56g pam4 ibis ami modeling

MIG SIPI
Intel Corporation
Jonggab Kil
PCIE Express Link Bandwidth increased exponentially!

- PCIE Gen1 (2Gb/s) No Eqs 8b/10b
- PCIE Gen2 (4Gb/s) TX De-emphasis 8b/10b
- PCIE Gen3 (8Gb/s) TX pre-emphasis RX CTLE/DFE 128b/130b
- PCIE Gen4 (16Gb/s)
- PCIE Gen5 (32Gb/s)
- PCIE Gen6 (64Gb/s)

Time:
- 2003
- 2007
- 2010
- 2017
- 2019
- 2021

Bandwidth (Gbps):
- 1
- 10
- 100

TX Deph. 8b/10b
RX CTLE/DFE 128b/130b

PAM4
IBIS AMI Modeling Challenges

High speed IO design is extremely complicated.

- Heavy equalization scheme is adopted as interfaces get faster.
- Prefabricated EQ blocks had been utilized from serdes tool box.

Customer demands qualified models in an early design stage.

- IBIS AMI model is the best known method to capture buffer characteristics.
- Projected design parameters are easily tunable through serdes tool box prior to the final design release.

No standard or solid IBIS modeling methods.

- Achieving both IBIS model accuracy and efficiency is crucial.
- This paper demonstrates the cost efficient way to address this issue by using serdes tool box templates.

Long simulation time

- Long simulation time due to design and adaptation complexity.
- IBIS AMI Model should capture circuit characteristics accurately and improve run time significantly.
Highlevel Pam4 architecture

Our goal is to achieve a high quality of AMI model from the complex design!
- Two pre-taps and one post-tap
 - C-2 & C0 are positive.
 - C-2 & C1 are negative.

- Range/Graduality are modeled
 - Tap(C-2) = C-2 * step (C-2 is integer)
 - Tap(C-1) = C-1 * step (C-1 is integer)
 - Tap(C1) = C1 * step (C1 is integer)
 - Tap(C0) = 1 – abs(Tap(C-2)) – abs(Tap(C-1)) – abs(Tap(C1))

- Works for get_wave & init.
- Excellent correlation up to the 3rd harmonic
 - Most energy is concentrated up to the 3rd harmonic.
- MATLAB functions
 - Rationalfit, Freqresp (frequency response of a rational function)
 - residue_rat_fit, getGPZ (Gain, pole and zero format) – custom scripts
- A significant amount of CTLE characteristics.
 - ~900 CTLE curves, # of boosting stages.
 - ~32 or 64 controls on each stage, 6 corner cases
Non-linearity MODELING

- Large signal response of amplification stage.
 - CTLE TF is a small signal analysis.
 - Swing is limited by amplifier headroom clamping.
 - Critical to capture the circuit limitation.

- A significant amount of NL characteristics.
 - ~300 non-linearity curves, # of boosting stages.
 - Around 3 bit (8 selects) controls on each stage, 6 corner cases.
DFE/CDR MODELING

- **BangBang Clock Data Recovery**
 - Decision is made based on early or late clock to input data.
 - \(BW = \text{Data}_\text{rate} \times \frac{\text{CDR}_\text{Step}}{\text{Sample}_\text{rate}} \)

- **DFE NL behavior**
 - Slow loop response causes settling errors.
 - Settling and offset errors are modeled in respect to each tap.

- **DFE step size/ range**
 - Each tap is modeled with a different step size and different tap weight range.
ADAPTATION

Global adaptation algorithm
- Use local optimal eq setting as an initial value.
- Tuning each EQ value based on the final SNR.

Statistical mode adaptation.
- Initial CTLE/DFE adaptation is done through init mode.
- Optimal EQ values are passed to bit-by-bit mode for further optimization for DFE.

COM metrics used
- Signal to noise ratio to optimize EQ adaptation.

Non Linearity aware adaptation.
- Applied to CTLEs and DFEs
Model analysis

Fast runtime
- This architectural abstract model runs more than x20 times faster than the detailed structural model.
- Fast adaptation with statistical mode optimization.

Excellent Correlation
- Statistical mode correlates well with bit-by-bit mode

Balanced eye opening
- Optimal EQ settings found.
- High speed IO modeling is extremely challenging due to the design complexity.
 - A significant amount of time and effort is a MUST to capture the high quality design behavior.

- High quality IBIS AMI model generation is critical with faster run time.
 - Help user to analyze their platform to identify any issues in a timely manor.

- Serdes Toolbox templates are used to make the modeling flow efficient.
 - A huge amount of data is processed (# of corners, # of stages, # of configuration)
 - Nice automation feature that helps to build a complicated model in an hour.
Q&A