
Analog Dialogue 49-11, November 2015 1

Four Quick Steps to Production:
Using Model-Based Design for
Software-Defined Radio
Part 3—Mode S Signals Decoding Algorithm Validation Using Hardware in the Loop

By Di Pu and Andrei Cozma

Introduction

After implementing any signal processing algorithm in
MATLAB or Simulink,® the next natural step is to verify the
algorithm’s functionality using real data acquired from the
actual SDR hardware system that it is going to run on. As a
first step, the verification of the algorithm is done using dif-
ferent sets of input data captured from the system. This helps
validate the algorithm’s functionality, but does not guarantee
that the algorithm will perform as expected in environmental
conditions other than the ones used to make the data captures,
or what the behavior and performance will be for different
settings of the analog front end and digital blocks of the
SDR system. In order to verify all of these aspects, it is very
beneficial if the algorithm can be run online to receive live
data as input and to tune the settings of the SDR system for
optimal performance. This part of the article series discusses
the software tools provided by Analog Devices to allow direct
interaction between MATLAB and Simulink models with the
FMCOMMSx SDR platforms and shows how these tools can
be used to verify the ADS-B models presented in Part 2 of the
article series.2

MATLAB and Simulink IIO System Object

Analog Devices provides a complete software infrastructure
that enables MATLAB and Simulink models to interact in real
time with FMCOMMSx SDR platforms that are connected to
FPGA/SoC systems running Linux. This is possible due to an
IIO System Object™3 that is designed to exchange data over
TCP/IP with the hardware system in order to stream data to
and from a target, control the settings of a target and monitor
different target parameters such as the RSSI. Figure 1 presents
the high level architecture of the software infrastructure and
the data flow between the components in the system.

Analog Devices
FMCOMMSx SDR

Zynq All Programmable SoC Windows/Linux Host

Programmable Logic

ARM CORTEX A9 Processing System

Linux

Kernel
Drivers

libIIOlibIIO
TCP/IP
Client

TCP/IP
Server

MATLAB/Simulink Model

FMCOMMSx
HDL Interface

IIO
System
Object

Figure 1. Software infrastructure block diagram.

The IIO System Object is based on the MathWorks System
Objects specification4 and exposes data and control interfaces
through which the MATLAB/Simulink models communicate
to IIO-based platforms. These interfaces are specified in a

analog.com/analogdialogue

configuration file that links the System Object interface to IIO
data channels or to IIO attributes. This makes the implemen-
tation of the IIO System Object generic, allowing it to work
with any IIO platform just by modifying the configuration
file. Some of the platforms for which configuration files and
examples are available on the ADI GitHub repository5 include
the AD-FMCOMMS2-EBZ/AD-FMCOMMS3-EBZ/AD-FM-
COMMS4-EBZ/AD-FMCOMMS5-EBZ SDR boards and the
high speed data acquisition AD-FMCDAQ2-EBZ board. The
communication between the IIO System Object and the target
is accomplished through the libiio server/client infrastructure.
The server runs on an embedded target under Linux and man-
ages real-time data exchange between the target and both local
and remote clients. The libiio library abstracts the low level
details of the hardware and provides a simple yet complete
programming interface that can be used for advanced projects
with a variety of language bindings (C, C++, C#, Python).

The next sections of the article provide real life examples on
how the IIO System Object can be used for validating the
ADS-B MATLAB and Simulink models. An AD-FMCOM-
MS3-EBZ SDR platform6 connected to a ZedBoard7 running
the Analog Devices Linux distribution were used as the SDR
hardware system for verifying the operation of the ADS-B sig-
nals detection and decoding algorithm, as shown in Figure 2.

Figure 2. Hardware setup for ADS-B algorithm validation.

http://www.analog.com/library/analogDialogue/index.html

Analog Dialogue 49-11, November 20152

The RF bandwidth control sets the AD9361’s RX analog
baseband low-pass filter’s bandwidth to provide antialias-
ing and out-of-band signal rejection. In order to successfully
demodulate the received signals, the system must maximize
the signal-to-noise ratio (SNR). In order to do this, the RF
bandwidth needs to be set as narrow as possible while meet-
ing flatness and the out-of-band rejection specification to
minimize in-band noise and spurious signal levels. If the RF
bandwidth is set wider than it needs to be, the ADC’s linear
dynamic range will be reduced due to the extra noise. Simi-
larly, ADC’s spurious-free dynamic range will be reduced due
to the lower out-of-band signal rejection resulting in overall
receiver dynamic range reduction. Therefore, setting the RF
bandwidth at an optimal value is critical to receive desired
in-band signals and reject out-of-band signals. By observing
the spectrum of received signals, we find 4 MHz is a proper
value for the RF bandwidth.

Besides setting up the analog filters of AD9361 via RF
bandwidth attribute, we can also improve the decoding
performance by enabling the digital FIR filters on AD9361
via the IIO System Object, as shown in Figure 5. According
to the spectrum characteristics of the ADS-B signal, we design
an FIR filter with data rate of 12.5 MSPS, pass band frequency
of 3.25 MHz and stop band frequency of 4 MHz. In this way,
we can further focus on the bandwidth of interest.

Figure 5. Enable the proper FIR filter on AD9361 via libiio.

Adsb.ftr is a file containing the coefficients of an FIR filter
designed using the Analog Devices AD9361 Filter Wizard
MATLAB application.8 This tool provides not only a
general-purpose low-pass filter design, but it also provides
magnitude and phase equalization for other stages in the
signal path.

Figure 6. FIR filter designed for ADS-B signals using the MATLAB
AD9361 Filter Wizard.

The versatile and highly configurable AD9361 transceiver
has several gain control modes that enable its use in a vari-
ety of applications. The Gain Mode parameter of the IIO
System Object selects one of the available modes: manual,
slow_attack, hybrid, and fast_attack. The most frequently used
modes are manual, slow_attack, and fast_attack. Manual gain

MATLAB ADS-B Algorithm Validation Using the IIO
System Object

To validate the MATLAB ADS-B decoding algorithm operation
with real-time data acquired from the AD-FMCOMMS3-EBZ
SDR platform, a MATLAB script has been developed to per-
form the following operations:
• Calculate the earth zone according to user input
• Create and configure the IIO System Object
• Configure the AD-FMCOMMS3-EBZ analog front end and 	
 digital blocks through the IIO System Object

• Receive data frames from the SDR platform using the
 IIO System Object

• Detect and decode the ADS-B data
• Display the decoded ADS-B information

After an IIO System Object is constructed it must be configured
with the IP address of the SDR system, the target device name
and input/output channels sizes and numbers. Figure 3 pres-
ents an example on how to create and configure the MATLAB
IIO System Object.

Figure 3. MATLAB IIO System Object creation and configuration.

The IIO System Object is then used to set the attributes of
AD9361 and to receive the ADS-B signals. The attributes of
AD9361 is set up based upon the following considerations:

Figure 4. MATLAB libiio sets the attributes of AD9361.

The sampling rate is quite straightforward with the AD9361-
based platforms. The transmit data rate normally equals
the RX data rate, and ultimately depends on the baseband
algorithm. In this example, since the decoding algorithm is
designed to work with the sampling rate of 12.5 MSPS, the
data rate of AD9361 is set accordingly. By doing this, the
received samples can be applied directly to the decoding
algorithm, without any additional decimation or interp-
olation operations.

Analog Dialogue 49-11, November 2015 3

control mode allows the baseband processor (BBP) to control
the gain. Slow_attack mode is intended for slowly changing
signals, while fast_attack mode is intended for waveforms that

“burst” on and off. Gain mode highly depends on the strength
of received signals. If the signal is too strong or too weak, it
is suggested to use manual mode or slow_attack. Otherwise,
fast_attack is a good option. In the case of ADS-B the fast_
attack gain mode provides the best results due to the bursty
nature of these signals. Fast_attack mode is a requirement for
this waveform since there is preamble, and the AGC needs to
react fast enough so that the first bit is captured. There is a dif-
ference between attack time—the time it takes to ramp down
gain—and decay time—how long it takes to increase gain—in
the absence of a signal. The goal is to quickly turn down the
gain, so that a valid “1” can be seen on the first bit, but not
increase the gain between bit times.

In the end, depending on how you set up the TX_LO_FREQ
and RX_LO_FREQ, there are two ways of using this model:
using precaptured data (RF loopback) and using live data off
the air.

Precaptured Data

In this case, we are transmitting and receiving some precap-
tured ADS-B signals using AD-FMCOMMS3-EBZ . These
signals are saved in a variable called “newModeS.”

Figure 7. Define input using precaptured ADS-B signals.

The requirement for this case is to make TX_LO_FREQ =
RX_LO_FREQ, and it can be any LO frequency value that
AD-FMCOMMS3-EBZ supports. Due to the nature of precap-
tured data, there is plenty of ADS-B valid data in there, so it is a
good way to verify whether the hardware setup is appropriate.

Live Data

In this case, we are receiving the real-time ADS-B signals over
the air, instead of the signals transmitted by AD-FMCOM-
MS3-EBZ. According to ADS-B specification, it is transmitted
at the center frequency of 1090 MHz, so the requirements for
this case is:
• RX_LO_FREQ=1090 MHz, TX_LO_FREQ far away from
 1090 MHz in order to avoid interference.

• Use a proper antenna on the receiver side, which is capable
 of covering the 1090 MHz band, such as an ADS-B Double 	
	 1/2 Wave Mobile Antenna9; using a poorly tuned or poorly 	
	 made antenna will result in a lack of range for your air radar.

With everything set up properly, in order to run the MATLAB
model, simply use the following command:
 [rssi1,rssi2]=ad9361_ModeS(‘ip’,’data source’,channel);

where ip is the IP address of the FPGA board, and data source
specifies the data source of the received signal. Currently,
this model supports data sources of ‘precaptured’ and ‘live’.

Channel specifies whether signals are received using Channel 1
or Channel 2 of the AD-FMCOMMS3-EBZ.

For example, the following command receives the precaptured
data on Channel 2:
 [rssi1,rssi2]=ad9361_ModeS(‘192.168.10.2’,’pre-captured’,2);

At the end of the simulation, you will get the RSSI values on
both channels, as well as the result tables shown below:

Figure 8. Result table shown at the end of the simulation.

This result table shows the information of aircrafts appearing
during the simulation. With a proper antenna, this model is
able to capture and decode the aircraft signals in an 80 mile
range with AD-FMCOMMS3-EBZ. Since there are two types
of Mode S messages (56 μs or 112 μs), some messages contain
more information than the other.

When trying out this model with the real-world ADS-B signals,
the signal strength is very important for successful decoding,
so make sure to put the antenna in a good line of sight loca-
tion with the aircraft. The received signal strength can be seen
by looking at the RSSI values on both channels. For example,
if receiving the signals on Channel 2, the RSSI of Channel 2
should be significantly higher than that of Channel 1. You can
tell whether there is any useful data by looking at the spec-
trum analyzer.

RF Signal Quality

For any RF signal, there needs to be a quality metric. For
example, for signals like QPSK, we have error vector magni-
tude (EVM). For ADS-B signals, it isn’t enough to look at the
output of a slicer for correct messages, as shown in Figure 8.
We need a metric to define the quality of ADS-B/pulse position
modulation, so that we can tell whether one setting is better
than the other.

In ModeS_BitDecode4.m function, there is a variable diffVals,
which can be used as such a metric. This variable is a 112 × 1
vector. It shows for each decoded bit in one Mode S message,
how far is it away from the threshold. In other words, how
much margin each decoded bit has with respect to a correct
decision. It is obvious the more margin a bit has, the more con-
fident the decoded result is. On the other hand, if the margin
is low, it means the decision is in the border area, so it is very
likely that the decoded bit is wrong.

Analog Dialogue 49-11, November 2015 4

The following two figures compare the diffVals values obtained
from the ADS-B receivers with and without the FIR filter. By
looking at the y-axis, we find with the FIR filter, diffVals is larger
regardless of whether it is at the highest point, lowest point, or
average. However, when there is no FIR filter, the diffVals of
several bits are very close to 0, which means the decoded results
could be wrong. Therefore, we are able to verify that using a
proper FIR filter improves the signal quality for decoding.

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 9. diffVals values obtained from the ADS-B receiver with
FIR filter.

0 20 40 60 80 100 120
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Figure 10. diffVals values obtained from the ADS-B receiver without
FIR filter.

The MATLAB ADS-B algorithm using the IIO System Object
can be downloaded from the ADI GitHub repository.10

Simulink ADS-B Algorithm Validation Using the IIO
System Object

The Simulink model is based upon the model introduced in
Part 2 of the article series.2 The detector and decoding piece
comes directly from that model, and we add the Simulink IIO
System Object to conduct the signal reception and hardware
in the loop simulation.

The original model works with sample time = 1 and frame
size = 1. However, the Simulink IIO System Object works in
a buffer mode—it accumulates a number of samples and then
processes them. In order to make the original model work
with the System Object, we added two blocks between them:
unbuffer to make frame size = 1 and rate transition to make
sample time = 1. By doing this, we can keep the original
model intact.

The Simulink IIO System Object is set up as following. Simi-
lar to the MATLAB one, it creates a System Object, and then
defines the IP address, device name, and input/output chan-
nels number and sizes related to this System Object.

Figure 12. Simulink IIO System Object.

Figure 11. Simulink model to capture and decode ADS-B signals.

Analog Dialogue 49-11, November 2015 5

The input and output ports of this Simulink block correspond-
ing to an IIO System Object are defined through the properties
dialog of the object’s block as well as through a configuration
file that is specific to the targeted ADI SDR platform. The
input and output ports are categorized as data and control
ports. The data ports are used to receive/transmit buffers of
continuous data from/to the target system in a frame-based
processing mode, while the control ports are used to configure
and monitor different target system parameters. The number
and size of the data ports are configured from the block’s
configuration dialog while the control ports are defined in the
configuration file. The attributes of AD9361 are set up accord-
ing to the same factors as introduced in MATLAB model. All
the theories and methods employed in the MATLAB model
can be applied here.

Depending on how you set up the TX_LO_FREQ and
RX_LO_FREQ, this Simulink model can be run in two modes:
using precaptured data “DataIn” and using live data. Taking
the precaptured data, for example, at the end of the simulation,
we can see the following results in command window.

Figure 13. Results in command window at the end of simulation using
precaptured data.

Instead of the result table shown in the MATLAB model, the
results here are displayed in the text format.

The Simulink ADS-B model using the IIO System Object can
be downloaded from the ADI GitHub repository.11

Conclusion

This article talked about hardware in the loop simulation
using the libiio infrastructure provided by Analog Devices.
Using this infrastructure, the MATLAB and Simulink algo-
rithms for ADS-B signals detection and decoding can be
validated with the real-world signals and real hardware.
Since the attribute setting is very application and waveform
dependent, what works for one waveform will not work for a
different one. This is a critical step to ensure that the analog
front end and the digital blocks of the SDR system are prop-
erly tuned for the algorithm and waveform of interest and

that the algorithm is robust enough and works as expected
with real life data acquired in varying environmental condi-
tions. Having a verified algorithm, it is now time to move to
the next step, which consists of translating the algorithm to
HDL and C code using the automatic code generation tools
from MathWorks and integrating this code into the program-
mable logic and software of the actual SDR system. The next
part of the article series will show how to generate code and
deploy it in the production hardware and will talk about the
results obtained by operating the platform with real-world
ADS-B signals at an airport. This will complete the steps
required to take an SDR system from prototyping all the way
to production.

References
1 Cozma, Andrei, Di Pu, and Tom Hill. “Four Quick Steps

to Production: Using Model-Based Design for Software-
Defined Radio—Part 1.” Analog Dialogue, Volume 49,
Number 3, 2015.

2 Donovan, Mike, Andrei Cozma, and Di Pu. “Four Quick
Steps to Production: Using Model-Based Design for
Software-Defined Radio—Part 2.” Analog Dialogue, Volume
49, Number 4, 2015.

3 Analog Devices. “IIO System Object.”
4 MathWorks. “What Are System Objects?”
5 Analog Devices, “Mathworks_tools.” GitHub repository.
6 Analog Devices. AD-FMCOMMS3-EBZ User Guide.
7 ZedBoard.
8 Analog Devices. MATLAB AD9361 Filter Design Wizard.
9 ADS-B Double 1/2 Wave Mobile Antenna.
10 MATLAB ADS-B Algorithm Using The IIO System Object

Source Code.
11 Simulink ADS-B Model Using The IIO System Object

Source Code.

Acknowledgements

The authors would like to thank Mike Donovan from
MathWorks, who contributed to the development of the
MATLAB and Simulink ADS-B signal detection and
decoding algorithms used in this article.

Di Pu
Di Pu [di.pu@analog.com] is a system modeling applications engineer for ADI, supporting the
design and development of software-defined radio platforms and systems. She has been
working closely with MathWorks to solve mutual end customer challenges. Prior to joining ADI,
she received her B.S. degree from Najing University of Science and Technology (NJUST), Nanjing,
China, in 2007 and her M.S. and Ph.D. degrees from Worcester Polytechnic Institute (WPI),
Worcester, MA, U.S.A., in 2009 and 2013—all in electrical engineering. She is a winner of the 2013
Sigma Xi Research Award for Doctoral Dissertation at WPI.

Andrei Cozma [andrei.cozma@analog.com] is an engineering manager for ADI, supporting the
design and development of system level reference designs. He holds a B.S. degree in industrial
automation and informatics and a Ph.D. in electronics and telecommunications. He has been
involved in the design and development of projects from different industry fields such as
motor control, industrial automation, software-defined radio, and telecommunications.

Andrei Cozma

Also by this Author:

FPGA-Based Systems Increase
Motor-Control Performance

Volume 49, Number 1

http://www.analog.com/library/analogDialogue/archives/49-09/four-step-sdr-01.html
http://www.analog.com/library/analogDialogue/archives/49-09/four-step-sdr-01.html
http://www.analog.com/library/analogDialogue/archives/49-09/four-step-sdr-01.html
http://www.analog.com/library/analogDialogue/archives/49-10/four-step-sdr-02.html
http://www.analog.com/library/analogDialogue/archives/49-10/four-step-sdr-02.html
http://www.analog.com/library/analogDialogue/archives/49-10/four-step-sdr-02.html
http://wiki.analog.com/resources/tools-software/linux-software/libiio/clients/MATLAB_simulink
http://www.mathworks.com/help/comm/gs/what-are-system-objects.html
https://github.com/analogdevicesinc/MathWorks_tools/tree/master/hil_models
http://wiki.analog.com/resources/eval/user-guides/ad-fmcomms3-ebz
http://zedboard.org/
http://wiki.analog.com/resources/eval/user-guides/ad-fmcomms2-ebz/software/filters
http://www.dpdproductions.com/page_vhf_air.html#adsmobilehalf
https://GitHub.com/analogdevicesinc/MathWorks_tools/tree/master/hil_models/ADSB_MATLAB
https://GitHub.com/analogdevicesinc/MathWorks_tools/tree/master/hil_models/ADSB_MATLAB
https://GitHub.com/analogdevicesinc/MathWorks_tools/tree/master/hil_models/ADSB_Simulink_libiio
https://GitHub.com/analogdevicesinc/MathWorks_tools/tree/master/hil_models/ADSB_Simulink_libiio
mailto:di.pu%40analog.com?subject=
https://www.linkedin.com/shareArticle?mini=true&url=http://www.analog.com/library/analogdialogue/archives/49-11/four-step-sdr-03.html&title=Four%20Quick%20Steps%20to%20Production:%20Using%20Model-Based%20Design%20for%20Software-Defined%20Radio,%20Part%203&source=Analog%20Dialogue
https://www.facebook.com/sharer/sharer.php?s=100&p[title]=Four%20Quick%20Steps%20to%20Production:%20Using%20Model-Based%20Design%20for%20Software-De-fined%20Radio,%20Part%203&p[summary]=Four%20Quick%20Steps%20to%20Production:%20Using%20Model-Based%20Design%20for%20Software-Defined%20Radio,%20Part%203&p[url]=http://www.analog.com/library/analogdialogue/archives/49-11/four-step-sdr-03.html
https://twitter.com/intent/tweet?text=Four%20Quick%20Steps%20to%20Production:%20Using%20Model-Based%20Design%20for%20Software-Defined%20Radio,%20Part%203%20http://www.analog.com/library/analogdialogue/archives/49-11/four-step-sdr-03.html&source=webclient
mailto:andrei.cozma%40analog.com?subject=
http://www.analog.com/library/analogDialogue/archives/49-03/motor_control.html
http://www.analog.com/library/analogDialogue/archives/49-03/motor_control.html
http://www.analog.com/library/analogDialogue/archives/49-03/motor_control.html

	Four Quick Steps to Production: Using Model-Based Design for Software-Defined Radio
	Introduction
	MATLAB and Simulink IIO System Object
	MATLAB ADS-B Algorithm Validation Using the IIO System Object
	Precaptured Data
	Live Data
	RF Signal Quality
	Simulink ADS-B Algorithm Validation Using the IIO System Object
	Conclusion
	References
	Acknowledgements

