THE NEXT LEVEL OF SOFTWARE DEVELOPMENT IN COMMERCIAL VEHICLES

MathWorks AUTOMOTIVE CONFERENCE EUROPE 2022

Dipl.-Ing. Stefan Teuchert
Senior Vice President
MAN Truck & Bus SE
Global Head of Electric/Electronics - Software & Autonomous
TRATON SE
AGENDA

1. Commercial vehicle business & requirements
2. EE development - current status
3. The next level of software development
4. Summary – key take ways
AGENDA

1. Commercial vehicle business & requirements
2. EE development - current status
3. The next level of software development
4. Summary – key take ways
COMMERCIAL VEHICLE BUSINESS – MORE A MACHINE LIKE A VEHICLE
AGENDA

1. Commercial vehicle business & requirements
2. EE development - current status
3. The next level of software development
4. Summary – key take ways
CURRENT STATUS – EE ARCHITECTURE (SOP 2020)
CURRENT STATUS - FUNCTIONAL ARCHITECTURE

Strategic layer:
- Highway assist
- Adaptive cruise control
- Turn assist

Management layer:
- Object fusion
- Shifting strategy
- Torque management

Operational layer:
- Perception
- Gear shifting
- Torque control

Physical layer:
- Engine
- E-machine
- Gearbox
- Axle
- eAxle
- Radar
- Camera
FUNCTIONAL DEVELOPMENT STRATEGY I

- **Function Library**
 - Cruise control (CC)
 - Adaptive cruise control (ACC)
 - Shifting strategy (ASS)
 - Master energy management (MEM)

- **Domain**
 - Endurance brake
 - Brake
 - Powertrain
 - Transmission
 - Body & Light
 - Body Builder
 - Driver Information
 - Cabin Comfort
 - Energy Management
 - Infotainment

- **Function**
 - Brake
 - ACC
 - ACC Stop&Go
 - Driver Assistance
 - Transmission
 - Infotainment

THE NEXT LEVEL OF SOFTWARE DEVELOPMENT IN COMMERCIAL VEHICLES
MathWorks AUTOMOTIVE CONFERENCE EUROPE 2022
FUNCTIONAL DEVELOPMENT STRATEGY II

CVM

Domain Controller
- Chassis
- Powertrain
- Body
- Display
- Driver Assistance

Management and strategic functions lifted up to the CVM

Sub-Networks

Many new functions only correlates existing information (signals)

→ easy to implement on the middleware
TOPOLOGY

CCP – MAN COMMON CLOUD PLATFORM

CVM – CENTRAL VEHICLE MANAGER

CM4
Connectivity module

Diag

CIO-Module
Cabin

EIO-Module
Extended

RIO-Module
Rear

DIO-Module
Door

Powertrain
(conventional & BEV)

Chassis

ADAS

Body/Light

Digital driver workplace

ADC1
Automation controller

Mirror display left

Mirror display right

Secondary display

Primary display

THE NEXT LEVEL OF SOFTWARE DEVELOPMENT IN COMMERCIAL VEHICLES
MathWorks AUTOMOTIVE CONFERENCE EUROPE 2022
SYSTEM ARCHITECTURE

CM4
Connectivity module

Diag

CIO-Module
Cabin

EIO-Module
Extended

RIO-Module
Rear

DIO-Module
Door

Shifting strategy

Powertrain management

Chassis control

Brake management

Body control

Display control / HMI

Powertrain (conventional & BEV)

Highway assist
Traffic jam assist
Turn assist
Front / side assist
Lane keeping
LDW
CC / ACC
Fusion

Body / Light

ADAS

Digital driver workplace

Mirror display left
Mirror display right
Secondary display
Primary display

ADC1
Automation controller

Chassis

Body

CC / ACC

Lightning

LDW

Diag

Highway assist

Reflection

Crease

Language

The Next Level of Software Development in Commercial Vehicles

MathWorks Automotive Conference Europe 2022
THE NEXT LEVEL OF SOFTWARE DEVELOPMENT IN COMMERCIAL VEHICLES

MathWorks AUTOMOTIVE CONFERENCE EUROPE 2022

TECHNOLOGY MAP

Network
- LIN
- CAN
- CAN-FD
- Ethernet

Connectivity
- 4G / 5G
- WLAN
- Bluetooth

Backend
AWS technology

Operating system
- Hypervisor/Partitioning
- Micro C OS (AUTOSAR compatible)
- QNX
- LINUX / POSIX

Standards
- MAN meta model (signal based & service oriented)
- AUTOSAR classic
- Adaptive AUTOSAR

Interfaces
- SAE J1939
- MAN Middleware – Mont Blanc

Safety & Security
- ISO 26262 up to ASIL D
- UNECE cyber security

AppFrame
- HTML/Jscript
- QT

Interfaces
- SAE J1939
- MAN Middleware – Mont Blanc
KEY-FUNCTIONALITY

- Content management – version / variant control
- “THE relation tool”
- Requirement management
- Function data management
- Source-code management
- Architecture management
- Change/Issue management
- Agile planning component (SAFe compliant)
- Test management
- Dataset management
- Digital twin

Middleware / Application server

Oracle data base
CURRENT STATUS - EE ORGANIZATION (SAFe BASED)

- Hardware
- SW conventional
- SW automation
- SW backend
- Test

Function architecture

System architecture

Hardware architecture

Flow area Y (e.g. digital services)

Train system X

Team function B

Team service Z (DevOps)

Team component A

Train vehicle function C

Solution table
AGENDA

1. Commercial vehicle business & requirements
2. EE development - current status
3. The next level of software development
4. Summary – key take ways
NEW CHALLENGE - DOING EVERYTHING PARALLEL

- ICE Truck
- Step
- Step
- Step

1. Digital services
2. Battery electrical vehicle
3. Fuel cell vehicle
4. ICE vehicle
5. Autonomous driving
INTEGRATION OF THE VEHICLE IN THE LOGISTIC ENVIRONMENT

Logistic & transport management system of the customer

Vehicle as a services

- Services for vehicle management & connected vehicles
- Market place

- API
 - Digital Twin
 - Data
 - Cloud & Database
 - Connectivity & Security

Vehicle as a platform

- Abstraction layer
- Base technology
- Vehicle platform

- Vehicle conventional
- Zero emission vehicle
- Automated vehicle
MOVING FUNCTIONALITY IN THE CLOUD & COMBINE WITH ADDITIONAL DATA
FUNCTION MEETS SERVICE – EFFICIENT CRUISE FOR BEV

CCP – MAN COMMON CLOUD PLATFORM
- Navigation routing
- Booking
- Payment
- Charging station
- Route optimization

CVM – CENTRAL VEHICLE MANAGER
- Control
- Battery conditioning
- Driving

Backend

Vehicle

Software driven vehicle
CURRENT DEVELOPMENT - SOFTWARE DRIVEN VEHICLE

Same software technology (language, API, middleware independent of the environment (vehicle / cloud)
CLASSIC SIGNAL BASED MODEL – TASK: PROCESSING DATA

Model

Function A

Signal:
Name: signal_1
Datatype: uint8

Signal:
Name: signal_2
Datatype: bool

Data structure

FCN:

Input

SIGNAL:
@Datatype: uint8

Output

SIGNAL:
@Datatype: bool
CLASSIC SIGNAL BASED MODEL – CORRESPONDING TOOLCHAIN

- MATLAB, Simulink
- TargetLink model
- MSRSW (MDX) (XML)
- Local Data Dictionary

Generic interface
SERVICE BASED MODEL – TASK: PROCESSING DATA

Model

- Process A
 - get_method
 - set_method

Data structure

- FCN:
 - Input
 - CHANNEL:
 - SERVICE:
 - SIGNAL:
 - Output
 - CHANNEL:
 - SERVICE:
 - SIGNAL:
 - DATATYPE: avi
 - DATATYPE: struct
SERVICE BASED MODEL – CORRESPONDING TOOLCHAIN

Generic interface

MATLAB, Simulink

ARXML

SW-C

Server

Client
SUMMARY

1. A centralized architecture has big advantages in all dimension (cost, quality & time to market)
2. New end to end features for the customer leads us to a mix of vehicle & cloud oriented functions & services
3. This complexity leads to new development method & tools
THANK YOU VERY MUCH FOR YOUR ATTENTION.

Dipl.-Ing. Stefan Teuchert
Senior vice president
MAN Truck & Bus SE

Global Head of Electric/Electronics - Software & Autonomous
TRATON SE