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Overview

• Cold engine emissions.
• What is model-based calibration?
• Design of experiments.
• Statistical modelling.
• Response model trade-offs and optimisation.
• Implementation.



Cold Engine Emissions

• “Cold Engine” refers to operation after engine start up.
• 20˚C emissions tests.
• Catalytic converter has not achieved light-off.
• Engine operation is referred to as “Catalyst Heating.”

Challenges before light-off

• Minimise exhaust pollutants.
• Achieve acceptable combustion stability.
• Maximise fuel economy.
• Minimise piece costs, e.g. catalytic converter, engine 

hardware.



Engine Control Options

• Ignition timing, and fuelling.
• Continuously, variable valve timing for both intake and 

exhaust.
• Split injection, semi-stratified charge combustion.

Increased complexity means more degrees of freedom !

PFI - 3-4 variables.
DI - 7-8 variables.

Our brains struggle to visualise 2 or 3 variables at a time !



Model-Based Calibration Toolbox

• An add-on toolbox for MATLAB®

• Specifically developed for engine calibration
• Has been commercially available for approximately 5 years
Model-Based Calibration Toolbox provides design tools for calibrating powertrain systems. 
The toolbox is built on the high-performance technical computing environment of 
MATLAB® and the modeling capabilities of Simulink®. Model-Based Calibration Toolbox 
enables the development of optimized calibrations for complex high-degree-of-freedom 
engines that are difficult to calibrate using traditional methods. Using the toolbox, you can 
develop a process for systematically generating calibrations that find an optimal balance of 
engine performance, emissions, and fuel economy.

http://www.mathworks.com/cmsimages/mb_modelbrowser_wl_7362.jpg
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Design of Experiments

• Design of experiments is a technique used to select the most 
statistical useful data.

• Essential for high degree of freedom systems.
• # of points influenced by degrees of freedom and model.

Benefits
• Significant reduction in test points compared with ‘one 

parameter at a time’ or factorial test methods.
• Data collected randomly minimising influence of ‘noise’

parameters.



Examples of DOE

Factorial designs
LV = # of points
L = Levels.
V = Variables.
3 levels and 3 variables = 27 
points.

Central Composite Design 
(CCD)
A classical DOE. 
Minimum of 15 points.
Almost 50 % reduction in test 
points.



Optimal designs and augmented space fills

• Computer based design, flexible and useful for constrained 
design spaces.
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Statistical Modelling

• The choice of variables (factors and responses) should be 
selected based on physical knowledge.

• Models capture the shape of the response and confidence 
intervals.

• Modelling is split into two parts;
• Local model.
• Global model.

Typical Models are;
• Polynomials.
• Radial Basis Functions (RBF).



Local Model

• Local model refers to spark sweep data. Spark is the variable on
the x-axis, all other variables are held constant.

• Fitting local models help identify bad data and ‘expected’ trends.
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Global Model

• Coefficients from the local model are fed into the global 
model.
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• A model now represents the local coefficients, enabling reproduction 
of the spark sweep at any combination of global conditions.



Response Surface

• The response surface can be calculated from the local and 
global model coefficients.
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Optimisation and Trade-offs
• Optimise controlled variables to meet emissions targets and 

satisfy customer expectations.
• Optimisation can focus on one response or consist of trade-

offs.
• Input variables can be optimised manually considering all 

responses.
• Optimization Toolbox algorithms can be used for automatic 

optimisation.



Single Objective Optimisation

• Appropriate when no trade-off exists or is necessary.
• Constraints are used to limit other responses, e.g. combustion 

stability.
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Multi-Objective Optimisation

• Necessary when optimising one response, results in the 
deterioration of another.

• Generates a Pareto, more time consuming to select optimum 
calibration.

Pareto: HC Emissions and Exhaust Gas Energy
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Re-use of Models

• Collect data once.
• Re-use models as many times as required.
• Constraints can be changed.
• Models are an engine test bed simulator.
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Implementation

• Optimum values must translate into ECU maps.
• Take into account strategy deficiencies. 
• Can be limited by engine hardware and other calibration 

areas.
• Cycle analysis.

Calibration Verification On FTP Drive Cycle
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Conclusions

• Model-based calibration and design of experiments is a key 
tool in developing high-technology engines with demanding 
emissions targets and driveability constraints.

• Use of models allows careful scrutiny of multiple responses 
and increases understanding of engine operation across all 
degrees of freedom.

• Use of models as engine test bed simulator reduces 
expensive retesting.

• Experience is a key factor in successful application of this 
process. 
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