

COLLABORATIVE MODEL DEVELOPMENT FOR SYSTEM SIMULATION

Andreas Erbes, Dirk Frerichs, Stefan Sinsel, Jochen Zäpf

Groupe PSA - Opel Automobile GmbH

XiL Simulation & Software Test Methods

Stuttgart, MathWorks AUTOMOTIVE CONFERENCE 2019 EUROPE, 11. April 2019

WHAT IS THE CHALLENGE TO SYSTEM SIMULATION?

- Dramatically increasing system complexity
- Reduction of development costs
- Strong move towards virtual development methods

- Simulation based engineering is getting more and more important
- Collaboration between departments becomes a prerequisite
- Common fundament for model development, methods & tools
- Need of collaborative Simulation Framework

AGENDA

- What is a Simulation Framework?
- Characteristics of a collaborative framework?
- Modular system modeling approach
- Practical examples for model integration
 - Model Interface Management
 - Model Configurator
- Summary

SYSTEM SIMULATION APPROACH

A framework is a puzzle of solutions for various disciplines

- Library concept
- Model integration
- Variant handling

Model Configuration

6

WHAT IS A SIMULATION FRAMEWORK?

- Parameter initialization
- Definition of tunable parameters
- Parameter inheritance
- Maintenance of meta data

- Following agile principles
- Git for version control
- JIRA for planning & issue tracking
- Continuous Integration & Testing

WHAT IS A SIMULATION FRAMEWORK?

- Standards for model interface (e.g. FMU/FMI) and co-simulation methods
- Interface to external test automation tools
- Standard interfaces to RCP/HIL systems
- Data exchange with PLM/ALM systems

WHAT IS A SIMULATION FRAMEWORK?

A framework is a puzzle of solutions for various disciplines

• Common documentation for tools & models

Andreas Erbes | Collaborative Model Development for System Simulation | MathWorks AUTOMOTIVE CONFERENCE 2019 EUROPE | Opel Automobile GmbH, XiL Simulation & Software Test Methods

A framework is a puzzle of solutions for various disciplines

- Naming convention
- Modeling rules & style guides
- MAAB Standard

WHAT IS A SIMULATION FRAMEWORK?

11

Conventions

WHAT IS A SIMULATION FRAMEWORK?

User Interface

- Common Look & Feel
- Automatic UI generation

WHAT IS A SIMULATION FRAMEWORK?

A framework is a puzzle of solutions for various disciplines

It's not the What It's the How to ...

It's not the content It's the method

COLLABORATIVE FRAMEWORK

COLLABORATIVE FRAMEWORK

Turn-key Application Models (with different purpose)	Powertrain	ADAS	Line Alternative Propulsion
Common Simulation Framework (across various domains and departments) Automotive XIL Objectoriented Modelframework		IN CONTRACTOR	AND M
Base Software	TLAB ULINK	dSPACE GT Gamma Technolog	ECU-TEST

WHAT ARE THE GOALS OF AXIOM?

HOW TO SPECIFY AXIOM ENVIRONMENT?

Template vs. Library repository

Template Repository

- Simulink Top Level Structure
- Model Settings (e.g. Solver)
- Matlab/Simulink Settings
- Definition of used Libraries

Library Repository
Model Library
Toolboxes
Other Data

Environment

HOW TO SPECIFY AXIOM ENVIRONMENT?

- Modular approach as main principle of Axiom
- Key enabler for collaborative work
- Module consists of a model together with it's parameters and interface definition
 - It is standalone capable and completely independent of other modules
 - Module interfaces are tunable parameters and signal ports
- \rightarrow Powerful toolchain required to...
 - connect modules to each other
 - load application specific parametrization
 - maintain different configurations (variants)

EXAMPLE 1: CONNECTION MANAGER

Adapter to connect multiple models

- Enabler for decoupled model development
- Well defined interface: prerequisite for model split
- Small busses realized by intelligent bus creation
- automatic satisfaction of open module interfaces

Demo

Step 1

Add Connection Manager Blockset

Demo

Step 1

Step 2

Add Connection Manager Blockset

EXAMPLE 1: CONNECTION MANAGER

Step 3

Open Connection Manager

Demo

Step 1

Step 2

Add Connection Manager Blockset

Assign Connection Manager

Management of parametrization

- Maintenance of parameter files (auto-generation, checks etc.)
- Apply specific parameterization by
 - Tunable parameter files
 - Overrides
 - References
- Automatic workspace initialization

Management of model variants

- Runtime switchable
- Provide functionality to store configurations \rightarrow traceability, reuse
- Support of "Model Referencing"

EXAMPLE 2: MODEL CONFIGURATOR

Parametrization via GUI

SUMMARY

SUMMARY

Collaborative Model Development for System Simulation

THANK YOU

Q &A

Andreas Erbes | Collaborative Model Development for System Simulation | MathWorks AUTOMOTIVE CONFERENCE 2019 EUROPE | Opel Automobile GmbH, XiL Simulation & Software Test Methods