verification.  A key 
consideration for such applications is a flexible system 
architecture to support customization and reuse.  This 
paper shows how system architecture can be effectively 
established with Model-Based Design.   
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