
2008-01-2663

Applying Model-Based Design to Commercial Vehicle
Electronics Systems

Tom Egel, Michael Burke, Michael Carone, Wensi Jin
The MathWorks, Inc.

Copyright © 2008 The MathWorks, Inc.

ABSTRACT

Commercial vehicle manufacturers face unique
challenges for the development of vehicle electronics
systems. For one, customers typically have unique
requirements coupled with an expectation of high
reliability. Vehicle electronics is often the enabler for
customized features. Ensuring that the vehicle will
perform as demanded and promised adds a degree of
burden on the vehicle manufacturers. Furthermore, the
verification and testing of a large number of unique
electronic system configurations is very expensive and
time-consuming. This paper will explore how Model-
Based Design can be used to meet these challenges
and provide a high degree of confidence for both the
manufacturer and the customer that requirements have
been met. It will discuss factors to consider to support
configurability, approaches for defining a system
architecture that facilitates reuse, and capabilities for
modeling state-based systems.

VEHICLE ELECTRONICS ENGINEERING
CHALLENGES

While the powertrain provides the propulsion necessary
to perform the required work, vehicle electronics, which
include such functions as lighting, operator comfort and
assistance, display, power management, and security
and safety systems, provide important differentiation in
terms of operator comfort, convenience and productivity.
As a result, the embedded electronic content in
commercial vehicles continues to grow, which leads to
the complexity that comes with managing multiple
electronic control modules (ECUs). Additionally, many
commercial vehicles are developed for a wide range of
applications requiring significant customization. It is not
atypical for every vehicle that rolls off the assembly line
to be unique. Developing, testing and maintaining a
large number of custom vehicle configurations pose a
significant challenge in terms of both cost and time-to-
market. The challenge manifests itself in the need to
leverage the benefits of vehicle electronics while
effectively managing the increased system complexity
and customizations required to service the diverse
needs of the customers.

WHAT IS MODEL-BASED DESIGN

The traditional development process for vehicle
electronics is characterized by

� Use of paper specification generated from
requirements gathered from various sources

� Building physical prototypes for design.
� Writing code manually to implement control

algorithms and complex logic.
� Dependence on test vehicles for verification and

validation.

Figure 1: Traditional Vehicle Electronics Development
Process, where design, implementation, and test are
done by individual team each suffering from barrier of
communication to its supplier and customer.

A significant problem with this process is that errors in
specification are often not discovered until final
validation, which leads to specification change, re-
design, re-implementation, and re-validation.
Consequently, cost of fixing errors is high [1]. Because
of the many vehicle electronics configurations in
commercial vehicles, complete test coverage of the
design is practically impossible using test vehicles. As a
result, errors may be “leaked” into products, leading to
field repairs.

Model-Based Design emerged from the need to reduce
development cost and improve product quality at the
same time, while the complexity of vehicle electronics
multiples. In Model-Based Design, a model of the

system being developed serves as the common thread
throughout the development process, from requirements
capture to final validation. As an executable
specification, this system model is refined throughout the
development process. Simulation is used at each
process step to verify whether the design meets the
requirements. Code generation is used for implementing
control algorithm and complex logic, thus eliminating
errors introduced by writing source code by hand.

Figure 2: Development Process with Model-Based
Design

Since its introduction, Model-Based Design has become
widely adopted in the development of electronic control
systems, powertrain and vehicle alike for commercial
vehicle applications. Examples of applying Model-
Based Design to commercial vehicles have been
extensively highlighted in past SAE technical papers or
presented at conferences in the automotive industry [2]
[3] [4].

The remaining sections of this paper will provide a set of
guidelines for applying Model-Based Design to vehicle
electronics applications, with emphasis on system
architecture and modeling state-based systems.
Typical scenarios for implementation and verification are
also described to provide a complete description of
Model-Based Design.

SYSTEM ARCHITECTURE

MOTIVATION

The system model is key to Model-Based Design. Given
the requirement for customization in commercial vehicle
electronics applications, it is critical to establish the
system architecture in the modeling environment such
that it provides a flexible framework to facilitate re-
configuration and reuse. As a result, the system level
models can be quickly customized to support a range of
applications.

The design requirements for a system model include

1. A clear representation of control flow between
components

2. A clear representation of signal (information) flow
between components

3. A clear system hierarchy
4. Uniform / locked down interface between

components
5. A simple infrastructure for component integration

Using an architecture with Model Based Design that
satisfies these design requirements facilitates the
integration of components (requirements 4 and 5
above), the debugging of the system (requirements 1
and 2), the readability and understandability of the
system (requirements 1, 2, and 3), as well as the
modularity of the system (requirements 2, 4, and 5).

An example of top level architecture is represented in
Figure 3. It is composed of hardware input and output
components (A/B), the scheduler (C), fault detection (D)
and the algorithmic (E) component. Additionally in this
case a closed loop test component (F) is included in the
system architecture; the test system is not required and
is fully decoupled.

 Figure 3: Top level system architecture

Additionally, system designs should take into
consideration product line architecture considerations to
improve the reusability of the component. In this case a
“base” interface is established for all versions of the
control algorithm. More advanced versions of the
algorithm may use additional interface components,
however they should be able to function using the basic
interface information.

ARCHITECTURE FRAMEWORK

With Model-Based Design, as in standard architectural
design environments, the system designer performs the
task of partitioning complex systems into usable
components. The partitioning task defines the
components data interface (e.g. function prototype, local
/ global data), the function interface (e.g. the call
method, call rate, scope / access to the functions) and
the scheduling interface (e.g. execution order and
interrupt information)

Figure 3 showed an example of the top level model; in
this case information was passed between components
in a bus, e.g. a grouped collection of information. Let’s
look at an example of the hierarchy of in the algorithm
component. There are three layers of architecture for
the algorithm component, Output data packaging (Figure
4), Signal routing (Figure 5), and the functional
component (Figure 6). The goal of these three layers is
to

� Explicitly show the signal flow between components
� Minimize the visual clutter in the diagram (improve

readability)
� Simplify the addition of components to the system

Figure 4: Output data packaging

Figure 5: Signal Routing

Figure 6: Functional component

Engineers working on functional component start their
work with a shell model that has the fully defined I/O,
internal data and triggering mechanism. The definition
includes signal name, data type, storage class, and
ownership; this is known as a “locked down interface”.

Starting from this point their work can be done
independent of the system level designers.

SCHEDULING THE SYSTEM LEVEL MODEL

An architecture in Model Based Design can be created
to replicate all standard scheduling methodologies. The
most common approaches are the centralized and
distributed (Parent / Child) scheduling methodologies. In
the centralized approach the total execution context is
controlled from a single scheduling component; this
enables complete context control of the full system;
however for large models this approach can be come
difficult to manage. By contrast the distributed Parent /
Child scheduling approach has a single parent
scheduler that enables multiple child sub-schedulers
which enable the final execution context. This approach
reduces the flexibility of the scheduler however it is more
modular and easier to maintain. From component
developers perspective the two approaches are
identical.

Figure 7: Central and Distributed Scheduling
Architectures

APPROACHES TO MODEL INTEGRATION

With Model-Based Design, there are three primary
integration scenarios used for a system level model

1. Integration of models into models
2. Integration of C code into models
3. Integration of automatically generated C from

models into existing C code.

In all three cases the well defined system architecture
simplifies this process. In the first case, integration of
models into models looking specifically at Simulink from
The MathWorks there are three integration methods
supported; libraries, model reference and s-functions
(compiled C code). The following table provides a
summary of the integration / simulation trade off’s for the
three methods.

Integrating C code into models or models into C code is
a relatively simple task when the architecture has used a
locked down interface; it is a N step process.
Verification that function interfaces match, collection of

the required support files, writing “wrapper” functions (if
required), compiling the complete source code.

 Libraries Model
Reference

S-
Function

Storage as a separate file Y Y Y

Supports multiple instance in
parent model

Y Y N

Inherits model configuration
options

Y N N

Independent simulation N Y N

Independent code generation N Y NA

Obfuscate model for distribution N N Y

Logging signals during
simulation (debugging)

Y Y N

Simulates as compiled model N Y Y

Multi-rate / multi-task simulation
& code generation

Y Y Y

Number of input function called
triggers

Multiple 1 0

Can include components of
type…

Lib: Y
MR: Y
S-F: Y

Lib: Y
MR: Y
S-F: N

Lib: Y
MR: N
S-F: N

Table 1: Integration Scenarios

MODELING STATE-BASED SYSTEMS

Many vehicle electronics systems involve complex logic
and are inherently state-based. For example, the
transmission can be in one of several states or gears.
Indicator lights can be either on or off. A trash
compactor might be active, inactive, or malfunctioning.
One way to model the states for all of these subsystems
and how they interact with each other is to use a state
machine modeling environment. Stateflow, shown in
Figure 8, extends Model-Based Design with an
environment for developing state machines and flow
charts.

Figure 8: State-Based System Implemented in Stateflow

The tool provides a graphical design environment that
allows the user to get a high-level view of the state of
various subsystems at any given time via the animation
that takes place during simulation. In Figure 8, for
example, the active states are gear_state.third and
selection_state.steady_state, as shown by the
highlighted area.

The most common applications for Stateflow are in the
areas of mode logic, scheduling, and fault management.
As mentioned in the previous paragraph, subsystems
can be in one of several modes, each mode represented
by a state. In the system shown in Figure 8, the
gear_state can either be in the “first”, “second”, “third”, or
“fourth” state.

Figure 9: Simulink model (left) and Stateflow chart (right)
illustrating scheduling logic

Using Stateflow, designers can schedule precisely when
certain tasks are performed and when specific
subsystems are enabled or disabled. An example of a
scheduling subsystem is depicted in Figure 8. The
Stateflow chart “Sequencer” controls when the engine,
lights, and crane Simulink subsystems are activated by
broadcasting events out to Simulink (e.g.,
send(engine_on)). Note that the timing can be
determined dynamically (e.g., when the engine rpm is
greater than a specific threshold, turn the lights on) or
statically (e.g., after 10 seconds, initialize the crane).

Fault management is used to maintain the system if
failures occur. For example, if the drill for a mining
vehicle malfunctions, an indicator light should turn on
and the drill should automatically shut down to minimize
damage to the equipment.

IMPLEMENTATION AND VERIFICATION

With Model-Based Design, control algorithms and
complex logic are captured in model as an executable
specification, which is elaborated during design. As a
result, the code used to implement the ECU is basically
a byproduct when it is generated from the model using
production code generation technologies [4] [5]. The
automated transformation from the executable
specification to code increases productivity both in terms

of reducing errors and the ability to quickly investigate
multiple algorithm alternatives. The impact for the
commercial vehicle electronics is significant. Because
there are relatively few units of each configuration built
and many vehicle electronic configurations, design
engineers cannot afford to generate a custom software
program for each machine. Automatic code generation
allows engineers to manage these customizations in the
model by using parameter sets to control what part of
the software that is active in a specific configuration.
Production code generation technologies and their
application have been extensive discussed in previous
SAE Technical Papers [2] [4].

A main benefit of Model-Based Design is that it allows
verification and validation to start early in the
development process. Because various engineering
teams use models to unambiguously communicate the
technical design information, at any time in the process,
the design can be verified against the requirements and
adjustments can be made to accommodate cost or
performance issues [6]. For example, in a crash
avoidance system, tests for the response time created
during specification development can be re-used during
the implementation stage for verification to ensure that
the specific implementation selected for the vehicle
electronics configuration best meets the requirements.
Typical verification and validation techniques in Model-
Based Design include

� Requirements/model traceability
� Modeling standards checking
� Model functional testing and automated test

execution
� Automated test case generation and model

structural testing
� Test coverage collection
� Model/code and requirements/code traceability
� Automated report generation

FUTURE TRENDS

AUTOSAR, or Automotive Open System Architecture, is
an industry group of over 100 vehicle manufacturers,
component suppliers and tool providers working together
to develop a standard architecture for automotive
embedded software. Although passenger car
applications remain the focus for AUTOSAR,
commercial vehicle manufacturers have expressed
interest in leveraging AUTOSAR to help standardize
their vehicle electronics system architecture. Working
with vehicle manufacturers and other tool providers, The
MathWorks have demonstrated that Model-Based
Design can be effectively applied for developing
AUTOSAR compliant software [7]. The development
approach integrated into Simulink and Real-Time
Workshop Embedded Coder [8] allows design engineers
to use one model for both AUTOSAR and non-
AUTOSAR projects, which maximizes the reuse of
existing models. a benefit particularly important to
commercial vehicle manufacturers.

CONCLUSION

Model-Based Design provides a range of benefits to
commercial vehicle electronics development, including
modeling of control algorithms and complex logic,
including state-based systems, implementation with
automatic code generation, and early verification. A key
consideration for such applications is a flexible system
architecture to support customization and reuse. This
paper shows how system architecture can be effectively
established with Model-Based Design.

REFERENCES

1. Dabney, J.B., “Return on Investment of Independent
Verification and Validation Study Preliminary Phase
2B Report.” Fairmont, W.V.: NASA IV&V Facility,
2003.

2. Jeffrey M. Thate, Larry E. Kendrick, Siva Nadarajah
- “Caterpillar Automatic Code Generation”, SAE
Paper 2004-01-0894, SAE World Congress, 2004.

3. Mark Pyclik, “The Role of Real-Time Workshop
Embedded Coder in Supporting the Vision of
Cummins for Model-Based Development”, MAC
2007.

4. Automatic Code Generation - Technology Adoption
Lessons Learned from Commercial Vehicle Case
Studies”, SAE Paper 2007-01-4249, SAE
Commercial Vehicle Engineering Conference,
October, 2007.

5. Tom Erkkinen, “Fixed-Point ECU Development with
Model-Based Design”, SAE Paper 2008-01-0744,
SAE World Congress, 2008.

6. Brett Murphy, Amory Wakefield, Jon Friedman,
“Best Practices for Verification, Validation, and Test
in Model-Based Design”, SAE Paper 2008-01-1469,
SAE World Congress, 2008.

7. Andreas Köhler, Volkswagen AG, Tillman Reck,
Carmeq GmbH, “AUTOSAR-Compliant Functional
Modeling with MATLAB, Simulink, Stateflow, and
Real-Time Workshop Embedded Coder of a Serial
Comfort Body Controller”, MAC 2007.

8. Guido Sandmann, Richard Thompson,
“Development of AUTOSAR Software Components
within Model-Based Design”, SAE Paper 2008-01-
0383, SAE World Congress, 2008.

9. Gavin Walker, Jonathan Friedman, Rob Aberg,
“Configuration Management of the Model-Based
Design Process”, SAE Paper 2007-01-1775, SAE
World Congress, 2007.

CONTACT

Tom.Egel@mathworkscom

Michael.Burke@mathworks.com

Michael.Carone@mathworks.com

Wensi.Jin@mathworks.com

