

DESIGN A PREMIUM DIAL FEEL USING MATLAB

MATLAB Expo 21/05/2019

Romain Garby

WHO ARE WE: A GLOBAL APPLIANCES COMPANY

FISHER & PAYKEL: NEW ZEALAND DESIGN CENTRES

Product Development Capability:

- Industrial Design
- Mechanical and Engineering Science Engineers
- Electronics Hardware and Software Engineers
- Reliability, Safety and Compliance
- Wash Scientists and Product Evaluators

400 Product Development staff across 2 sites

INDUSTRY LEADERS IN APPLIANCE TECHNOLOGY

1985: Gentle Annie: Brushless DC motor
1991: Smart Drive[™]: Direct Drive Motor
1997: Active Smart[™]: Refrigeration

1999: DishDrawer[®] Dishwasher
2006: CookSurface Cooktop
2008: CoolDrawer: Refrigeration
2010: Linear Compressor

2010

Fisher & Paykel has a track-record of genuine product innovation delivering real customer benefits

OUR GOAL: TO BE #1 PREMIUM BRAND GLOBALLY

#1 Premium appliance brand globally

WHY A CUSTOM DIAL FEEL?

- One of the direct points of contact between a customer and the product
- The way a dial feels can inadvertently convey the *perceived* quality of a product
- We need to translate highly subjective attributes into objective measures

Knob Feel Youtube Channel

"The A29 is another home run for Arcam. Lovely feel here, solidly built Knob. Incredibly weighted rotation. Also includes a lovely slight click to the rotation, which does not deter from the smoothness of it. This is one satisfying Knob."

SCOPE

Definitions:

Encoder

A rotary encoder (shaft encoder) is an electro-mechanical device that converts the angular position or motion of a shaft or axle to an analog or digital code. (wiki)

Dial/Knob

A plate or disc that can be turned to select a setting on a piece of equipment.

SCOPE

Definitions:

Encoder

A rotary encoder (shaft encoder) is an electro-mechanical device that converts the angular position or motion of a shaft or axle to an analog or digital code. (wiki)

Dial/Knob

A plate or disc that can be turned to select a setting on a piece of equipment.

FIRST MEASUREMENTS: TORQUE VS ROTATION

GOALS OF THE PROJECT

At the end of this project we will:

- be able to measure & quantify what a 'premium' dial feels like
- understand the variables within a dial that influence its feel
- understand the parameters we are likely to vary for future dial designs

How to get there:

- benchmark against selected purchased encoders for dial feel
- acquire the reusable knowledge available to go straight to detailed design of a dial, for future projects

GOALS OF THE PROJECT

At the end of this project we will:

- be able to measure & quantify what a 'premium' dial feels like
- understand the variables within a dial that influence its feel
- understand the parameters we are likely to vary for future dial designs

PROOF OF CONCEPT

STEADY-STATE STRENGH BUDGET

Parameters:

- Size and shape of the encoder
- Size and shape of the pin
- Spring force and free length

VALIDATION ON EVEREL ENCODER

REAL ENCODER SHAPE

SHAPE OF ENCODER

SHAPE OF PIN

- Encoder: symmetric ٠ sinus
- Pin: Sinusoidal shape: ٠ $y = Ax^p$ All pin have the same height

2

0

2

0

2

0

2

0

-2

CYLINDRICAL 3D MODEL

CYLINDRICAL 3D MODEL

For each angle of dial:

- Rotate 2D sections

- Rotate 2D sections
- Create 3D surface

- Rotate 2D sections
- Create 3D surface

- Rotate 2D sections
- Create 3D surface
- Iteratively lower the ball until contact Get spring tension

For each angle of dial:

- Rotate 2D sections
- Create 3D surface
- Iteratively lower the ball until contact Get spring tension

Ball

For each angle of dial:

- Rotate 2D sections
- Create 3D surface
- Iteratively lower the ball until contact Get spring tension
- Find contact point

For each angle of dial:

- Rotate 2D sections
- Create 3D surface
- Iteratively lower the ball until contact Get spring tension
- Find contact point

- Rotate 2D sections
- Create 3D surface
- Iteratively lower
 the ball until contact
 Get spring tension
- Find contact point
- Calculate projection and then torque

- Rotate 2D sections
- Create 3D surface
- Iteratively lower
 the ball until contact
 Get spring tension
- Find contact point
- Calculate projection and then torque

- Rotate 2D sections
- Create 3D surface
- Iteratively lower
 the ball until contact
 Get spring tension
- Find contact point
- Calculate projection and then torque

For each angle of dial:

- Rotate 2D sections
- Create 3D surface
- Iteratively lower the ball until contact Get spring tension
- Find contact point
- Calculate projection and then torque

Copyright © Fisher & Paykel Appliances 2017

PARAMETRIC STUDY

- Push curve
- Spring ratio
- Ball radius
- Ball shape
- Cam shape
- ...

PARAMETRIC STUDY

MATLAB APP DESIGNER

Classical Way:

Classical Way:

Prototyping ! (A lot)

Classical Way:

Prototyping ! (A lot) Each prototype:

- \$300
- 3 days to design, 2 weeks to manufacturer and ship, 2 days to test

Classical Way:

Prototyping ! (A lot) Each prototype:

- \$300
- 3 days to design, 2 weeks to manufacturer and ship, 2 days to test

Push curve profile : 4 prototypes Rotational curve profile : 5 prototypes Ball radius : 3 prototypes Spring ratio : 3 prototypes

Classical Way:

Prototyping ! (A lot) Each prototype:

- \$300
- 3 days to design, 2 weeks to manufacturer and ship, 2 days to test

Push curve profile : 4 prototypes Rotational curve profile : 5 prototypes Ball radius : 3 prototypes Spring ratio : 3 prototypes

With Matlab:

Classical Way:

Prototyping ! (A lot) Each prototype:

- \$300
- 3 days to design, 2 weeks to manufacturer and ship, 2 days to test

Push curve profile : A prototypes Rotational curve profile : 5 prototypes Ball radius : 3 prototypes Spring ratio : 3 prototypes

With Matlab:

Classical Way:

Prototyping ! (A lot) Each prototype:

- \$300
- 3 days to design, 2 weeks to manufacturer and ship, 2 days to test

Push curve profile : A protopes Rotational curve profile : F prototypes Ball radius : 3 prototypes Spring ratio : 3 prototypes

With Matlab:

Classical Way:

Prototyping ! (A lot) Each prototype:

- \$300
- 3 days to design, 2 weeks to manufacturer and ship, 2 days to test
 Push curve profile : 4 proto______pes
 Rotational curo______profile : 5 prototypes
 Ball radius : 3 prototypes
 Spring ratio : 3 prototypes

With Matlab:

Classical Way:

Prototyping ! (A lot) Each prototype:

- \$300
- 3 days to design, 2 weeks to manufacturer and ship, 2 days to test
 Push curve profile : 4 proto
 Proto

<u>With Matlab:</u>

3 weeks to choose a modelling strategy 1 week to code the model Few minutes to get a result

Spring ratio : 3 prototypes

Classical Way:

Prototyping ! (A lot) Each prototype:

- \$300
- 3 days to design, 2 weeks to manufacturer and ship, 2 days to test
 Push curve profile : A proto pes

Rotational curo profile : 5 prototypes Ball radius : 3 pototypes Spring ratio : 3 prototypes

With Matlab:

3 weeks to choose a modelling strategy 1 week to code the model Few minutes to get a result

- Modelling started way too late for this project
- Initial learning curve was steep

Need to be reused and improve

TO GO FURTHER

Steady-state model:

- Make it easier to use by anybody
- Work on how to import a cam geometry from CAD

TO GO FURTHER

Steady-state model:

- Make it easier to use by anybody
- Work on how to import a cam geometry from CAD

Dynamic model (Simscape):

• Investigate what we can learn

-.9

TO GO FURTHER

Steady-state model:

- Make it easier to use by anybody
- Work on how to import a cam geometry from CAD

Dynamic model (Simscape):

• Investigate what we can learn

Define what a premium feel is:

Dish performance assessment with **image recognition**

Dish performance assessment with **image recognition**

Design a self/soft-closing selflocking drawer with **Physical Modelling**

Dish performance assessment with **image recognition**

Design a self/soft-closing selflocking drawer with **Physical Modelling**

Model based design and product logic

THANK YOU

