
[bookmark: _Toc160417920][bookmark: _Toc332031654][bookmark: _Toc498484695][bookmark: _Toc498491902][bookmark: _Toc504811319][bookmark: _Toc504812245][bookmark: _Toc505423372][bookmark: _Toc505429120][bookmark: _Toc506021458][bookmark: _Toc506028072]CONTROL ALGORITHM MODELING GUIDELINES USING MATLAB®, Simulink®, and Stateflow®
[bookmark: _Toc504812246][bookmark: _Toc505423373][bookmark: _Toc505429121][bookmark: _Toc506021459][bookmark: _Toc506028073][bookmark: _Toc153083638][bookmark: _Toc151543885][bookmark: _Toc156018025][bookmark: _Toc156895467]Version 3.0

MathWorks Automotive Advisory Board (MAAB)

CONTROL ALGORITHM MODELING GUIDELINES USING MATLAB®, Simulink®, and Stateflow®	1
1. History	6
2. Introduction	7
2.1. Motivation	7
2.2. Notes on version 3.0	7
2.3. Guideline template	7
2.3.1. Guideline ID:	8
2.3.2. Guideline Title:	8
2.3.3. Priority:	8
2.3.4. Scope:	9
2.3.5. MATLAB® Versions	9
2.3.6. Prerequisites:	9
2.3.7. Description:	10
2.3.8. Rationale:	10
2.3.9. Last change:	10
2.4. Document Usage	10
2.4.1. Guideline Interaction Semantics	10
2.4.2. Masked Subsystems and Readability Rules	11
3. Software Environment	12
3.1. General Guidelines	12
3.1.1. na_0026: Consistent software environment	12
3.1.2. na_0027: Use of only standard library blocks	12
4. Naming Conventions	14
4.1. General Guidelines	14
4.1.1. ar_0001: Filenames	14
4.1.2. ar_0002: Directory names	14
4.1.3. na_0035: Adoption of naming conventions	15
4.2. Model Content Guidelines	16
4.2.1. jc_0201: Usable characters for Subsystem name	16
4.2.2. jc_0211: Usable characters for Inport block and Outport block	16
4.2.3. jc_0221: Usable characters for signal line name	17
4.2.4. na_0030: Usable characters for Simulink Bus names	18
4.2.5. jc_0231: Usable characters for block names	18
4.2.6. na_0014: Use of local language in Simulink and Stateflow	19
5. Model Architecture	21
5.1. Simulink® and Stateflow® Partitioning	21
5.1.1. na_0006: Guidelines for mixed use of Simulink and Stateflow	21
5.1.2. na_0007: Guidelines for use of Flow Charts, Truth Tables and State Machines	27
5.2. Subsystem Hierarchies	27
5.2.1. db_0143: Similar block types on the model levels	27
5.2.2. db_0144: Use of Subsystems	29
5.2.3. db_0040: Model hierarchy	30
5.2.4. na_0037: Use of single variable variant conditionals	30
5.2.5. na_0020: Number of inputs to variant subsystems	31
5.2.6. na_0036: Default Variant	31
5.3. J-MAAB Model Architecture Decomposition	32
5.3.1. jc_0301: Controller model	32
5.3.2. jc_0311: Top layer / root level	33
5.3.3. jc_0321: Trigger layer	34
5.3.4. jc_0331: Structure layer	34
5.3.5. jc_0341: Data flow layer	35
6. Model Configuration Options	37
6.1.1. jc_0011: Optimization parameters for Boolean data types	37
6.1.2. jc_0021: Model diagnostic settings	37
7. Simulink	39
7.1. Diagram Appearance	39
7.1.1. na_0004: Simulink model appearance	39
7.1.2. db_0043: Simulink font and font size	40
7.1.3. db_0042: Port block in Simulink models	40
7.1.4. na_0005: Port block name visibility in Simulink models	41
7.1.5. jc_0081: Icon display for Port block	42
7.1.6. jm_0002: Block resizing	43
7.1.7. db_0142: Position of block names	43
7.1.8. jc_0061: Display of block names	44
7.1.9. db_0146: Triggered, enabled, conditional Subsystems	45
7.1.10. db_0140: Display of basic block parameters	46
7.1.11. db_0032: Simulink signal appearance	47
7.1.12. db_0141: Signal flow in Simulink models	47
7.1.13. jc_0171: Maintaining signal flow when using Goto and From blocks	48
7.1.14. na_0032: Use of Merge Blocks	49
7.1.15. jm_0010: Port block names in Simulink models	50
7.1.16. jc_0281: Naming of Trigger Port block and Enable Port block	50
7.2. Signals	51
7.2.1. na_0008: Display of labels on signals	51
7.2.2. na_0009: Entry versus propagation of signal labels	52
7.2.3. db_0097: Position of labels for signals and busses	53
7.2.4. db_0081: Unconnected signals, block inputs and block outputs	54
7.3. Block Usage	54
7.3.1. na_0003: Simple logical expressions in If Condition block	54
7.3.2. na_0002: Appropriate implementation of fundamental logical and numerical operations	56
7.3.3. jm_0001: Prohibited Simulink standard blocks inside controllers	57
7.3.4. hd_0001: Prohibited Simulink sinks	58
7.3.5. na_0011: Scope of Goto and From blocks	59
7.3.6. jc_0141: Use of the Switch block	60
7.3.7. jc_0121: Use of the Sum block	61
7.3.8. jc_0131: Use of Relational Operator block	63
7.3.9. jc_0161: Use of Data Store Read/Write/Memory blocks	63
7.4. Block Parameters	64
7.4.1. db_0112: Indexing	64
7.4.2. na_0010: Grouping data flows into signals	64
7.4.3. db_0110: Tunable parameters in basic blocks	65
7.5. Simulink Patterns	66
7.5.1. na_0012: Use of Switch vs. If-Then-Else Action Subsystem	66
7.5.2. db_0114: Simulink patterns for If-then-else-if constructs	67
7.5.3. db_0115: Simulink patterns for case constructs	68
7.5.4. na_0028: Use of If-Then-Else Action Subsystem to Replace Multiple Switches	69
7.5.5. db_0116: Simulink patterns for logical constructs with logical blocks	70
7.5.6. db_0117: Simulink patterns for vector signals	71
7.5.7. jc_0351: Methods of initialization	73
7.5.8. jc_0111: Direction of Subsystem	75
8. Stateflow	77
8.1. Chart Appearance	77
8.1.1. db_0123: Stateflow port names	77
8.1.2. db_0129: Stateflow transition appearance	77
8.1.3. db_0137: States in state machines	78
8.1.4. db_0133: Use of patterns for Flowcharts	79
8.1.5. db_0132: Transitions in Flowcharts	79
8.1.6. jc_0501: Format of entries in a State block	81
8.1.7. jc_0511: Setting the return value from a graphical function	82
8.1.8. jc_0531: Placement of the default transition	83
8.1.9. jc_0521: Use of the return value from graphical functions	84
8.2. Stateflow data and operations	85
8.2.1. na_0001: Bitwise Stateflow operators	85
8.2.2. jc_0451: Use of unary minus on unsigned integers in Stateflow	87
8.2.3. na_0013: Comparison operation in Stateflow	87
8.2.4. db_0122: Stateflow and Simulink interface signals and parameters	88
8.2.5. db_0125: Scope of internal signals and local auxiliary variables	89
8.2.6. jc_0481: Use of hard equality comparisons for floating point numbers in Stateflow	90
8.2.7. jc_0491: Reuse of variables within a single Stateflow scope	91
8.2.8. jc_0541: Use of tunable parameters in Stateflow	93
8.2.9. db_0127: MATLAB commands in Stateflow	93
8.2.10. jm_0011: Pointers in Stateflow	94
8.3. Events	95
8.3.1. db_0126: Scope of events	95
8.3.2. jm_0012: Event broadcasts	95
8.4. Statechart Patterns	97
8.4.1. db_0150: State machine patterns for conditions	97
8.4.2. db_0151: State machine patterns for transition actions	98
8.5. Flowchart Patterns	98
8.5.1. db_0148: Flowchart patterns for conditions	98
8.5.2. db_0149: Flowchart patterns for condition actions	100
8.5.3. db_0134: Flowchart patterns for If constructs	101
8.5.4. db_0159: Flowchart patterns for case constructs	103
8.5.5. db_0135: Flowchart patterns for loop constructs	105
8.6. State chart architecture	106
8.6.1. na_0038: Levels in Stateflow charts	106
8.6.2. na_0039: Use of Simulink in Stateflow charts	107
8.6.3. na_0040: Number of states per container	108
8.6.4. na_0041: Selection of function type	108
8.6.5. na_0042: Location of functions	109
9. Enumerated Data	111
9.1.1. na_0033: Enumerated Types Usage	111
9.1.2. na_0031: Definition of default enumerated value	111
10. MATLAB Functions	112
10.1. MATLAB Function Appearance	112
10.1.1. na_0018: Number of nested if/else and case statement	112
10.1.2. : na_0019: Restricted Variable Names	112
10.1.3. na_0025: MATLAB Function Header	113
10.2. MATLAB Function Data and Operations	114
10.2.1. na_0034: MATLAB Function block input/output settings	114
10.2.2. na_0024: Global Variables	114
10.3. MATLAB Function Patterns	115
10.3.1. na_0022: Recommended patterns for Switch / Case statements	115
10.4. MATLAB Function Usage	116
10.4.1. na_0016: Source lines of MATLAB Functions	116
10.4.2. na_0017: Number of called function levels	117
10.4.3. na_0021: Strings	117
11. Appendix A: Recommendations for Automation Tools	119
12. Appendix B: Guideline Writing	120
13. Appendix C: Flowchart Reference	121
14. Obsolete rules	127
14.1. Removed in version 2.2	127
14.2. Removed in version 3.0	127
15. Glossary	128

[bookmark: _Toc153083639][bookmark: _Toc151543886][bookmark: _Toc156018026][bookmark: _Toc156895468][bookmark: _Toc160417921][bookmark: _Toc332031655]History

	Date
	Change

	02.04.2001
	Initial document Release, Version 1.00

	04.27.2007
	Version 2.00 Update release

	07.30.2011
	Version 2.20 Update release

	08.31.2012
	Version 3.0 Update release

[bookmark: _Toc157311499][bookmark: _Toc157312176][bookmark: _Toc157830794][bookmark: _Toc157311503][bookmark: _Toc157312180][bookmark: _Toc157830798][bookmark: _Toc153083641][bookmark: _Toc151543888][bookmark: _Toc156018028][bookmark: _Toc156895470][bookmark: _Toc160417922][bookmark: _Toc332031656]Introduction
[bookmark: _Toc153083642][bookmark: _Toc151543889][bookmark: _Toc156018029][bookmark: _Toc156895471][bookmark: _Toc160417923][bookmark: _Toc332031657]Motivation
The MAAB guidelines are an important basis for project success and teamwork - both in-house and when cooperating with partners or subcontractors. Observing the guidelines is one key prerequisite to achieving
· System integration without problems
· Well-defined interfaces.
· Uniform appearance of models, code and documentation
· Reusable models
· Readable models
· Problem-free exchange of models
· A simple, effective process
· Professional documentation
· Understandable presentations
· Fast software changes
· Cooperation with subcontractors
· Handing over of research or predevelopment projects to product development
[bookmark: _Toc332031658][bookmark: _Toc153083643][bookmark: _Toc151543890][bookmark: _Toc156018030][bookmark: _Toc156895472][bookmark: _Toc160417924]Notes on version 3.0
The current version of this document, 3.0, supports MATLAB releases R2007b through R2011b. Version 3.0 references rules from the NASA Orion style guidelines (http://www.mathworks.com/aerospace-defense/standards/nasa.html). Rules that are referenced from the NASA Orion guideline are noted with a “See also” field that provides the original rule number.
[bookmark: _Toc332031659]Guideline template
Guideline descriptions are documented using the following template. Companies that want to create additional guidelines are encouraged to use the same template.

	ID: Title
	XX_nnnn: Title of the guideline (unique, short)

	Priority
	One of mandatory / strongly recommended / recommended

	Scope
	MAAB, NA-MAAB, J-MAAB, Specific Company (for optional local company usage)

	MATLAB® Version
	all
RX, RY, RZ
RX and earlier
RX and later
RX through RY

	Prerequisites
	Links to guidelines, which are prerequisite to this guideline (ID+title)

	Description
	Description of the guideline (text, images)

	Rationale
	Motivation for the guideline

	Last Change
	Version number of last change

Note: The elements of this template are the minimum required items that must be present for proper understanding and exchange of guidelines. The addition of project- or vendor fields to this template is possible as long as their meaning does not overlap with any of the existing fields. In fact, such additions are even encouraged if they help to integrate other guideline templates and lead to a wider acceptance of the core template itself.

[bookmark: _Toc506028079][bookmark: _Toc144778403][bookmark: _Toc153083644][bookmark: _Toc151543891][bookmark: _Toc156018031][bookmark: _Toc156895473][bookmark: _Toc160417925][bookmark: _Toc332031660]Guideline ID:
· The guideline ID is built out of two lowercase letters (representing the origin of the rule) and a four-digit number, separated by an underscore.
· Once a new guideline has an ID, the ID will not be changed.
· The ID is used for references to guidelines.
· The two letter prefixes na, jp, jc and eu are reserved for future MAAB committee rules.
· Legacy prefixes, db, jm, hd, and ar, are reserved.
· No new rules will be written with these legacy prefixes.

[bookmark: _Toc506028080][bookmark: _Toc144778404][bookmark: _Toc153083645][bookmark: _Toc151543892][bookmark: _Toc156018032][bookmark: _Toc156895474][bookmark: _Toc160417926][bookmark: _Toc332031661]Guideline Title:
· The title should be a short, but unique description of the guidelines area of application (for example, length of names).
· The title is used for the Prerequisites field and for custom checker-tools.
· The title text should appear with a hyperlink that links to the guideline.
Note: The title should not be a redundant short description of the guidelines content. The description of the guideline might change over time, but the title should remain stable.
[bookmark: _Toc144778405][bookmark: _Toc153083646][bookmark: _Toc151543893][bookmark: _Toc156018033][bookmark: _Toc156895475][bookmark: _Toc160417927][bookmark: _Toc332031662]Priority:
Each guideline must be rated with one of the following priorities:
· Mandatory
· Strongly recommended
· Recommended
The priority describes the importance of the guideline and determines the consequences of violations.

	Mandatory
	Strongly
Recommended
	Recommended

	DEFINITION

	· Guidelines that all companies agree to that are absolutely essential
· Guidelines that all companies conform to 100%

	· Guidelines that are agreed upon to be a good practice, but legacy models preclude a company from conforming to the guideline 100%
· Models should conform to these guidelines to the greatest extent possible; however 100% compliance is not required
	· Guidelines that are recommended to improve the appearance of the model diagram, but are not critical to running the model
· Guidelines where conformance is preferred, but not required

	CONSEQUENCES
If the guideline is violated

	· Essential items are missing
· The model might not work properly

	· The quality and the appearance deteriorates
· There may be an adverse effect on maintainability, portability, and reusability
	· The appearance will not conform with other projects

	WAIVER POLICY
If the guideline is intentionally ignored,

	· The reasons must be documented
	
	

[bookmark: _Toc506028082][bookmark: _Toc144778406][bookmark: _Toc153083647][bookmark: _Toc151543894][bookmark: _Toc156018034][bookmark: _Toc156895476][bookmark: _Toc160417928][bookmark: _Toc332031663]Scope:
The scope can be set to one of the following
MAAB (MathWorks Automotive Advisory Board)
J-MAAB (Japan MAAB)
NA-MAAB (North American MAAB)

"MAAB" is a group of automotive manufacturers and suppliers that work closely together with MathWorks. MAAB includes the sub-groups J-MAAB, and NA-MAAB.

“J-MAAB” is a subgroup of MAAB that includes automotive manufacturers and suppliers in JAPAN and works closely with MathWorks. Rules with J-MAAB scope are local to Japan.

“NA-MAAB” is a subgroup of MAAB that includes automotive manufacturers and suppliers in USA and Europe and works closely with MathWorks. That rule is local rule in USA and Europe. Coverage is USA and Europe.

[bookmark: _Toc332031664][bookmark: _Toc506028083][bookmark: _Toc153083648][bookmark: _Toc151543895][bookmark: _Toc156018035][bookmark: _Toc156895477][bookmark: _Toc160417929]MATLAB® Versions
The guidelines support all versions of MATLAB and Simulink products. If the rule applies to a specific version or versions, the versions are identified in the MATLAB versions field. The versions information is in one of the following formats.
· All : All versions of MATLAB
· RX, RY, RZ : A specific version of MATLAB
· RX and earlier : Versions of MATLAB until version RX
· RX and later: Versions of MATLAB from version RX to the current version
· RX through RY: Versions of MATLAB between RX and RY
[bookmark: _Toc144778408][bookmark: _Toc506028084][bookmark: _Toc144778410][bookmark: _Toc153083649][bookmark: _Toc151543896][bookmark: _Toc156018036][bookmark: _Toc156895478][bookmark: _Toc160417930][bookmark: _Toc332031665]Prerequisites:
· This field is for links to other guidelines that are prerequisite to this guideline (logical conjunction).
· Use the guideline ID (for consistency) and the title (for readability) for the links. The "Prerequisites" field should not contain any other text.
[bookmark: _Toc506028085][bookmark: _Toc144778411][bookmark: _Toc153083650][bookmark: _Toc151543897][bookmark: _Toc156018037][bookmark: _Toc156895479][bookmark: _Toc160417931][bookmark: _Toc332031666]Description:
· This field contains a detailed description of the guideline.
· If needed, images and tables can be added.
Note: If formal notation (math, regular expression, syntax diagrams, and exact numbers/limits) is available, it should be used to unambiguously describe a guideline and specify an automated check. However, a human, understandable, informal description must always be provided for daily reference.
[bookmark: _Toc332031667]Rationale:
The guidelines can be recommended for one or more of the following reasons.

· Readability: Easily understood algorithms
· Readable models
· Uniform appearance of models, code, and documentation
· Clean interfaces
· Professional documentation
· Workflow: Effective development process and workflow
· Ease of maintenance
· Rapid model changes
· Reusable components
· Problem-free exchange of models
· Model portability
· Simulation: Efficient simulation and analysis
· Simulation speed
· Simulation memory
· Model instrumentation
· Verification & Validation: Ability to verify and validate a model and generated code with:
· Requirements Traceability
· Testing
· Problem-free system integration
· Clean interfaces
· Code generation: Generation of code that is efficient and effective for embedded systems
· Fast software changes
· Robustness of generated code
[bookmark: _Toc506028089][bookmark: _Toc144778412][bookmark: _Toc153083651][bookmark: _Toc151543898][bookmark: _Toc156018038][bookmark: _Toc156895480][bookmark: _Toc160417932][bookmark: _Toc332031668]Last change:
The “Last Change” field contains the document version number.
[bookmark: _Toc153083652][bookmark: _Toc151543899][bookmark: _Toc156018039][bookmark: _Toc156895481][bookmark: _Toc160417933][bookmark: _Toc332031669]Document Usage
The following paragraphs provide information on using this document as reference and for compiling a project-specific guideline document. Information on automated checking of the guidelines can be found in Appendix A.
[bookmark: _Guideline_Interaction_Semantics][bookmark: _Toc506028093][bookmark: _Toc144778416][bookmark: _Toc153083654][bookmark: _Toc151543901][bookmark: _Toc156018040][bookmark: _Toc156895482][bookmark: _Toc160417934][bookmark: _Toc332031670]Guideline Interaction Semantics
The initial sections of the document, naming conventions and model architecture, provide basic guidelines that apply to all types of models. The later sections, Simulink and Stateflow, provide specific rules for those environments. Some guidelines are dependent on other guidelines and are explicitly listed throughout the template.

[bookmark: _Toc332031671]Masked Subsystems and Readability Rules
If users do not view the content of masked subsystems within a model, the guidelines for readability are not applicable.

[bookmark: _Toc332031672][bookmark: _Toc153083660][bookmark: _Toc151543903][bookmark: _Toc156018045][bookmark: _Toc156895487][bookmark: _Toc160417938][bookmark: _Toc153083656][bookmark: _Toc156018041][bookmark: _Toc156895483][bookmark: _Toc160417935]Software Environment
[bookmark: _Toc332031673]General Guidelines
[bookmark: _Toc235438614][bookmark: _Toc246228248][bookmark: _Toc294875167][bookmark: _Toc332031674]na_0026: Consistent software environment
	ID: Title
	na_0026: Consistent software environment

	Priority
	Recommended

	Scope
	NA-MAAB

	MATLAB Version
	See Description

	Prerequisites
	

	Description
	During software development, it is recommended that a consistent software environment is used across the project. Software includes, but is not limited, to:
· MATLAB
· Simulink
· C Compiler (for simulation)
· C Compiler (for target hardware)

Consistent software environment implies that the same version of the software is used across the full project. The version number applies to any patches or extensions to the software used by a group.

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	See also
	jh_0042: Required software

	Last Change
	V3.00

[bookmark: _Toc235438669][bookmark: _Toc246228303][bookmark: _Toc294875226][bookmark: _Toc332031675]na_0027: Use of only standard library blocks
	ID: Title
	na_0027: Use of only standard library blocks

	Priority
	Recommended

	Scope
	NA-MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	Companies should specify a subset of Simulink blocks for use when developing models. The block list can include custom block libraries developed by the company or third parties. Models should be built only from these blocks.

Non-compliant blocks can be used during development. If non-compliant blocks are used, they should be marked either with a color, icon and / or annotation. These blocks must be removed prior to use in production code generation.

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	See also
	hyl_0201: Use of standard library blocks only

	Last Change
	V3.00

[bookmark: _Toc332031676]Naming Conventions
[bookmark: _Toc153083661][bookmark: _Toc151543904][bookmark: _Toc156018046][bookmark: _Toc156895488][bookmark: _Toc160417939][bookmark: _Toc332031677]General Guidelines
[bookmark: _Toc153083662][bookmark: _Toc151543905][bookmark: _Toc156018047][bookmark: _Toc156895489][bookmark: _Toc160417940][bookmark: _Toc332031678]ar_0001: Filenames
	ID: Title
	ar_0001: Filenames

	Priority
	Mandatory

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	A filename conforms to the following constraints:
	FORM
	filename = name.extension
name: no leading digits, no blanks
extension: no blanks

	UNIQUENESS
	· all filenames within the parent project directory
· cannot conflict with C / C++ or MATLAB keywords

	ALLOWED CHARACTERS
	name
a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 _
extension:
a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9

	UNDERSCORES
	name:
· can use underscores to separate parts
· cannot have more than one consecutive underscore
· cannot start with an underscore
· cannot end with an underscore

extension:
· should not use underscores

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V3.00

[bookmark: _Toc153083663][bookmark: _Toc151543906][bookmark: _Toc156018048][bookmark: _Toc156895490][bookmark: _Toc160417941][bookmark: _Toc332031679]ar_0002: Directory names
	ID: Title
	ar_0002: Directory names

	Priority
	mandatory

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	A directory name conforms to the following constraints:
	FORM
	directory name = name
name: no leading digits, no blanks

	UNIQUENESS
	all directory names within the parent project directory

	ALLOWED CHARACTERS
	name:
 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 _

	UNDERSCORES
	name:
· underscores can be used to separate parts
· cannot have more than one consecutive underscore
· cannot start with an underscore
· cannot end with an underscore

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V1.00

[bookmark: _Toc154890947][bookmark: _Toc154890948][bookmark: _Toc332031680][bookmark: _Toc160417942]na_0035: Adoption of naming conventions
	ID: Title
	na_0035: Adoption of naming conventions

	Priority
	Recommended

	Scope
	NA-MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	Adoption of a naming convention is recommended. A naming convention provides guidance for naming blocks, signals, parameters and data types. Naming conventions frequently cover issues such as:

· Compliance with the programing language and downstream tools
· Length
· Use of symbols
· Readability
· Use of underscores
· Use of capitalization
· Encoding information
· Use of “meaningful” names
· Standard abbreviations and acronyms
· Data type
· Engineering units
· Data ownership
· Memory type

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V3.00

[bookmark: _Toc332031681]Model Content Guidelines
[bookmark: _jc_0201:_Usable_characters][bookmark: _Toc153083670][bookmark: _Toc156018057][bookmark: _Toc156895499][bookmark: _Toc160417943][bookmark: _Toc332031682]jc_0201: Usable characters for Subsystem name
	ID: Title
	[bookmark: _Toc144305709][bookmark: _Toc148237326]jc_0201: Usable characters for Subsystem names

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	The names of all Subsystem blocks should conform to the following constraints:
	FORM
	name:
· should not start with a number
· should not have blank spaces
· should not have carriage returns

	ALLOWED CHARACTERS
	name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _

	UNDERSCORES
	name:
· underscores can be used to separate parts
· cannot have more than one consecutive underscore
· cannot start with an underscore
· cannot end with an underscore

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _Toc153083671][bookmark: _Toc156018058][bookmark: _Toc156895500][bookmark: _Toc160417944][bookmark: _Toc332031683]jc_0211: Usable characters for Inport block and Outport block
	ID: Title
	jc_0211: Usable characters for Inport block and Outport block

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	The names of all Inport blocks and Outport blocks should conform to the following constraints:
	FORM
	name:
· should not start with a number
· should not have blank spaces
· should not include carriage returns

	ALLOWED CHARACTERS
	name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _

	UNDERSCORES
	name:
· underscores can be used to separate parts
· cannot have more than one consecutive underscore
· cannot start with an underscore
· cannot end with an underscore

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _Toc153083672][bookmark: _Toc156018059][bookmark: _Toc156895501][bookmark: _Toc160417945][bookmark: _Toc332031684]jc_0221: Usable characters for signal line name
	ID: Title
	jc_0221: Usable characters for signal line names

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	All named signals should conform to the following constraints:
	FORM
	name:
· should not start with a number
· should not have blank spaces
· should not have any control characters
· should not include carriage returns

	ALLOWED CHARACTERS
	name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _

	UNDERSCORES
	name:
· underscores can be used to separate parts
· cannot have more than one consecutive underscore
· cannot start with an underscore
· cannot end with an underscore

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _Toc235438642][bookmark: _Toc246228276][bookmark: _Toc294875195][bookmark: _Toc332031685]na_0030: Usable characters for Simulink Bus names
	ID: Title
	na_0030: Usable characters for Simulink Bus Names

	Priority
	strongly recommended

	Scope
	NA-MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	All Simulink Bus names should conform to the following constraints:
	FORM
	name:
· Should not start with a number
· Should not have blank spaces
· Carriage returns are not allowed

	ALLOWED CHARACTERS
	name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _

	UNDERSCORES
	name:
· Can use underscores to separate parts
· Cannot have more than one consecutive underscore
· Cannot start with an underscore
· Cannot end with an underscore

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	See Also
	jh_0040: Usable characters for Simulink Bus Names

	Last Change
	V3.00

[bookmark: _Toc153083673][bookmark: _Toc156018060][bookmark: _Toc156895502][bookmark: _Toc160417946][bookmark: _Toc332031686]jc_0231: Usable characters for block names
	ID: Title
	jc_0231: Usable characters for block names

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	jc_0201: Usable characters for Subsystem names

	Description
	All named blocks should conform to the following constraints:
	FORM
	name:
· should not start with a number
· should not start with a blank space
· may not use double byte characters
· carriage returns are allowed

	ALLOWED CHARACTERS
	name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _

Note: this rule does not apply to Subsystem blocks.

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc153083675][bookmark: _Toc156018062][bookmark: _Toc156895504][bookmark: _Toc160417948][bookmark: _Toc332031687]na_0014: Use of local language in Simulink and Stateflow
	ID: Title
	[bookmark: _Toc144305714][bookmark: _Toc148237331]na_0014: Use of local language in Simulink and Stateflow

	Priority
	strongly recommended

	Scope
	J-MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	The local language should be used only in descriptive fields. Descriptive fields are text entry points that do not affect code generation or simulation. Examples of descriptive fields include

Simulink Example
· The Description field in the Block Properties

[image:]

· Text annotation directly entered in the model
[image:]

Stateflow Example
· The Description field of the chart or state Properties
[image:]

· Annotation description added using Add Note

[image:] [image:]

Note: It is possible that Simulink can’t open a model that includes local language on the different character encoding systems; thus, it is important to pay attention when using local characters in case of exchanging models between overseas.

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc153083664][bookmark: _Toc151543908][bookmark: _Toc156018049][bookmark: _Toc156895491][bookmark: _Toc160417949][bookmark: _Toc332031688]Model Architecture
[bookmark: _Toc153083665][bookmark: _Toc151543909][bookmark: _Toc156895492]Basic Blocks
This document uses the term “Basic Blocks” to refer to blocks from the base Simulink library. Examples of basic blocks:

[bookmark: _Toc153083677][bookmark: _Toc151543915][bookmark: _Toc156018067][bookmark: _Toc156895509][bookmark: _Toc160417950][bookmark: _Toc332031689][bookmark: _Toc153083666][bookmark: _Toc151543910][bookmark: _Toc156018051][bookmark: _Toc156895493]Simulink® and Stateflow® Partitioning
[bookmark: _na_0006:_Guidelines_for][bookmark: _Toc156018068][bookmark: _Toc156895510][bookmark: _Toc160417951][bookmark: _Toc332031690]na_0006: Guidelines for mixed use of Simulink and Stateflow
	ID: Title
	na_0006: Guidelines for mixed use of Simulink and Stateflow

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	The choice of whether to use Simulink or Stateflow to model a given portion of the control algorithm functionality should be driven by the nature of the behavior being modeled.
· If the function primarily involves complicated logical operations, use Stateflow diagrams.
· Stateflow should be used to implement modal logic – where the control function to be performed at the current time depends on a combination of past and present logical conditions.
· If the function primarily involves numerical operations, use Simulink features.

Specifics:
· If the primary nature of the function is logical, but some simple numerical calculations are done to support the logic, implement the simple numerical functions using the Stateflow action language.

 (
Embedded simple
math
 operation
)

· If the primary nature of the function is numeric, but some simple logical operations are done to support the arithmetic, implement the simple logical functions with Simulink blocks.

 (
Embedded simple
logic
 operations
)

· If the primary nature of the function is logical, and some complicated numerical calculations must be done to support the logic, use a Simulink subsystem to implement the numerical calculations. The Stateflow software should invoke the execution of this subsystem, using a function-call.

[image:]

[image:]

[image:]

[image:]

· Use the Stateflow product to implement modal logic, where the control function to be performed at the current time depends on a combination of past and present logical conditions. (If there is a need to store the result of a logical condition test in Simulink, for example, by storing a flag, this is one indicator of the presence of modal logic, which should be modeled with Stateflow software.)

Incorrect
[image:]

[image:]

Correct
[image:]

[image:]

· Simulink should be used to implement numerical expressions containing continuously-valued states, e.g., difference equations, integrals, derivatives, and filters.

Incorrect
[image:]

Correct
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc332031691][bookmark: _Toc156018069][bookmark: _Toc156895511][bookmark: _Toc160417952]na_0007: Guidelines for use of Flow Charts, Truth Tables and State Machines
	ID: Title
	na_0007: Guidelines for use of Flow Charts, Truth Tables and State Machines

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	na_0006: Guidelines for Mixed use of Simulink and Stateflow

	Description
	Within Stateflow, the choice of whether to use a flow chart or a state chart to model a given portion of the control algorithm functionality should be driven by the nature of the behavior being modeled.
· If the primary nature of the function segment is to calculate modes of operation or discrete-valued states, use state charts. Some examples are:
· Diagnostic model with pass, fail, abort, and conflict states
· Model that calculates different modes of operation for a control algorithm
· If the primary nature of the function segment involves if-then-else statements, use flowcharts or truth tables.

Specifics:
· If the primary nature of the function segment is to calculate modes or states, but if-then-else statements are required, add a flow chart to a state within the state chart. (See 7.5 Flowchart Patterns)

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc160417953][bookmark: _Toc332031692]Subsystem Hierarchies
[bookmark: _Toc153083667][bookmark: _Toc151543911][bookmark: _Toc156018052][bookmark: _Toc156895494][bookmark: _Toc160417954][bookmark: _Toc332031693]db_0143: Similar block types on the model levels
	ID: Title
	db_0143: Similar block types on the model levels

	Priority
	strongly recommended

	Scope
	NA-MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	To allow partitioning of the model into discreet units, every level of a model must be designed with building blocks of the same type (i.e. only Subsystem or only basic blocks). The blocks listed in this rule are used for signal routing. You can place them at any level of the model.
	Blocks which can be placed on every model level:

	Inport
	[image:]

	Outport
	[image:]

	Mux
	[image:]

	Demux
	[image:]

	Bus Selector
	[image:]

	Bus Creator
	[image:]

	Selector
	[image:]

	Ground
	[image:]

	Terminator
	[image:]

	From
	[image:]

	Goto
	[image:]

	Merge
	[image:]

	Unit Delay
	[image:]

	Rate Transition
	[image:]

	Data Type Conversion
	[image:]

	Data Store Memory
	[image:]

	If
	[image:]

	Case
	[image:]

	Function-Call Generator
	[image:]

	Function-Call Split
	[image:]

	Trigger(1)
	[image:]

	Enable(2)
	[image:]

	Action port(3)
	[image:]

	Note
	1.) Starting in R2009a, the Trigger block is allowed at the root level of the model.
2.) Starting in R2011b, the Enabled block is allowed at the root level of the model.
3.) Action ports are not allowed at the root level of a model.
If the Trigger or Enable blocks are placed at the root level of the model, then the model will not simulate in a standalone mode. The model must be referenced using the Model block.

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _Toc506028126][bookmark: _Toc519906552][bookmark: _Toc156018053][bookmark: _Toc156895495][bookmark: _Toc160417955][bookmark: _Toc332031694][bookmark: _Toc153083668][bookmark: _Toc151543912]db_0144: Use of Subsystems
	ID: Title
	db_0144: Use of Subsystems

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	Blocks in a Simulink diagram should be grouped together into subsystems based on functional decomposition of the algorithm, or portion thereof, represented in the diagram.

Avoid grouping blocks into subsystems primarily for the purpose of saving space in the diagram. Each subsystem in the diagram should represent a unit of functionality required to accomplish the purpose of the model or submodel. Blocks can also be grouped together based on behavioral variants or timing.

If creation of a subsystem is required for readability issues, then a virtual subsystem should be used.

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _Toc156018054][bookmark: _Toc156895496][bookmark: _Toc160417956][bookmark: _Toc332031695]db_0040: Model hierarchy
	ID: Title
	db_0040: Model hierarchy

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	The model hierarchy should correspond to the functional structure of the control system.

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _na_0037:_Use_of][bookmark: _Toc332031696][bookmark: _Toc160417957][bookmark: _Toc156018070][bookmark: _Toc156895512]na_0037: Use of single variable variant conditionals
	ID: Title
	na_0037: Use of single variable variant conditionals

	Priority
	Recommended

	Scope
	NA-MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	Variant conditional expressions should be composed using either a single variable with compound conditions or multiple variables with a single condition. The default variant is an exception to the second rule.

Correct: Multiple variables (INLINE / FUNCTION) with single condition per line
[image:]
Correct: Single variable compound conditions
[image:]
Incorrect: Multiple variables, compound conditions
[image:]

	Note
	Use of enumerated variables is preferred in the Condition expressions. To improve the readability of the screenshots used in the examples, numerical values were used.

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	See also
	na_0036 Default variant

	Last Change
	V3.00

[bookmark: _Toc332031697]na_0020: Number of inputs to variant subsystems
	ID: Title
	na_0020: Number of inputs to variant subsystems

	Priority
	Recommended

	Scope
	NA-MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	Simulink requires variant subsystems to have the same number of inputs. However, the variant subsystem might not use all of the inputs. In these instances, terminate the unused inputs with the Terminator block.

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V3.00

[bookmark: _Toc332031698]na_0036: Default variant
	ID: Title
	na_0036 Default variant

	Priority
	Recommended

	Scope
	NA-MAAB

	MATLAB Version
	All

	Prerequisites
	na_0037 Use of single variable variant conditionals

	Description
	All Variant subsystems and models should be configured so that one subsystem is always selected. This can be achieved by doing one of the following:
· Using a default variant.
· Defining conditions that exhaustively cover all possible values of the conditional variables. For example, defining conditions for true and false values of a Boolean.
Correct
[image:]
Correct: Assumes FUNC and INLINE are Boolean
[image:]
Incorrect: No active subsystem if FUNC not equal to 1 or 2
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V3.00

[bookmark: _Toc332031699]J-MAAB Model Architecture Decomposition
[bookmark: _Toc160417958][bookmark: _Toc332031700]jc_0301: Controller model
	ID: Title
	jc_0301: Controller model

	Priority
	mandatory

	Scope
	J-MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	Control models are organized using the following hierarchical structure. Details on each layer are provided in the latter rules.

· Top layer / root level
· Trigger layer
· Structure layer
· Data flow layer

Use of the Trigger level is optional. In the diagram below “Type A” shows the use of a trigger level while “Type B“ shows a model without a trigger level.

[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc160417959][bookmark: _Toc332031701]jc_0311: Top layer / root level
	ID: Title
	jc_0311: Top layer / root level

	Priority
	mandatory

	Scope
	J-MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	Items to describe in a top layer are as follows.
· Overview: Explanation of model feature overview
· Input: Input variables
· Output: Output variables

[image:]
Top Layer Example

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc160417960][bookmark: _Toc332031702]jc_0321: Trigger layer
	ID: Title
	jc_0321: Trigger layer

	Priority
	mandatory

	Scope
	J-MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	A trigger layer indicates the processing timing by using Triggered Subsystem or Function-Call Subsystem.
· The blocks should set Priority, if needed.
· The priority value must be displayed as a Block Annotation. The user should be able to understand the priority-based order without having to open the block.
[image:]
Trigger Layer Example

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc160417961][bookmark: _Toc332031703]jc_0331: Structure layer
	ID: Title
	jc_0331: Structure layer

	Priority
	mandatory

	Scope
	J-MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	Describe a structure layer like the following description example.
· In case of Type B, specify sample time at an Inport block or a Subsystem to define task time of the Subsystem.
· In case of Type B, use a Block Annotation at an Inport block or a Subsystem and display sample time to clarify task time of the Subsystem
A subsystem of a structure layer should be an atomic subsystem.
[image:]
Structured Layer Example (Type A: No description of processing timing)

[image:]
Structured Layer Example (Type B: Description of processing timing)

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _jc_0341:_Data_flow][bookmark: _Toc160417962][bookmark: _Toc332031704]jc_0341: Data flow layer
	ID: Title
	jc_0341: Data flow layer

	Priority
	mandatory

	Scope
	J-MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	Describe a data flow layer as in the following example.
· In case of Type A, use a Block Annotation at an Inport block and display its sample time to clarify execution timing of the signal[image:]
Data Flow Layer Example

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc332031705][bookmark: _Toc160417963]Model Configuration Options
[bookmark: _Toc156702704][bookmark: _Toc153083658][bookmark: _Toc156018043][bookmark: _Toc156895485][bookmark: _Toc160417936][bookmark: _Toc332031706]jc_0011: Optimization parameters for Boolean data types
	ID:Title
	jc_0011: Optimization parameters for Boolean data types

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB
Version
	All

	Prerequisites
	na_0002: Appropriate implementation of fundamental logical and numerical operations

	Description
	The optimization option for Boolean data types must be enabled (on).

	Path
	Parameter
	Image

	Configuration Parameters > Optimization > Simulation and code generation > Implement logic signals as Boolean data (vs. double)
	BooleanDataType
	[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _Toc153083659][bookmark: _Toc156018044][bookmark: _Toc156895486][bookmark: _Toc160417937][bookmark: _Toc332031707]jc_0021: Model diagnostic settings
	ID:Title
	[bookmark: _JC0021：診断の設定][bookmark: _JC0021:_Settings_of][bookmark: _Toc144305686][bookmark: _Toc148237308]jc_0021: Model diagnostic settings

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	The following diagnostics must be enabled. An enabled diagnostic is set to either “warning” or “error”. Setting the diagnostic option to “none” is not permitted. Diagnostics that are not listed can be set to any value (none, warning, or error).

· Solver Diagnostics
· Algebraic loop
· Minimize algebraic loop
· Sample Time Diagnostics
· Multitask rate transition
· Data Validity Diagnostics
· Inf or NaN block output
· Duplicate data store names
· Connectivity
· Unconnected block input ports
· Unconnected block output ports
· Unconnected line
· Unspecified bus object at root Outport block
· Mux blocks used to create bus signals
· Invalid function-call connection
· Element name mismatch

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc332031708]Simulink
[bookmark: _Toc151271810][bookmark: _Toc151272024][bookmark: _Toc154890965][bookmark: _Toc154890968][bookmark: _Toc153083681][bookmark: _Toc151543919][bookmark: _Toc156018071][bookmark: _Toc156895513][bookmark: _Toc160417964][bookmark: _Toc332031709]Diagram Appearance
[bookmark: _Toc151271815][bookmark: _Toc151272029][bookmark: _Toc151271849][bookmark: _Toc151272063][bookmark: _Toc151271882][bookmark: _Toc151272096][bookmark: _Toc151271883][bookmark: _Toc151272097][bookmark: _Toc154890970][bookmark: _Toc154891004][bookmark: _Toc154891037][bookmark: _Toc154891038][bookmark: _Toc153083682][bookmark: _Toc151543923][bookmark: _Toc156018072][bookmark: _Toc156895514][bookmark: _Toc160417965][bookmark: _Toc332031710]na_0004: Simulink model appearance
	ID: Title
	na_0004 Simulink model appearance

	Priority
	Recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	The model appearance settings should conform to the following guidelines when the model is released. The user is free to change the settings during the development process.
	View Options
	Setting

	Model Browser
	unchecked

	Screen color
	white

	Status Bar
	checked

	Toolbar
	checked

	Zoom factor
	Normal (100%)

	Block Display Options
	Setting

	Background Color
	white

	Foreground Color
	black

	Execution Context Indicator
	unchecked

	Library Link Display
	none

	Linearization Indicators
	checked

	Model/Block I/O Mismatch
	unchecked

	Model Block Version
	unchecked

	Sample Time Colors
	unchecked

	Sorted Order
	unchecked

	Signal Display Options
	Setting

	Port Data Types
	unchecked

	Signal Dimensions
	unchecked

	Storage Class
	unchecked

	Test point Indicators
	checked

	Viewer Indicators
	checked

	Wide Non-scalar Lines
	checked

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc153083683][bookmark: _Toc151543924][bookmark: _Toc156018073][bookmark: _Toc156895515][bookmark: _Toc160417966][bookmark: _Toc332031711]db_0043: Simulink font and font size
	ID: Title
	db_0043: Simulink font and font size

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB
Version
	All

	Prerequisites
	

	Description
	All text elements (block names, block annotations and signal labels) except free text annotations within a model must have the same font style and font size. Fonts and font size should be selected for legibility.

Note: The selected font should be directly portable (e.g. Simulink/Stateflow default font) or convertible between platforms (e.g. Arial/Helvetica 12pt).

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _db_0042:_Port_block_in_Simulink_mod][bookmark: _Toc153083684][bookmark: _Toc148162003][bookmark: _Toc151543925][bookmark: _Toc156018074][bookmark: _Toc156895516][bookmark: _Toc160417967][bookmark: _Toc332031712]db_0042: Port block in Simulink models	
	ID: Title
	db_0042: Port block in Simulink models

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	In a Simulink model, the ports comply with the following rules:
· Inports should be placed on the left side of the diagram, but they can be moved in to prevent signal crossings.
· Outports should be placed on the right side, but they can be moved in to prevent signal crossings.
· Duplicate Inports can be used at the subsystem level if required, but should be avoided, if possible.
· Do not use duplicate Inports at the root level.
	Correct

	[image:]

	Incorrect

	[image:]

Notes on the incorrect model
· Inport 2 should be moved in so it does not cross the feed back loop lines.
· Outport 1 should be moved to the right hand side of the diagram.

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc151543926][bookmark: _Toc156018075][bookmark: _Toc156895517][bookmark: _Toc160417968][bookmark: _Toc332031713]na_0005: Port block name visibility in Simulink models
	ID: Title
	na_0005: Port block name visibility in Simulink models

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	For some items it is not possible to define a single approach that is applicable to all organizations’ internal processes. However, it is important that within a given organization, a single consistent approach is followed. An organization applying the guidelines must select one of the following alternatives to enforce.
Organizationally-Scoped Alternatives (follow one practice):

1. The name of an Inport or Outport is not hidden. ("Format / Hide Name" is not allowed.)
[image:]
2. The name of an Inport or Outport must be hidden. ("Format / Hide Name" is used.)
Exception: inside library subsystem blocks, the names may not be hidden.
[image:]
Correct: Use of signal label
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc154891076][bookmark: _Toc153083687][bookmark: _Toc156018078][bookmark: _Toc156895520][bookmark: _Toc160417971][bookmark: _Toc332031714]jc_0081: Icon display for Port block
	ID: Title
	[bookmark: _Toc144305695][bookmark: _Toc148237314]jc_0081: Icon display for Port block

	Priority
	recommended

	Scope
	MAAB

	MATLAB Version
	R14 and later

	Prerequisites
	

	Description
	The Icon display setting should be set to Port number for Inport and Outport blocks.
Correct
[image:]
Incorrect
[image:]
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _Toc153083689][bookmark: _Toc151543928][bookmark: _Toc156018079][bookmark: _Toc156895521][bookmark: _Toc160417972][bookmark: _Toc332031715]jm_0002: Block resizing
	ID: Title
	jm_0002: Block resizing

	Priority
	mandatory

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	All blocks in a model must be sized such that their icon is completely visible and recognizable. In particular, any text displayed (for example, tunable parameters, filenames, or equations) in the icon must be readable.
This guideline requires resizing of blocks with variable icons or blocks with a variable number of inputs and outputs. In some cases, it may not be practical or desirable to resize the block icon of a subsystem block so that all of the input and output names within it are readable. In such cases, you may hide the names in the icon by using a mask or by hiding the names in the subsystem associated with the icon. If you do this, the signal lines coming into and out of the subsystem block should be clearly labeled in close proximity to the block.

Correct

Incorrect

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc153083690][bookmark: _Toc151543929][bookmark: _Toc156018080][bookmark: _Toc156895522][bookmark: _Toc160417973][bookmark: _Toc332031716]db_0142: Position of block names
	ID: Title
	db_0142: Position of block names

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	If shown the name of each block should be placed below the block.
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc153083691][bookmark: _Toc156018081][bookmark: _Toc156895523][bookmark: _Toc160417974][bookmark: _Toc332031717]jc_0061: Display of block names
	ID: Title
	[bookmark: _Toc144305693][bookmark: _Toc148237312]jc_0061: Display of block names

	Priority
	recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	· Display a block name when it provides descriptive information.
[image:]
· The block name should not be displayed if the block function is known and understood from the block appearance.
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc153083693][bookmark: _Toc156018083][bookmark: _Toc156895525][bookmark: _Toc160417976][bookmark: _Toc332031718]db_0146: Triggered, enabled, conditional Subsystems
	ID: Title
	db_0146: Triggered, Enabled, Conditional Subsystems

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	The blocks that define subsystems as either conditional or iterative should be located at a consistent location at the top of the subsystem diagram. These blocks are:
· Enable
· For Iterator
· Action Port
· Switch Case Action
· Trigger
· While Iterator

Note: The Action port is associated with the If and Case blocks. The Trigger port is also the function-call block.
Correct
[image:]
Incorrect
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _db_0140:_Display_of_block_parameter][bookmark: _Toc153083694][bookmark: _Toc151543931][bookmark: _Toc156018084][bookmark: _Toc156895526][bookmark: _Toc160417977][bookmark: _Toc332031719]db_0140: Display of basic block parameters
	ID: Title
	db_0140: Display of basic block parameters

	Priority
	Recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	Important block parameters modified from the default values should be displayed.
Note: The attribute string is one method to support the display of block parameters. The block annotation tab allows you to add the desired attribute information. As of R2011b, masking basic blocks is a supported method for displaying the information. This method is allowed if the base icon is distinguishable.

Correct
[image:] `
Correct: Masked block
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _5.6.1._General][bookmark: _Toc153083696][bookmark: _Toc151543933][bookmark: _Toc156018086][bookmark: _Toc156895528][bookmark: _Toc160417979][bookmark: _Toc332031720]db_0032: Simulink signal appearance
	ID: Title
	db_0032: Simulink signal appearance

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	Signal lines
· Should not cross each other, if possible.
· Are drawn with right angles.
· Are not drawn one upon the other.
· Do not cross any blocks.
· Should not split into more than two sub lines at a single branching point.
	Correct
[image:]
	Incorrect
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc153083697][bookmark: _Toc151543934][bookmark: _Toc156018087][bookmark: _Toc156895529][bookmark: _Toc160417980][bookmark: _Toc332031721]db_0141: Signal flow in Simulink models
	ID: Title
	db_0141: Signal flow in Simulink models

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	· Signal flow in a model is from left to right.
· Exception: Feedback loops
· Sequential blocks or subsystems are arranged from left to right.
· Exception: Feedback loops
· Parallel blocks or subsystems are arranged from top to bottom.
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc160417981][bookmark: _Toc332031722]jc_0171: Maintaining signal flow when using Goto and From blocks
	ID: Title
	jc_0171: Maintaining signal flow when using Goto and From blocks

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	· Visual depiction of signal flow must be maintained between subsystems.
· Use of Goto and From blocks is allowed if:
· At least one signal line is used between connected subsystems.
· Subsystems connected in a feed-forward and feedback loop have at least one signal line for each direction.
· Using Goto and From blocks to create buses or connect inputs to merge blocks are exceptions to this rule.
	Correct
[image:]

	Incorrect
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc246228313][bookmark: _Toc294875236][bookmark: _Toc332031723][bookmark: _Toc153083685][bookmark: _Toc151543927][bookmark: _Toc156018076][bookmark: _Toc156895518][bookmark: _Toc160417969][bookmark: _Toc153083686][bookmark: _Toc156018077][bookmark: _Toc156895519][bookmark: _Toc160417970][bookmark: _Toc156895505][bookmark: _Toc160417983][bookmark: _Toc153083700][bookmark: _Toc151543937][bookmark: _Toc156018090][bookmark: _Toc156895532]na_0032: Use of Merge Blocks
	ID: Title
	na_0032: Use of merge blocks

	Priority
	Strongly Recommended

	Scope
	NA-MAAB

	MATLAB Version
	All

	Prerequisites
	None

	Description
	When using merge blocks:
· Signals entering a merge block must not branch off to any other block.
· With buses:
· All buses must be identical. This includes:
· Number of elements
· Element names
· Element order
· Element data type
· Element size
· Buses must be either all virtual or all non-virtual.
· All bus lines entering a merge block must not branch off to any other block.

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	See Also
	jh_0109: Merge blocks

	Last Change
	V3.00

[bookmark: _Toc332031724]jm_0010: Port block names in Simulink models
	ID: Title
	jm_0010: Port block names in Simulink models

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	db_0042: Ports in Simulink models
na_0005: Port block name visibility in Simulink models

	Description
	For some items, it is not possible to define a single approach applicable to all organizations’ internal processes However, within a given organization, it is important to follow a single consistent approach is followed. An organization applying the guidelines must select one of these alternatives.

1. Names of Inport blocks and Outport blocks must match the corresponding signal or bus names.
Exceptions:
· When any combination of an Inport block, an Outport block, and any other block have the same block name, a suffix or prefix should be used on the Inport and Outport blocks.
· One common suffix / prefix is “_in” for Inports and “_out” for Outports.
· Any suffix or prefix can be used on the ports, however the selected prefix should be consistent.
· Library blocks and reusable subsystems that encapsulate generic functionality.

2. When the names of Inport and Outport blocks are hidden, apply a consistent naming practice for the blocks. Suggested practices include leaving the names as their default names (for example, Out1), giving them the same name as the associated signal or giving them a shortened or mangled version of the name of the associated signal.

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc332031725]jc_0281: Naming of Trigger Port block and Enable Port block
	ID: Title
	[bookmark: _Toc144305718][bookmark: _Toc148237334]jc_0281: Naming of Trigger Port block and Enable Port block

	Priority
	strongly recommended

	Scope
	J-MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	For Trigger port blocks and Enable port blocks, match the name of the signal triggering the subsystem.

· The block name should match the name of the signal triggering the subsystem.
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc332031726]Signals
Signals may be scalars, vectors, or busses. They may carry data or control flows.

You use signal labels to make model functionality more understandable from the Simulink diagram. You can also use them to control the variable names used in simulation and code generation. Enter signal labels only once (at the point of signal origination). Often, you may also want to also display the signal name elsewhere in the model. In these cases, the signal name should be inherited until the signal is functionally transformed. (Passing a signal through an integrator is functionally transforming. Passing a signal through an Inport into a nested subsystem is not.) Once a named signal is functionally transformed, a new name should be associated with it.

Unless explicitly stated otherwise, the following naming rules apply to all types of signals.
[bookmark: _na_0008:_Display_of][bookmark: _Toc160417984][bookmark: _Toc332031727]na_0008: Display of labels on signals
	ID: Title
	na_0008: Display of labels on signals

	Priority
	recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	A label must be displayed on a signal originating from the following blocks:

· Inport block
· From block (block icon exception applies – see Note below)
· Subsystem block or Stateflow chart block (block icon exception applies)
· Bus Selector block (the tool forces this to happen)
· Demux block
· Selector block

· Data Store Read block (block icon exception applies)
· Constant block (block icon exception applies)

A label must be displayed on any signal connected to the following destination blocks (directly or by way of a basic block that performs a non transformative operation):

· Outport block
· Goto block
· Data Store Write block
· Bus Creator block
· Mux block
· Subsystem block
· Chart block

Note: Block icon exception (applicable only where called out above): If the signal label is visible in the originating block icon display, the connected signal does not need not to have the label displayed, unless the signal label is needed elsewhere due to a destination-based rule.

Correct
[image:]
Incorrect
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _Toc160417985][bookmark: _Toc332031728]na_0009: Entry versus propagation of signal labels
	ID: Title
	na_0009: Entry versus propagation of signal labels

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	na_0008: Display of labels on signals

	Description
	If a label is present on a signal, the following rules define whether that label shall be created there (entered directly on the signal) or propagated from its true source (inherited from elsewhere in the model by using the ‘<’ character).
1. Any displayed signal label must be entered for signals that:
a. Originate from an Inport at the Root (top) Level of a model
b. Originate from a basic block that performs a transformative operation
(For the purpose of interpreting this rule only, the Bus Creator block, Mux block, and Selector block shall be considered to be included among the blocks that perform transformative operations.)
2. Any displayed signal label must be propagated for signals that:
a. Originate from an Inport block in a nested subsystem
Exception: If the nested subsystem is a library subsystem, a label may be entered on the signal coming from the Inport to accommodate reuse of the library block.
b. Originate from a basic block that performs a non-transformative operation
c. Originate from a Subsystem or Stateflow chart block
Exception: If the connection originates from the output of a library subsystem block instance, a new label may be entered on the signal to accommodate reuse of the library block.
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc153083699][bookmark: _Toc151543936][bookmark: _Toc156018089][bookmark: _Toc156895531][bookmark: _Toc160417987][bookmark: _Toc332031729]db_0097: Position of labels for signals and busses
	ID: Title
	db_0097: Position of labels for signals and busses

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	The labels must be visually associated with the corresponding signal and not overlap other labels, signals, or blocks.

Labels should be located consistently below horizontal lines and close to the corresponding source or destination block.

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc153083713][bookmark: _Toc151543948][bookmark: _Toc156018107][bookmark: _Toc156895545][bookmark: _Toc160417988][bookmark: _Toc332031730]db_0081: Unconnected signals, block inputs and block outputs
	ID: Title
	db_0081: Unconnected signals and block inputs / outputs

	Priority
	Mandatory

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	A system must not have any:
· Unconnected subsystem or basic block input.
· Unconnected subsystem or basic block outputs
· Unconnected signal lines
In addition:
· An otherwise unconnected input should be connected to a ground block
· An otherwise unconnected output should be connected to a terminator block

Correct
[image:]
Incorrect
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc160417989][bookmark: _Toc332031731]Block Usage
[bookmark: _Toc153083701][bookmark: _Toc151543938][bookmark: _Toc156018091][bookmark: _Toc156895533][bookmark: _Toc160417990][bookmark: _Toc332031732]na_0003: Simple logical expressions in If Condition block
	ID: Title
	na_0003: Simple logical expressions in If Condition block

	Priority
	mandatory

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	A logical expression may be implemented within an If Condition block instead of building it up with logical operation blocks, if the expression contains two or fewer primary expressions. A primary expression is defined here to be one of the following:
· An input
· A constant
· A constant parameter
· A parenthesized expression containing no operators except zero or one instances of the following operators: <, <= , > , >= , ~=, ==, ~ . (See for the following examples.)

Exception:

A logical expression may contain more than two primary expressions if both of the following are true:
· The primary expressions are all inputs
· Only one type of logical operator is present

Examples of Acceptable Exceptions:

· u1 || u2 || u3 || u4 || u5
· u1 && u2 && u3 && u4

Examples of Primary Expressions:

· u1
· 5
· K
· (u1 > 0)
· (u1 <= G)
· (u1 > U2)
· (~u1)
· (EngineState.ENGINE_RUNNING)

Examples of Acceptable Logical Expressions:

· u1 || u2
· (u1 > 0) && (u1 < 20)
· (u1 > 0) && (u2 < u3)
· (u1 > 0) && (~u2)
· (EngineState.ENGINE_RUNNING) && (PRNDLState.PRNDL_PARK)
Note: In this example EngineState.ENGINE_RUNNING and PRNDLState.PRNDL_PARK are enumeration literals

Examples of unacceptable logical expressions include:

· u1 && u2 || u3		 (too many primary expressions)
· u1 && (u2 || u3)	 (unacceptable operator within primary expression)
· (u1 > 0) && (u1 < 20) && (u2 > 5) (too many primary expressions that are not inputs)
· (u1 > 0) && ((2*u2) > 6)		 (unacceptable operator within primary expression)

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _na_0002:_Appropriate_implementation][bookmark: _Toc153083702][bookmark: _Toc151543939][bookmark: _Toc156018096][bookmark: _Toc156895534][bookmark: _Toc160417991][bookmark: _Toc332031733]na_0002: Appropriate implementation of fundamental logical and numerical operations
	ID: Title
	na_0002: Appropriate implementation of fundamental logical and numerical operations

	Priority
	mandatory

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	· Blocks that are intended to perform numerical operations must not be used to perform logical operations.
Incorrect
[image:]
· A logical output should never be directly connected to the input of blocks that operate on numerical inputs.
· The result of a logical expression fragment should never be operated on by a numerical operator.
· This guideline for logical operations also applies to enumerated data types.
Incorrect
[image:]
· Blocks that are intended to perform logical operations must not be used to perform numerical operations.
· A numerical output should never be connected to the input of blocks that operate on logical inputs.

Incorrect
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V3.00

[bookmark: _Toc153083705][bookmark: _Toc151543940][bookmark: _Toc156018099][bookmark: _Toc156895537][bookmark: _Toc160417992][bookmark: _Toc332031734]jm_0001: Prohibited Simulink standard blocks inside controllers
	ID: Title
	jm_0001: Prohibited Simulink standard blocks inside controllers

	Priority
	mandatory

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	
· Control algorithm models must be designed from discrete blocks.
· The MathWorks “Simulink Block Data Type Support” table provides a list of blocks that support production code generation.
· Use blocks that are listed as “Code Generation Support”.
· Do not use blocks that are listed as “Not recommended for production code” – see footnote 4 in the table.
· In addition to the blocks defined by the above rule, do not use the following blocks

	Sources are not allowed:

	Sine Wave
	[image:]

	Pulse Generator
	[image:]

	Random Number
	[image:]

	Uniform Random Number
	[image:]

	Band-Limited White Noise
	[image:]

	Additional blocks that are not allowed:
The MAAB Style guide group recommends not using the following blocks. The list can be extended by individual companies.

	Slider Gain
	[image:]

	Manual Switch
	[image:]

	Complex to Magnitude-Angle
	[image:]

	Magnitude-Angle to Complex
	[image:]

	Complex to Real-Imag
	[image:]

	Real-Imag to Complex
	[image:]

	Polynomial
	[image:]

	MATLAB Fcn(1)
	[image:]

	Goto Tag Visibility
	[image:]

	Probe
	[image:]

	Notes
	(1) In R2011a, the MATLAB Fnc was renamed the Interpreted MATLAB Function

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _Toc153083706][bookmark: _Toc151543941][bookmark: _Toc156018100][bookmark: _Toc156895538][bookmark: _Toc160417993][bookmark: _Toc332031735]hd_0001: Prohibited Simulink sinks
	ID: Title
	hd_0001: Prohibited Simulink sinks

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	Control algorithm models must be designed from discrete blocks.
	The following sinks blocks are not allowed:

	To File
To Workspace
Stop Simulation

	[image:]

	Note
	Simulink Scope and Display blocks are allowed in the model diagram. Consider using the Simulink Signal logging and Signal and Scope Manager for data logging and viewing requirements.

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _Toc160417994][bookmark: _Toc332031736][bookmark: _Toc153083708][bookmark: _Toc151543943][bookmark: _Toc156018102]na_0011: Scope of Goto and From blocks
	ID: Title
	na_0011: Scope of Goto and From blocks

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	For signal flows, the following rules apply:
· From and Goto blocks must use local scope.
Note: Control flow signals may use global scope.
Control flow signals are output from:
· Function-call generators
· If and Case blocks
· Function call outputs from MATLAB and Stateflow blocks
Control flow signals are identified as dashed lines in the model after updating a Simulink model.
[image:]
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _Toc160417995][bookmark: _Toc332031737]jc_0141: Use of the Switch block
	ID: Title
	jc_0141: Use of the Switch block

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	· The switch condition, input 2, must be a Boolean value.
· The block parameter “Criteria for passing first input” should be set to u2~=0.
	Correct
[image:]
[image:]

	Incorrect
[image:]
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _Toc153083692][bookmark: _Toc156018082][bookmark: _Toc156895524][bookmark: _Toc160417975][bookmark: _Toc332031738][bookmark: _Toc160417982][bookmark: _Toc160417996][bookmark: _Toc157830982]jc_0121: Use of the Sum block
	ID: Title
	jc_0121: Use of the Sum block

	Priority
	recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	Sum blocks should:
· Use the “rectangular” shape.
· Be sized so that the input signals do not overlap.
	Correct
[image:]
	Incorrect

[image:]　　[image:]

· You may use the round shape in feedback loops.
· There should be no more then 3 inputs.
· The inputs may be positioned at 90,180,270 degrees.
· The output should be positioned at 0 degrees.
	Correct
[image:]

	Incorrect

	Correct

	Incorrect

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc332031739]jc_0131: Use of Relational Operator block
	ID: Title
	jc_0131: Use of Relational Operator block

	Priority
	recommended

	Scope
	J-MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	When the relational operator is used to compare a signal to a constant value, the constant input should be the second (lower) input signal.
	Correct

	Incorrect

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc332031740]jc_0161: Use of Data Store Read/Write/Memory blocks
	ID: Title
	jc_0161: Use of Data Store Read / Write / Memory blocks

	Priority
	strongly recommended

	Scope
	J-MAAB

	MATLAB Version
	All

	Prerequisites
	jc_0341: Data flow layer

	Description
		Data Store Read
	[image:]
	Data Store Write
	[image:]
	Data Store Memory
	[image:]

· Prohibited in a data flow layer.
· Allowed between subsystems running at different rates.

	Rationale
		· [bookmark: _GoBack]Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc157311624][bookmark: _Toc157312301][bookmark: _Toc157830919][bookmark: _Toc157311625][bookmark: _Toc157312302][bookmark: _Toc157830920][bookmark: _Toc156895540][bookmark: _Toc160417997][bookmark: _Toc332031741]Block Parameters
[bookmark: _db_0112:_Indexing][bookmark: _Toc153083709][bookmark: _Toc151543944][bookmark: _Toc156018103][bookmark: _Toc156895541][bookmark: _Toc160417998][bookmark: _Toc332031742]db_0112: Indexing
	ID: Title
	db_0112: Indexing

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	Use a consistent vector indexing method for all blocks.

When possible, use zero-based indexing to improve code efficiency. However, since MATLAB blocks do not support zero-based indexing, one-based indexing can be used for models containing MATLAB blocks.

	See Also
	· cgsl_0101: Zero-based indexing
· hisl_0021: Consistent vector indexing

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _Toc160417999][bookmark: _Toc332031743]na_0010: Grouping data flows into signals
	ID: Title
	na_0010: Grouping data flows into signals

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	Vectors
The individual scalar signals composing a vector must have common functionality, data types, dimensions and units. The most common example of a vector signal is sensor or actuator data that is grouped into an array indexed by location. The output of a Mux block must always be a vector. The inputs to a Mux block must always be scalars.

Busses
Signals that do not meet criteria for us as a vector, as described above, must only be grouped into bus signals. Use Bus selector blocks may only be used with a bus signal input; they must not be used to extract scalar signals from vector signals.

Examples
Some examples of vector signals include:
	Vector type
	Size

	Row vector
	[1 n]

	Column vector
	[n 1]

	Wheel speed vector
	[1 Number of wheels]

	Cylinder vector
	[1 Number of cylinders]

	Position vector based on 2-D coordinates
	[1 2]

	Position vector based on 3-D coordinates
	[1 3]

Some examples of bus signals include:
	Bus Type
	Elements

	Sensor Bus
	Force Vector [Fx, Fy, Fz]

	
	Position

	
	Wheel Speed Vector [Θlf, Θrf, Θlr, Θrr]

	
	Acceleration

	
	Pressure

	Controller Bus
	Sensor Bus

	
	Actuator Bus

	Serial Data Bus
	Coolant Temperature

	
	Engine Speed,
Passenger Door Open

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc157311629][bookmark: _Toc157312306][bookmark: _Toc157830924][bookmark: _Toc157311686][bookmark: _Toc157312363][bookmark: _Toc157830981][bookmark: _Toc153083711][bookmark: _Toc151543946][bookmark: _Toc156018105][bookmark: _Toc156895543][bookmark: _Toc160418000][bookmark: _Toc332031744]db_0110: Tunable parameters in basic blocks
	ID: Title
	db_0110: Tunable parameters in basic blocks

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	To insure that a parameter is tunable, it must be entered in a block dialog field:
· Without any expression.
· Without a data type conversion.
· Without selection of rows or columns.

Correct

Incorrect

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _Toc153083715][bookmark: _Toc151543950][bookmark: _Toc156018109][bookmark: _Toc156895547][bookmark: _Toc160418001][bookmark: _Toc332031745]Simulink Patterns
The following rules illustrate sample patterns used in Simulink diagrams. As such, they would normally be part of a much larger Simulink diagram.
[bookmark: _na_0012:_Use_of][bookmark: _Toc506028099][bookmark: _Toc141672542][bookmark: _Toc160418002][bookmark: _Toc332031746]na_0012: Use of Switch vs. If-Then-Else Action Subsystem
	ID: Title
	na_0012: Use of Switch vs. If-Then-Else Action Subsystem

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	The Switch block:
· Should be used for modeling simple if-then-else structures, if the associated then and else actions involve only the assignment of constant values.

The if-then-else action subsystem construct:
· Should be used for modeling if-then-else structures, if the associated then and/or else actions require complicated computations. This will maximize simulation efficiency and the efficiency of generated code (Note that even a basic block, for example a table look-up, may require fairly complicated computations.)
[image:]

· Must be used for modeling if-then-else structures, if the purpose of the construct is to avoid an undesirable numerical computation, such as division by zero.
· Should be used for modeling if-then-else structures, if the explicit or implied then or the else action is just to hold the associated output value(s).

In other cases, the degree of complexity of the then and/or else action computations and the intelligence of the Simulink simulation and code generation engines determine the appropriate construct.

These statements also apply to more complicated nested and cascaded if-then-else structures and case structure implementations.

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _db_0114:_Simulink_patterns][bookmark: _Toc153083716][bookmark: _Toc151543951][bookmark: _Toc156018110][bookmark: _Toc156895548][bookmark: _Toc160418003][bookmark: _Toc332031747]db_0114: Simulink patterns for If-then-else-if constructs
	ID: Title
	db_0114: Simulink patterns for If-then-else-if constructs

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	The following patterns should be used for If-then-else-if constructs within a Simulink model:
	Equivalent Functionality
	Simulink pattern

	IF THEN ELSE IF with blocks

if (If_Condition) {
output_signal = If_Value;
}
else if (Else_If_Condition) {
output_signal = Else_If_Value;
}
else {
output_signal = Else_Value;
}
	[image:]

	IF THEN ELSE IF
with if/then/else subsystems:
if(Fault_1_Active & Fault_2_Active)
{
 ErrMsg = SaftyCrit;
}
else if (Fault_1_Active | Fault_2_Active)

{
 ErrMsg = DriveWarn;
}
else
{
 ErrMsg = NoFaults;
}
	[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc153083717][bookmark: _Toc151543952][bookmark: _Toc156018111][bookmark: _Toc156895549][bookmark: _Toc160418004][bookmark: _Toc332031748]db_0115: Simulink patterns for case constructs
	ID: Title
	db_0115: Simulink patterns for case constructs

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	The following patterns are used for case constructs within Simulink:
	Equivalent Functionality
	Simulink Pattern

	Case
With switch case block

switch (PRNDL_Enum)
{
case 1
 TqEstimate = ParkV;
 break;
case 2
 TqEstimae = RevV;
 break;
default
 TqEstimate = NeutralV;
 break;
}
	

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _Toc235438696][bookmark: _Toc246228332][bookmark: _Toc294875254][bookmark: _Toc332031749]na_0028: Use of If-Then-Else Action Subsystem to Replace Multiple Switches
	ID: Title
	na_0028: Use of If-Then-Else Action Subsystem to Replace Multiple Switches

	Priority
	Recommended

	Scope
	NA-MAAB

	MATLAB Version
	All

	MA Check
	No

	Prerequisites
	na_0012: Use of Switch vs. If-Then-Else Action Subsystem
db_0114: Simulink patterns for If-then-else-if constructs

	Description
	The use of switch constructs should be limited, typically to 3 levels. Replace switch constructs that have more than 3 levels with an If-Then-Else action subsystem construct.

Incorrect
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	See also
	bn_0003: Use of If-Then-Else Action Subsystem to Replace Multiple Switches

	Last Change
	V3.00

[bookmark: _Toc153083718][bookmark: _Toc151543953][bookmark: _Toc156018112][bookmark: _Toc156895550][bookmark: _Toc160418005][bookmark: _Toc332031750]db_0116: Simulink patterns for logical constructs with logical blocks
	ID: Title
	db_0116: Simulink patterns for logical constructs with logical blocks

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
		Use the following patterns for logical combinations within a Simulink model:

	Equivalent Functionality
	Simulink pattern

	Combination of logical signals: conjunctive
	

	Combination of logical signals: disjunctive
	

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V1.00

[bookmark: _Toc153083719][bookmark: _Toc151543954][bookmark: _Toc156018113][bookmark: _Toc156895551][bookmark: _Toc160418006][bookmark: _Toc332031751]db_0117: Simulink patterns for vector signals
	ID: Title
	db_0117: Simulink patterns for vector signals

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	Simulink is a vectorizeable modeling language allowing for the direct processing of vector data. The following patterns are used for vector signals within Simulink model:
	Equivalent Functionality
	Simulink Pattern

	Vector loop:
for (i=0; i<input_vector_size; i++) {
output_vector(i) = input_vector(i) * tunable_parameter_value;
}
	[image:]

	Vector loop:
for (i=0; i<input_vector_size; i++) {
output_vector(i) = input_vector(i) * tunable_parameter_vector(i);
}
	[image:]

	Vector loop:
output_signal = 1;
for (i=0; i<input_vector_size; i++) {
output_signal = output_signal * input_vector(i);
}
	[image:]

	Vector loop:
output_signal = 1;
for (i=0; i<input_vector_size; i++) {
output_signal = output_signal / input_vector(i);
}
	[image:]

	Vector loop:
for (i=0; i<input_vector_size; i++) {
output_vector(i) = input_vector(i) + tunable_parameter_value;
}
	[image:]

	Vector loop:
for (i=0; i<input_vector_size; i++) {
output_vector(i) = input_vector(i) + tunable_parameter_vector(i);
}
	[image:]

	Vector loop:
output_signal = 0;
for (i=0; i<input_vector_size; i++) {
output_signal = output_signal + input_vector(i);
}
	[image:]

	Vector loop:
output_signal = 0;
for (i=0; i<input_vector_size; i++) {
output_signal = output_signal - input_vector(i);
}
	[image:]

	Minimum or maximum of a signal or a vector over time:
	[image:]

	Change event of a signal or a vector:
	[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _Toc160418008][bookmark: _Toc332031752]jc_0351: Methods of initialization
	ID: Title
	jc_0351: Methods of initialization

	Priority
	recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	db_0140: Display of block parameters

	Description
	Simple initialization:
· Blocks such as the Unit Delay, which have an initial value field, can be used to set simple initial values.
· To determine if the initial value needs to be displayed, see db_0140.
	Example
[image:]

Initialization that requires computation:
The following rules apply for complex initializations:
· Initialization should be performed in a separate subsystem.
· Initialization subsystem should have a name that indicates that initialization is performed by the subsystem.

Complex initializations can either be done at a local level (Example A), at a global level (Example B), or a combination of local and global.

	Example A
[image:]

	Example B
[image:]
Or
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc160418007][bookmark: _Toc332031753][bookmark: _Toc153083720][bookmark: _Toc151543955][bookmark: _Toc156018114][bookmark: _Toc156895552][bookmark: _Toc160418009]jc_0111: Direction of Subsystem
	ID: Title
	[bookmark: _Toc144305699][bookmark: _Toc148237317]jc_0111: Direction of Subsystem

	Priority
	strongly recommended

	Scope
	J-MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	Subsystem must not be reversed.
	Correct
[image:]

	Incorrect
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc332031754]Stateflow
[bookmark: _Toc153083721][bookmark: _Toc151543956][bookmark: _Toc156018115][bookmark: _Toc156895553][bookmark: _Toc160418010][bookmark: _Toc332031755]Chart Appearance
[bookmark: _Toc154891128][bookmark: _db_0123:_Stateflow_port_names][bookmark: _Toc153083723][bookmark: _Toc151543957][bookmark: _Toc156018117][bookmark: _Toc156895555][bookmark: _Toc160418012][bookmark: _Toc332031756]db_0123: Stateflow port names
	ID: Title
	db_0123: Stateflow port names

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	The name of a Stateflow input/output should be the same as the corresponding signal.
Exception: Reusable Stateflow blocks may have different port names.

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V1.00

[bookmark: _Toc153083724][bookmark: _Toc151543958][bookmark: _Toc156018118][bookmark: _Toc156895556][bookmark: _Toc160418013][bookmark: _Toc332031757]db_0129: Stateflow transition appearance
	ID: Title
	db_0129: Stateflow transition appearance

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	Transitions in Stateflow:
· Do not cross each other, if possible.
· Are not drawn one upon the other.
· Do not cross any states, junctions or text fields.
· Allowed, if transitioning to an internal state.
Transition labels can be visually associated to the corresponding transition.
Correct
[image:]
Correct
Transition crosses state boundary to connect to substate
[image:]
Incorrect
Transition crosses each other and transition crosses through state.[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _Toc153083725][bookmark: _Toc151543959][bookmark: _Toc156018119][bookmark: _Toc156895557][bookmark: _Toc160418014][bookmark: _Toc332031758]db_0137: States in state machines
	ID: Title
	db_0137: States in state machines

	Priority
	mandatory

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	db_0149: Flowchart patterns for condition actions

	Description
	For all levels in a state machine, including the root level, for states with exclusive decomposition, the following rules apply:
· At least two exclusive states must exist.
· A state cannot have only one substate.
· The initial state of every hierarchical level with exclusive states is clearly defined by a default transition. In the case of multiple default transitions, there must always be an unconditional default transition.

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V3.00

[bookmark: _Toc156895558][bookmark: _Toc160418015][bookmark: _Toc332031759]db_0133: Use of patterns for Flowcharts	
	ID: Title
	db_0133: Use of patterns for Flowcharts

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	A Flowchart is built with the help of Flowchart patterns (for example, IF-THEN-ELSE, FOR LOOP, and so on):
· The data flow is oriented from the top to the bottom.
· Patterns are connected with empty transitions.

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _Toc153083726][bookmark: _Toc151543960][bookmark: _Toc156018120][bookmark: _Toc156895559][bookmark: _Toc160418016][bookmark: _Toc332031760]db_0132: Transitions in Flowcharts	
	ID: Title
	db_0132: Transitions in Flowcharts

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	The following rules apply to transitions in Flowcharts:
· Conditions are drawn on the horizontal.
· Actions are drawn on the vertical.
· Loop constructs are intentional exceptions to this rule.
· Transitions have a condition, a condition action, or an empty transition.
Transition with condition:
[image:]
Transition with condition action:
[image:]
Empty transition:
[image:]
Transition actions are not used in Flowcharts. Transition actions are only valid when used in transitions between states in a state machine, otherwise they are not activated because of the inherent dependency on a valid state to state transition to activate them.
Transition action:
[image:]
At every junction, except for the last junction of a flow diagram, exactly one unconditional transition begins. Every decision point (junction) must have a default path.
[image:]
A transition may have a comment:
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc160418017][bookmark: _Toc332031761][bookmark: _Toc153083728][bookmark: _Toc151543961][bookmark: _Toc156018122][bookmark: _Toc156895561]jc_0501: Format of entries in a State block
	ID: Title
	jc_0501: Format of entries in a State block

	Priority
	recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	A new line should:
· Start after the entry (en) during (du), and exit (ex) statements.
· Start after the completion of an assignment statement “;”.

	Correct
[image:]

	Incorrect
Failed to start a new line after en, du and ex.
[image:]
Incorrect
Failed to start a new line after the completion of an assignment statement “;”.
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc160418018][bookmark: _Toc332031762]jc_0511: Setting the return value from a graphical function
	ID: Title
	jc_0511: Setting the return value from a graphical function

	Priority
	mandatory

	Scope
	J-MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	The return value from a graphical function must be set in only one place.
	Correct
Return value A is set in one place
[image:]

	Incorrect
Return value A is set in multiple places.
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc160418019][bookmark: _Toc332031763]jc_0531: Placement of the default transition
	ID: Title
	jc_0531: Placement of the default transition

	Priority
	recommended

	Scope
	J-MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	· Default transition is connected at the top of the state.
· The destination state of the default transition is put above the other states in the same hierarchy.
	Correct

[image:]
	· The default transition is connected at the top of the state.
· The destination state of the default transition is put above the other states in the same hierarchy.

	Incorrect
[image:]
	· Default transition is connected at the side of the state (State 1).
· The destination state of the default transition is lower than the other states in the same hierarchy (SubSt_off).

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc160418020][bookmark: _Toc332031764]jc_0521: Use of the return value from graphical functions
	ID: Title
	jc_0521: Use of the return value from graphical functions

	Priority
	recommended

	Scope
	J-MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	The return value from a graphical function should not be used directly in a comparison operation.
	Correct
An intermediate variable is used in the conditional expression after the assignment of the return value from the function "temp_test" to the intermediate variable "a".
[image:]

	Incorrect
Return value of the function “temp_test” is used in the conditional expression.
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc160418021][bookmark: _Toc332031765]Stateflow data and operations
[bookmark: _Toc153083729][bookmark: _Toc151543962][bookmark: _Toc156018123][bookmark: _Toc156895562][bookmark: _Toc160418022][bookmark: _Toc332031766]na_0001: Bitwise Stateflow operators
	ID: Title
	na_0001: Bitwise Stateflow operators

	Priority
	strongly recommended

	Scope
	MAAB

	Prerequisites
	

	Description
	The bitwise Stateflow operators (&, |, and ^) should not be used in Stateflow charts unless you want bitwise operations.

To enable bitwise operations:
1. Select File > Chart Properties
2. Select “Enable C-bit Operations”.

[image:]

	Correct
Use “&&” and “II” for Boolean operation.
[image:]　　[image:]

Use “&” and “I” for bit operation.
[image:]　　[image:]

	Incorrect
Use “&” and “I” for Boolean operation.
[image:]　　[image:]

	Rational
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _Toc153083730][bookmark: _Toc151543963][bookmark: _Toc156018124][bookmark: _Toc156895563]
[bookmark: _Toc160418023][bookmark: _Toc332031767]jc_0451: Use of unary minus on unsigned integers in Stateflow
	ID: Title
	jc_0451: Use of unary minus on unsigned integers in Stateflow

	Priority
	recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	Do not perform unary minus on unsigned integers.
	Correct
[image:][image:]

	Incorrect
[image:][image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc156895696][bookmark: _Toc160418024][bookmark: _Toc332031768]na_0013: Comparison operation in Stateflow
	ID: Title
	na_0013: Comparison operation in Stateflow

	Priority
	recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	· Comparisons should be made only between variables of the same data type.
· If comparisons are made between variables of different data types, the variables need to be explicitly type cast to matching data types.

	Correct
Same data type in “i” and “n”
[image:]　[image:]
	Incorrect
Different data type in “i” and “d”
[image:]
[image:]

	Correct
[image:]
[image:]
	

· Do not make comparisons between unsigned integers and negative numbers.

	Incorrect

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.10

[bookmark: _Toc160418025][bookmark: _Toc332031769]db_0122: Stateflow and Simulink interface signals and parameters
	ID: Title
	db_0122: Stateflow and Simulink interface signals and parameters

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	All charts should use strong data typing with Simulink (The option "Use Strong Data Typing with Simulink I/O" must be selected).
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc153083731][bookmark: _Toc151543964][bookmark: _Toc156018125][bookmark: _Toc156895564][bookmark: _Toc160418026][bookmark: _Toc332031770]db_0125: Scope of internal signals and local auxiliary variables
	ID: Title
	db_0125: Scope of internal signals and local auxiliary variables

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	Internal signals and local auxiliary variables are "Local data" in Stateflow:
· All local data of a Stateflow block must be defined on the chart level or below the Object Hierarchy.
· No local variables exist on the machine level (that is, there is no interaction between local data in different charts).
· Parameters and constants are allowed at the machine level.
Correct
[image:]
Incorrect [image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc160418027][bookmark: _Toc332031771]jc_0481: Use of hard equality comparisons for floating point numbers in Stateflow
	ID: Title
	jc_0481: Use of hard equality comparisons for floating point numbers in Stateflow

	Priority
	recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	· Do not use hard equality comparisons (Var1 == Var2) with two floating point numbers.
· If a hard comparison is required, a margin of error should be defined and used in the comparison (LIMIT in the example).
· Hard equality comparisons may be done between two integer data types.
	Correct
[image:]
[image:]

	Incorrect
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.00

[bookmark: _Toc160418028][bookmark: _Toc332031772]jc_0491: Reuse of variables within a single Stateflow scope
	ID: Title
	jc_0491: Reuse of variables within a single Stateflow scope

	Priority
	recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	The same variable should not have multiple meanings (usages) within a single Stateflow state.
	Correct
Variable of loop counter must not be used other than loop counter.
[image:]
	Incorrect
The meaning of the variable “i” changes from the index of the loop counter to the sum of a+b
[image:]

	Correct
tempVar is defined as local scope in both SubState_A and SubState_B

[image:]
[image:]
[image:]

	

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _Toc160418029][bookmark: _Toc332031773]jc_0541: Use of tunable parameters in Stateflow
	ID: Title
	jc_0541: Use of tunable parameters in Stateflow

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	Create tunable parameters in Stateflow charts in one of the following ways:
1.) Define the parameters in the Stateflow chart and corresponding parameters in the base workspace
2.) Include the tunable parameters as an input into the Stateflow chart. The parameters must be defined in the base workspace.
	Base workspace definitions
	[image:]

	Stateflow chart definitions
	[image:]

	Stateflow chart
	[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _Toc153083737][bookmark: _Toc151543970][bookmark: _Toc156018131][bookmark: _Toc156895570][bookmark: _Toc160418030][bookmark: _Toc332031774][bookmark: _Toc153083732][bookmark: _Toc151543965][bookmark: _Toc156018126][bookmark: _Toc156895565]db_0127: MATLAB commands in Stateflow
	ID: Title
	db_0127: MATLAB commands in Stateflow

	Priority
	mandatory

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	In Stateflow charts:
· Do not use the .ml syntax
Individual companies should decide on the use of MATLAB functions. If they are permitted, then MATLAB functions should only be accessed through the MATLAB function block.

Correct
[image:]
Incorrect
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Note
	Code generation supports a limited subset of the MATLAB functions. For a complete list of the supported function, see the MathWorks documentation.

	Last Change
	V2.20

[bookmark: _Toc153083738][bookmark: _Toc151543971][bookmark: _Toc156018132][bookmark: _Toc156895571][bookmark: _Toc160418031][bookmark: _Toc332031775]jm_0011: Pointers in Stateflow
	ID: Title
	jm_0011: Pointers in Stateflow

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	In a Stateflow diagram, pointers to custom code variables are not allowed.

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V1.00

[bookmark: _Toc160418032][bookmark: _Toc332031776]Events
[bookmark: _db_0126:_Scope_of_events][bookmark: _Toc153083733][bookmark: _Toc151543966][bookmark: _Toc156018127][bookmark: _Toc156895566][bookmark: _Toc160418033][bookmark: _Toc332031777]db_0126: Scope of events
	ID: Title
	db_0126: Scope of events

	Priority
	Mandatory

	Scope
	MAAB

	MATLAB Version
	Pre R2009b

	Prerequisites
	

	Description
	The following rules apply to events in Stateflow:
· All events of a Chart must be defined on the chart level or lower.
· There is no event on the machine level (that is, there is no interaction with local events between different charts).

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _Toc153083734][bookmark: _Toc151543967][bookmark: _Toc156018128][bookmark: _Toc156895567][bookmark: _Toc160418034][bookmark: _Toc332031778]jm_0012: Event broadcasts
	ID: Title
	jm_0012: Event broadcasts

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	db_0126: Scope of events

	Description
	The following rules apply to event broadcasts in Stateflow:
· Directed event broadcasts are the only type of event broadcasts allowed.
· The send syntax or qualified event names are used to direct the event to a particular state.
· Multiple send statements should be used to direct an event to more than one state.
Correct: Example using the send syntax:
[image:]
Correct: Example using qualified event names:
[image:]
Incorrect: Use of a non-directed event
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _Toc157311712][bookmark: _Toc157312389][bookmark: _Toc157831007][bookmark: _Toc157915526][bookmark: _Toc157915689][bookmark: _Toc157933763][bookmark: _Toc157933938][bookmark: _Toc151543978][bookmark: _Toc156018140][bookmark: _Toc156895579][bookmark: _Toc160418035]
[bookmark: _Toc332031779]Statechart Patterns
[bookmark: _Toc151543979][bookmark: _Toc156018143][bookmark: _Toc156895582][bookmark: _Toc160418036][bookmark: _Toc332031780]db_0150: State machine patterns for conditions
	ID: Title
	db_0150: State machine patterns for conditions

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	The following patterns are used for conditions within Stateflow state machines:
	Equivalent Functionality
	State Machine Pattern

	ONE CONDITION:

(condition)
	[image:]

	UP TO THREE CONDITIONS, SHORT FORM:
(The use of different logical operators in this form is not allowed, use sub conditions instead)

(condition1 && condition2)
(condition1 || condition2)
	[image:]

	TWO OR MORE CONDITIONS, MULTILINE FORM:
A sub condition is a set of logical operations, all of the same type, enclosed in parentheses.
(The use of different operators in this form is not allowed, use sub conditions instead.)

(condition1 ...
&& condition2 ...
&& condition3)

(condition1 ...
|| condition2 ...
|| condition3)
	[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _Toc151543980][bookmark: _Toc156018144][bookmark: _Toc156895583][bookmark: _Toc160418037][bookmark: _Toc332031781]db_0151: State machine patterns for transition actions
	ID: Title
	db_0151: State machine patterns for transition actions

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	The following patterns are used for transition actions within Stateflow state machines:
	Equivalent Functionality
	State Machine Pattern

	ONE TRANSITION ACTION:

action;
	[image:]

	TWO OR MORE TRANSITION ACTIONS, MULTILINE FORM:
(Two or more transition actions in one line are not allowed.)

action1;
action2;
action3;
	[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _Toc153083739][bookmark: _Toc151543972][bookmark: _Toc156018133][bookmark: _Toc156895572][bookmark: _Toc160418038][bookmark: _Toc332031782][bookmark: _Toc151543981][bookmark: _Toc156018145][bookmark: _Toc156895584]Flowchart Patterns
The following rules illustrate sample patterns used in flow charts. As such they would normally be part of a much larger Stateflow diagram.
[bookmark: _db_0148:_Flowchart_patterns_for_con][bookmark: _db_0148:_Flowchart_patterns][bookmark: _Toc153083740][bookmark: _Toc151543973][bookmark: _Toc156018134][bookmark: _Toc156895573][bookmark: _Toc160418039][bookmark: _Toc332031783]db_0148: Flowchart patterns for conditions
	ID: Title
	db_0148: Flowchart patterns for conditions

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	The following patterns are used for conditions within Stateflow Flowcharts:
	Equivalent Functionality
	Flowchart Pattern

	ONE CONDITION:

[condition]
	[image:]

	UP TO THREE CONDITIONS, SHORT FORM: (The use of different logical operators in this form is not allowed. Use sub conditions instead.)

[condition1 && condition2 && condition3]
[condition1 || condition2 || condition3]
	[image:]

	TWO OR MORE CONDITIONS, MULTILINE FORM:
(The use of different logical operators in this form is not allowed. Use sub conditions instead.)

[condition1 ...
&& condition2 ...
&& condition3]
[condition1 ...
|| condition2 ...
|| condition3]
	[image:]

	CONDITIONS WITH SUBCONDITIONS:
(The use of different logical operators to connect sub conditions is not allowed. The use of brackets is mandatory.)

[(condition1a || condition1b) ...
&& (condition2a || condition2b) ...
&& (condition3)]
[(condition1a && condition1b) ...
|| (condition2a && condition2b) ...
|| (condition3)]
	[image:]

	CONDITIONS THAT ARE VISUALLY SEPARATED:
(This form can be combined with the preceding patterns.)

[condition1 && condition2]
[condition1 || condition2]
	[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _db_0149:_Flowchart_patterns_for_con][bookmark: _db_0149:_Flowchart_patterns][bookmark: _Toc153083741][bookmark: _Toc151543974][bookmark: _Toc156018135][bookmark: _Toc156895574][bookmark: _Toc160418040][bookmark: _Toc332031784]db_0149: Flowchart patterns for condition actions
	ID: Title
	db_0149: Flowchart patterns for condition actions

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	The following patterns are used for condition actions within Stateflow Flowcharts:
	Equivalent Functionality
	Flowchart Pattern

	ONE CONDITION ACTION:
action;
	[image:]

	TWO OR MORE CONDITION ACTIONS, MULTILINE FORM:
(Two or more condition actions in one line are not allowed.)
action1; ...
action2; ...
action3; ...

	[image:]

	CONDITION ACTIONS, WHICH ARE VISUALLY SEPARATED:
(This form can be combined with the preceding patterns.)
action1a;
action1b;
action2;
action3;
	[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V2.20

[bookmark: _Toc153083742][bookmark: _Toc151543975][bookmark: _Toc156018136][bookmark: _Toc156895575][bookmark: _Toc160418041][bookmark: _Toc332031785]db_0134: Flowchart patterns for If constructs
	ID: Title
	db_0134: Flowchart patterns for If constructs

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	db_0148: Flowchart patterns for conditions
db_0149: Flowchart patterns for condition actions

	Description
	The following patterns are used for If constructs within Stateflow Flowcharts:
	Equivalent Functionality
	Flowchart Pattern

	IF THEN
if (condition){
 action;
}
	[image:]

	IF THEN ELSE
if (condition) {
 action1;
}
else {
 action2;
}
	[image:]

	IF THEN ELSE IF
if (condition1) {
 action1;
}
else if (condition2) {
 action2;
}
else if (condition3) {
 action3;
}
else {
 action4;
}
	

	Cascade of IF THEN
if (condition1) {
 action1;
 if (condition2) {
 action2;
 if (condition3) {
 action3;
 }
 }
}
	

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V1.00

[bookmark: _Toc153083743][bookmark: _Toc151543976][bookmark: _Toc156018137][bookmark: _Toc156895576][bookmark: _Toc160418042][bookmark: _Toc332031786]db_0159: Flowchart patterns for case constructs
	ID: Title
	db_0159: Flowchart patterns for case constructs

	Priority
	strongly recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	db_0148: Flowchart patterns for conditions
db_0149: Flowchart patterns for condition actions

	Description
	The following patterns must be used for case constructs within Stateflow Flowcharts:
	Equivalent Functionality
	Flowchart Pattern

	CASE with exclusive selection
selection = ...;
switch (selection) {
 case 1:
 action1;
 break;
 case 2:
 action2;
 break;
 case 3:
 action3;
 break;
 default:
 action4;
}
	

	CASE with exclusive conditions
c1 = condition1;
c2 = condition2;
c3 = condition3;
if (c1 && !c2 && !c3) {
 action1;
}
else if (!c1 && c2 && !c3) {
 action2;
}
else if (!c1 && !c2 && c3) {
 action3;
}
else {
 action4;
}
	

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V1.00

[bookmark: _Toc153083744][bookmark: _Toc151543977][bookmark: _Toc156018138][bookmark: _Toc156895577][bookmark: _Toc160418043][bookmark: _Toc332031787]db_0135: Flowchart patterns for loop constructs
	ID: Title
	db_0135: Flowchart patterns for loop constructs

	Priority
	recommended

	Scope
	MAAB

	MATLAB Version
	All

	Prerequisites
	db_0148: Flowchart patterns for conditions
db_0149: Flowchart patterns for condition actions

	Description
	The following patterns must be used to create Loops within Stateflow Flowcharts:
	Equivalent Functionality
	Flowchart Pattern

	FOR LOOP
for (index=0;index<number_of_loops;index++) {
 action;
}
	[image:]

	WHILE LOOP
while (condition) {
 action;
}
	[image:]

	DO WHILE LOOP
do {
 action;
}
while (condition);
	[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V1.00

[bookmark: _Toc151543982][bookmark: _Toc156018146][bookmark: _Toc156895585]
[bookmark: _Toc332031788]State chart architecture
[bookmark: _Toc332031789]na_0038: Levels in Stateflow charts
	ID: Title
	na_0038: Levels in Stateflow charts

	Priority
	Recommended

	Scope
	NA-MAAB

	MATLAB Version
	All

	Prerequisite
	

	Description
	The number of nested States should be limited, typically 3 per level. If additional levels are required, use sub-charts.
Incorrect: Level_4_a and Level_4_b are nested more then 3 deep.
[image:]
Correct: The 4 levels are encapsulated inside an sub chart
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V3.00

[bookmark: _na_0039:_Use_of][bookmark: _Toc332031790]na_0039: Use of Simulink in Stateflow charts
	ID: Title
	na_0039: Use of Simulink in Stateflow charts

	Priority
	Recommended

	Scope
	NA-MAAB

	MATLAB Version
	2010B and Later

	Prerequisite
	

	Description
	Do not nest Stateflow charts inside Simulink functions included in Stateflow charts.
Incorrect
[image:]

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V3.00

[bookmark: _Toc332031791]na_0040: Number of states per container
	ID: Title
	na_0040: Number of states per container

	Priority
	Recommended

	Scope
	NA-MAAB

	MATLAB Version
	All

	Prerequisite
	

	Description
	The number of viewable States per container should be limited, typically to 6 to 10 states per container. The number is based on the visible states in the diagram.
Correct
[image:]

	Note
	A container is either a State, Box or root level chart.

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V3.00

[bookmark: _Toc332031792]na_0041: Selection of function type

	ID: Title
	na_0041: Selection of function type

	Priority
	Recommended

	Scope
	NA-MAAB

	MATLAB Version
	All

	Prerequisite
	

	Description
	Stateflow supports three types of functions: Graphical, MATLAB and Simulink. The appropriate function depends on the type of operations required:
· Simulink
· Transfer functions
· Integrators
· Table look-ups
· MATLAB
· Complex equations
· If / then /else logic
· Graphical functions
· If / then / else logic

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V3.00

[bookmark: _Toc332031793]na_0042: Location of Simulink functions
	ID: Title
	na_0042: Location of Simulink functions

	Priority
	Recommended

	Scope
	NA-MAAB

	MATLAB Version
	All

	Prerequisite
	na_0039: Use of Simulink in Stateflow charts

	Description
	When deciding whether to embed Simulink functions inside a Stateflow chart, the following conditions make embedding the preferred option. If the Simulink functions:
· Use only local Chart data
or
· Use a mixture of local Chart data and inputs from Simulink
or
· Are called from multiple locations within the chart
or
· Are not called every time step

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V3.00

[bookmark: _Toc332031794][bookmark: _Toc160418044]Enumerated Data
[bookmark: _Toc332031795]na_0033: Enumerated Types Usage
	ID: Title
	na_0033: Enumerated Types Usage

	Priority
	Recommended

	Scope
	NA-MAAB

	MATLAB Version
	R2010b and later

	Prerequisites
	na_0002: Appropriate implementation of fundamental logical and numerical operations

	Description
	An enumerated data type should be used when a signal or parameter can take on a finite set of integer values, and those values are associated with a set of named items. The names, called literals, have meaning in the context of the algorithm or the domain in which it operates. Typically, these literals represent an operating mode, signal status, build variation, or some other discrete property that the quantity represented by the variable can take on. A typical automotive example of this is the modes of a transmission: Park, Reverse Neutral, Drive, Low

Within a project, there must be provisions in the code build process to ensure that the same literal is not defined by multiple enumerated data types.

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	See also
	dm_0002: Enumerated type usage

	Last Change
	V3.00

[bookmark: _Toc332031796]na_0031: Definition of default enumerated value
	[bookmark: _Hlk289764045]ID: Title
	na_0031: Definition of default enumerated value

	Priority
	Recommended

	Scope
	NA-MAAB

	MATLAB Version
	R2010b and later

	Prerequisites
	

	Description
	The default value of the enumeration should always be explicitly defined for the enumerated type.

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V3.00

[bookmark: _Toc332031797]MATLAB Functions
[bookmark: _Toc332031798]MATLAB Function Appearance
[bookmark: _Toc332031799][bookmark: _Toc294875320]na_0018: Number of nested if/else and case statement
	ID: Title
	na_0018: Number of nested if/else and case statement

	Priority
	Strongly Recommended

	Scope
	NA-MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	The number of levels of nested if /else and case statements should be limited, typically to 3 levels.

	See also
	jr_0002: Number of nested if/else and case statement blocks

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V3.00

[bookmark: _Toc332031800]na_0019: Restricted Variable Names
	ID: Title
	na_0019: Restricted Variable Names

	Priority
	Mandatory

	Scope
	NA-MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	To improve the readability of the MATLAB code, avoid using reserved C variable names. For example, avoid using const, TRUE, FALSE, infinity, nil, double, single, or enum in MATLAB Function code. These names may conflict with the compiler after C code is generated from the MATLAB code.

Avoid using variable names that conflict with MATLAB Functions, for example "conv".

	Note
	Reserved key words are defined in Simulink Coder > User’s Guide > Code Generation> Configuration > Code Appearance.

	See also
	Derived from jh_0021: Restricted Variable Names

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V3.00

[bookmark: _Toc235438769][bookmark: _Toc246228406][bookmark: _Toc294875335][bookmark: _Toc332031801]na_0025: MATLAB Function Header
	ID: Title
	na_0025: MATLAB Function Header

	Priority
	Strongly Recommended

	Scope
	NA-MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	MATLAB Functions must have a descriptive header. Header content may include, but is not limited to, the following types of information:

· Function name
· Description of function
· Assumptions and Limitations
· Description of changes from previous versions
· Lists of inputs and outputs

Example:
[image:]

	See also
	jh_0073: eML Header version

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V3.00

[bookmark: _Toc332031802]MATLAB Function Data and Operations
[bookmark: _Toc235438757][bookmark: _Toc246228394][bookmark: _Toc294875323][bookmark: _Toc332031803]na_0034: MATLAB Function block input/output settings
	ID: Title
	na_0034: MATLAB Function block input/output settings

	Priority
	Strongly recommended

	Scope
	NA-MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	All inputs and outputs to MATLAB Function blocks should have the data type explicitly defined, either in the Model Explorer or at the start of the function. This provides a more rigorous data type check for MATLAB Function blocks and prevents the need for using assert statements.

	See also
	jh_0063: eML block input / output settings

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V3.00

[bookmark: _Toc235438768][bookmark: _Toc246228405][bookmark: _Toc294875334][bookmark: _Toc332031804]na_0024: Global Variables
	ID: Title
	na_0024: Global Variables

	Priority
	Strongly recommended

	Scope
	NA-MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	The preferred method for accessing common data is with signal lines. However, if required, Data Store Memory can be used to emulate global memory.

Example:
In this example, the same Data Store Memory (ErrorFlag_DataStore) is written to two separate MATLAB Functions.

[image:]

[image:]

	See also
	ek_0003: Global Variables

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V3.00

[bookmark: _Toc332031805]MATLAB Function Patterns
[bookmark: _Toc235438763][bookmark: _Toc246228400][bookmark: _Toc294875329][bookmark: _Toc332031806]na_0022: Recommended patterns for Switch / Case statements
	ID: Title
	na_0022: Recommended patterns for Switch / Case statements

	Priority
	Mandatory

	Scope
	NA-MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	Switch / Case statements must use constant values for the “Case” arguments. Input variables cannot be used in the “Case” arguments

Correct
[image:]

Incorrect
[image:]

	See also
	jh_0026: Switch / Case statement

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V3.00

[bookmark: _Toc332031807]MATLAB Function Usage
[bookmark: _Toc294875318][bookmark: _Toc332031808]na_0016: Source lines of MATLAB Functions
	ID: Title
	na_0016: Source lines of MATLAB Functions

	Priority
	Mandatory

	Scope
	NA-MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	The length of MATLAB functions should be limited, with a recommended limit of 60 lines of code. This restriction applies to MATLAB Functions that reside in the Simulink block diagram and external MATLAB files with a .m extension.

If sub-functions are used, they may use additional lines of code. Also limit the length of sub-functions to 60 lines of code.

	See also
	IM_0008: Source lines of eML

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V3.00

[bookmark: _Toc235438755][bookmark: _Toc246228391][bookmark: _Toc294875319][bookmark: _Toc332031809]na_0017: Number of called function levels
	ID: Title
	na_0017: Number of called function levels

	Priority
	Mandatory

	Scope
	NA-MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	The number of levels of sub-functions should be limited, typically to 3 levels. MATLAB function blocks that resides at the Simulink block diagram level counts as the first level, unless it is simply a wrapper for an external MATLAB file with a .m extension.

This includes functions that are defined within the MATLAB block and those in separate .m files.

	Note
	Standard utility functions, such as built in functions like sqrt or log, are not included in the number of levels. Likewise, commonly used custom utility functions can be excluded from the number of levels.

	See also
	im_0009: Number of called function levels

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V3.00

[bookmark: _Toc235438761][bookmark: _Toc246228398][bookmark: _Toc294875327][bookmark: _Toc332031810]na_0021: Strings
	ID: Title
	na_0021: Strings

	Priority
	Strongly recommended

	Scope
	NA-MAAB

	MATLAB Version
	All

	Prerequisites
	

	Description
	The use of strings is not recommended. MATLAB Functions store strings as character arrays. The arrays cannot be resized to accommodate a string value of different length, due to lack of dynamic memory allocation. Stings are not a supported data type in Simulink, so MATLAB Function blocks cannot pass the string data outside the block.

For example, the following code will produce an error:

name = ‘rate_error’; %this creates a 1 x 10 character array
name = ‘x_rate_error’; %this causes an error because the array size is now 1 x 12, not 1 x 10

	Note
	If the string is being used for switch / case behavior, consider using enumerated data types.

	See also
	jh_0024: Strings

	Rationale
		· Readability
· Workflow
· Simulation
	· Verification and Validation
· Code Generation

	Last Change
	V3.00

[bookmark: _Toc332031811]Appendix A: Recommendations for Automation Tools

These recommendations are for companies that automate checking of the Style Guidelines. The MathWorks Automotive Advisory Board (MAAB) developed these recommendations for tool vendors who create tools developed with MathWorks tools that check models against these guidelines. In order to provide the maximum information to potential users of the tools, the MAAB strongly recommends that tool vendors provide a compliance matrix that is easily accessible when the tool is running. This information should be available without a need to purchase the tool.

The compliance matrix should include the following information:
· Version of the guidelines that are checked – shall include the complete title as found on the title page of this document.
· The MAAB Style Guidelines Title and Version document number will be included
· Table consisting of the following information for each guideline.
· Guideline ID
· Guideline Title
· Level of Compliance
· Detail

The Guideline ID and Title shall be exactly as included in this document. The Level of Compliance shall be one of the following.

· Correction – The tool checks and automatically or semi-automatically corrects the non-compliance.
· Check – The tool checks and flags non-compliances. It is the developer’s responsibility to make the correction.
· Partial – The tool checks part of the guideline. The detail section should clearly identify what is and what is not checked.
· None – the guideline is not checked by the tool. It is highly recommended that the vendor provide a recommendation of how to manually check any guideline not checked by the tool.

[bookmark: _Toc151543984][bookmark: _Toc156018148][bookmark: _Toc156895586][bookmark: _Toc160418045][bookmark: _Toc332031812]Appendix B: Guideline Writing
Guidelines with the following characteristics are easier to understand and use. At minimum, when writing a new guideline, it should be:
· Understandable and unambiguous
· Easy to find
· Minimal
Guidelines with these characteristics are easier to understand and use.

"Understandable and unambiguous Guideline description should be precise, clearly worded, concise and should define property characteristic of a model (or part of a model). Use the words "must," "shall," "should," and "may" carefully; they have distinct meanings that are important for model developers and model checkers (human and automated). It is helpful to the reader if the guideline author describes how the conformant state can be reached (e.g. by selecting particular options or clicking a certain button). Examples, counterexamples, pictures, diagrams, and screenshots are also helpful and therefore encouraged.
Minimize the allowable exceptions to a guideline; they blur the guideline and make it harder to apply. If a guideline has many allowable exceptions, you may be trying to cover too many characteristics with one guideline - see "minimal" below for some solutions.

By "Easy to find Guideline should have a clear, stable title and be properly located among all the other guidelines. A guideline's title should describe the topic covered but not the specific evaluation criteria. This makes the title less likely to change over time and therefore easier to find. Specific evaluation criteria should be included in the guideline's description. For example, if a guideline addresses the characters allowed in names, the guideline's title should be something like "Allowed characters in names," and the guideline's description should indicate specifically what characters are or are not to be used. If a guideline has prerequisites, they should appear above or before the dependent guideline. (This may not always be possible if the prerequisite is in a different section.)

Minimal Guideline should address only one model characteristic at a time. Guidelines should be atomic. So, for example, instead of writing a big guideline that addresses error prevention and readability at the same time, make two guidelines – one that addresses error prevention and one that addresses readability. Make one a prerequisite of the other if appropriate. Also, big guidelines are more likely than small guidelines to require compromises for wide acceptance. Big guidelines may therefore end up being weaker, less specific, and less beneficial. Small, focused guidelines will be less likely to change due to compromise and easier to adopt.

[bookmark: _Toc151543990][bookmark: _Toc156018150][bookmark: _Toc156895587][bookmark: _Toc160418046][bookmark: _Toc332031813]Appendix C: Flowchart Reference

	The following patterns are used for If-then-else-if constructs within Stateflow Flowcharts:
	Straight Line Flow Chart Pattern
	Curved Line Flow Chart Pattern

	IF THEN

	[image:]
	[image:]

	IF THEN ELSE

	[image:]
	[image:]

	IF THEN ELSE IF

	

	[image:]

	Cascade of IF THEN

	

	[image:]

	The following patterns are used the following patterns for case constructs within Stateflow Flowcharts:
	Straight Line Flow Chart Pattern
	Curved Line Flow Chart Pattern

	CASE with exclusive selection

	[image:]
	[image:]

	CASE with exclusive conditions

	[image:]
	[image:]

	Use the following patterns for For Loops within Stateflow Flowcharts:
	Straight Line Flow Chart Pattern
	Curved Line Flow Chart Pattern

	FOR LOOP

	[image:]
	[image:]

	WHILE LOOP

	[image:]
	[image:]

	DO WHILE LOOP

	[image:]
	[image:]

	Alternately, use the following patterns for If-then-else-if constructs within Stateflow Flowcharts:
	Straight Line Flow Chart Pattern
	Alternate Straight Line Flow Chart Pattern

	IF THEN ELSE IF

	

	

	Cascade of IF THEN

	

	

[bookmark: _Toc332031814][bookmark: _Toc151543993][bookmark: _Toc156018153][bookmark: _Toc156895589][bookmark: _Toc160418048]Obsolete rules
[bookmark: _Toc332031815]Removed in version 2.2
JM_0013 : Annotations : The rule was original written due to a printing bug in R13. The bug was fixed in R14 SP1.
[bookmark: _Toc332031816]Removed in version 3.0
No guidelines were removed in version 3.0

[bookmark: _Toc332031817]Glossary
[bookmark: _Toc506028199]Actions
Actions are part of Stateflow diagram execution. The action can be executed as part of a transition from one state to another, or depend on the activity status of a state. Transitions can have condition actions and transition actions. For example,

[image:]

States can have entry, during, exit, and, on event_name actions. For example,

[image:]

If you enter the name and backslash followed directly by an action or actions (without the entry keyword), the action(s) are interpreted as entry action(s). This shorthand is useful if you are only specifying entry actions.
The action language defines the categories of actions you can specify and their associated notations. An action can be a function call, an event to be broadcast, a variable to be assigned a value, etc.
[bookmark: _Toc506028200]
Action Language
Sometimes you want actions to take place as part of Stateflow diagram execution. The action can be executed as part of a transition from one state to another, or it can depend on the activity status of a state. Transitions can have condition actions and transition actions. States can have entry, during, exit, and, on event_name actions.
An action can be a function call, an event to be broadcast, a variable to be assigned a value, etc. The action language defines the categories of actions you can specify and their associated notations. Violations of the action language notation are flagged as errors by the parser. This section describes the action language notation rules.

[bookmark: _Toc506028201]Chart Instance
A chart instance is a link from a Stateflow model to a chart stored in a Simulink library. A chart in a library can have many chart instances. Updating the chart in the library automatically updates all the instances of that chart.

[bookmark: _Toc506028202]Condition
A condition is a Boolean expression to specify that a transition occur given that the specified expression is true. For example,

[image:]
The action language defines the notation to define conditions associated with transitions.

[bookmark: _Toc506028203]Connective Junction
Connective junctions are decision points in the system. A connective junction is a graphical object that simplifies Stateflow diagram representations and facilitates generation of efficient code. Connective junctions provide alternative ways to represent desired system behavior.
This example shows how connective junctions (displayed as small circles) are used to represent the flow of an if code structure.

[image:]

Or the equivalent squared style
[image:]
	Name
	Button Icon
	Description

	Connective junction
	[image:]
	One use of a Connective junction is to handle situations where transitions out of one state into two or more states are taken based on the same event but guarded by different conditions.

[bookmark: _Toc506028204]
Data
Data objects store numerical values for reference in the Stateflow diagram.

[bookmark: _Toc506028205]Defining Data

A state machine can store and retrieve data that resides internally in its own workspace. It can also access data that resides externally in the Simulink model or application that embeds the state machine. When creating a Stateflow model, you must define any internal or external data referenced by the state machine's actions

[bookmark: _Toc506028206]Data Dictionary
The data dictionary is a database where Stateflow diagram information is stored. When you create Stateflow diagram objects, the information about those objects is stored in the data dictionary once you save the Stateflow diagram.

[bookmark: _Toc506028207]Decomposition
A state has decomposition when it consists of one or more substates. A Stateflow diagram that contains at least one state also has decomposition. Representing hierarchy necessitates some rules around how states can be grouped in the hierarchy. A superstate has either parallel (AND) or exclusive (OR) decomposition. All substates at a particular level in the hierarchy must be of the same decomposition.

Parallel (AND) State Decomposition. Parallel (AND) state decomposition is indicated when states have dashed borders. This representation is appropriate if all states at that same level in the hierarchy are active at the same time. The activity within parallel states is essentially independent.
Exclusive (OR) State Decomposition. Exclusive (OR) state decomposition is represented by states with solid borders. Exclusive (OR) decomposition is used to describe system modes that are mutually exclusive. Only one state, at the same level in the hierarchy, can be active at a time.

[bookmark: _Toc506028208]Default Transition
Default transitions are primarily used to specify which exclusive (OR) state is to be entered when there is ambiguity among two or more neighboring exclusive (OR) states. For example, default transitions specify which substate of a superstate with exclusive (OR) decomposition the system enters by default in the absence of any other information. Default transitions are also used to specify that a junction should be entered by default. A default transition is represented by selecting the default transition object from the toolbar and then dropping it to attach to a destination object. The default transition object is a transition with a destination but no source object.
	Name
	Button Icon
	Description

	Default transition
	[image:]
	Use a Default transition to indicate, when entering this level in the hierarchy, which state becomes active by default.

[bookmark: _Toc506028209]
Events
Events drive the Stateflow diagram execution. All events that affect the Stateflow diagram must be defined. The occurrence of an event causes the status of the states in the Stateflow diagram to be evaluated. The broadcast of an event can trigger a transition to occur and/or can trigger an action to be executed. Events are broadcast in a top-down manner starting from the event's parent in the hierarchy.

[bookmark: _Toc506028210]Finite State Machine
A finite state machine (FSM) is a representation of an event-driven system. FSMs are also used to describe reactive systems. In an event-driven or reactive system, the system transitions from one mode or state, to another prescribed mode or state, provided that the condition defining the change is true.

[bookmark: _Toc506028211]Flow Graph
A flow graph is the set of Flowcharts that start from a transition segment that, in turn, starts from a state or a default transition segment.

Flowchart (also known as Flow Path)
A Flowchart is an ordered sequence of transition segments and junctions where each succeeding segment starts on the junction that terminated the previous segment.

[bookmark: _Toc506028213]Flow Subgraph
A flow subgraph is the set of Flowcharts that start on the same transition segment.

[bookmark: _Toc506028214]Hierarchy
Hierarchy enables you to organize complex systems by placing states within other higher-level states. A hierarchical design usually reduces the number of transitions and produces neat, more manageable diagrams.

[bookmark: _Toc506028215]History Junction
A History Junction provides the means to specify the destination substate of a transition based on historical information. If a superstate has a History Junction, the transition to the destination substate is defined to be the substate that was most recently visited. The History Junction applies to the level of the hierarchy in which it appears.
	Name
	Button Icon
	Description

	History Junction
	[image:]
	Use a History Junction to indicate, when entering this level in the hierarchy, that the last state that was active becomes the next state to be active.

[bookmark: _Toc506028216]Inner Transitions
An inner transition is a transition that does not exit the source state. Inner transitions are most powerful when defined for superstates with XOR decomposition. Use of inner transitions can greatly simplify a Stateflow diagram.

[bookmark: _Toc506028217]Library Link
A library link is a link to a chart that is stored in a library model in a Simulink block library.

[bookmark: _Toc506028218]Library Model
A Stateflow library model is a Stateflow model that is stored in a Simulink library. You can include charts from a library in your model by copying them. When you copy a chart from a library into your model, Stateflow does not physically include the chart in your model. Instead, it creates a link to the library chart. You can create multiple links to a single chart. Each link is called a chart instance. When you include a chart from a library in your model, you also include its state machine. Thus, a Stateflow model that includes links to library charts has multiple state machines. When Stateflow simulates a model that includes charts from a library model, it includes all charts from the library model even if there are links to only some of its models. However, when Stateflow generates a stand-alone or Real-Time Workshop® target, it includes only those charts for which there are links. A model that includes links to a library model can be simulated only if all charts in the library model are free of parse and compile errors.

[bookmark: _Toc506028219]Machine
A machine is the collection of all Stateflow blocks defined by a Simulink model exclusive of chart instances (library links). If a model includes any library links, it also includes the state machines defined by the models from which the links originate.

[bookmark: _Toc506028220]Nonvirtual Block
Blocks that perform a calculation; such as a Gain block.

[bookmark: _Toc506028221]Notation
A notation defines a set of objects and the rules that govern the relationships between those objects. Stateflow notation provides a common language to communicate the design information conveyed by a Stateflow diagram.

Stateflow notation consists of:
· A set of graphical objects
· A set of nongraphical text-based objects
· Defined relationships between those objects

[bookmark: _Toc506028222]Parallelism
A system with parallelism can have two or more states that can be active at the same time. The activity of parallel states is essentially independent. Parallelism is represented with a parallel (AND) state decomposition.

[bookmark: _Toc506028223]Real-Time System
A system that uses actual hardware to implement algorithms, for example, digital signal processing or control applications.

[bookmark: _Toc506028224]Real-Time Workshop®
Real-Time Workshop is an automatic C language code generator for Simulink. It produces C code directly from Simulink block diagram models and automatically builds programs that can be run in real-time in a variety of environments.

[bookmark: _Toc506028225]Real-Time Workshop Target
An executable built from code generated by Real-Time Workshop

[bookmark: _Toc506028226]S-Function
A customized Simulink block written in C or M-Code. C-code S-Functions can be inlined in Real-Time Workshop. When using Simulink together with Stateflow for simulation, Stateflow generates an S-Function (MEX-file) for each Stateflow machine to support model simulation. This generated code is a simulation target and is called the S-Fun target within Stateflow.

[bookmark: _Toc506028227]Signal propagation
Process used by Simulink to determine attributes of signals and blocks, such as data types, labels, sample time, dimensionality, and so on, that are determined by connectivity

Signal source
The signal source is the block of origin for a signal. The signal source may or may not be the true source

[bookmark: _Toc506028228]Simulink
Simulink is a software package for modeling, simulating, and analyzing dynamic systems. It supports linear and nonlinear systems, modeled in continuous time, sampled time, or a hybrid of the two. Systems can also be multi-rate, i.e., have different parts that are sampled or updated at different rates.
It allows you to represent systems as block diagrams that you build using your mouse to connect blocks and your keyboard to edit block parameters. Stateflow is part of this environment. The Stateflow block is a masked Simulink model. Stateflow builds an S-Function that corresponds to each Stateflow machine. This S-Function is the agent Simulink interacts with for simulation and analysis.
The control behavior that Stateflow models complements the algorithmic behavior modeled in Simulink block diagrams. By incorporating Stateflow diagrams into Simulink models, you can add event-driven behavior to Simulink simulations. You create models that represent both data and control flow by combining Stateflow blocks with the standard Simulink blockset. These combined models are simulated using Simulink.

[bookmark: _Toc506028229]State
A state describes a mode of a reactive system. A reactive system has many possible states. States in a Stateflow diagram represent these modes. The activity or inactivity of the states dynamically changes based on events and conditions.
Every state has hierarchy. In a Stateflow diagram consisting of a single state, that state's parent is the Stateflow diagram itself. A state also has history that applies to its level of hierarchy in the Stateflow diagram. States can have actions that are executed in a sequence based upon action type. The action types are: entry, during, exit, or on event_name actions.

	Name
	Button Icon
	Description

	State
	[image:]
	Use a state to depict a mode of the system.

[bookmark: _Toc506028230]
Stateflow Block
The Stateflow block is a masked Simulink model and is equivalent to an empty, untitled Stateflow diagram. Use the Stateflow block to include a Stateflow diagram in a Simulink model.
The control behavior that Stateflow models complements the algorithmic behavior modeled in Simulink block diagrams. By incorporating Stateflow blocks into Simulink models, you can add complex event-driven behavior to Simulink simulations. You create models that represent both data and control flow by combining Stateflow blocks with the standard Simulink and toolbox block libraries. These combined models are simulated using Simulink.

[bookmark: _Toc506028231]Stateflow Debugger
Use the Stateflow Debugger to debug and animate your Stateflow diagrams. Each state in the Stateflow diagram simulation is evaluated for overall code coverage. This coverage analysis is done automatically when the target is compiled and built with the debug options. The Debugger can also be used to perform dynamic checking. The Debugger operates on the Stateflow machine.

[bookmark: _Toc506028232]Stateflow Diagram
Using Stateflow, you create Stateflow diagrams. A Stateflow diagram is also a graphical representation of a finite state machine where states and transitions form the basic building blocks of the system

[bookmark: _Toc506028233]Stateflow Explorer
Use the Stateflow Explorer to add, remove, and modify data, event, and target objects.

[bookmark: _Toc506028234]Stateflow Finder
Use the Finder to display a list of objects based on search criteria you specify. You can directly access the properties dialog box of any object in the search output display by clicking on that object.

[bookmark: _Toc506028235]Substate
A state is a substate if it is contained by a superstate.
[image:]

Superstate
A state is a superstate if it contains other states, called substates.
[image:]Target
An executable program built from code generated by Stateflow or Real-Time Workshop.

[bookmark: _Toc506028236]Top down Processing
Top down processing refers to the way in which Stateflow processes states. In particular, Stateflow processes superstates before states. Stateflow processes a state only if its superstate is activated first.

Transition
A transition describes the circumstances under which the system moves from one state to another. Either end of a transition can be attached to a source and a destination object. The source is where the transition begins and the destination is where the transition ends. It is often the occurrence of some event that causes a transition to take place.

[bookmark: _Toc506028237]Transition Path
A transition path is a Flowchart that starts and ends on a state
.
[bookmark: _Toc506028238]Transition Segment
A transition segment is a single directed edge on a Stateflow diagram. Transition segments are sometimes loosely referred to as transitions.

[bookmark: _Toc506028239]Tunable parameters
A Tunable parameters is a parameter that can be adjusted both in the model and in generated code.

True Source
The true source is the block which creates a signal. The true source is different from the signal source since the signal source may be a simple routing block such as a demux block.

[bookmark: _Toc506028240]Virtual Block
When creating models, you need to be aware that Simulink blocks fall into two basic categories: nonvirtual and virtual blocks. Nonvirtual blocks play an active role in the simulation of a system. If you add or remove a nonvirtual block, you change the model's behavior. Virtual blocks, by contrast, play no active role in the simulation. They simply help to organize a model graphically. Some Simulink blocks can be virtual in some circumstances and nonvirtual in others. Such blocks are called conditionally virtual blocks. The following table lists the virtual and conditionally virtual blocks in Simulink.

	Virtual Blocks

	Block Name
	Condition Under Which Block Will Be Virtual

	Bus Selector
	Virtual if input bus is virtual

	Demux
	Always virtual

	Enable
	Virtual unless connected directly to an Outport block

	From
	Always virtual

	Goto
	Always virtual

	Goto Tag Visibility
	Always virtual

	Ground
	Always virtual

	Inport
	Virtual when the block resides within any subsystem block (conditional or not), and does not reside in the root (top-level) Simulink window.

	Mux
	Always virtual

	Outport
	Virtual when the block resides within any subsystem block (conditional or not), and does not reside in the root (top-level)
Simulink window

	Selector
	Virtual except in matrix mode

	Signal Specification
	Always virtual

	Subsystem
	Virtual unless the block is conditionally executed and/or the
block's Treat as Atomic Unit option is selected

	Terminator
	Always virtual

	Trigger
	Virtual if the Outport port is not present

[bookmark: _Toc506028241]
Virtual Scrollbar
A virtual scrollbar enables you to set a value by scrolling through a list of choices. When you move the mouse over a menu item with a virtual scrollbar, the cursor changes to a line with a double arrowhead. Virtual scrollbars are either vertical or horizontal. The direction is indicated by the positioning of the arrowheads. Drag the mouse either horizontally or vertically to change the value.

image84.png

image85.gif

image86.gif

image87.gif

image88.gif

image89.gif

image90.gif

image91.gif

image92.gif
(1o

image93.gif

image94.gif
(R
[fmcw|

image95.gif

image96.gif
Pl
oF)=5

image97.gif
Interpreted
MATLAG Fan

image98.gif
2]

image99.gif
W0, TP 0], €0, 00

image100.png
untitled. mat

simout

To File

To Warkspace

STOP

Stop Simulation

image101.png
W8 Sink Block Parameters: Goto =]
Goto
‘Send signals to From blocks that have the specified tag. I tag
visibility is 'scoped, then a Goto Tag Visibilty block must be used to
define the visibiit of the tag. The block icon displays the selected tag
name (local tags are enclosed in brackets, [1, and scoped tag names
are enclosed in braces, 0).

Parameters

GotoTog: Gotascope Tog Vihity:

image102.png

image103.wmf

image104.png
Pass thiouh nput 1 when input 2 salisfesthe selected cleion: otherwise, pass
thtough nput 3. The inputs ate rumbered top to boltom o lft o right. The input 1
passhiough cilera ate nput 2 greste then o equa, reater than, of ot equal to
the threshold. The fst and thrd input pots are deta pors, and the second input port
isthe canial part

Main | signalData Types |

Citera for passing fist input [.2 — -

Thieshold: W25= Thieshold
0

image105.wmf

image106.png
Main | - Signal Data Types |

Citeria for passing [[2>= Thieshold

Thieshold

el

image107.wmf

image108.wmf

image109.wmf

image110.wmf

image111.png
B
input output
Gain

Gaint

image112.png

image113.png
Gaint

image114.png
Tnput

image115.png
F——

B8

Refatianal
Operator

image116.png
I

& (D
BE
aa

Refatianal
Operator

image117.wmf

image1.png
General | Block Annotation | Callbacks

Usage

Description: Text saved with the block in the model file.
Priority. Specifies the block's order of execution relative to other blocks in the

same model
Tag: Text that appears in the biock label that Simulink generates.

Descripton
Local Tanesge can be used =

image118.wmf

image119.wmf

image120.png
nabie_prarametsrvae |} [tunaie_parametervecior } [Wnable_parameter_aay

image121.png
[nabie_parametevane |} [unae_parametsivecors [tunaie parameter_anard b

[Cinti6(unable_parameter_vaive) b [tunable_parameter_vectord) b [_tunable_paramster_amay(1.1) b

image122.png
boolean

o

7 _value

Else_valus

doutie

doutie

H\$

image123.png
———»|
DynamicSlipFla M

iut)
else
If

Lt }Ouﬁ

TireSlipConst

[WheelSpeed else {}

EngSpeed

Outtf————

CalculateTireSlip

Merge

[TireSlip

image124.png
W _value

sooesn

TG

e vee [EE2 0

image2.wmf
Description: Local language can be used.

image125.png
boolean
Fault_1_Active

boolean
Fault_2_Active

u2

if((u1) & (u2))

elseif((u1) | (u2))

else

| L 2
oo) Ooyrfzeseyl
! ! SafyCritsg
! L 2
[e e double
; outt o9 Errsg
¢‘ DriverWam

else)

outifEE

NoFaults

image126.png
Il

PR R
PO
i
N e N —
v o
N N

Merge

image127.png
Bl Edt Vew Smulation Fomat Toos telp

=lolx|

DSH&| /2@ (& 4[] » = foo [Noma e Res hEES®

]
D
= By
c
Value_1
G} - al r
3
-_” '
] © nl
T Value_B prm
|,
‘ s
x _,\
*’ e »H
Value_D
Product |,
x
“—" i i
Value_D1 Product2
|
‘ s
x _,\
“—' (D!
Value_D2
Produstt |,
-— Swichs
Value_D3

Ready fi17% [odets

image128.png
inpuL_signarl

oR

input_signal2 AND
TRU_Signals
TRSiGRaE | anD
TRUL_Sionals
TRUL_Sionals
input_signal? AND

inpuLsignaig

upuLsignal

image129.png
inpuL_signarl

AND

input_signal2 oR
TRU_Signals
sl | or
TRUL_Sionals
TRUL_Sionals

or
TRU_SignalT

inpuLsignaig

outpuL_signal

image130.png
tunable_parameter_value

inpuL_vector outpuL_vector

Gain

image131.png
tunable_parameter_vector
inpuL_vector

N Gain

outpuL_vector

image3.png
Name: State
Parent: Ghart) SF sample/Chart?
Breskpoints: [State During [State Entry
T~ Test point [~ Output State Activity

Label

T~ State Exit

State

Description

Local language can be used

Document Lirk,

oK Gancel

Help

Fply

image132.png
Product

e || [omaemm

image133.png
Tnpuvector | 11 | oulput_signal

Product

image134.png
inpuL_vector

outpuL_vector
tunable_parameter_value

Canstant

image135.png
inpuL_vector

outpuL_vector
{tunable_parameter_vector|

Canstant

image136.png
)
TR vettor OupUL_signal

image137.png
inpuL_vector

Sum

upuLsignal

image138.png
outpuL_signal_min

Mintax

S e

Unit_Delay

—]
inpuLvector) |max
—> UpULvector_max

Unit_Delay

image139.png
Operatar

[T
T
ST |~ [obusaraemae
:
UL Getay meraiona
Sperar
T
ST~ e
:
UnEDety el
P
input_vector >
= > R tout_vector_ch:
ST Vo 2R
: Cogel
Unit_Delay ~ Relational Operator

image140.png

image141.png
=

ETED)
ot ¥
s

"

T

e

[y

verge

vy

[

image4.png
i
oy,
Pasic.

Back

image142.wmf

image143.png
i ot out| 1w

image144.wmf

image145.wmf

image146.png
[condition1]

[condition2]

state1

[condition]

action; action;

image147.png
InitState/

[InitComplete]

OuterState/

InnerState/

image148.png
ctate [eondition1]
feondition2)

[Gtatel [Gtate2

=]

image149.png
[condition]

image150.png
action;

image151.png

image5.png
Local language can be used

[condition]

{action}

image152.png
faction;

Oo————=0

image153.png
[condition]

action;

image154.png
1 comment */
1 comment */

[condition]

1 comment */

action;

image155.wmf

image156.wmf

image157.wmf

image158.wmf

image159.wmf

image160.wmf

image161.wmf

image6.png
o > E 0

ntoconsbnt Gan sum Saturation b

image162.wmf
The data type of the variable in the

comparison operation is clear

The data type of the variable in the

comparison operation is clear

image163.wmf

image164.png
Chart: C_Bit_Operations

Neme: C Bit Operations
Machine: (machine) na 0001

ERR—
Update methoc: Sanpl Tme:

Enable C-bit operations.

User specified state/transiton executon order
[T Export Chart Level Graphical Functions (Make Giobal)
Use Strong Data Typing with Smuink 1/0

[T Execute (enter) Chart At Initialzation

] titialize Outputs Every Time Chart Wakes Up.
[T Enable Super Step Semantics

‘Support variable-size arrays.

Debugger breakpoint: (] On chart entry.
Description:

[Lock Editor

image165.wmf

image166.wmf

image167.wmf

image168.wmf

image169.wmf

image170.wmf

image171.wmf

image172.wmf

image173.wmf

image174.wmf

image175.wmf

image176.wmf

image177.wmf

image178.png
[int16(i)<d]

=O—+0

image179.png

image180.png

image7.png
stateflow (subchart) na0006part1,/Chart.YehicleStrategy.f
Bl Edt Vew Smuston Toos Add Help

~=lolx|

SHS |y BB F|2F[> 1 = [He B>

FrontAxleActivationCounter

[DeActivationCond] [ActivationCond]

Activated
entry. ActivationCt = ActivationCt + 1;

Mave

image181.png
Chart: Strong_Data_Type

Neme: Strong Data Tpe.
Machine: (machine) db 0122

ERR—
Update methocs Sanpl Tme:

Enable C-bit operations.

User specified state/ransiton executon order
[T Export Chart Level Graphical Functions (Make Giobal)

Use Strong Data Typing with Simiink /0

[T Execute (enter) Chart At Initialization

] itialize Outputs Every Time Chart Wakes Up.
[T Enable Super Step Semantics

‘Support varicble size arays

Debugger breakpoint: [] On chart entry.

[Lock Editor

image182.png
Exploring... model/chart.state [_[CIx]
Fie Edt Iook Add Hep

Object Hierarchy. (Contents of. (state) modalichart state
T model Name Scope Trigger Tywe Sze Min Max Intval FWS ToWws Watch
— @ chart Jdata Local double i

=

f levents(D) data(1) targets(@ 1 [1:1]

image183.png
Exploring... model [_[CIx]
Fie Edt Iook Add Hep

Object Hierarchy. (Contents of (machine) madel
3] Name Scope Trigger Tywe Sze Min Max Intval FWS ToWws Watch
— @ chart Jdata Local double i

=) state ® sfun
N ——]

r levents(0) data(1) targets(1) 2 [[1:2]

image184.wmf

image185.wmf

image186.wmf

image187.wmf

image188.wmf

image189.png
TopState!

SubState_A/

en

tempVar = engSpd:

engSpd = FiltFunc(tempVar);

ENG_CALC

tempVar = tranSpd:
tranSpd = FiltFunc(tempVar)|

image8.png
na0006part2/.../Subsystem/Subsystem * -0/ x|
Fle Edt Yew Smultion Fomak Toos Help

DSES| %@ 420> =00 [Nomd ~

Taydeon o "
CEmmerren—* o »r

FRNOL D

T

Ready fio0% [FredstepDisrets

image190.png
Contents of:jo_0491/ChanfopState/SubState_A.
[Fon [Data Type e [Dot Ty

tempar Local Buitin 32

image191.png
Contents of: jc_0431/Chart/{GpStale/SubS et
[Fon | Data Type Hose [Data

T tempVar Local Buitin)

image192.png
THs
[
W

ik Root
Base Workspace

=
 Model Workspace
€ Configurston (acte)
& Cove forjcosst
9 Advice for e 0541
R jeosst

o Vi Shonbetals 2abict

Name
[inputBasedparam
[ehartgasedparam

Value Dataype |

6
12

ints
ints

image193.png
4 2% Simulink Root
1 Bse workspace
o W jeosa

 Model Workspace
€ Configurston (actie)
& Cove forjcosst
9 advice for e 0541
® jeosst

Column View: Shonpetals 20t

Name

inputBasedparam

] chanBasedparam Parameter

image194.png
inputBasedparam

image195.png
XYTrac/
du
[xForce,yForce] = calcWheel(WhellTqTot wheelAng);

eM

[XF,yF] = calcWhell(WheeiTq wheelAng)

image196.png
XYTrac/
du

XForce = WheelTqTot * ml.cos(wheelAng);
yForce = WheelTqTot * mlsin(wheelAng);

image197.png
Isend(E1B)

image198.png

image199.png
Parallel_1/

PA finput > 10/ Evert

“Parallel_2/

P_B_1/ Event P_B 2

image9.png
Stateflow (subchart) CallSLFromSF_Trans_gf2/CharEUprTbl -[o) x|

Bl Edt Vew Smuston Toos Add Help

SHS |y BB|E 2B 1 = [E@e >

(UorToiLimitTrap N

Ap
entry: ysf = 0;

{TblLint =ut;
ThlIn2 = u2;
MyTbILKUDFC:}

b BEEEE e |3

4

entry: ysf = 2;

Reaty

image200.png
[condition]

image201.png
0

[condition && condition2]

[eondition’ || condition2]

image202.png
]

[condition1
& condition2

& condition?] “
]

[condition1
|| condition2

|| condition2] “
]

image203.png

image204.png
Jactiont;
action2,

- action -

image205.png
[condition]

7 comment */
[eondition]

image206.png
[condition1 && condition2 && condition3]

O——0

[condition{ || condition2 || condition3]

O——0

image207.png
[condition’l
& condition2
& condition3]

[condition1
|| condition2
|| condition2]

image208.png
[{conditionta | condition1b)
8 (condition2a | condition2b)
& condition?]

[{condition1a && condition1b)
|| {condition2a && condition2b)
|| condition2]

image209.png
[eondition1] [condition2]

[eondition1]
=0

Y [condiion2] ¥
@ {1

image10.png
BleEdt

Vew Simuation Format

Tools

Help

=lolx|

DSEHS| =B (e ¢ (22 r sfio | - FHBed nEE€

Ke_CalFactarpr

SMyThILIIpFCS

1
|
|

Ready

g A D
<ystr &) ¥
niox R g
[100%. [FiedStepDiscrete

image210.png
1 comment */

{
action;
action;

image211.png
action;
action2;
action3;

image212.png
{

action;
action2;
action3;

}

actionla;
actiontb;

action2;

}

action3;

image213.png
[eondition]

action;

image214.png
action;

image215.png
eondtion1]

eondtion2)

condiions)

image216.png
[condition1]

{

action1;
i

[condition2]

{

action2;

1

[condiion3]

{

action3;

1

image217.png
{

selection =

}

[selection == 1]

{

action;

}

[selection == 2]

{

action2;

}

[selection == 3]

{
action3;
)
{

actiond;

}

image11.png
stateflow (subchart) na0006part5/Chart.TbIC:

Ble Edt Vew Smuston Toos Add Help

-2~ - T2 >

(ToiCalc l

Ap
entry: ysf = 0;

[ResetCond]

p
during: Thl_in1
Thl_in2 = 02,

MyTbILKUDFC;
ysf =ut;

Mave

image218.png
Q {
¢1 = condition;
€2 = condition2;
€3 = condition3;

1
[c1 &&1c2 && Ic3)

{

action;

}

[lc1 && c2 && Ic3]

{

action2;

}

[lcT && 1c2 && c3)

{
action3;
)
{

actiond;

}

image219.png
findex < number_of_loops]

index++;

}

image220.png
[eondition]

action;

image221.png
action;

[condition]

image222.png
Level 2 a/
Level 3 a/ Level_3 b/
Level 4_a/

Level_4 b/

image223.png

image224.png
4 % RootChart
SimulinkFuntioninsidesStateflow
R ChartinsideSimulinkFen

image225.png

image12.png
=lo/x|

Bl Edt Vew Smulation Fomat Toos telp

DSES| & EB|E ¢ [2c(> sfn o | BEBS @ B

vt ——»{()

ol =

Tarcon

[S V]
EFNTE

” om|——w()

e
[I VY
BN

WyTBILUp FE Subsys

Ke_CalFactorUpr [—p{Ke_CaFscirthr

yTbLpC|

[ToiLkupFe> |

Chat

Ready fioow I [FredstepDisrets

image226.png
%% Function Name: NA 0025 _Example Header
Description: Bn example of a header file
Assumptions: None

Inpus:
List of input arguments

Outputs:
List of output arguments

SRevision: 3.08
SAuthor: MARBS
July 24,20128

sDat.

image227.png
function EngineFaultEvaluation (EngineData)
s#codegen
global Errorflag_Datastore
if (EngineData.REM_HIGH)
Errorflag_Datastore = bitor (Errorflag_DataStore, HIGHRPMFAULT) ;

end

if (EngineData.RPM_LOW)
Errorflag_Datastore = bitor (Errorflag_DataStore, LOWRBMFAULT) ;

end

end

image228.png
function WheelFaultEvaluation (WheelData)
s#codegen
global Errorflag_Datastore
if (WheelData.SlipHigh)
Errorflag_Datastore = bitor (Errorflag_DataStore,WHEELSLIP)

end
if (WheelData.SlipHigh)
Errorflag_Datastore = bitor (Errorflag_DataStore, LOWRBMFAULT) ;

end

end

image229.png
function outVar = NA_0022_Pass(SwitchVar)
s#codegen
switen SwitenVar
case Case_1 Parameter % Parameter
outVar = 0;
case NA_0022.Case_2 % Enumerated Data type
outVar = 1;
case 3 % Hard Code Value
outVar = 2

otheruise
outVar = 10;
end
end

image230.png
function outVar = NA_0022_Fail(Case_1,Case_2,Case_3,SwitchVar)
s#codegen
switen SwitenVar
case Case_1
outVar = 1
case Case_2
outVar = 2;
case Case_s
outVar = 3;
otheruise
outVar =

end
end

image231.png
[condition]

action;

image232.png
14

[condition]

action;

}

image233.png
[condition1]

action;

+

[condition2]

action2;
[condition3] |}
{

action3;

image13.png
=lo/x|

Bl Edt Vew Smulation Fomat Toos telp

DSEHS| =B (et (2 r sfw | - HaBey REE®

T —
LRGP g prev o

TR Cand>

!

[T —
&

or

Moo g >

3 »|
UnfngFiag WiRngriag Rt

Ready fioow I [FredstepDisrets

image234.png
[condition1]

action;

}

[condition2]

action2;

[condition3]

action3;

}

image235.png
selection =

[selection == 1]

actiond; action;

}

image236.png
selection =

[selection == 3] | [selection == 2] '\ [selection == 1]

action3; action2; action’;

}

image237.png
{

¢1 = condition;
c ondition2;
€3 = condition3;

}

[c1 &&1c2 && Ic3)

[lc1 && c2 && Ic3]

[lcT && 1c2 && c3)

action2, | action’;

1 }

action3;

}

actiond;

}

image238.png
c1 = condition1;
c2 = condition2;
c3 = condition3;

}

[c1 &&1c2 && 1c3)

[lc1 && 1c2 && c3] |[lc1 8& c2 &8 1c3]

action;

action3; action2;

}

image239.png
{
index=0;

[index < number_of_loops]

action;
index++;

}

image240.png
[condition]

action;

image241.png
action;

image242.png
[condition1]

image14.png
Ina0006part6/5L. Implementation/NLRRGNSURIS (= - |
fie Edt Yew Smuston Fomak Tods s

DSEHES| SRR 42|

i1

.—»f—».

Lookup Table

o & Tomngrias

T b » WA

fioow | I [FredstepDiaat

image243.png
[condition1]

[condition2]

image244.png
Condition ‘lransition
action action

switch_off [¢1]{ elec_off}/ light_off;

image245.png
Power_on/
entryactiont (;
during: action2(;

extaction30;
on switch_oftaction(;

image246.png
neutral
cluteh_engaged

engaged ®

[speed » threshold] [speed>threshold]is a
m condition
hird

image247.png
it [cl
'g[c1](a1) ! 311{
if [c2]{
a2
}Yelse if [c3]{
as

+
[e2]{a2} }

[c3]{a3}

image248.png
if [c11{
al
if [c2]{
a2
telse if [c3]{
a3
}

image249.png

image15.png
=lo/x|

Bl Edt Vew Smulation Fomat Toos telp

DSEHS| =B[22 r sfw | - HeHBed BEE

LnToNLTeshCond LinngPC|— - — - — - — - — -

% v

Tarctng
NLTotineshCond NLRngFE|— -

TR Cand>

TR Cand> Cinfing Functiontall

Subsystem L

Moo g >
h 2 Werse

Tarctng

T

NLFng Fanctioncall
Subsystem

Ready fioow I [FredstepDisrets

image250.png

image251.png

image252.png

image253.png
Superstate

Substate

Substate

image16.png
stateflow (chart) na0006part6/SF Implementation/Chartd -[o) x|

Ble Edt Vew Smuston Toos Add Help

SHS |y mB|es F|2FE > 1 = e @R

!

(5]

I e

il en: LinRngFC;

| | uLiRnorc:

pn

il [NLToLirThrshCond] ‘[LmToNLThrshCond]
NorlinearRange

!I en: NLRNGFC;

!I du: NLRngFC;

A\

image17.png
Stateflow (subchart) na000Gparts/Chart FilterData.LPF * -[o) x|

Bl Edt Vew Smuston Toos Add Help o

FHE | tmE[E 2> 1 = moER

function yk = LPF(LPF_Coef,u Enable, Reset Resetvalue)

‘(vk:vkmﬂ ‘

[Reset] {yk = ResetValue}

1

é [Enable] fyk = ykm 1 + LPF_Coef*(u- ykm1)}

b BEEEEE e |3

fykm1 = yk}

<

<

Create Super-Transition

image18.png
untitled1/Digital Lowpass Reset Enabled * -[o) x|

Bl Edt Vew Smulation Fomat Toos telp

DSH&| 2@ ¢ (2 r oo [vom]| ZeE

iy > x

b

Threshae

i

Ready fio0% [odets

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png
¥

image26.png

image27.png

image28.png

image29.png

image30.png
Merge

image31.png

image32.png
sf*

image33.png
Comvert

image34.png

image35.png
ETED)
s

image36.png
s

image37.png

image38.png

image39.png

image40.png

image41.png
Acion

image42.png
Variant choices (ist of chid subsystems)

)
@

Nome (read-only) Variant object
IDefault_Fof Defauitier
Functon_Fofa. Functonar
{In_Line_FofA fininelar

image43.png
Variant choices (lst of child subsystems)

[2g] | Name (read-only) Variant object
== autoTrans

Default_4speed defaultrrans (transType ~= 3) && (transType ~= 4) && (transType ~= 5) && (transType ~=0)
(23] [ManuarTrans manualTrans (transType == 0)

image44.png
Variant choices (lst of child subsystems)

(2] [Name (read-ony) | variant obiect | Condtion (read-oniv)

B incorrect_1 (INLINE==0) 8& (transType == 3)

Default_4speed _|incorrectDefault _|((INLINE==0) && (transTyy

=3))==0) && (FUNC == 0) & (transType ~=2)

Ba| [ManuaTrans incorrect 2 (FUNC ==1) | (transType

)

image45.png
Variant choices (lst of child subsystems)

[Zg] [Name (read-ony) |Veriant obiect _| Contion (read-oni)
Default_Fofa defaultvar (FUNC ~= 1) 8& (FUNC ~=2)

() [euncton_otnunctonver

53] [1n_tine_Fofa inLinevar

image46.png
Variant choices (lst of child subsystems)

[2g] | Name (read-only) Variant object Condition (read-only)
@ [Function_FofA functionvar
In_Line_FofA inLinevar

image47.wmf
ｘｘｘ　レイヤー

トリガレイヤ

A

方式

B

方式

処理タイミング記述

8

ms

データフロー

レイヤ

トップレイヤ

8

ms

8

ms

8

ms

EVENT

EVENT

EVENT

構造レイヤ

TypeA

TypeB

Top Layer

Trigger

Layer

Structure Layer

Describe a processing timing

Data Flow

Layer

image48.emf
Describe the outline of the function

Description: *****************

Input

Output

Describe the outline of the function

Description: *****************

Input

Output

image49.wmf

image50.wmf

image51.wmf

image52.wmf
A

タイプの場合は表示不要

Unnecessary display in

TypeA

.

image53.png
Implement logic signals a5 Boolean data (vs. doubie)

image54.png
Ee=

TR

StipCale

image55.png
By >z
<
L]
=
Ll
N =

T

StipCale

image56.png
O

EngRPNLET - .
il e
. g PIL_Fit

[S

cogRPU U

EngineRP P

image57.png
e

O

o

EngineRP P

image58.png
LabeFromSub|

<LabeFromSub>

image59.png

image60.png
G

g

image61.png

image62.png
tunable_parameter_value 1 [nput_signait
Canstant T inpt_signal2
iscrete
e b s ouut_sgnal
> nput_sgneld
Gain From inpt_signals
Data Tyne

Conversion subsystem

image63.png
L e } !
Constant 0.5
: g

Discrete
Gain

Transfer Fen

Sum

subsystem

Data Type
Conversion

image64.png
Correct

B=

e
EngSignal_LowPass

Incorrect

ransSignal_LowPass
005

TR

e

T (D)

image65.png
B ow a0 %

e
Fosiatatonior Enginespesariier

TheotieArbiEation

image66.wmf

image67.png
O il
[eDe >

image68.png

image69.png
n
states = reset
20 Merge
205

prem— intal={10 4]

image70.png
=1

Tnioaiay

image71.wmf

image72.wmf

image73.wmf
Signal flow should be drawn from left to right

Signal flow should be drawn from left to right

image74.png
G P e <]
& [E———— -
|
e I | [ERFIED——w et Fusties
[Ercers erarencar
- romeicer Fueras
s TR
iz roens Fusboss| e Foiose]]
[} Fomen
Foa
[ra—
[plerr s
Fustiose EraRPlCorl—— e ErgRPVICS]]

o

[roresues Tomeng|

==

image75.png
z PP o
CO———pfrurmnay ruern | e o] e
FusRast FusPWEst | TFOSETES] [FoslPwes] > o FusFWESt Fushlode|
[ErEa. ersmecor
[EFrEes— b b ermriice Fusaut g e]
[Tt Toml > TotaiTorg ToRE01|
e e |
TromEr g I] Foaer
Foarer
[F>— pfrran Touton— b oo

e S| a7
(s> e R =
b2 | b{erensns Tastn| e]

==

image76.wmf

image77.png
InPark |ap|)

Vaildstart

Crank

image78.png
jAND|

image79.png
[e E——_]
0

Tty
p—
=
NesscSumaraem
) =3

Ready [0 [

[

e

S

stinea

image80.png
RPM_2_RadPersec

image81.png
RPM_2_RadPersec

image82.png

image83.png

