Taylor Series: cos(x)
[bookmark: _GoBack]
Introduction:

Computers, microprocessors, and calculators can add, subtract, multiply, and divide. These operations are done in binary, of course, since numbers are stored in binary.
With this rather limited set of operations, how does your calculator or MATLAB determine values for these functions?
[image:]

To calculate values for these functions, we need an iterative algorithm or a numerical method that only requires the basic arithmetic operations of addition, subtraction, multiplication, and division. Taylor series is one method for calculating the cosine of an angle.

The Taylor Series for cos(x) is given by:

1. Fill in the Table 1 using the Taylor series estimate for cos(x) assuming x = π. Do these calculations by hand.

Table 1: Test Values
	Initial
	1st Term
	Estimate = 1

	k = 1
	Add Term 2
	Estimate = Estimate x2/2! =

	k = 2
	Add Term 3
	Estimate = Estimate + x4/4! =

	k = 3
	Add Term 4
	Estimate = Estimate x6/6! =

	k = 4
	Add Term 5
	Estimate = Estimate + x8/8! =

2. Write a script file that prompts the user for the angle, x, in radians and the number of terms, N, to be used for the Taylor series estimate. Your script should compute an estimate for cos(x) and output the estimate with 5 places behind the decimal point.

3. Test your script using the values you calculated in step 1. Correct your script if necessary.

4. Now use your script to fill in Table 2.

Table 2: Estimates of cos(x) Using Taylor Series Algorithm
	Angle, x, in radians
	Number of Terms
	Estimate Using Taylor Series
	Actual Value

	pi/2
	1
	
	0

	pi/2
	5
	
	0

	pi/2
	10
	
	0

	5*pi/4
	5
	
	0.70711

	5*pi/4
	10
	
	0.70711

	5*pi
	10
	
	1

	5*pi
	20
	
	1

	5*pi
	30
	
	1

	11.5*pi
	30
	
	0

	11.5*pi
	40
	
	0

	11.5*pi
	50
	
	0

	11.5*pi
	53
	
	0

	11.5*pi
	54
	
	0

	11.5*pi
	55
	
	0

	11.5*pi
	60
	
	0

	11.5*pi
	100
	
	0

Comment: For the last angle, once we get out to 100 terms, the values we need to compute become so large, we actually exceed the range of a 64 bit double. We will use the fact that cosine is a periodic function to fix this problem.

Periodicity of Trig Functions:

You can see that as the angle, x, moves away from 0 radians, we need more and more terms to get a decent estimate of cos(x). In fact, if x is too large, we actually exceed the range of a 64 bit double (the factorial gets huge!) and end up with NAN. We can fix this issue by making use of the periodicity of the cosine function. Since the cosine function is a periodic waveform with a period of 2π, we know the following is true:

So, we can take any angle, x, and reduce it to an angle in the range of 2π to 2π by adding or subtracting some integer multiple of 2π.

For example:

	
	
	

Subtracting multiples of 2π is equivalent to dividing by 2π and keeping the remainder as the equivalent (smaller) angle. To see this complete the division problems below (by hand). The first one is done for you.

	
	5
	
	
	
	
	
	

	2π
	10π
	
	2π
	9.5π
	
	2π
	11.5π

	
	10π
	
	
	
	
	
	

	Remainder
	0
	
	
	
	
	
	

MATLAB has a function called rem that divides a number by another number and produces the remainder. Use the rem function to fill in Table 3.

Table 3: Examples of rem function
	MATLAB COMMAND
	Result
	Result with π factored out

	>> rem(10*pi, 2*pi)
	
	

	>> rem(9.5*pi, 2*pi)
	
	

	>> rem(11.5*pi, 2*pi)
	
	

Comment: MATLAB has another function called mod that if very similar to rem. The only difference is mod produces the absolute value of the remainder. We will use rem because we want to preserve the sign of the remainder to get an equivalent angle.

5. Modify your script file to apply the rem function to the angle, x, that the user enters then calculate the Taylor series estimate for cosine based on the adjusted (or equivalent) angle.

6. Now fill in Table 4 using your modified program to verify that your program now works well for any angle, x.

Table 4: Estimates of cos(x) using equivalent angle
	Angle, x, in radians
	Number of Terms
	Estimate Using Taylor Series
	Actual Value

	11.5*pi
	5
	
	0

	11.5*pi
	10
	
	0

	11.5*pi
	15
	
	0

Convergence:
How do we know when we have used enough terms without knowing the actual value of cos(x)?

We will test for convergence by comparing consecutive estimates. When the estimate doesn’t change much from the previous estimate, we will stop our loop and output the estimate.

7. Modify your script file as follows:
· Replace the for loop with a while loop. Your while loop should continue as long as abs(Estimate – PreviousEstimate) exceeds 0.00001.
· Eliminate your input statement that prompts the user for the number of terms.
· Add an fprintf statement that displays how many terms were required for convergence.

8. Run your script to complete Table 5.

Table 5: Estimate of cos(x) and Number of Terms to Converge
	Angle, x,
in radians
	Actual Value, cos(x)
	Estimate, cos(x)
	Number of Terms
Required for Convergence

	pi/2
	0
	
	

	5*pi/4
	0.70711
	
	

	5*pi
	1
	
	

	11.5*pi
	0
	
	

image1.png

