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ABSTRACT 
This paper explores implementation of an audio algorithm on a fixed-point embedded processor using Model-Based 
Design. Once the algorithm, a 3-band parametric equalizer in this example, is designed and simulated using a 
combination of scripting and graphical modeling tools, embeddable C-code is automatically generated from this 
model. This paper illustrates how algorithmic C-code generated from such a model in Simulink can be integrated 
into the parent stand-alone embedded project as a library and implemented on an Analog Devices Blackfin® 537 
processor. It also elaborates how processor-specific C-callable assembly code can then be integrated into the model 
for both simulation and code generation to improve its execution performance on this processor.  

 

1. INTRODUCTION 

Implementing fixed-point audio algorithms on 
embedded processors is a challenging task that could 
involve many teams and many different steps. Apart 
from the time it takes to completely develop an 

algorithm, convert to and test it in fixed-point, manually 
hand-coding these algorithms into C and assembly for 
implementation on to embedded processors and, 
subsequently, verifying their executions with original 
designs takes up a significant portion of the 
development cycle. In this paper, we explore the code 
generation concepts to implement an audio algorithm 
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and integrate it into a real-time application on an 
embedded processor.  

Engineers can describe algorithms using textual or 
graphical techniques to model mathematical equations, 
signal flow, and state machines. Model-Based Design 
helps bring together these different modeling paradigms 
for efficient system development while providing a 
framework to specify and explore functional behavior, 
implement these specifications through C-code 
generation, and continuously test and verify the design 
against requirements [1][2]. 

We first explore how a design could be passed on to 
software engineer for implementation on an Analog 
Devices Blackfin processor. We are assuming that the 
designer has already created a fixed-point model of a 
Parametric Audio Equalizer [8] that has been tested and 
verified for correct behavior through real-time 
simulation on a PC. We explain how to configure the 
model such that the code generated from the algorithmic 
subsystem can easily be integrated into a parent 
embedded project.   

Next we explore integrating C-callable libraries with 
Model-Based Design. We create a custom block that 
wraps an optimized Blackfin C-callable assembly 
function to replace the original filter blocks in the 
model. We verify the performance of the optimized 
implementation with the original design through 
processor-in-the-loop (PIL) testing, which enables co-
simulation between Simulink and an IDE 
(VisualDSP++).  

Finally, we compare how different model configurations 
and design choices affect performance by profiling 
execution times for the generated code. Profiling the 
model for execution statistic such as memory footprint 
and processor utilization helps with not only identifying 
candidate subsystems in the design for such 
replacements with optimized libraries but also in 
quantifying the benefits of such replacement.  

2.  AUDIO ALGORITHM MODEL 

The audio algorithm we used for our example in this 
paper is a 3-band parametric equalizer. Each band is a 
biquad filter which can be tuned by specifying three 
parameters – center frequency, bandwidth and the 
amplitude. Such filters allow a precise control of the 

effective magnitude response of the overall system 
desired by the audio engineer. One common application 
of these filters is in compensating for the acoustics of 
the cabin environment of a car during the calibration 
phase while the audio system is installed by the acoustic 
engineer.  

An effective prototyping platform should be flexible 
enough to graphically specify signal flow and state 
logic, as well as enable the designer to textually specify 
the algorithm. We have used a combination of the script 
based technical computing language, MATLAB® and 
the graphical modeling environment Simulink® to 
develop this model of the 3-band parametric equalizer. 
A graphical user interface to tune the parameters of the 
equalizer was also created using MATLAB that helps in 
tuning this 3-bands in real-time by writing new filter 
coefficients to the MATLAB workspace and uploading 
them to the executing Simulink model. A screenshot of 
this model and the GUI is shown in Figure 1.  

 

Figure 1: Simulink model of a 3-Band Parametric 
Audio Equalizer  

This fixed-point model was created from the floating 
point version of the “Parametric Audio Equalizer” 
Simulink model [8] tested thoroughly on a PC in real-
time. We assume the desired behavior has been 
achieved in simulation after the necessary model 
elaborations and iterative testing as described in [1], and 
use this fixed-point model as a starting point for the 
implementation steps described in this paper. 
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3. GENERATING CODE FOR A 
VISUALDSP++ PROJECT 

Automatic code generation enables designers to quickly 
deploy their ideas to hardware to continue verifying 
performance on a real-time embedded system.  When 
using automatic code generation tools during the 
development process, designers typically generate code 
from an algorithm model then integrate this code into 
the parent project. For example, Real-Time Workshop 
Embedded Coder can be used to generate C-code from a 
Simulink model. Specifications can be added to the 
model to customize the generated code to ease the code 
review and integration process. The generated files can 
then be hand integrated into an existing project [6]. 
Embedded IDE Link extends these capabilities and 
provides additional optimization, verification, execution 
profiling capabilities, and code integration features. In 
this section, we’ll take advantage of the Embedded IDE 
Link feature to automate creation of a VisualDSP++ 
library to ease integration of the generated code into a 
pre-existing parent VisualDSP++ project. 

In the following sections we will demonstrate how to 
configure a model to generate C-code and how to 
integrate the generated code into the parent project. We 
applied the following steps to accomplish this task: 

1. Prepare the parent VisualDSP++ project 

2. Specify the data interface in the model 

3. Generate a Blackfin library from the model and 
profile execution  

4. Integrate the generated library into the parent 
project 

3.1. Prepare the Parent Visual DSP++ Project 

We began with an audio “pass-through” VisualDSP++ 
project for an Analog Devices Blackfin processor. This 
stand-alone project implements the ADC and DAC 
device driver code for a Blackfin BF537 EZ-Kit board. 
Building and executing this project on the BF537 EZ-
Kit board implements a direct feed through of the input 
audio through the processor and to the output. 
Integrating an algorithm code, automatically generated 
or manually hand coded, into this framework allows the 
engineer to quickly and easily deploy their algorithm in 

real-time while verifying its performance using real-
world audio signals.  

The purpose of this project is to verify that we can pass 
audio through the part. Also, this project configures the 
ADC/DAC such that its gathers frames of data in a 
double buffered model, with the frame (buffer) size 
specified as a parameter that can be configured by the 
user before compilation. The audio data from the double 
buffers were originally written to two separate variables 
corresponding to Left and Right channels. We modified 
this project such that both the left and right channel 
input data are concatenated and indexed off a single 
variable each for input (frame_in) and output 
(frame_out). We did this as the algorithm we are 
integrating is developed as a frame based model in 
Simulink, which can handle multi-channel data – in our 
case, the stereo signal is dealt as a single 2-D signal in 
the model, which would correspond to a single variable 
in the generated code, with Left channel data followed 
by right channel. 
 
We also had to match the frame size defined in the 
project to that of the model. An excerpt from the parent 
project is shown in Figure 2.  

 

 

Figure 2 Excerpt from audio pass-through Analog 
Devices VisualDSP++ project  

3.2. Specify the Data Interface in the Model 

In order for the generated code to tie into the feed-
through VisualDSP++ project, the input and output 
signals of the algorithm model need to be configured to 
have the same names as the variables in the parent 
project, namely frame_in and frame_out, as seen in 
Figure 3.  
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Figure 3 Simulink algorithm model for integrating into 
VisualDSP++ project showing steps for configuring the 

‘Signal Properties’ 

To accomplish this task of tying in the generated code, 
we specify the ‘Storage class’ parameter of the input 
and output signals as Imported Extern using the signal 
properties dialog as seen in Figure 4. This setting 
assumes that the parent project will declare the memory 
for these variables and the generated code just accesses 
them.  

 

Figure 4 Selecting ‘Imported Extern’ storage class for 
output signal line 

Also notice that in Figure 4 we set the ‘Package’ 
parameter to mpt. Module Packaging Technology 
(MPT) enables us to effect certain customizations in the 
generated code. For example, we can customize the 
comments that are inserted in the generated code, 
separate out the generated filter code as a header file, 
and specify the location of variables in the target 
memory. Partitioning coefficients into separate files 

enables other software components to access this data. 
For example, in a deployed application, the software 
engineer could schedule another software component to 
modify these variables at runtime before they are used 
by the main calling routine in the generated algorithm 
code.  

We applied some of the MPT features to the coefficient 
variable specification in order to define and declare 
coefficient variables in separate source and header files 
(biquad_coeffs.c and biquad_coeffs.h) as shown in the 
in Figure 5. We also customized the parameter MPT 
object and the model to insert comments in the 
generated header files that corresponds to the design 
parameters of that filter [8].  

 

Figure 5 MPT Parameter object settings dialog 

At this point, using the model we have elaborated thus 
far, we have generated ANSI C-code that is portable and 
could be hand integrated into a larger project [6].  

 

3.3. Generate a Blackfin Library from the 
Model 

In this section we will automate creation of a 
VisualDSP++ library. This library can then be included 
in the parent project and the calling function could be 
directly referenced after declaring the function header in 
this project. This approach minimizes the manual steps 
needed to include the generated code [5]. We will also 
customize the code generation process to make use of 
fixed-point intrinsic functions for the Blackfin processor 
[12].  
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The Target Preferences block, from the Embedded IDE 
Link library, provides access to the processor hardware 
settings required to generate a VisualDSP++ project. 
This block also provides the ability to define custom 
memory banks and placement of code and data sections 
into memory. We added a Target Preferences block to 
our model and selected the appropriate processor and 
session settings corresponding to the BF537 EZ-Kit 
board as shown in Figure 6. 

 

Figure 6 Target Preference block for configuring the 
processor and hardware settings 

The Blackfin processor supports intrinsic functions for 
saturated fixed-point arithmetic which provide superior 
performance to writing equivalent routines in ANSI C. 
Real-Time Workshop Embedded Coder can be 
configured to generate calls to optimized fixed-point 
math routines using a Target Function Library (TFL) 
[11]. TFL provides the ability to control function and 
operator replacements in the generated code. One or 
more function replacement tables define the target-
specific implementations of math functions and 
operators. The Embedded IDE Link provides function 
replacement tables for Analog Devices processors. In 
our model, we specified a TFL table for Blackfin 53x as 
shown in Figure 7. 

 

Finally, we configured the model to directly create a 
VisualDSP++ library by using the ‘Archived Library’ 
build option. An excerpt from generated code – 
highlighting the TFL replacement is shown in Figure 8. 

 

Figure 7 Selecting the TFL for Blackfin 53x 

 

Figure 8 Target Function Library (TFL) code 
replacements for 16-bit saturation operations on 

Blackfin 

 
Before we integrate this library into our parent project, 
it’s desirable to verify that this library fits in terms of its 
execution performance. The execution profiling 
capabilities of the Embedded IDE Link allows a 
designer to determine the processor cycles taken to 
execute this library along with the maximum stack 
usage. This helps identify areas of optimization before 
the final integration steps are undertaken. We automated 
the profiling of the generated code and verified that the 
performance of this library was within acceptable 
bounds. We go into the details of this profiling process 
later in this paper. 
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3.4. Integrate the Generated Library into the 
Project 

 
We manually added the library built from the previous 
steps to the project. Before building this project, it is 
necessary to include the header file generated in this 
process that declares the calling function as extern.  

The library has two important points of entry: an 
initialization function and a step function. The 
initialization function should be called during the 
startup function of the parent project. State variables are 
initialized in this routine. The step function is typically 
called during the periodic execution of the algorithm, 
and hence, has to be integrated into that part of the code 
serviced by a timer or interrupt service routine.  

The routine to be invoked from this library to execute 
the parametric equalizer algorithm is the function call 
dspparameq_fixPt_BF537_step() - this was used within 
the calling function in the feed-through project as shown 
in Figure 9. This function also needs to be declared in 
one of the header files in the project [5]. 

 

Figure 9 VisualDSP++ Project showing the function 
call invoking the parametric equalizer sub-function 

 
To avoid having to manually open the parent project 
and recompile each time we changed the model, we 
could create a MATLAB script to automate the 
compilation of the library as well as linking and 
downloading it into the parent project when we generate 
code from the model.  

4. CREATING CUSTOM BLOCKS TO 
INTEGRATE PROCESSOR-SPECIFIC 
CODE 

Once the generated code has been integrated into the 
parent project and ran successfully on the target 
processor, it’s useful to gather the execution statistics of 
this algorithm such as memory footprint, and processor 
utilization. This will help the designer identify areas of 
improvement in the algorithm.  

If a bottleneck is identified, the designer may make a 
change at the algorithmic level in the model or in some 
cases may want to integrate processor-specific C-
callable optimized routines. The designer could 
manually replace parts of the generated code with this 
custom code, but such an approach breaks the link 
between the generated code and the original model. This 
makes it difficult to reuse the original models 
throughout the development process. Maintaining a link 
between the model and implementation code is an 
important aspect of Model-Based Design that enables 
continuous verification of the design throughout the 
process. To maintain this link, designers can create 
custom blocks which call out to these optimized 
routines in the generated code. 

There are a variety of ways to create custom blocks in 
Simulink which supports both simulation and code 
generation [10][13][11][14]. In the following sections, 
we provide an overview of the workflow we applied to 
create a custom filter block. This custom block calls the 
optimized Blackfin IIR filter iirdf1_fr16 in the 
generated code. We will focus on this workflow at a 
high level, and publish the results we obtained in the 
next section. We applied the following workflow to 
create this block. 

1. Create a block for code generation to call the 
processor-specific code  

2. Specify a functionally equivalent block for 
simulation 

3. Create a mechanism to switch between 
simulation and code generation blocks  

4. Verify the simulation and code generation 
behavior 
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4.1. Create Code Generation Block 

The Blackfin IIR function we have chosen to integrate 
is iirdf1_fr16. This function prototype for iirdf1_fr16 is 
shown in Figure 10. 

 

Figure 10 iirdf1_fr16 function prototype 

Note that the coefficients are passed as an array of 
fract16 data type within a structure. For the Blackfin, 
the fract16 data type is defined as a 16-bit signed 
integer and represents a fixed-point number with a 
fraction-length of 15 bits. We created a utility function 
to convert filter coefficients designed in MATLAB to an 
array of integer values which can be passed to 
iirdf1_fr16. 

We used the Legacy Code Tool (LCT) to automate 
creation of a block which will specify code generation 
behavior. The LCT is a MATLAB script-based tool to 
wrap custom C-code or C-callable code into Simulink 
for both simulation and code generation [7]. An excerpt 
of this M-code we used is shown in Figure 11.   

Because the iirdf1_fr16 routine is written in assembly 
code for the Blackfin processor, this code can not be 
compiled for the Simulink simulation environment. If 
we had functionally equivalent ANSI C-code for the 
iirdf1_fr16 routine, we could have configured the LCT 
to compile the ANSI C-code for simulation and make a 
call out to iirdf1_fr16 in the generated code. Since we 
did not have a functionally equivalent piece of ANSI C-
code available, we created a “dummy” function which 
just passed the input to the output. Hence, the resulting 
Simulink block will pass the signal in simulation, but 
call out to the iirdf1_fr16 routine in the generated code. 

 

Figure 11 Excerpt from LCT script to specify code 
generation behavior 

4.2. Create Simulation Block 

In this section we will describe how we specified 
simulation behavior for the custom block. Ideally, the 
simulation behavior should be equivalent to the 
behavior of the generated code compiled and executed 
on the target processor. If some deviation is acceptable, 
then it is important to identify, quantify, and verify 
where these deviations exist. This is especially true 
when creating a library block used by multiple 
engineers. Ensuring accurate simulation and target 
behavior enables engineers to detect many design errors 
in the simulation environment before implementing the 
design in hardware - one of the key benefits of Model-
Based. 

As described in the previous section, if we had 
functionally equivalent ANSI C source code for the 
iirdf1_fr16 routine, we could have directly applied the 
LCT to create a block to specify both the final 
simulation and code generation behavior. In many 
cases, a designer will only have the processor-specific 
code available and does not have the resources or desire 
to rewrite the code in ANSI C. It is often easier to 
specify the algorithm behavior using a variety of 
techniques within the Simulink environment including 
using existing blocks or writing Embedded MATLAB 
code [15].  

For our example, we used the Biquad Filter block from 
the Signal Processing Blockset to specify simulation 
behavior. The Biquad block supports specification of 
fixed-point attributes. We specified the data types to 
represent the filter internals similar to that of the 
Blackfin IIR library.  
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It is important to note that the configuration for the 
Biquad block will provide behavioral results which are 
numerically very close (in the order of 10-4), but not 
identical to the iirdf1_fr16 routine. This is because 
although we can configure the Biquad block to be a 
fixed-point Direct Form 1 structure, the actual 
implementation of the iirdf1_fr16 is slightly different. 
For example, the iirdf1_fr16 routine expects the 
denominator coefficients to be the negative of the 
denominator coefficients used by the Biquad filter. 

We chose to use the Biquad filter block because it was 
quick to configure and create a block for which we 
deemed the simulation performance as adequate. If we 
required bit-true simulation performance, we could 
exactly specify the fixed-point mathematics of the 
iirdf1_fr16 using low level Simulink blocks or by 
writing Embedded MATLAB code. 

4.3. Automate Block Selection 

In the previous sections we described how to create two 
blocks. The first block acted a pass-through for 
simulation and calls the iirdf1_fr16 routine in the 
generated code. We will refer to this as the “Code 
Generation Block”. The second block acts as filter 
whose simulation response is very close to that of the 
iirdf1_fr16 routine. We will refer to this as the 
“Simulation Block.” In this section we will describe 
how we automated selection between these blocks for 
simulation and code generation. 
 
To accomplish switching between the “Simulation 
Block” for simulation and the “Code Generation Block” 
during code generation, we leveraged the RTW 
Environment Controller block. The RTW Environment 
Controller block is provided with the product Real-Time 
Workshop and enables designers to specify different 
behavior for simulation and code generation.  
 
Finally, we created a Simulink library block which 
contained the above elements. This library block and 
it’s implementation using the “Code Generation Block, 
“Simulation Block” and RTW Environment Controller 
block are shown in Figure 12.  
 

 

 

 

 

Figure 12 Example Simulink library block defining 
Simulation and Code Generation behavior 

4.4. Verify the Simulation and Code 
Generation Behavior 

One of the key benefits of Model-Based Design is the 
ability to ensure accurate simulation and target 
behavior. This enables engineers to detect many design 
errors in the simulation environment well before 
implementing the design in hardware.  In the following 
sections, we’ll verify the behavior of the iirdf1_fr16 
custom block on the Blackfin using the processor-in-
the-loop (PIL) testing.  
 
A typical verification task involves exporting test 
vectors from the host simulation environment and 
importing them into the target integrated development 
environment. PIL automates this task by enabling co-
simulation between the Simulink model and 
VisualDSP++ IDE. For each simulation step, the 
Simulink model drives the execution of the 
VisualDSP++ project to feed test data, execute the 
algorithm on the processor, and pull back the processed 
results for comparison. A conceptual view of PIL 
testing can be seen in Figure 13. 
 
Using this approach we were able to verify that the 
output of this Parametric Audio Equalizer running on 
the processor gave expected results compared to the 
output of the Simulink Biquad filter when fed in the 
same input vectors from Simulink [9].  
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Figure 13 A conceptual view of processor-in-the-loop 
testing 

5. REAL-TIME EXECUTION PROFILING  

Execution profiling, stack profiling, and RAM/ROM 
analysis are common techniques to verify that the 
generated code meets resource requirements on the 
target. RAM/ROM usage can be obtained from the 
memory map file generated during the build process. 
Embedded IDE Link enables automation for collecting 
and reporting execution time and maximum stack usage.  
Based on analysis of the resource usage statistics, the 
designer can gauge whether the performance of the 
model at different stages of the elaboration process is 
acceptable or not. Typically during this elaboration, the 
designer will trade off behavioral performance versus 
resource usage [1]. The designer could also stop the 
elaboration process early on if the performance within 
are acceptable processor utilization limits. Thus, over 
design of the systems could be avoided.  
 
 

 

Figure 14 Screen shot of parametric audio equalizer for 
generating ANSI C-code 

 
In this section, we focus on collecting profile execution 
times for different model configurations of the three-
band Parametric Audio Equalizer. A screenshot of the 
Parametric Audio Equalizer model from which we 

generated C-code is shown in Figure 14. This model is 
configured to operate on 16-bit stereo audio inputs 
containing 512 samples per channel sampled at 48 kHz; 
hence the base rate is 10.67 msec. The primary 
components of the algorithm are a Pre Scale, six Biquad 
filters and a Post Scale. Filter coefficients and states 
used 16-bit fixed-point data types. 
 
We configured the model to generate code for a variety 
of settings. We started with portable ANSI C-code and 
explored the effect of wrapping versus saturation. We 
then enabled TFL and configured it to generate Blackfin 
processor-specific intrinsic functions for fixed-point 
saturated arithmetic. We explored the effect of inlining 
and function call with this setting.  Finally, we replaced 
the Biquad filter block with the custom iirdf1_fr16 
block (described previously) and profiled the results. 
The results of these tests are shown in Table 1. 
 
We first generated processor-independent portable 
ANSI C-code and profiled it to show the baseline 
performance for the filter function first using wrap and 
then using saturate. Designers prefer ANSI C-code if 
portability and platform independence is a key 
requirement. This way the code can be easily 
recompiled for deployment to different environments. 
The execution time for the Parametric Audio Equalizer 
on the Blackfin processor when configured to use wrap 
was around 60 µsec. When the same model was 
configured to use fixed-point saturation arithmetic, the 
generated code took almost 400 µsec to execute.  
 
As we can see from the execution number, saturation 
can be an expensive operation if implemented in ANSI 
C on a DSP. Typically, better execution performance is 
obtained by using wrap instead of saturating arithmetic. 
However, this can also make the task of algorithm 
development harder. Often, designers can take 
advantage of processor-specific intrinsics to leverage 
the hardware features and get better performance 
without sacrificing the fidelity of the design obtained 
when using saturation. In this case, it’s desirable to have 
a single model specification and leverage any fixed-
point intrinsic capabilities of the processor. TFL enables 
the designer to create a single model and swap 
processor optimizations in and out for deployment to 
different processors. Using TFL, we were able to reduce 
the execution time of the algorithm (using saturation 
arithmetic) from 400 µsec to 120 µsec – a 70% 
improvement with just a change in the model settings.  
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Table 1 Comparison of Execution Times for 
Variants of the Parametric Audio Equalizer  

Implementation 

Biquad Filters 
Execution 
Time**  
(µsec) Wrap /  

Saturate  
Inline / 

Function 

ANSI C 
Wrap Function 60.106 

Saturate Function 398.117 

Blackfin 53x C-
intrinsic* 

Saturate 
Function  121.587 

Inline 108.004 

ASM iirdf1_fr16  Saturate Function 87.813 

* Using Target Function Library (TFL) for integrating Blackfin 53x 
C-intrinsic for fixed-point operations such as saturation 

** Base rate of the code was 10.66 msec. Processor utilization in % is 
obtained by dividing the execution time by this base rate. Product 
version used for code generation and measurements is R2009a. 

 
We could get better numbers if we were to inline the 
code for the Biquad filters instead of using re-entrant 
functions. This requires trading off program memory 
size. Thus, when program memory space is a limitation, 
using re-entrant function calls can appreciably reduce 
program memory utilization. Using inlined code, we 
were able to improve the performance of our algorithm 
to about 108 µsec.  
 
Finally, we investigated the performance gains we could 
achieve by integrating the Blackfin specific iirdf1_fr16 
filter as a custom block as described in the previous 
section. As described in the previous section, this block 
is functionally similar, but not identical used in the 
previous examples that generated ANSI C-code. Using 
the optimized iirdf1_fr16 filter block, we achieved a 
performance of 88 µsec. By creating a block that is 
optimized for this processor, the model is no longer 
portable but achieves the best execution time for 
saturated arithmetic.  

6. CONCLUSION 

During initial stages of development of audio 
algorithms for embedded applications, designers often 

apply modeling tools to specify algorithms using 
graphical and textual techniques. Designers then 
simulate these models to explore the behavior of the 
algorithm. Once the behavior of these models is 
verified, designers can configure the algorithmic model 
to generate C-code which can be integrated into an 
embedded application.  In this paper we demonstrated a 
technique to configure the model to generate code 
which can be called within the embedded application, as 
well as a technique to integrate existing C callable code 
into the modeling and code generation environment.  

Specifically, we demonstrated how to configure a model 
of a 3-band parametric equalizer algorithm to generate 
C-code which can be integrated into the Analog Devices 
VisualDSP++ embedded development environment. To 
demonstrate this process, we automated creation of a 
VisualDSP++ library project for the parametric 
equalizer model and integrated this library into the 
parent feed-through project for an Analog Devices 
Blackfin BF537 processor. 

Subsequently, we discussed how the designer can use 
execution profiling tools to identify areas for further 
optimization in the design. Such profiling could 
measure both memory footprint as well as processor 
utilization.  

We then described how to integrate optimized C-
callable libraries for specific sub-components, such as 
the IIR Biquad filters. We chose the optimized C-
callable assembly routine for Blackfin processor that 
ships with VisualDSP++ as an example replacement, 
and also showed the resulting improvements in 
processor utilizations as a result of this replacement. We 
also compared the execution performance of the 
different variants of the audio parametric equalizer 
model using the profiling techniques described earlier.  

Finally, to verify that the replacement with optimized C-
callable libraries did not introduce any unexpected 
deviations in the results of the original algorithm, we 
detailed the technique of processor-in-the-loop testing to 
verify the behavior of the parametric equalizer (using 
the optimized library calls) executing on the DSP with 
the original simulation model by comparing their 
outputs when using the same input test vectors.  
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