MATLAB EXPO 2019
Deploying AI for Near Real-Time Manufacturing Decisions
Pierre Harouimi
The Need for Large-Scale Streaming

Predictive Maintenance
Increase Operational Efficiency
Reduce Unplanned Downtime

Medical Devices
Patient Safety
Better Treatment Outcomes

Connected Cars
Safety, Maintenance
Advanced Driving Features

Finance
High Frequency Trading
Sentiment Analysis
Example Problem: develop and operationalize a machine learning model to predict failures in industrial pumps

Current system requires Operator to manually monitor operational metrics for **anomalies**. Their expertise is required to detect and take preventative action.

- **Process Engineer**: Develops models in MATLAB and Simulink
- **System Architect**: Deploys and operationalizes model on Azure cloud
- **Operator**: Makes operational decisions based on model output

![Pump Summary](image)
Project statement: develop end-to-end predictive maintenance system and demo in one 3-4 week sprint

- Monitor **flow, pressure, and current** of each pump so I always know their operational state
- Need **alert** when fault parameters drift outside an acceptable range so I can take **immediate action**
- Continuous estimate of pump’s **remaining useful life (RUL) & classification** ➔ schedule maintenance or replace the asset
Project statement: constraints & solution

- **Process Engineer**: I have few or zero failure data
 - Generate realistic synthetic data / use Machine Learning models

- **Architect IT**: I have a limited budget, and don’t know the adjusted platform
 - Leverage cloud platform to quickly configure it

- **Process Engineer**: We need multiple tools for multidisciplinary problems
 - Use MATLAB and integrate with other environments
Predictive Maintenance Architecture on Azure

Edge

Production System

Analytics Development

Business Decisions

Connector

kafka

State Persistence

kibana

Presentation Layer

Compilation SDK

Model

MATLAB

Package & Deploy

MATLAB Production Server

Worker processes

Request Broker

Storage Layer

elastic

State Persistence

kibana
Review model requirements

Operator
- Type of fault
- RUL

System Architect
- Time-windowing
- Out-of-order delivery
- Test code
- Scalable code

Process Engineer
A complete end-to-end workflow

Access Data
- Files
 - Database & Cloud
 - Sensors
 - Messy Data
 - Arrange data

Preprocess
- Multiple formats
- Data Transformation
 - Feature Extraction
 - Feature Selection

Identify Features
- Messy Data

Predictive Analytics
- Model Creation
 - Machine Learning
 - Parameter Optimization

Deploy & Integrate
- Model Validation
- Visualization
- Enterprise Scale System
 - Web Apps

- Web Apps
- Tableau
- Power BI
- Qlik
- Kibana
- Kafka
Crankshaft drives three plungers

Three types of failures:

- Outlet Leak Area
- Inlet Blocking Fault
- Crankshaft Bearing Friction
Access/Generate data

Digital Twin

Bearing Friction
Blocking Fault
Leak Area

Data & \textbf{Failures} Simulation

Parallel Computing

Run many \textit{parallel} simulations

\textit{simulationEnsembleDatastore}
Preprocessing data

data = synchronize(Flow, Pressure, Current, t, 'linear');
data = normalize(data, 'center');

timetable
Identify Condition Indicators

Feature Diagnostic Designer

Visualize data
Extract features
Select the most useful features

Process Engineer
Predictive Analytics: regression

= Remaining Useful Life

RUL

Process Engineer
Predictive Analytics: classification

Type of fault

Classification Learner App

Process Engineer
Integrate with Production Systems

Stream Processing: apply model to sensor data in near real-time

- **Continuous Data**
- **Messaging Service**
- **Streaming Function** $f(x)$
- **Make Decisions**

Pump Sensor Data

Update State

System Architect

Process Engineer
Develop a streaming function

function new_state = streamingFunction(data, old_state)

Preprocess signals
[data, features] = preprocessData(data);

Predict faults
[Leak, Blocking, Bearing] = predictFaultValues(features);
FaultType = predictFault(features);
[RUL, Model] = predictUpdateRUL(data.Timestamp, data.Flow, 500);

Update state
new_state = updateState(data, old_state);

Write results
writeResults(Leak, Blocking, Bearing, FaultType, RUL, Model)
end

Process each window of data as it arrives
Previous state
Current window of data to be processed
Package Stream Processing Function easily
Review System Requirements

Operator

- Alerts
- Type of fault

Engineer

- High frequency
- Big Data
- Scalability

System Architect
Integrate Analytics with Production Systems

Edge

Production System

Azure

kafka

Connector

MATLAB Production Server

Worker processes

Request Broker

State Persistence

Storage Layer

Analytics Development

Compiler SDK

MATLAB

Package & Deploy

Model

Business Decisions

kibana

Presentation Layer

System Architect
Configure MATLAB Production Server in the cloud

Production System

Azure

Virtual Network

Management Server

MATLAB Production Server(s) scaling group

Application Gateway Load Balancer

Connectors for Streaming/Event Data

State Persistence

Connectors for Storage & Databases

Enterprise Applications

https management endpoint

https://github.com/mathworks-ref-arch
Zoom on Kafka connector to MPS
Streaming data is treated as an unbounded Timetable

<table>
<thead>
<tr>
<th>Event Time</th>
<th>Pump Id</th>
<th>Flow</th>
<th>Pressure</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>18:01:10</td>
<td>Pump1</td>
<td>1975</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>18:10:30</td>
<td>Pump3</td>
<td>2000</td>
<td>109</td>
<td>115</td>
</tr>
<tr>
<td>18:05:20</td>
<td>Pump1</td>
<td>1980</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>18:10:45</td>
<td>Pump2</td>
<td>2100</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>18:30:10</td>
<td>Pump4</td>
<td>2000</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>18:35:20</td>
<td>Pump4</td>
<td>1960</td>
<td>103</td>
<td>105</td>
</tr>
<tr>
<td>18:20:40</td>
<td>Pump3</td>
<td>1970</td>
<td>112</td>
<td>104</td>
</tr>
<tr>
<td>18:39:30</td>
<td>Pump4</td>
<td>2100</td>
<td>105</td>
<td>110</td>
</tr>
<tr>
<td>18:30:00</td>
<td>Pump3</td>
<td>1980</td>
<td>110</td>
<td>113</td>
</tr>
<tr>
<td>18:30:50</td>
<td>Pump3</td>
<td>2000</td>
<td>100</td>
<td>110</td>
</tr>
</tbody>
</table>

MATLAB Function

<table>
<thead>
<tr>
<th>Time window</th>
<th>Pump Id</th>
<th>Bearing Friction</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>18:00:00</td>
<td>Pump1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Pump3</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>Pump4</td>
<td>...</td>
</tr>
<tr>
<td>18:10:00</td>
<td>Pump2</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Pump3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Pump4</td>
<td>...</td>
</tr>
<tr>
<td>18:20:00</td>
<td>Pump1</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>Pump3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Pump4</td>
<td>...</td>
</tr>
<tr>
<td>18:30:00</td>
<td>Pump5</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>Pump3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Pump4</td>
<td>9</td>
</tr>
</tbody>
</table>
Debug your streaming function on live data

Edge

Production System

- Azure
- kafka
- Connector
- elastic

Analytics Development

- Compiler SDK
- MATLAB
- Model

Business Decisions

Presentation Layer
Complete your application

Edge Analytics Development

Analytics Development

Compiler SDK
MATLAB

Package & Deploy
Model

Business Decisions

Presentation Layer

Operator
Baker Hughes Develops Predictive Maintenance Software for Gas and Oil Extraction Equipment Using Data Analytics and Machine Learning

By Gulshan Singh, Engineer Manager

Challenge:
Reduce pump equipment costs & downtime

Solution:
Use MATLAB to analyze 1 TB of data and create a neural network to predict machine failures

Results:

- Savings of more than $10 million projected
- Development time reduced tenfold
- Ease of use Multiple types of data

We saw three advantages in using MATLAB [...] The first is speed: development in C or other language would have taken longer. The second is automation. The third is the wide variety of technologies.