
1© 2015 The MathWorks, Inc.

Big Data and Tall Arrays

Ben Tordoff

2

Agenda

• Introduction

• Remote Arrays in MATLAB

• Tall Arrays for Big Data

• Scaling up

• Summary

3

Architecture of an analytics system

Data from
business
systems

Data from instruments
and connected systems

Analytics
and Machine
Learning

4

How big is big?
What does “Big Data” even mean?

“Any collection of data sets so large and complex that it becomes difficult to

process using … traditional data processing applications.”
(Wikipedia)

“Any collection of data sets so large that it becomes difficult to process using

traditional MATLAB functions, which assume all of the data is in memory.”
(MATLAB)

5

How big is big?

The Large Hadron Collider reached peak

performance on 29 June 2016

 2076 bunches of 120 billion protons currently

circulating in each direction

 ~1.6x1014 collisions per week, >30 petabytes of

data per year

 too big to even store in one place

 used to explore interesting science, but taking

researchers a long time to get through

In 1085 William 1st commissioned a survey

of England

 ~2 million words and figures collected over two

years

 too big to handle in one piece

 collected and summarized in regional pieces

 used to generate revenue (tax), but most of the

data then sat unused

Image courtesy of CERN.

Copyright 2011 CERN.

6

How big is big?

Most of our data lies somewhere in between the extremes

 >10GB might be too much for one laptop / desktop (“inconveniently large”)

7

Big problems

So what’s the big problem?

 Standard tools won’t work

 Getting the data is hard; processing it is even harder

 Need to learn new tools and new coding styles

 Have to rewrite algorithms, often at a lower level of abstraction

We want to let you:

 Prototype algorithms quickly using small data

 Scale up to huge data-sets running on large clusters

 Use the same MATLAB code for both

9

New solution for R2016b: tall arrays

Quick overview (detail later!):

 Treat data in multiple files as one large table/array

 Write normal array / table code

 Behind the scenes operate on pieces

tall array

10

Agenda

• Introduction

• Remote Arrays in MATLAB

• Tall Arrays for Big Data

• Scaling up

• Summary

11

Remote arrays in MATLAB

MATLAB provides array types for data that is not in “normal” memory

distributed array
(since R2006b)

Data lives in the combined memory of a

cluster of computers

gpuArray
(since R2010b)

Data lives in the memory of the GPU card

tall array
(since R2016b)

Data lives on disk, maybe spread across

many disks (distributed file-system)

12

Normal array – calculation happens in main memory:

Remote arrays in MATLAB

Rule: take the calculation to where the data is

x = rand(...)

x_norm = (x – mean(x)) ./ std(x)

13

Remote arrays in MATLAB

gpuArray – all calculation happens on the GPU:

x = gpuArray(...)

x_norm = (x – mean(x)) ./ std(x)

Rule: take the calculation to where the data is

distributed – calculation is spread across the cluster:

x = distributed(...)

x_norm = (x – mean(x)) ./ std(x)

tall – calculation is performed by stepping through files:

x = tall(...)

x_norm = (x – mean(x)) ./ std(x)

14

Agenda

• Introduction

• Remote Arrays in MATLAB

• Tall Arrays for Big Data

• Scaling up

• Summary

15

Tall arrays (new R2016b)

 MATLAB data-type for data that doesn’t fit into memory

 Ideal for lots of observations, few variables (hence “tall”)

 Looks like a normal MATLAB array

– Supports numeric types, tables, datetimes, categoricals, strings, etc…

– Basic maths, stats, indexing, etc.

– Statistics and Machine Learning Toolbox support (clustering, classification, etc.)

16

Cluster of

Machines

Memory

Single

Machine

Memory

Tall arrays (new R2016b)

 Data is in one or more files

 Typically tabular data

 Files stacked vertically

 Data doesn’t fit into memory

(even cluster memory)

17

Cluster of

Machines

Memory

Single

Machine

Memory

Tall arrays (new R2016b)

 Use datastore to define file-list

 Allows access to small pieces of

data that fit in memory.

Datastore
ds = datastore('*.csv')

while hasdata(ds)

piece = read(ds);

% Process piece

end

18

tall array

Cluster of

Machines

Memory

Single

Machine

Memory

Tall arrays (new R2016b)

 Create tall table from datastore

 Operate on whole tall table just like

ordinary table

Datastore

ds = datastore('*.csv')

tt = tall(ds)

summary(tt)

max(tt.EndTime – tt.StartTime)

Single

Machine

MemoryProcess

19

tall array

Cluster of

Machines

Memory

Single

Machine

Memory

Tall arrays (new R2016b)

 With Parallel Computing Toolbox,

process several pieces at once
Datastore

Single

Machine

MemoryProcess

Single

Machine

MemoryProcess

20

Tall arrays (new R2016b)
Example

New York taxi fares (150,000,000 rows (~25GB) per year)

>> dataLocation = 'hdfs://hadoop01glnxa64:54310/datasets/nyctaxi/';
>> ds = datastore(fullfile(dataLocation, 'yellow_tripdata_2015-*.csv'));
>> tt = tall(ds)
tt =

M×19 tall table

VendorID tpep_pickup_datetime tpep_dropoff_datetime passenger_count trip_distance pickup_longitude pickup_latitude
________ _____________________ _____________________ _______________ _____________ ________________ _______________ __________ __________________ _________________ ________________ ____________ ___________ ____

2 '2015-01-15 19:05:39' '2015-01-15 19:23:42' 1 1.59 -73.994 40.75
1 '2015-01-10 20:33:38' '2015-01-10 20:53:28' 1 3.3 -74.002 40.724
1 '2015-01-10 20:33:38' '2015-01-10 20:43:41' 1 1.8 -73.963 40.803
1 '2015-01-10 20:33:39' '2015-01-10 20:35:31' 1 0.5 -74.009 40.714
1 '2015-01-10 20:33:39' '2015-01-10 20:52:58' 1 3 -73.971 40.762
1 '2015-01-10 20:33:39' '2015-01-10 20:53:52' 1 9 -73.874 40.774
1 '2015-01-10 20:33:39' '2015-01-10 20:58:31' 1 2.2 -73.983 40.726
1 '2015-01-10 20:33:39' '2015-01-10 20:42:20' 3 0.8 -74.003 40.734
: : : : : : :
: : : : : : :

Input data is tabular –

result is a tall table

21

Tall arrays (new R2016b)
Example

New York taxi fares (150,000,000 rows (~25GB) per year)

>> dataLocation = 'hdfs://hadoop01glnxa64:54310/datasets/nyctaxi/';
>> ds = datastore(fullfile(dataLocation, 'yellow*2015*.csv'));
>> tt = tall(ds)
tt =

M×19 tall table

VendorID tpep_pickup_datetime tpep_dropoff_datetime passenger_count trip_distance pickup_longitude pickup_latitude
________ _____________________ _____________________ _______________ _____________ ________________ _______________ __________ __________________ _________________ ________________ ____________ ___________ ____

2 '2015-01-15 19:05:39' '2015-01-15 19:23:42' 1 1.59 -73.994 40.75
1 '2015-01-10 20:33:38' '2015-01-10 20:53:28' 1 3.3 -74.002 40.724
1 '2015-01-10 20:33:38' '2015-01-10 20:43:41' 1 1.8 -73.963 40.803
1 '2015-01-10 20:33:39' '2015-01-10 20:35:31' 1 0.5 -74.009 40.714
1 '2015-01-10 20:33:39' '2015-01-10 20:52:58' 1 3 -73.971 40.762
1 '2015-01-10 20:33:39' '2015-01-10 20:53:52' 1 9 -73.874 40.774
1 '2015-01-10 20:33:39' '2015-01-10 20:58:31' 1 2.2 -73.983 40.726
1 '2015-01-10 20:33:39' '2015-01-10 20:42:20' 3 0.8 -74.003 40.734
: : : : : : :
: : : : : : :

Number of rows is

unknown until all the

data has been read

Only the first few

rows are displayed

22

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: 0% complete
Evaluation 0% complete

Tall arrays (new R2016b)
Example

Once created, can process much like an ordinary table
% Remove some bad data
tt.trip_minutes = minutes(tt.tpep_dropoff_datetime - tt.tpep_pickup_datetime);
tt.speed_mph = tt.trip_distance ./ (tt.trip_minutes ./ 60);
ignore = tt.trip_minutes <= 1 | ... % really short

tt.trip_minutes >= 60 * 12 | ... % unfeasibly long
tt.trip_distance <= 1 | ... % really short
tt.trip_distance >= 12 * 55 | ... % unfeasibly far
tt.speed_mph > 55 | ... % unfeasibly fast
tt.total_amount < 0 | ... % negative fares?!
tt.total_amount > 10000; % unfeasibly large fares

tt(ignore, :) = [];

% Credit card payments have the most accurate tip data
keep = tt.payment_type == {'Credit card'};
tt = tt(keep,:);

% Show tip distribution
histogram(tt.tip_amount, 0:25)

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: 16% complete
Evaluation 14% complete

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: 33% complete
Evaluation 30% complete

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: 50% complete
Evaluation 45% complete

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: 66% complete
Evaluation 63% complete

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: 83% complete
Evaluation 75% complete

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 4.9667 min
Evaluation completed in 5 min

Data only read once,

despite 21 operations

23

Agenda

• Introduction

• Remote Arrays in MATLAB

• Tall Arrays for Big Data

• Scaling up

• Summary

24

Scaling up

If you just have MATLAB:

 Run through each ‘chunk’ of data one by one

If you also have Parallel Computing Toolbox:

 Use all local cores to process several ‘chunks’ at once

If you also have a cluster with MATLAB Distributed

Computing Server (MDCS):

 Use the whole cluster to process many ‘chunks’ at once

25

Scaling up

Working with clusters from MATLAB desktop:

 General purpose MATLAB cluster

– Can co-exist with other MATLAB workloads (parfor, parfeval,

spmd, jobs and tasks, distributed arrays, …)

– Uses local memory and file caches on workers for efficiency

 Spark-enabled Hadoop clusters

– Data in HDFS

– Calculation is scheduled to be near data

– Uses Spark’s built-in memory and disk caching

26

Agenda

• Introduction

• Remote Arrays in MATLAB

• Tall Arrays for Big Data

• Scaling up

• Summary

27

Summary

tall arrays

 MATLAB data-type for data that doesn’t fit into memory

 Minimizes I/O by deferring calculation

 Looks like a normal MATLAB array or table

– Supports numeric types, tables, datetimes, categoricals, strings, etc…

– Basic maths, stats, indexing, etc.

– Statistics and Machine Learning Toolbox support (clustering, classification, etc.)

 Scale up using clusters, including Spark

New!

28

Live demo

 Come and find us at the “BigData with MATLAB” demo station

– more details

– live demos

– Meet the developers behind the features

Big Data with MATLAB

Big data refers to the dramatic increase in the amount and rate of data being created and made available

for analysis. Big data represents an opportunity for companies to gain greater insight and make more

informed decisions, but it also presents a number of challenges: big data sets may not fit into available

memory and may take too long to process. Moreover, there is no one-size-fits-all approach to deal with big

data problems.

Visit this showcase to discover the different tools that MATLAB® provides to tackle these challenges and

work with data sets of all sizes.

Technology focus: Big data, data analytics

Key products: Parallel Computing Toolbox™, MATLAB Distributed Computing Server™

29

Questions

