Simulink for AUTOSAR Adaptive

Dr Richard Thompson
Software Engineering Manager
Agenda

- AUTOSAR is already on the road
- Simulink for AUTOSAR
- Simulink for Adaptive Platform
- Additional Resources
Agenda

- AUTOSAR is already on the road
- Simulink for AUTOSAR
- Simulink for Adaptive Platform
- Additional Resources
AUTOSAR Classic is already on the road

- **BMW** - Model-Based Software Development: And OEM's Perspective

- **FCA Global Powertrain Controls** - Leveraging MBD, auto-code generation and AUTOSAR to architect and implement an Engine Control Application for series production

- **LG Chem** - Developing AUTOSAR and ISO 26262 Compliant Software for a Hybrid Vehicle Battery Management System with Model-Based Design

- **John Deere** - Vertical AUTOSAR System Development at John Deere
Motivation for AUTOSAR Adaptive

- Main drivers – Automated driving, Car-2-car/infrastructure applications
AUTOSAR Platforms

Non-AUTOSAR

Classic AUTOSAR

Adaptive AUTOSAR

Application Software

Adaptive Application Software

ARA

Services

Basis

High Performance Hardware/Virtual Machine

Software

Hardware

RTE

Basic Software

Hardware

Non-AUTOSAR

Classic AUTOSAR

Adaptive AUTOSAR
Agenda

- AUTOSAR is already on the road
- Simulink for AUTOSAR
 - Importing and exporting AUTOSAR descriptions artifacts (ARXML files)
 - Simulation of AUTOSAR ECU software
 - Blocks for AUTOSAR Library routines
 - Scaling from software components to compositions
- Simulink for Adaptive Platform
- Additional Resources
Intuitive and Powerful AUTOSAR Software Design in Simulink

Classic Platform

Application Software

RTE

Basic Software and Routine Libraries

Adaptive Platform

Application Software

ARA

Functional Clusters
Importing and Exporting AUTOSAR SW-C Descriptions (ARXML files)
It is easy to get started from an AUTOSAR description (Import)

1. Import SW-C description (arxml) & create Simulink model

```matlab
h = arxml.importer('mySWC.arxml')
h.createComponentAsModel('/path/mySWC')
```

2. Elaborate SW-C Design, implement & generate code from model
It is also easy & quick to configure a Simulink model for AUTOSAR

1. Start with a Simulink model
2. Click the AUTOSAR Component Quick Start App
3. Elaborate SW-C Design, implement & generate code from model
Example of Configuring a model for AUTOSAR
Now we can focus on modeling

1. Start with a Simulink model (or import SW-C description)

2. Elaborate SW-C design, implement & generate code from model
1) What blocks in this model need to be configured for AUTOSAR?

2) How do I change my AUTOSAR properties in the model?

3) Where do I get more information/help?
Introducing AUTOSAR “perspective” in a Simulink model

Quick Help
Help on configuring model for AUTOSAR

Property Inspector
View/Edit AUTOSAR SW-C Properties

Code Mappings Spreadsheet
View/Edit all blocks and elements configured for AUTOSAR
Functional simulation of AUTOSAR basic software is critical for AUTOSAR ECU development

- Many calls between application software and basic software
- Basic software functionality is highly dynamic
- Simulation of basic software reduces development time and improves software quality
Basic software library makes functional simulation of AUTOSAR basic software as easy as pressing the play button.

Detailed Specifications
It’s easy to configure and play!
Rte_IWriteRunnable_Step_Out1_Out1(Ifl_IntIpoCur_f32_f32(Rte_IReadRunnable_Step_In1_In1(), Rte_CData_L_4_single()) \to Nx, Rte_CData_L_4_single() \to Bp1, Rte_CData_L_4_single() \to Table);
Scaling from software components to compositions
Agenda

- AUTOSAR is already on the road
- Simulink for AUTOSAR
- Simulink for Adaptive Platform
 - A closer look at the Adaptive layers
 - Motivation for Simulink to support Adaptive
 - Mapping Adaptive platform to Simulink
 - Code Generation for Adaptive components
- Additional Resources
AUTOSAR Layered Software Architecture

Adaptive AUTOSAR Foundation

Components
Run-time
Basic Services
Hardware
Key Concept #1
Everything is a process .. as in “OS process”

- **OS Process #1**: Adaptive Application (SW-C)
- **OS Process #2**: Adaptive Application (SW-C)
- **OS Process #3**: Adaptive Application (SW-C)
- **OS Process #4**: Adaptive Application (SW-C)

AUTOSAR Run-time for Adaptive (ARA)

Notes:
- Each OS Process
 - Corresponds to main() in C/C++ code
 - Has own memory space & namespace
 - Can be single or multi-threaded
Key Concept #1
Everything is a process .. as in “OS process”

OS Process #1
Adaptive Application (SW-C)

OS Process #2
Adaptive Application (SW-C)

OS Process #3
Adaptive Application (SW-C)

OS Process #4
Adaptive Application (SW-C)

AUTOSAR Run-time for Adaptive (ARA)

API
OS (POSIX Compliant)
Provides multi-process capability

API
Execution
Process scheduling

API
Communication
Process life-cycle management.

Inter-Process Communication
Key Concept #2
Service-oriented inter-process communication

Linux Machine 1

IPC

Linux Machine 2

IPC

Network

IPC
Key Concept #2
Service-oriented communication

- Service Interface can contain
 - Methods (Functions)
 - Events (Messages)
 - Fields (Data)

<<interface example>>
RadarService

- result = Calibrate(config)
- [success, out_pos] = Adjust(in_pos)
- BrakeEvent
- UpdateRate
Key Concept #3: Everything is C++

AUTOSAR Run-time for Adaptive (ARA)

<table>
<thead>
<tr>
<th>Adaptive Application</th>
<th>Adaptive Application</th>
<th>Adaptive Application</th>
<th>Adaptive Application</th>
<th>ASW::XYZ Non-PF Service</th>
<th>ASW::ABC Non-PF Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>ara::com Communication Mgmt.</td>
<td>ara::rest RESTful</td>
<td>ara::sync Time Synchronization</td>
<td>ara::per Persistency</td>
<td>ara::sm service State Management</td>
<td>ara::diag service Diagnostics</td>
</tr>
<tr>
<td>ara::core Core Types</td>
<td>ara::exec Execution Mgmt.</td>
<td>ara::iam Identity Access Mgmt.</td>
<td>ara::log Logging & Tracing</td>
<td>ara::s2s service Signal to Service Mapping</td>
<td>ara::nm service Network Management</td>
</tr>
<tr>
<td>POSIX PSE51 / C++ STL Operating System</td>
<td></td>
<td></td>
<td></td>
<td>ara::crypto Cryptography</td>
<td>ara::ucm service Update and Configuration Management</td>
</tr>
</tbody>
</table>

High Performance Hardware/Virtual Machine
Adaptive Platform Roadmap

AP 18-03
AP 18-10
AP 19-03

2018 2019 2020

Maturity level

Early adopters – Volkswagen, BMW, Bosch, LG Electronics…

Source - 11th AUTOSAR Open Conference (www.autosar.org)
Motivation for Simulink to support Adaptive

- Simulink is heavily used for AUTOSAR Classic
- Customers have requested Simulink support for Adaptive platform
- Simulink supports service oriented modelling
- Embedded Coder generates C and C++ code
- MathWorks participates in the AUTOSAR standard development, including both Classic and Adaptive platforms
Adaptive SW Architecture Concepts

Service Interface

"Radar" : {
 // events
 "event" : {
 "brakeEvent"
 "parkingBrakeEvent"
 },
 // methods
 "method" : {
 "Calibrate"
 "Adjust"
 },
 // fields
 "field" : {
 "updateRate"
 }
}
Mapping AUTOSAR AP Concepts to Simulink

```
"Radar" : {
    // events
     "event" : {
        "leftLaneDistance"
        "leftTurnIndicator"
        "leftCarInBlindSpot"
        "rightLaneDistance"
        "rightTurnIndicator"
        "rightCarInBlindSpot"
    },
    // methods
    "method" : {
        "Calibrate"
        "Adjust"
    },
    // fields
    "field" : {
        "updateRate"
    }
}
```
"Radar" : {
 // events
 "event" : {
 "leftHazardIndicator"
 "rightHazardIndicator"
 },
 // methods
 "method" : {
 "Calibrate"
 "Adjust"
 },
 // fields
 "field" : {
 "updateRate"
 }
}"Mapping AUTOSAR AP Concepts to Simulink
AUTOSAR Adaptive in Action
Generate Production AUTOSAR Adaptive C++ Code

Out-of-box AUTOSAR support

1. Configure Model
 - Target
 - AUTOSAR Dictionary

2. Generate C++ code
Agenda

- AUTOSAR is already on the road
- Simulink for AUTOSAR
- Simulink for Adaptive Platform
- Additional Resources
To learn more, please visit AUTOSAR Blockset page

Come see us at the demo booth