

Samer Hijazi CTO BabbleLabs Inc.

The New World of Speech Technology

The Opportunity

- 22B microphones by 2020
- 7B phones + radios + TVs delivering voice
- YouTube uploads: 13B minutes per year
- 200T minutes per year of device interaction
- 1Q words per year in voice calls

Speech Market Growth: 38.3%

-Statista 2018: speech recognition technology market 2016-2014

Al meets speech

more sophisticated models, more data, more training

Technology → Product → Customers → End Users

Clear Speech Everywhere

In production for real-world video sharing, production, streaming, and audio

Foundation to product release in 28 weeks!

babblelabs

What is Speech Ennhancment

Human – Human Interface Challenges

Human – Machine Interface Challenges

BabbleLabs Answer to these Challenges: Clear Cloud[™]

Noisy

Enhanced

Outline

A bit about noisy speech Traditional speech enhancement Deep neural network approaches Closing thoughts

Acoustic Impairments Model

Solutions to Acoustic Impairments

Examples generated using Dan Ellis SW from: http://www.ee.columbia.edu/ln/rosa/matlab/sws/

Noise and Speech Levels

Level [dB]	Classroom, Hospital Home, Store	Trains, Airplanes	Restaurants
Speech SPL	60 to 70	60 to 70	60 to 70
Noise SPL	50 to 55	70 to 75	59 to 80
SNR	+5 to +20	-15 to 0	-20 to +11

SPL: Sound Pressure Level relative to threshold of human hearing (20 micro-Pascals (force per square meter) ~mosquito flying 3m away)

Typical target range for speech enhancement: -5 to 15dB

Sirens

Strong, structured frequency modulated tones & overtones babblelabs

Wind Noise

Crowd

Broad, non-stationary spectrum in speech range

Evaluating Performance of Speech Enhancers

- Quality measures assess <u>how</u> a speaker produces an utterance.
 - Is the utterance "natural", "raspy", "hoarse", "scratchy"?
 - Does is sound good or bad?
- Intelligibility measures what a speaker said.
 - What did you understand?
 - What is the word error rate?

Subjective Measures of Quality

ITU-T P.835 Standard for Speech Enhancement Quality Assessment

Rating	Signal Distortion (SIG)	Background Distortion (BAK)	Overall Quality (OVL) Based on Mean Opinion Score Rating Scale (MOS)
5	Very natural, no degradation	Not noticeable	Excellent: Imperceptible
4	Fairly natural, little degradation	Somewhat noticeable	Good: Just perceptible, but not annoying
3	Somewhat natural, somewhat degraded	Noticeable but not intrusive	Fair: Perceptible and slightly annoying
2	Fairly unnatural, fairly degraded	Fairly conspicuous, somewhat intrusive	Poor: Annoying, but not objectionable
1	Very unnatural, very degraded	Very conspicuous, very intrusive	Bad: Very annoying and objectionable

Objective Measures of Quality and Intelligibility

Intelligibility
Normalized Covariance Metrics (NCM)
Speech Intelligibility Index (SII)
High-energy Glimpse Proportion Metric
Coherence and Speech Intelligibility Index (CSII)
Quasi-stationary Speech Transmission Index (QSTI)
Short-time Objective Intelligibility Measure (STOI)
Extended STOI Measure (ESTOI)
Hearing-Aid Speech Perception Index (HASPI)
K-Nearest Neighbor Mutual Information Intelligibility
Measure (MIKNN)
Speech Intelligibility Prediction based on a Mutual
Information Lower Bound (SIMI)
Speech Intelligibility in Bits (SIIB)
Speech-based Envelop Power Spectrum Model with
Short-Time correlation (sEPSM)
Automatic Speech Recognition (ASR)

Effectiveness of metrics is evaluated by measuring correlation of metric predictions against subjective test data

Speech Intelligibility in Bits (SIIB)

- Measures amount of information between speaker and listener.
- Linguistic models for "clean" speech communication measure 50-100 bps typical information rate.

Traditional Methods of Speech Enhancement

- Most commonly employ a short-time Fourier transform based analysis-modification-synthesis framework
- Frequency dependent noise suppression function
- Noises suppression based on estimates of speech and noise statistics

Traditional Methods: Spectral Subtraction

$\underbrace{\begin{array}{l} \underline{R(\omega)}\\ noisy \end{array}}_{\text{noisy}} = \underbrace{S(\omega)}_{\text{clean}} + \underbrace{D(\omega)}_{\text{noise}}\\ \text{speech} \end{array}$	Noisy speech model
$\left \widehat{D}\right ^{2} = \mathbf{E}\left\{ R ^{2}\right\} = \mathbf{E}\left\{\left \widehat{D}\right ^{2}\right\}$ when $S = 0$	Noise magnitude estimate measured during period of speech inactivity using Voice Activity Detector
$ R ^{2} = S ^{2} + D ^{2} + \underbrace{2\operatorname{Re}\{SD^{*}\}}_{\text{ignore}}$ this term!!	Noisy speech magnitude Cross term is ignored because clean speech and noise are uncorrelated
$\left \hat{S}\right ^2 = R ^2 - \left \hat{D}\right ^2$	Clean speech magnitude estimate
$ \hat{S}(\omega) = \underbrace{ \hat{S}(\omega) }_{\text{clean}} \exp \left\{ \begin{array}{c} j \ \underline{\Phi}_{r}(\omega) \\ noisy \\ noisy \\ phase \end{array} \right\} $ estimate	Clean speech synthesized from noisy phase and magnitude estimate Difference in noisy and clean phase not perceptible for SNRs > 8dB

Spectral Subtraction: Spectrograms

Spectral Subtraction: Waveforms

Deep Neural Networks for Speech Enhancement

Figure 1: Different architectures for DNN-based speech enhancement: (a) Statistical noise suppression. (b) Enhancement by end-toend DNN regression from noisy spectral features to clean features. (c) Estimating binwise suppression gain directly by a DNN. (d) Employing separate DNNs replacing the different components of conventional suppression gain estimation.

Mirsamadi, Seyedmahdad, and Ivan Tashev. "Causal Speech Enhancement Combining Data-Driven Learning and Suppression Rule Estimation." INTERSPEECH. 2016.

Common Ideal Target Masks

target mask/filter	formula	optimality principle
IBM:	$a^{\text{ibm}} = \delta(s > n),$	$\max \operatorname{SNR} a \in \{0,1\}$
IRM:	$a^{\rm irm} = \frac{ s }{ s + n },$	$\max \operatorname{SNR} \theta_{\mathrm{s}} = \theta_{\mathrm{n}},$
"Wiener like":	$a^{\rm wf} = \frac{ s ^2}{ s ^2 + n ^2},$	max SNR, expected power
ideal amplitude:	$a^{\mathrm{iaf}} = s / y ,$	exact $ \hat{s} $, max SNR $\theta_{s} = \theta_{y}$
phase-sensitive filter:	$a^{\mathrm{psf}} = \frac{ s }{ y } \cos(\theta),$	max SNR given $a \in \mathbb{R}$
ideal complex filter:	$a^{\mathrm{icf}} = s/y,$	max SNR given $a \in \mathbb{C}$

H. Erdogan, J. R. Hershey, S. Watanabe, and J. L. Roux, "Phasesensitive and recognition-boosted speech separation using deep recurrent neural networks," in Proc. Int. Conf. Acoust., Speech, Signal Process., 2015, pp. 708–712

GeorgiaTech System

babblelabs

based on deep neural networks." IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP) 23.1 (2015): 7-19.

Spectral Subtractive vs. BabbleLabs DNN

Spectral Subtractive vs. BabbleLabs DNN

BabbleLabs Production Flow

- 90% of the code in the blue boxes
- 90% of the compute in the orange box
- Prototyping is in blocking format, while deployment is in streaming format.
- Using Matlab and the GPU coder, we were able to covert from reference to deployment code in 6 man-weeks.
- Currently we are porting the DNN using other open source tools.
 - Exploring the migration to GPU coder to unify the flow if possible.

References

- Loizou, Philipos C. Speech enhancement: theory and practice. CRC press, 2007.
- Van Kuyk, Steven, W. Bastiaan Kleijn, and Richard C. Hendriks. "An evaluation of intrusive instrumental intelligibility metrics." arXiv preprint arXiv:1708.06027 (2017).
- Mirsamadi, Seyedmahdad, and Ivan Tashev. "Causal Speech Enhancement Combining Data-Driven Learning and Suppression Rule Estimation." INTERSPEECH. 2016.
- Xu, Yong, et al. "A regression approach to speech enhancement based on deep neural networks." *IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP)* 23.1 (2015): 7-19.
- H. Erdogan, J. R. Hershey, S. Watanabe, and J. L. Roux, "Phase-sensitive and recognition-boosted speech separation using deep recurrent neural networks," in Proc. Int. Conf. Acoust., Speech, Signal Process., 2015, pp. 708–712
- From <u>http://www.vision.huji.ac.il/visual-speech-enhancement/</u>
- https://looking-to-listen.github.io/

speak your mind