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How big is big?
What does “Big Data” even mean?

“Any collection of data sets so large and complex that it becomes difficult to

process using … traditional data processing applications.”
(Wikipedia)

“Any collection of data sets so large that it becomes difficult to process using

traditional MATLAB functions, which assume all of the data is in memory.”
(MATLAB)
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How big is big?

The Large Hadron Collider reached peak 

performance on 29 June 2016

 2076 bunches of 120 billion protons currently 

circulating in each direction

 ~1.6x1014 collisions per week, >30 petabytes of 

data per year

 too big to even store in one place

 used to explore interesting science, but taking 

researchers a long time to get through

In 1085 William 1st commissioned a survey 

of England

 ~2 million words and figures collected over two 

years

 too big to handle in one piece

 collected and summarized in regional pieces

 used to generate revenue (tax), but most of the 

data then sat unused

Image courtesy of CERN. 

Copyright 2011 CERN.
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How big is big?

Most of our data lies somewhere in between the extremes

 >10GB might be too much for one laptop / desktop (“inconveniently large”)
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Big problems

So what’s the big problem?

 Standard tools won’t work

 Getting the data is hard; processing it is even harder

 Need to learn new tools and new coding styles

 Have to rewrite algorithms, often at a lower level of abstraction

We want to let you:

 Prototype algorithms quickly using small data

 Scale up to huge data-sets running on large clusters

 Use the same MATLAB code for both
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New solution for R2016b: tall arrays

Quick overview (detail later!):

 Treat data in multiple files as one large table/array

 Write normal array / table code

 Behind the scenes operate on pieces

tall array
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Remote arrays in MATLAB

MATLAB provides array types for data that is not in “normal” memory

distributed array
(since R2006b)

Data lives in the combined memory of a 

cluster of computers

gpuArray
(since R2010b)

Data lives in the memory of the GPU card

tall array
(since R2016b)

Data lives on disk, maybe spread across 

many disks (distributed file-system)
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Normal array – calculation happens in main memory:

Remote arrays in MATLAB

Rule: take the calculation to where the data is

x = rand(...)

x_norm = (x – mean(x)) ./ std(x)
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Remote arrays in MATLAB

gpuArray – all calculation happens on the GPU:

x = gpuArray(...)

x_norm = (x – mean(x)) ./ std(x)

Rule: take the calculation to where the data is

distributed – calculation is spread across the cluster:

x = distributed(...)

x_norm = (x – mean(x)) ./ std(x)

tall – calculation is performed by stepping through files:

x = tall(...)

x_norm = (x – mean(x)) ./ std(x)
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Tall arrays (new R2016b)

 MATLAB data-type for data that doesn’t fit into memory

 Ideal for lots of observations, few variables (hence “tall”)

 Looks like a normal MATLAB array

– Supports numeric types, tables, datetimes, categoricals, strings, etc…

– Basic maths, stats, indexing, etc.

– Statistics and Machine Learning Toolbox support (clustering, classification, etc.)
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Cluster of

Machines

Memory

Single

Machine

Memory

Tall arrays (new R2016b)

 Data is in one or more files

 Typically tabular data

 Files stacked vertically

 Data doesn’t fit into memory 

(even cluster memory)
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Cluster of

Machines

Memory

Single

Machine

Memory

Tall arrays (new R2016b)

 Use datastore to define file-list

 Allows access to small pieces of 

data that fit in memory.

Datastore
ds = datastore('*.csv')

while hasdata(ds)

piece = read(ds);

% Process piece

end
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tall array

Cluster of

Machines

Memory

Single

Machine

Memory

Tall arrays (new R2016b)

 Create tall table from datastore

 Operate on whole tall table just like 

ordinary table

Datastore

ds = datastore('*.csv')

tt = tall(ds)

summary(tt)

max(tt.EndTime – tt.StartTime)

Single

Machine

MemoryProcess
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tall array

Cluster of

Machines

Memory

Single

Machine

Memory

Tall arrays (new R2016b)

 With Parallel Computing Toolbox, 

process several pieces at once
Datastore

Single

Machine

MemoryProcess

Single

Machine

MemoryProcess



20

Tall arrays (new R2016b)
Example

New York taxi fares (150,000,000 rows (~25GB) per year)

>> dataLocation = 'hdfs://hadoop01glnxa64:54310/datasets/nyctaxi/';
>> ds = datastore( fullfile(dataLocation, 'yellow_tripdata_2015-*.csv') );
>> tt = tall(ds)
tt =

M×19 tall table

VendorID tpep_pickup_datetime tpep_dropoff_datetime passenger_count trip_distance pickup_longitude pickup_latitude
________    _____________________    _____________________    _______________    _____________    ________________    _______________    __________    __________________    _________________    ________________    ____________    ___________    ____

2           '2015-01-15 19:05:39'    '2015-01-15 19:23:42'    1                  1.59             -73.994              40.75
1           '2015-01-10 20:33:38'    '2015-01-10 20:53:28'    1                   3.3             -74.002             40.724
1           '2015-01-10 20:33:38'    '2015-01-10 20:43:41'    1                   1.8             -73.963             40.803
1           '2015-01-10 20:33:39'    '2015-01-10 20:35:31'    1                   0.5             -74.009             40.714
1           '2015-01-10 20:33:39'    '2015-01-10 20:52:58'    1                     3             -73.971             40.762
1           '2015-01-10 20:33:39'    '2015-01-10 20:53:52'    1                     9             -73.874             40.774
1           '2015-01-10 20:33:39'    '2015-01-10 20:58:31'    1                   2.2             -73.983             40.726
1           '2015-01-10 20:33:39'    '2015-01-10 20:42:20'    3                   0.8             -74.003             40.734
:           :                        :                        :                  :                :                   :     
:           :                        :                        :                  :                :                   :     

Input data is tabular –

result is a tall table
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Tall arrays (new R2016b)
Example

New York taxi fares (150,000,000 rows (~25GB) per year)

>> dataLocation = 'hdfs://hadoop01glnxa64:54310/datasets/nyctaxi/';
>> ds = datastore( fullfile(dataLocation, 'yellow*2015*.csv') );
>> tt = tall(ds)
tt =

M×19 tall table

VendorID tpep_pickup_datetime tpep_dropoff_datetime passenger_count trip_distance pickup_longitude pickup_latitude
________    _____________________    _____________________    _______________    _____________    ________________    _______________    __________    __________________    _________________    ________________    ____________    ___________    ____

2           '2015-01-15 19:05:39'    '2015-01-15 19:23:42'    1                  1.59             -73.994              40.75
1           '2015-01-10 20:33:38'    '2015-01-10 20:53:28'    1                   3.3             -74.002             40.724
1           '2015-01-10 20:33:38'    '2015-01-10 20:43:41'    1                   1.8             -73.963             40.803
1           '2015-01-10 20:33:39'    '2015-01-10 20:35:31'    1                   0.5             -74.009             40.714
1           '2015-01-10 20:33:39'    '2015-01-10 20:52:58'    1                     3             -73.971             40.762
1           '2015-01-10 20:33:39'    '2015-01-10 20:53:52'    1                     9             -73.874             40.774
1           '2015-01-10 20:33:39'    '2015-01-10 20:58:31'    1                   2.2             -73.983             40.726
1           '2015-01-10 20:33:39'    '2015-01-10 20:42:20'    3                   0.8             -74.003             40.734
:           :                        :                        :                  :                :                   :     
:           :                        :                        :                  :                :                   :     

Number of rows is 

unknown until all the 

data has been read

Only the first few 

rows are displayed
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Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: 0% complete
Evaluation 0% complete

Tall arrays (new R2016b)
Example

Once created, can process much like an ordinary table
% Remove some bad data
tt.trip_minutes = minutes(tt.tpep_dropoff_datetime - tt.tpep_pickup_datetime);
tt.speed_mph = tt.trip_distance ./ (tt.trip_minutes ./ 60);
ignore = tt.trip_minutes <= 1 | ... % really short

tt.trip_minutes >= 60 * 12 | ...  % unfeasibly long
tt.trip_distance <= 1 | ... % really short
tt.trip_distance >= 12 * 55 | ... % unfeasibly far
tt.speed_mph > 55 | ... % unfeasibly fast
tt.total_amount < 0 | ... % negative fares?!
tt.total_amount > 10000;           % unfeasibly large fares

tt(ignore, :) = [];

% Credit card payments have the most accurate tip data
keep = tt.payment_type == {'Credit card'};
tt = tt(keep,:);

% Show tip distribution
histogram( tt.tip_amount, 0:25 )

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: 16% complete
Evaluation 14% complete

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: 33% complete
Evaluation 30% complete

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: 50% complete
Evaluation 45% complete

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: 66% complete
Evaluation 63% complete

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: 83% complete
Evaluation 75% complete

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 4.9667 min
Evaluation completed in 5 min

Data only read once, 

despite 21 operations
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Scaling up

If you just have MATLAB:

 Run through each ‘chunk’ of data one by one

If you also have Parallel Computing Toolbox:

 Use all local cores to process several ‘chunks’ at once

If you also have a cluster with MATLAB Distributed 

Computing Server (MDCS):

 Use the whole cluster to process many ‘chunks’ at once



25

Scaling up

Working with clusters from MATLAB desktop:

 General purpose MATLAB cluster

– Can co-exist with other MATLAB workloads (parfor, parfeval, 

spmd, jobs and tasks, distributed arrays, …)

– Uses local memory and file caches on workers for efficiency

 Spark-enabled Hadoop clusters

– Data in HDFS

– Calculation is scheduled to be near data

– Uses Spark’s built-in memory and disk caching
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Summary

tall arrays

 MATLAB data-type for data that doesn’t fit into memory

 Minimizes I/O by deferring calculation

 Looks like a normal MATLAB array or table

– Supports numeric types, tables, datetimes, categoricals, strings, etc…

– Basic maths, stats, indexing, etc.

– Statistics and Machine Learning Toolbox support (clustering, classification, etc.)

 Scale up using clusters, including Spark

New!
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Live demo

 Come and find us at the “BigData with MATLAB” demo station 

– more details

– live demos

– Meet the developers behind the features

Big Data with MATLAB

Big data refers to the dramatic increase in the amount and rate of data being created and made available 

for analysis. Big data represents an opportunity for companies to gain greater insight and make more 

informed decisions, but it also presents a number of challenges: big data sets may not fit into available 

memory and may take too long to process. Moreover, there is no one-size-fits-all approach to deal with big 

data problems.

Visit this showcase to discover the different tools that MATLAB® provides to tackle these challenges and 

work with data sets of all sizes.

Technology focus: Big data, data analytics

Key products: Parallel Computing Toolbox™, MATLAB Distributed Computing Server™



29

Questions


