
 Topics:   
• Properties of linear dynamic systems 
• Time-domain analysis of linear systems 
• Numerical simulation of linear system 
• Root-locus of linear systems 
• Frequency-domain analysis of linear systems 
• Introduction to model Reduction techniques 
 

Analysis of Linear Control Systems 



Properties of linear dynamic systems 
• Linear systems obey the superposition principle  
• Stability analysis 

– Bounded-input bounded-output (BIBO) stability 
• A system is stable if all its poles have negative real-parts  

– Poles are the roots of the denominator of the system’s transfer function G(s)  
– Zeros (transmission zeros) are the roots of the numerator of the system’s transfer 

function G(s)  

• Poles on the imaginary axis with multiplicity one are critically stable  
• Poles on the imaginary axis with multiplicity more than one are unstable 

• Matlab commands 
• Find system poles using commands pole() and eig() 

• Find system zeros using command zero()  
• Sketch system’s poles and zeros using command pzmap()   
• Use command isstable() to check system’s stability, returns 1=stable, 0=unstable  

Example: Check the stability of system 𝐺 𝑠 =
𝑠3+7𝑠2+24𝑠+24

𝑠4+10𝑠3+35𝑠3+50𝑠+24
  

 

>> G=tf([1,7,24,24],[1,10,35,50,24]); eig(G); pzmap(G);   
Or  

>> s=tf(‘s’); G=(s^3+7*s^2+24*s+24)/(s^4+10*s^3+35*s^2+50*s+24);  isstable(G); 



Internal stability 
 

• The system shown is internally stable iff:  
1) The transfer function of 1+H(s)G(s)Gc(s) has no zeros in RHP  

2) The loop transfer function H(s)G(s)Gc(s) has no pole-zero cancellation in RHP  

 

Matlab command: intstable() 
– Syntax:   [V,c]=intstable(G,Gc,H);   

• If system is internally stable , V=0 and c is empty 

• If system is I/O unstable, V=1 and c holds the unstable closed-loop poles 

• If system is I/O stable, but not internally stable, V=2 and c holds the cancelled unstable 
poles  

– Matlab command minreal() gives the simplified transfer function, after 
pole-zero cancellation, which may not be internally stable  
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Controllability and observability analysis 

• Controllability: 
• The state xi(t) is said to be controllable if there exists an input that in finite 

time can drive it to any specified value xi(tf) from the initial value xi(0)  

• The system is fully controllable if all its states are controllable  
– Full controllability of the system depends on the A and B matrices of its state-space model 

• An nth-order system is fully controllable if its controllability matrix Tc=[B, AB, …, An-1B] has full rank 

 

Matlab commands: ctrb(), ctrbf(), rank() 
– Tc=ctrb(A,B);  returns the controllability matrix Tc 

– [Ac,Bc,Cc,Tc]=ctrbf(A,B,C);  returns the equivalent state-space matrices (Ac,Bc,Cc) 

in the stair-case form 𝐴𝑐 =
𝐴 𝑐 0

𝐴 21 𝐴 𝑐
, 𝐵𝑐 =

0
𝐵 𝑐

, 𝐶𝑐 = 𝐶 𝑐 𝐶 𝑐 , where (𝐴 𝑐, 𝐵 𝑐, 𝐶 𝑐) 

represent the controllable subsystem 𝐺 𝑠 = 𝐶 𝑐 𝑠𝐼 − 𝐴 𝑐
−1
𝐵 𝑐 + 𝐷  

– rank(Tc);  generates the rank of the matrix Tc  
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• Observability  
• The state xi(t) is said to be observable if for any tf>0, the initial state xi(0) can be 

determined from the time history of the input u(t) and output y(t) in the 
interval [0,tf]  

• The system is fully observable if all system states are observable  
– Full observability of the system depends on the A and C matrices of its state-space model 

• An nth-order system is fully observable if its observability matrix 𝑇𝑜 =

𝐶
𝐶𝐴
⋮

𝐶𝐴𝑛−1

 has full rank  

• Dual of controllability  

Matlab commands: obsv(), obsvf() 
– To=obsv(A,C);  returns the observability matrix To  

– [Ao,Bo,Co,To]=obsvf(A,B,C);  returns the equivalent state-space matrices (Ao,Bo,Co) 

in the stair-case form 𝐴𝑜 =
𝐴 𝑜 𝐴 12
0 𝐴 𝑜

, 𝐵𝑜 =
𝐵 𝑜 
𝐵 𝑜

, 𝐶𝑜 = 0 𝐶 𝑜 , where (𝐴 𝑜, 𝐵 𝑜, 𝐶 𝑜) 

represent the observable subsystem 𝐺 𝑠 = 𝐶 𝑜 𝑠𝐼 − 𝐴 𝑜
−1
𝐵 𝑜 + 𝐷   
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Controllability and observability Gramians 
• Controllability and observability Gramians Wc and Wo show how controllable 

and observable a system is, where  𝑊𝑐 =  𝑒𝐴𝑡𝐵𝐵𝑇𝑒𝐴
𝑇𝑡𝑑𝑡

∞

0
  and 𝑊𝑜 =  𝑒𝐴

𝑇𝑡𝐶𝑇𝐶𝑒𝐴𝑡𝑑𝑡
∞

0
  

– Wc and Wo satisfy the Lyapunov equations 𝐴𝑊𝑐 +𝑊𝑐𝐴
𝑇 = −𝐵𝐵𝑇 and 𝐴𝑇𝑊𝑜 +𝑊𝑜𝐴 = −𝐶𝑇𝐶   

– Wc and Wo are positive definite if and only if (A,B) is controllable and (A,C) is observable  

– The singular values of Wc indicate the contribution of the input signal to each state  

– The singular values of Wo indicate the contribution of each state to the output signal   
 

Matlab commands: lyap(), svd(), gram() 
– Wc=lyap(A,B*B’);  returns the controllability Gramian matrix Wc  

– Wo=lyap(A’,C’*C);  returns the observability Gramian matrix Wo  

– [U,S,V]=svd(Wc);  produces a diagonal matrix S, of the same dimension as Wc and 
with nonnegative diagonal elements in decreasing order, and unitary matrices U 
and V so that Wc = U*S*V‘  

– W=gram(G,type);  returns the gramian matrix W for a system with state-space 
model G, where type is ‘c’ or ‘o’ for controllability or observability Gramians  
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Other Matlab commands: 
• kalmdec();  produces Kalman decomposition of a given system  

• timmomt();  produces time moments Mi of a given system, where 
𝑀𝑖 =  𝑡𝑖𝑔 𝑡 𝑑𝑡

∞

0
, and 𝑔 𝑡  is the impulse response of the system G(s)  

• markovp(); produces the Markov parameters di of a given system, where 
𝑑0 = 𝐶𝐵 + 𝐷 and  𝑑𝑖 = 𝐶𝐴𝑖𝐵, i=1,2,…    

 

Norm measures of signals and systems  
• Norm measures of signals  

– Lp-norm defines the size of a signal u(t) as 𝑢(𝑡) 𝑝 =  𝑢(𝑡) 𝑝𝑑𝑡
∞

−∞

1 𝑝 
, where 

p is a positive integer  

• The L1-norm is 𝑢(𝑡) 1 =  𝑢(𝑡) 𝑑𝑡
∞

−∞
   

• The L2-norm is 𝑢(𝑡) 2 =  𝑢(𝑡) 2𝑑𝑡
∞

−∞

1 2 
,     (the measure of signal power)  

• The L-norm is 𝑢(𝑡) ∞ = sup
𝑡

𝑢(𝑡) ,     (the least upper-bound of |u(t)|) 
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Norm measures of systems  
• The size of a system G(s) is generally measured in H2-norm and H-norm  

– The H2-norm is 𝐺(𝑠) 2 =
1

2𝜋𝑗
 𝐺(𝑗𝜔) 2𝑑𝜔
𝑗∞

−𝑗∞

1 2 

=   𝑡𝑟 𝑔 𝑡 𝑇𝑔(𝑡) 𝑑𝑡
∞

0

1 2 
 

• (square-root of the integral-squared of the impulse-response 𝑔(𝑡) of the system)  

– The H-norm is 𝐺(𝑠) ∞ = sup
𝑢(𝑡)≠0

 
𝑦(𝑡) 2

𝑢(𝑡) 2
   =    sup 

𝜔
𝐺(𝑗𝜔)    

• (peak-value of the magnitude of the frequency-response of the system)   
 

• Properties of L and H norms:  
– 𝑦(𝑡) 2 ≤ 𝐺(𝑠) ∞ 𝑢(𝑡) 2   

– 𝑦(𝑡) ∞ ≤ 𝐺(𝑠) 2 𝑢(𝑡) ∞   

– 𝐺1(𝑠)𝐺2(𝑠) ∞ ≤ 𝐺1(𝑠) ∞ 𝐺2(𝑠) ∞  
 

Matlab command: norm()  
– norm(X,P);  X is a matrix, P is norm type 1, 2, inf, fro (Frobenius)  

– norm(V,P);  V is a vector, P is norm type (1, 2, …, inf (max), and –inf (min))  

– norm(G);  H2-norm of G(s)  

– norm(G,inf);  H-norm of G(s)   
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Analytical solutions to continuous-time responses 

• Consider the system   𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡
𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢(𝑡)

 ,  with initial condition 𝑥 0 = 𝑥0   

– The system response to an arbitrary input u(t), for 𝑡 ≥ 0, is:    

•  
𝑥 𝑡 = 𝑒𝐴𝑡𝑥0 +  𝑒𝐴 𝑡−𝜏 𝐵𝑢 𝜏 𝑑𝜏

𝑡

0
                         

𝑦 𝑡 = 𝐶 𝑒𝐴𝑡𝑥0 +  𝑒𝐴 𝑡−𝜏 𝐵𝑢 𝜏 𝑑𝜏
𝑡

0
+ 𝐷𝑢(𝑡)

     

– Laplace transform of the solution is:   
𝑋 𝑠 = 𝑠𝐼 − 𝐴 −1 𝑥 0 + 𝐵𝑈(𝑠)                     

𝑌 𝑠 = 𝐶 𝑠𝐼 − 𝐴 −1 𝑥 0 + 𝐵𝑈(𝑠) + 𝐷𝑈(𝑠)
 

Analytical solutions to discrete-time responses 

• Consider the system   𝑥 𝑘 + 1 = 𝐴𝑥 𝑘 + 𝐵𝑢 𝑘
𝑦 𝑘 = 𝐶𝑥 𝑘 + 𝐷𝑢 𝑘         

 ,  with sample-time T and 𝑥 0 = 𝑥0   

– The system response to a sampled arbitrary input u(k), for 𝑘 = 0,1,2, …, is:    

•  
𝑥 𝑘 + 1 = 𝑒𝐴𝑇𝑥 𝑘 +  𝑒𝐴𝜏𝐵𝑑𝜏

𝑇

0
 𝑢 𝑘                   

𝑦 𝑘 = 𝐶 𝑒𝐴𝑇𝑥 𝑘 +  𝑒𝐴𝜏𝐵𝑑𝜏
𝑇

0
 𝑢 𝑘 + 𝐷𝑢(𝑘)

   ,    where   𝑦 𝑘 = 𝔷−1 𝐺 𝑧 𝑈(𝑧)  
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Second-order system analysis 

• Consider a second-order linear system  𝐺 𝑠 =
𝜔𝑛

2

𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛
2   

– The step response of the system is:   

1. If 𝜁 = 0,       𝑦 𝑡 = 1 − cos (𝜔𝑛𝑡)   

2. If 0 < 𝜁 < 1,       𝑦 𝑡 = 1 − 𝑒−𝜁𝜔𝑛𝑡 1

1−𝜁2
sin (𝜔𝑑𝑡 + 𝜃)   

   where  𝜔𝑑 = 𝜔𝑛 1 − 𝜁2  and  𝜃 = 𝑡𝑎𝑛−1
1−𝜁2

𝜁
  

3. If 𝜁 = 1,       𝑦 𝑡 = 1 − 1 + 𝜔𝑛t 𝑒
−𝜔𝑛𝑡 

4. If 𝜁 > 1,       𝑦 𝑡 = 1 −
𝜔𝑛

2 𝜁2−1

𝑒𝜆1𝑡

𝜆1
−

𝑒𝜆2𝑡

𝜆2
  

   where  𝜆1 = −𝜁 − 𝜁2 − 1  and  𝜆2 = −𝜁 + 𝜁2 − 1  

More concisely:  

– if 𝜁 ≠ 1,    𝑦 𝑡 = 1 − 𝜔𝑛 𝑒
−𝜁𝜔𝑛𝑡 cosh (𝜔𝑑𝑡)

𝜔𝑛
−

ζ sinh (𝜔𝑑𝑡)

𝜔𝑑
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Qualitative specifications in step responses  

• Second-order linear system  𝐺 𝑠 =
𝜔𝑛

2

𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛
2   

– Specifications of the step response (shown):  

– Steady-state value, yss:    𝑦𝑠𝑠 = lim
𝑠→0

𝑠𝐺 𝑠
1

𝑠
= 𝐺(0)   

– Rise-time, tr:   the time for the response to go from 10% to 90% of 𝑦𝑠𝑠  

– Settling-time, ts:  the time when 𝑦(𝑡) enters and stays in the range 𝑦𝑠𝑠 ± ∆𝑦  

– Overshoot (maximum peak), Mp:  percent overshoot 𝑀𝑝 =
𝑦𝑚𝑎𝑥−𝑦𝑠𝑠

𝑦𝑠𝑠
× 100%   

Matlab commands: step(), dcgain(), impulse(), lsim(), grid 
– step(G);  draws the step response of G(s)  

– [y,t]=step(G);  evaluate the step response of G(s) and not draw it  

– K=dcgain(G);  calculate the steady state value yss of the output y(t)  

– impulse(G);  draw the impulse response of G(s)  

– lsim(G,u,t);  draw the response of G(s) to an arbitrary input u(t)  

– grid;  superimpose a grid on the plot  

Numerical Simulation of Linear Systems 
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Unity feedback system  

• Sketch the location of closed-loop poles  

– Roots location of 1 + 𝐾𝐺 𝑠 = 0, where −∞ < 𝐾 < ∞   
 

Matlab commands: rlocus(), grid  
– rlocus(G);  draws the root locus  

– rlocus(G,K);  draw root-locus for a given gain vector K  

– [R,K]=rlocus(G);  evaluate the closed-loop pole location R, not draw  

– rlocus(G1,’-’,G2,’-.b’G3,’:r’);  draw root-locus for several models  

• Example: Draw the root-locus, where 𝐺 𝑠 =
𝑠2+4𝑠+8

𝑠5+18𝑠4+120.3𝑠3+357.7𝑠2+478.5𝑠+306
   

>> num=[1,4,8]; den=[1,18,120.3,375.5,478.5,306];  

     G=tf(num,den); rlocus(G); 

– Right click on the jw-axis crossing  

• Critical gain k781 

Root Locus of Linear Systems 
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Frequency-domain plots of G(s), s=j   
• Real and imaginary part representation 

  𝐺 𝑗𝜔 = 𝑃 𝜔 + 𝑗𝑄 𝜔    
– Nyquist plot draws Q 𝜔 = 𝐼𝑚(𝐺(𝑗𝜔)) v. P 𝜔 = 𝑅𝑒(𝐺(𝑗𝜔))   
 

• Magnitude and Phase representation in separate plots 
  𝐺 𝑗𝜔 = 𝐴 𝜔 𝑒−𝑗𝜙(𝜔)   
– Bode plot draws the magnitude in decibels (M 𝜔 = 20𝑙𝑜𝑔(𝐴(𝜔))) and phase in 

degrees versus the frequency in log scale 
 

• Magnitude and Phase representation in a single plot 
  𝐺 𝑗𝜔 = 𝐴 𝜔 𝑒−𝑗𝜙(𝜔)   
– Nichols chart draws the magnitude versus phase  
 
 

Matlab commands:  nyquist, bode(), nichols(),  
– nyquist(G);  draws the Nyquist plot   
– [R,I,K]=nyquist(G);  evaluate the Nyquist data, not draw  
– bode(G);  draw the Bode plot of G(s)  
– [A,,]=bode(G); evaluate the Bode data, not draw  
– nichols(G);  draw the Nichols chart of G(s)  
– [A,,]=bode(G); evaluate the Nichols data, not draw  

Frequency-Domain Analysis of Linear Systems 



Example: Draw the Bode plot, Nyquist plot and Nichols chart for  

 𝐺 𝑠 =
𝑠+8

𝑠 𝑠2+0.2𝑠+4 𝑠+1 𝑠+3
   

 

Matlab code: 
close all; s=tf('s'); G=(s+8)/(s*(s^2+0.2*s+4)*(s+1)*(s+3));  

figure(1), bode(G);  

figure(2), nyquist(G); set(gca,'Ylim',[-1.5,1.5]);  

figure(3), nichols(G); set(gca,'Xlim',[-400,-100],'Ylim',[-100,30]);   
 

You may right-click on any of the figures and modify its properties (labels, limits, units, style, etc) 
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Stability analysis in frequency-domain 

• The closed-loop system is stable if:   
– The Nyquist plot of G(s) encircles (counter-clockwise) the point (-1+0j) as 

many times as the number of RHP poles of G(s)   
 

• Example: For 𝐺 𝑠 =
2.7778 𝑠2+0.192𝑠+1.92

𝑠 𝑠+1 2 𝑠2+0.384𝑠+2.56
 is the closed-loop system stable?  

Matlab code: 
s=tf('s'); G=2.7778*(s^2+0.192*s+1.92)/(s*(s+1)^2*(s^2+0.384*s+2.56)); 

figure(1), nyquist(G); axis([-2.5,0,-1.5,1.5]); grid;  

figure(2), nyquist(G); axis([-1.2,-0.8,-0.2,0.2]); grid;  

figure(3), step(feedback(G,1,-1));  

G(s) 
- 

Frequency-Domain Analysis of Linear Systems 

-2.5 -2 -1.5 -1 -0.5 0
-1.5

-1

-0.5

0

0.5

1

1.5
Nyquist Diagram

Real Axis

Im
a

g
in

a
ry

 A
x
is

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Step Response

Time (sec)

A
m

p
li
tu

d
e

-1.15 -1.1 -1.05 -1 -0.95 -0.9 -0.85 -0.8
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
Nyquist Diagram

Real Axis

Im
a

g
in

a
ry

 A
x
is

Stable, but too oscillatory! 



Gain and phase margins of a system 

• Gain margin:  𝐺𝑚 =
1

𝐴(𝜔𝑐𝑔)
   

◦ 𝐴 𝜔𝑐𝑔  and 𝜔𝑐𝑔 are the magnitude and frequency where the Nyquist plot 
intersects the negative real-axis  

◦ The smaller the gain-margin, the faster the closed-loop system response 

◦ If 𝐺𝑚 < 1, the closed-loop system is unstable 

• Phase margin:  𝑃𝑚 = 𝜙 𝜔𝑐𝑝 + 180   

◦ 𝜙 𝜔𝑐𝑝  and 𝜔𝑐𝑝 are the phase and frequency where the Nyquist plot intersects 
the unit circle  

◦ The larger the phase-margin, the less overshoot in closed-loop system response 

◦ If 𝑃𝑚 < 0, the closed-loop system is unstable 
 

• Example: For 𝐺 𝑠 =
2.7778 𝑠2+0.192𝑠+1.92

𝑠 𝑠+1 2 𝑠2+0.384𝑠+2.56
 find the closed-loop system margins  

Matlab code: 
s=tf('s'); G=2.7778*(s^2+0.192*s+1.92)/(s*(s+1)^2*(s^2+0.384*s+2.56)); 

[gm,pm,wg,wp]=margin(G);  

      gm =  1.1050;  pm =  2.0985;   wg =  0.9621;   wp =  0.9261   (closed-loop is stable) 

G(s) 
- 
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Introduction to Model Reduction Techniques 

• Pade approximation to delay terms 

– A delay term 𝑒−𝜏𝑠 can be approximated as rational transfer functions 
𝑛𝑝(𝑠)

𝑑𝑝(𝑠)
   

Matlab Command:  pade()     

– Syntax:  [np,dp]=pade(,n);  where n is the order of the Pade approximation 

• Example: Find the Pade approximation of a pure delay 𝐺 𝑠 = 𝑒−𝑠    

Matlab code: 
tau=1;  

[n1,d1]=pade(tau,3); G1=tf(n1,d1); % 3rd-order Pade approx 

[n2,d2]=pade(tau,6); G2=tf(n2,d2); % 5th-order Pade approx  

[n3,d3]=pade(tau,9); G3=tf(n3,d3); % 7th-order Pade approx  

step(G1,'-g',G2,'-.b',G3,':r'); % Compare plots 

line([0,1,1+eps,3],[0,0,1,1]);  % The step plot 
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Introduction to Model Reduction Techniques 

State space model reduction 
• Balanced realization method:  

1) Given a system model, find its unique balanced realization, where the 
controllability and observability Gramians are equal (𝑊 = 𝑊𝑐 = 𝑊𝑜)  

2) Partition the balanced realization and eliminate the states with small Gramians   
 

Matlab Command:  balreal(), modred()   
 

• Example: For 𝐺 𝑠 =
𝑠3+7𝑠2+24𝑠+24

𝑠4+10𝑠3+35𝑠2+50𝑠+24
 find a 2nd-order approximate model   

Matlab code: 
num=[1,7,24,24]; den=[1,10,35,50,24];  

G=tf(num,den); [Gb,g,T]=balreal(ss(G)); 

Gr=modred(Gb,[3,4]); zpk(Gr),  

figure(1), bode(G,Gr), grid;  

figure(2), step(G,Gr);  
 

𝐺𝑟 𝑠 =
0.025974 𝑠+22.36 𝑠+4.307

𝑠+1.078 𝑠+2.319
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Introduction to Model Reduction Techniques 

State space model reduction 
• Schur’s balanced realization truncation method:  

– Similar to modred(), but can handle unstable systems  

• Optimal Hankel norm approximation 
– Based on Hankel norm optimization technique  
 

Matlab Commands:  schmr(), ohklmr()   
 

• Example: Find a 3rd-order approximate model for 
𝐺 𝑠 =

68.6131𝑠5+80.3787𝑠4+67.087𝑠3+29.9339𝑠2+8.8818𝑠+1

0.0462𝑠6+3.5338𝑠5+16.5609𝑠4+28.4472𝑠3+21.7611𝑠2+7.6194𝑠+1
  

 

Matlab code: 
num=[68.6131,80.3787,67.087,29.9339,8.8818,1];  
den=[0.0462,3.5338,16.5609,28.4472,21.7611,7.6194,1];  
G=ss(tf(num,den)); [Gb,g,T]=balreal(G); 
Gr=modred(Gb,[4,5,6]); zpk(Gr),  
Gs=schmr(G,1,3); zpk(Gs), 
Gh=ohklmr(G,1,3); zpk(Gh), 
figure(1), bode(G,Gr, '-g',Gs,'-.b',Gh,':r'); grid;  
figure(2), step(G,Gr, '-g',Gs,'-.b',Gh,':r');  
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𝐺𝑟 𝑠 =
−0.28747 𝑠−5398 𝑠2+0.3576𝑠+0.2519

𝑠+76.48 𝑠2+3.853𝑠+5.1111
   

𝐺𝑠 𝑠 =
1485.3076 𝑠2+0.1789𝑠+0.2601

𝑠+71.64 𝑠2+3.881𝑠+4.188
   

𝐺ℎ 𝑠 =
1527.8048 𝑠2+0.2764𝑠+0.2892

𝑠+73.93 𝑠2+3.855𝑠+4.585
   


