DEVELOPMENT OF MULTI-TARGET TRACKER FOR SURVEILLANCE RADAR USING MATLAB

SRIHARI BR - DEPUTY MANAGER
ABHISHEK T - DEPUTY ENGINEER
D&E-CSS-NS2
BHARAT ELECTRONICS LIMITED
25-04-2019
Outline

❖ Introduction about BEL
❖ Requirements
❖ Approach
 ➢ Tools used: MATLAB Sensor Fusion Tracking Toolbox (SFTT), Coder
 ➢ Method employed: Development Phase I - IV
❖ Results
 ➢ Comparison with different approaches
 ➢ Comparison with Original Equipment Manufacture (OEM) system
❖ Key takeaways
❖ Looking forward for…
ABOUT BEL

BEL is PSUs under the Ministry of Defence, India.
BEL design, develop and manufactures a wide range of products in the following fields:

- Radars
- Electronic Warfare System
- Defence Communication
- Tank Electronics
- Opto Electronics and Semiconductors
- Missile System and Tank Electronics
- EVM and VVPAT and many more…

Major customers of BEL comprise of Indian Army, Navy, Air Force, Paramilitary, Coast Guard and many more.
RADAR PROJECT SCHEMATIC

STC : Sensitivity Time Control
FTC : Fast Time Control
CFAR : Constant False Alarm Rate
REQUIREMENTS

- Development of **field deployable multi-target tracking module** using Sensor Fusion Tracking Toolbox and MATLAB coder.
- Evaluation of performance in **Coastal Surveillance** scenario.

CHALLENGES

- **Small target tracking** amidst sea clutter
- **Reduced false track initiation** in high clutter conditions
- **Faster track initiation** & better **maintenance**
- Attribute extraction for **target classification**
- **Deployable** code generation **without dependencies** on external libraries
APPROACH

Phase-I
- Evaluating SFTT in MATLAB with recorded data
- Comparision of result with recorded track reports

Phase-II
- Using multiple track lines
- Using covariance fusion

Phase-III
- C/C++ code generation
- Wrapper function for interface with SP chain

Phase-IV
- Custom enhancements in C++ code
- Knowledge based tracking
DEVELOPMENT OF MULTI_TARGET_TRACKER FOR CSS
- TIMELINE

PHASE-IV

PHASE-III

PHASE-II

PHASE-I

Dec-18 Jan-19 Feb-19 Mar-19 Apr-19 May-19
DEVELOPMENT PHASE - I

- Evaluating performance of trackerGNN and trackerTOMHT modules in Matlab-SFTT with field recorded data (detections).
 - Tuning tracker initiation, filter and maintenance parameters
 - Evaluating performance w.r.t track kinematics accuracy and maintenance, by changing assignment methods, cost matrix computation, etc.

```
tracker = trackerGNN('FilterInitializationFcn',..., @initcaekf,...
'MaxNumTracks',1000,...
'Assignment','Jonker-Volgenant',...
'AssignmentThreshold',50,...
'TrackLogic','History',...
'DeletionThreshold',[6 8],...
'ConfirmationThreshold',[8 10],...
'HasCostMatrixInput',true);
```

```
tracker = trackerTOMHT('FilterInitializationFcn',..., @custcaekf,...
'ConfirmationThreshold', 25,...
'MaxNumSensors', 1, ...
'DeletionThreshold', -5, ...
'AssignmentThreshold',[0.5,0.7,1]*50,...
'MaxNumHypotheses', 2,...
'MaxNumTracks',1000,...
'MaxNumHypotheses',10,...
'NScanPruning','Hypothesis',...
'HasCostMatrixInput',true,...
'FalseAlarmRate',1e-5);
```
RECORDED DATA-295 SCANS

TrackID: 1304
Range: 7.1627 nmi
Bearing: 66.7725 deg
Speed: 11.444 knots
Course: 76.444 deg
RESULTS USING MATLAB SFTT-GNN MULTIOBJECT TRACKER

Bench Mark System Results

- **TrackID**: 3636
- **Range**: 2.7247 nmi
- **Bearing**: 78.839 deg
- **Speed**: 9.3103 knots
- **Course**: 280.5029 deg

MATLAB Results

- **TrackID**: 501
- **Range**: 2.7534 nmi
- **Bearing**: 79.0626 deg
- **Speed**: 9.1252 knots
- **Course**: 281.4405 deg
RESULTS USING MATLAB SFTT-TOMHT MULTIOBJECT TRACKER

Bench Mark System Results

MATLAB Results

Track ID: 108
Range: 4.4585 nmi
Bearing: 86.6329 deg
Speed: 9.9438 knots
Course: 293.8822 deg

Tracker-GP
Detection-GP
Tracker-ST
Detection-ST
Tracker-FT
Detection-FT
Tracker-HELI
Detection-HELI
Use of **Multiple-Track Lines** for load reduction

Use of **covariance fusion** for correlating tracks from all track lines

\[
X(:,t) = \text{confTracks\{h\}(fusionIDS\{cTrk\}(t)).State}; \\
P(:, :, t) = \text{confTracks\{h\}(fusionIDS\{cTrk\}(t)).StateCovariance}; \\
[Xcorr, Pcorr] = \text{fusexcov}(X, P); \quad \%\text{Cross-covariance fusion}
\]
RESULTS (CONTD.)

WITHOUT COVARIANCE FUSION

- Tracker-GP (History)
- Detection-GP
- Tracker-ST (History)
- Detection-ST
- Tracker-FT (History)
- Detection-FT
- Tracker-HELI (History)
- Detection-HELI

WITH COVARIANCE FUSION

- Tracks (History)
- Correlated Tracks
- Detection-GP
- Detection-ST
- Detection-FT
- Detection-HELI

TrackID: 3905
Range: 8.3033 nmi
Bearing: 77.9394 deg
Speed: 6.4009 knots
Course: 63.7301 deg

TrackID: 97
Range: 8.3879 nmi
Bearing: 77.6319 deg
Speed: 9.2926 knots
Course: 28.2795 deg
Track maintenance for two datasets

Track is maintained even after long run (Track ID is maintained)

- **Track ID:** 501
 - **Range:** 2.3403 nmi
 - **Bearing:** 70.3619 deg
 - **Speed:** 8.0639 knots
 - **Course:** 284.9019 deg

- **Track ID:** 501
 - **Range:** 3.3436 nmi
 - **Bearing:** 83.3629 deg
 - **Speed:** 9.0641 knots
 - **Course:** 294.0722 deg
DEVELOPMENT PHASE - III

Deployable C++ code generation using MATLAB Coder

load detectiondata.mat
compInputs = {detections, simTime};
tracker_kernel(compInputs{1}, simTime);
codegen tracker_kernel -args compInputs;

function [confirmedTracks, numTracks, ~] =
tracker_kernel.m(detections, time)
 persistent tracker
 if isempty(tracker)
 tracker = trackerTOMHT('FilterInitializationFcn',
 @initcaEKF,...
 'MaxNumHypotheses', 5,...
 'MaxNumTracks', 1000,...
 'MaxNumSensors', 1,...
 'NScanPruning', 'Hypothesis');
 end
 [confirmedTracks, ~,~, information] = tracker(detections, time);
 numTracks = tracker.NumTracks;
end

Wrapper function is developed for interfacing the C++ Code with the signal processor chain.
DEVELOPMENT PHASE - IV

- **Custom Enhancements** in C++ code for introducing **Knowledge based tracking methods** such as:
 - Utilization of *zones* and *map* information
 - Using plot attributes such as *range spread*, *azimuth spread* and *plot amplitude* for association
 - Adaptation in Confirmation, Association and Deletion Thresholds w.r.t variable clutter density
 - Optimizing memory allocations and introducing parallel processing architecture for multiple track lines with correlation.
PLOT ATTRIBUTES

- Plot
 - Plot azimuth width
 - Plot centre
 - Digital echo (Strength indicated by shading)
- Radar
- Radials
- Plot range width
STATUSF

Phase-I
- Evaluating SFTT in MATLAB with recorded data
- Comparison of result with recorded track reports

Phase-II
- Using multiple track lines
- Using covariance fusion

Phase-III
- C/C++ code generation
- Wrapper function for interface with SP chain
 - In progress

Phase-IV
- Custom enhancements in C++ code
 - In progress
- Knowledge based tracking
 - In progress
BENEFITS OF USING MATLAB

❖ Object Oriented Approach
❖ The ability to auto-generate C code, using MATLAB Coder
❖ Wide variety of readily available packages and Toolbox
❖ Complex Tracker Algorithms are available out of the box.
❖ Easy to prove and evaluate the concepts
❖ Saves money and time
❖ User friendly
KEY TAKE AWAYS

- Using MATLAB SFTT for evaluating Multi-Target Tracker and Estimation Filters
- Using cross-covariance fusion for track-to-track correlation
- Using MATLAB CODER for deployable C++ code generation
- Employing Knowledge based tracking methods for improving track maintenance
LOOKING FORWARD FOR

- Multi-sensor data fusion (viz. Radar, AIS etc)
- Attribute based Tracking and data fusion
- Target classification
- Deployable code generation for these modules
“Looking forward to a long and fruitful association”

THANK YOU