Homologation of ADAS/AD - challenges and how to tackle them

Dr. Houssem Abdellatif
Global Head Autonomous and Connected Driving
TÜV SÜD Mobility, BU Automotive
AUTONOMOUS DRIVING

How Long is the Way to Go?
A lot of progress concerning the **TECHNOLOGY** is visible, but:

“*The critical path to introduce autonomous driving vehicles will not be the technology but the development of a metric which empowers for an approval*”

Prof. Dr. rer. nat. H. Winner, November 2013

… so what do we need to master and overcome this critical path?
Homologation

Definition
Homologation refers to the certification process of a product (vehicle) granting that it complies with all local standards and legal regulations such as safety and environmental regulation.

No homologation → No CoC → No sales

Self certification vs. type approval 3rd party principle

Type Approval in vehicle development
- Last step of development
- Accomplishment of the v-cycle
- Legal and technical approval of the concept

- European Union: Directive 2007/46/EC Type approval, tests are based on United Nations Economic Commission for Europe (UN/ECE) procedures;
- North America: Federal Motor Vehicle Safety Standards (FMVSS) regulations released by the NHTSA;
- Australian Design Rules (ADR) regulations;
- Japan follows UN/ECE regulations and their own Test Requirements and Instructions for Automobile Standards (TRIAS) regulations;
- Other countries that accept or base their own regulation on those mentioned above, following the latest release or previous versions of the regulations.
What CHANGES with Automation?

“device, having a unique purpose, that augments or replaces human or animal effort for the accomplishment of physical tasks”

Encyclopedia britannica

Machine

The car is turning into a

Cyber Physical System

unique purpose
augmenting / replacing
accomplish
physical tasks

controlled / monitored
Computer and algorithms
Internet
users

“A cyber-physical system (CPS) is a mechanism that is controlled or monitored by computer-based algorithms, tightly integrated with the Internet and its users”

Wikipedia
It percepts the right things
It figures out the correct situation
It takes the right decisions
It acts the right way
It executes what is supposed to do

$\sigma(n^5)$
Is AI (Artificial Intelligence) safe?

Explainability
- The behavior of deep nets and deep learning are basically non-explainable: it is like a human brain, we know it does work somehow but no one can exactly explain why ….

Forgetfulness
- You know how to get on a plane to fly on vacation. There you might collect new impressions and information. You still though know how to get on a plane to travel back home. A deep net might not. He might unlearn this after all the impressions newly collected …

Learning Critical Situations
- Critical situations are just too diverse and too rare to constantly learn from them …
Take a SIMPLE IDEA …

Maneuver / scenario data base
• description
• parameters
• fail/pass criteria (KPI)

subset for homologation
subset for physical testing
subset for simulation testing

real vehicle
virtual vehicle

results: m vehicle variants X
n scenario variants X …

A 6 Points Approach to realize this Idea to empower for Approval
Establish SCENARIO-BASED TESTING as State of the Art

A scenario is a description of a driving situation

a) Left turn in road junction
b) Overtaking on a dual carriageway

Using scenarios from concept to approval

Concept Stage
- system
- subsystem
- components
- software

Type Approval
- system validation
- subsystem integration tests
- component integration tests
- software integration tests
Show Me The Data Base!!

Availability and access
- Data base should be hosted by a neutral instance and made accessible by public (by everyone!)

Scenario Definition
- A uniform definition of scenarios and their respective abstraction layers is needed
- A universal scenario description should be provided and supervised

Monitoring and Supervision
- A committee and/or organization is to be defined that is responsible for updating and grooming the data base: increase, precise, delete, correct scenarios and pass/fail criteria

Pass/Fail Criteria
- Multiple criteria to be defined and associated to each scenario
- Relevance of pass/fail criteria to be defined by the use case (safety, comfort, customer experience, country & cultural relevance)
What is enough?

The CRITICALITY COVERAGE

Criticality Metrics
- A uniform definition of criticality metrics with respect to pass/fail criteria and the respective use case
- What are the most critical scenarios?

Criticality Coverage
- Define a criticality selection method
- Define a criticality threshold for validation and for verification

functional scenarios

: critical parameter combinations
Using simulation

- Enable the use of simulation in the homologation process, e.g.
 - UN/ECE R140 for the approval of Electronic Stability Control
 - UN/ECE R79 (new Release) for the approval of (automatic) steering
- Extend the purpose of simulation use to more than just variants verification to enable scale-out effects

Using the right simulation

- Obligate the validation of simulation tool and its trustworthiness as an integral part of the homologation process
- Define how to demonstrate the trustworthiness in
 - Perception (e.g. Sensor simulation)
 - Interpretation (e.g. sensor fusion)
 - Reasoning (e.g. decision algorithms)
 - Acting (e.g. E/E and control algorithms)
 - Executing (e.g. Vehicle Dynamics)
- Enforce standards for simulation and simulation interfaces, enforce affordable and/or open-source solution

Use SIMULATION for Approval

Using the right simulation for approval involves:

- **UN/ECE R140** for the approval of Electronic Stability Control
- **UN/ECE R79** (new Release) for the approval of (automatic) steering

Using simulation involves:

- Enabling the use of simulation in the homologation process, e.g. for Electronic Stability Control and steering.
- Extending the purpose of simulation use beyond just variants verification to enable scale-out effects.

TÜV SÜD MOBILITY | PERSPECTIVES FOR HAD HOMOLOGATION

19-03-08
Consider

FUNCTIONAL SAFETY

Assessment

Industry

International Standards

Mandatory Submission of Documents to Regulator

DO-178B/C EN 50128 EN 50129 ISO 26262 IEC 62304 IEC 60880

Change This!
Current standards of functional safety exclude explicitly non deterministic algorithms for being non adequate to control technical systems.

Deep nets can adopt functional safety if the following principles hold:
- **Exactness**: algorithms should behave exactly as intended
- **Traceability**: all algorithms are well documented and traceable such that all errors can be traced
- **Quantitative predictability**, e.g.
 - Critical system failure should be proven to happen just once in 1140 Years (!)
Make AI **Verifiable and Certifiable**

AI will be the enabling technology for SAE level 4 & 5 driving.

Framework for AI regulation, verification and certification is necessary.

Verification of AI is an unsolved challenge today.
Mission
▪ Provide knowledge and tools for the assessment of AI
▪ Prove AI to be safe and roadworthy before deployed to public road

Added Value
▪ Lean collaboration platform for leveraging knowledge among members
▪ Establishes strong global exchange between industry, research and regulators

Current Status
▪ Founding process with Eclipse Foundation ongoing
▪ Charta released and approved.

Next steps
▪ First openGENESIS Face-to-Face Meeting (30th of April 2019)
▪ Start more technical projects (Spotlight Projects) and become productive
Close the Loop by

REAL-WORLD DRIVING

Event Data Recorder
- Obligate the integration of Event Data Recorder in automated vehicles
- Define the set of necessary data to be logged for safety monitoring and accident reconstruction

Real-World Driving (Field Tests)
- Define categories, e.g. highway, city center, suburbs, rural areas, etc..
- Manufacturers conduct supervised/witnessed real-world driving tests

Feedback into Homologation
- All approval related and relevant field tests to be documented and to be submitted with logged data
- Submit data to scenario supervision committee (see Point 1)

Critical Issues
- In case of critical issue, consider this in the product correction
- Provide proof of consideration with test results, e.g. simulation, real vehicle testing
6 Steps Towards Approval of Automated Vehicles

- Establish scenario-based testing as state-of-the-art
- Organize scenario data base as a central organ
- Define criticality coverage
- Allow simulation in homologation
- Consider functional safety assessment for AI
- Close the loop by real-world driving tests
... and we can skip plan B