Agenda

▪ Motivation & Common Understanding

▪ Case Study: Automotive Fleet Data Analytics

▪ Key Takeaways
Why Analyze Vehicle Fleet Data?

- Understand real-world behavior (spec vs. actual usage)
- Make decisions with all of your data
- Enable Domain Experts to validate component or system behavior in situ
- Identify and open up new market / product opportunities
BMW Uses Machine Learning to Detect Oversteering

Challenge
Develop automated software for detecting oversteering, an unsafe condition in which rear tires lose their grip during a turn

Solution
Use MATLAB to develop, train, and evaluate a variety of supervised machine learning classifier types, including KNN, SVM, and decision trees

Results
- Oversteering identified with greater than 98% accuracy
- Multiple machine learning classifiers trained automatically
- Code generated and deployed to an ECU for real-time, in-vehicle testing

“Working in MATLAB, we developed a supervised machine learning model as a proof of concept. Despite having little previous experience with machine learning, in just three weeks we completed a working ECU prototype capable of detecting oversteering with over 98% accuracy.”

- Tobias Freudling, BMW Group

Link to article
Suzuki Motor Corporation leverages Machine Learning as part of a MATLAB based workflow to optimize control parameters.

Optimize control parameters to achieve “Drivability feel”

- Need to standardize

Challenges

- Drivability was quantified based on individual experience and sensory feel
- Model creation required lots of trial and error, need to iterate quickly was important
- Computing time

MATLAB EXPO Japan, 2017
Workflows Enable Domain Experts to Develop Fleet Analytics

Complete Workflows

Data Access

Preprocessing

Feature Engineering

Model Training

Model Tuning

Deployment

Datatypes and tools for missing data, outliers, time-alignment, etc.

Text files, spreadsheets, databases, binary files, data feeds, web, cloud storage

Machine Learning apps

Domain-specific techniques for Signals, Images, Video, Audio, and Text

C/C++ Code Generation and Enterprise IT Integration

Automated Parameter Tuning
Develop Locally, Deploy to a Cluster or the Cloud

ACCESS DATA

More data and collections of files than fit in memory

Datastores
- Images
- Spreadsheets
- Tabular Text
- Custom Files
- SQL
- Hadoop (HDFS)
- Tabular Text
- Custom Files
- SQL
- Hadoop (HDFS)

PROCESS ON THE DESKTOP

Adapt traditional processing tools or learn new tools to work with Big Data

Tall Arrays
- Math
- Statistics
- Visualization
- Machine Learning

MapReduce
- Visualization
- Machine Learning

SCALE PROBLEM SIZE

To traditional clusters and Big Data systems like Hadoop

Tall Arrays
- Math, Stats, Machine Learning on Spark

Distributed Arrays
- Matrix Math on Compute Clusters

SPMD
MapReduce
MATLAB API for Spark
Challenges with Analyzing Automotive Fleet Data

<table>
<thead>
<tr>
<th>Challenge</th>
<th>How does MATLAB Help?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Out of the box, MATLAB R2018a is 2x faster than MATLAB R2015a (or older)</td>
</tr>
<tr>
<td>Too much data / very large individual files</td>
<td>datastores, tall Arrays, MATLAB MapReduce, Parallel Computing</td>
</tr>
<tr>
<td>Time Series Data (with different sample rates)</td>
<td>timetable, retime, synchronize</td>
</tr>
<tr>
<td>Messy / Missing / Incomplete Data</td>
<td>Extensive pre-processing functionality</td>
</tr>
<tr>
<td>File Formats</td>
<td>Native support for parquet and MDF file formats, custom datastores</td>
</tr>
<tr>
<td>Integrate data-oriented algorithms with classical controls</td>
<td>MATLAB & Simulink in a single platform</td>
</tr>
</tbody>
</table>
Lesson’s Learned About Automotive Vehicle Test Fleets

Vehicles

Trips (files)

Messages

Signals

Time – Value pairs
Agenda

- Motivation & Common Understanding

- Case Study: Automotive Fleet Data Analytics

- Key Takeaways
Case Study: MathWorks Vehicle Fleet

Challenge

▪ Given a large set of vehicle fleet data:
 – Efficiently explore all of the available data to deepen our understanding
 – Develop and implement “event detection” functionality
 – Develop a Machine Learning model to classify driving behavior

Results

▪ Utilizing the MATLAB platform and tall arrays, each of the challenge requirements above were delivered on in a flexible, scalable way.
Demo

Parts 1 & 2
Case Study Results – Exploration & Discovery

- Worked with all of our data with tall arrays
 - Trip based analytics ("for Each")
 - Fleet based analytics ("for All")

- Extracted performance metrics & created summary visualizations

- Applied an "Event Detection" function to all of our data to find specific information
Case Study: MathWorks Vehicle Fleet

Challenge
- Given a large set of vehicle fleet data:
 - Efficiently explore all of the available data to deepen our understanding
 - Develop and implement “event detection” functionality
 - Develop a Machine Learning model to classify driving behavior

Results
- Utilizing the MATLAB platform and tall arrays, each of the challenge requirements above were delivered on in a flexible, scalable way.
Demo

Part 3
Case Study Results – Model & Predict

- Interactively explored classification algorithms with the Classification Learner App
- Investigated ways to incrementally improve model performance
- Generated c-code from our MATLAB based Machine Learning model to enable faster prediction time
Workflow Pattern / Recipe

- Access out of memory data
- Aggregate, summarize, & visualize
- Develop functions for event detection and calculation
- Leverage table & timetable functions
- Apply functions to all of your data

- datastore & tall
- table, histogram, heatmap, boxplot, binscatter
- Normal MATLAB code
- fillmissing, filloutliers, synchronize, retime, etc
- matlab.tall.transform & matlab.tall.reduce
Agenda

- Motivation & Common Understanding
- Case Study: Automotive Fleet Data Analytics
- Key Takeaways
MATLAB Integrates Across the Spectrum of Processing Needs

Centralized
- Batch Processing
 - Analysis of historical data

Edge
- Edge Processing
 - Real-time decisions/Data reduction
- Quick Reaction
 - Preventive action on assets
 - Deploy predictive models

Embedded Control
- Hard real-time control

Stream Processing
- Time-sensitive decisions

Batch Processing
- Fleet trends and behaviors
- Develop predictive models

Time to React
- Milliseconds
- Seconds
- Minutes
- Hours
- Days
- Months
- Years

Technologies
- NXP
- ARM
- VxWorks
- Xilinx
- NVIDIA
- C/C++
- kafka
- Event Hub
- Kinesis
- Cassandra
- Spark
- PI System
- Cosmos DB
- Oracle

Wide Scope
- Fleet trends and behaviors
- Develop predictive models
Key Takeaways / Call To Action

- Working with fleet test data is hard. The MATLAB platform enables **Domain Experts** to implement efficient **Data Analytics** ranging from simple exploratory work to deployment of full featured **Machine Learning** Models.

- Make sure you are thinking about the “**Everything Else**” required to achieve your goals. Data ingestion, cleanup, and deployment are just as important as the modeling / Machine Learning step in the process.

- Connect with me to discuss fleet analytics: **wwilson@mathworks.com**