PID Control

e What is a PID control
— Proportional + Integral + Derivative (PID)

— Popular in the industry

PID u
—p
Control I

e By 1989, more than 90% PID

— Easy to implement

— It is quite robust

— Applies to mechanical systems

* Predominantly 2"d-order systems
— Tuning algorithms not dependent on exact system model
— Two popular tuning techniques

* Step reaction curve experiment

* Closed-loop “cycling” experiment under proportional control around
the nominal operating point

PID Control

The PID action

e=r—y

u=Kpe+K; [e+Kgé

Plant

U(s) = K,E(s) + %E(s) + K4SE(s)

U(s) = (Kp +504 de) E(s)

U(s) Kgs?+Kps+K;
Ge(s) = 1) £

1
IC:O—Kp+Ki;+KdS— .

Equivalently,

Kq

Let T; =%ande=K—
i p

Plant

= uzKp(e+%fOte+Tdé)

U(s) = Ky (1 +— + Tgs) E(s)

U
Ge(s) = %

Tgs?+s+ 1/Tl-)
s

IC:O:KP(1+T%S+Tds) =K, (

PID Control

Example
: : 1 : :
Consider a third-order plant G(s) = 1) with a proportional control G.(s) = K,.
Draw the step response of the closed-loop system for various values of K,,.
> 1 — GO
1
Matlab code: P
an
s=tf('s'); G=1/(s+1)"3; P i
for Kp=[0.1:0.1:1], Gcl=feedback(Kp*G,1); i
figure(1), step(Gcl), holdon;end | DoTEEEEEEemmmmmmmmm :
figure(2), rlocus(G,[0,15]);
Step Response
0.7 T T T T
As K., increases: meaes & K=l
’ | RN | =i
* Response speed increases 15! s [') :
* Overshoot increases (less stable) 2 O_:; E:q((%)) 20_4 — T 1
* Steady-state error decreases 1 o \ : e T
« System becomes unstable for - \ , 02| j/i' -
Kp > 8 12: \\ N /;//// - <— Kp=0.1
2 3 2 a a a % 2 4 6 8 10 12 14

Real Axis Time (sec)

PID Control

Example (continued):

Now fix K, = 1, apply a Pl (proportional + integral) control, and draw the step
response of the closed-loop system for various values of T;.

Matlab code:
s=tf('s'); G=1/(s+1)"3; Kp=1;
for Ti=[0.7:0.1:1.5], Ge=Kp*(1+1/Ti/s);
Gcl=feedback(G*Gc,1); step(Gcl), hold on; end

* Due to integrator action, the steady-state error to step
command will be zero for any value of T;, if the closed-
loop system is stable

* If T; < 0.6 the closed-loop system will not be stable

As T; increases:
Response speed decreases
Overshoot decreases (less stable)

1

:.> 1 GC(S):

i i

r el 1y
—>(+ > 1/T;s K, | Plant

1 1

- 1 1

1
1D Tys :
LY ___ I

Amplitude

Step Response

///ﬁ\ < T|=O.7

r I r
5 10 15 20
Time (sec)

PID Control

Example (continued):

Now fix K;, = T; = 1, apply a PID (proportional + integral + Derivative) control,
and draw the step response of the closed-loop system for various values of 7.

Tig
Matlab code: , ei
s=tf('s'); G=1/(s+1)"3; Kp=1; Ti=1; + Q i"
for Td=[0.1:0.2:2], Ge=Kp*(1+1/Ti/s+Td*s); i >
Gcl=feedback(G*Gc,1); step(Gcl), hold on; end ittt

As T, increases:
Response rise-time increases slightly (slower rise)
Response settling-time does not change
Overshoot decreases (more stable)

141

=
N
T

=

Amplitude
o
o]

o o
IS (o)}
[

o
N
T

o
~

Time (sec)

PID Control Implementation

PID control with low-pass filter

In practice pure derivative is not used, due to:

— Derivative kick (a jump in the control for a step input)

— Undesirable noise amplification
Need to approximate the derivative term so that the controller’s TF is proper
(i.e., the order of its numerator is less than or equal to the order of its denominator)

— Approximate the derivative term, as: s = ﬁ eK1

— Or equivalently, cascade the derivative term by a first-order low-pass filter: T,s = —

Approximate PID control: U(s) = K, (1 +

Plant >

PID Control Implementation

Example (continued):

Now fix K;, = T; = T4 = 1, apply an approximate PID (proportional + integral +
Derivative with filter) control, and draw the step response of the closed-loop
system for various values of N.

Matlab code:
s=tf('s'); G=1/(s+1)"3; Kp=1; Ti=1; Td=1;
for N=[100,1000,10000,0.1:10,10],
Ge=Kp*(1+1/Ti/s+Td*s/(1+Td*s/N));
Gcl=feedback(G*Gc,1); step(Gcl), hold on; end, hold off;
figure, [y,t]=step(Gcl); err=1-y; plot(t,err); 16 " N201

1 %) S

N = oo produces the original PID controller / ,7/‘> e =
N = 10 provides good PID approximation = | o] N °

Step Response

o
)

Amplitude

As N decreases: 4\ 1o -

PID approximation degrades \) | | | |
or \\/\—/ﬁ % 5 10 15 20 25
0zl 1 Time (sec)

PID Control Implementation

PID control with derivative in the feedback loop

In practice the derivative is preferred in the feedback loop to produce

smoother control for a step input

Gee(s) = Kp (1 4+ Tis)

. T4s
Gey (s) = 1+Tg4s/N
Equivalently:

G.1(8) = Ge(s) =K (1 _|_i)

H(s) =1+ Gee(s) Kp(Tis+1)(Tgs/N+1)

1
1 I
G.,(s) P
- I
Gey(s) _ (1+Kp/N)TiTas>+Kp(Ti+Ta/N)s+Ky Et' H(s) |

Plant

PID Control Implementation

Example (continued):

Now with K, =T; = T4 = 1, N = 10, apply an filtered PID control with derivative
in the feedback, and draw the step response of the closed-loop system.

PID
Matlab code: N el i Y
. Pl Gc1(s) > Plant
s=tf('s'); G=1/(s+1)"3; Kp=1; Ti=1; Td=1; N=10; + : '
Gc=Kp*(1+1/Ti/s+Td*s/(1+Td*s/N)); i H(s) <i
Gell=feedback(G*Gc,1); Gel=Kp*(1+1/Ti/s); i — E

H=((1+Kp/N)*Ti*Td*s*2+Kp*(Ti+Td/N)*s+Kp)/(Kp*(Ti*s+1)*(Td/N*s+1));
Gcl2=feedback(G*Gc1,H); step(Gcll,Gcl2);

Step Response
1.5 : : '

/<« Din feedback
/\KNormal PID with filter

e |
05+

I/

/]
/]

e 5 10 15 20 25 30

Time (sec)

PID Tuning

Ziegler-Nichols tuning formula

* For first-order plus dead-time (FOPDT) plant models: G(s) = 1fsre_SL

— Many plants can be approximately expressed by FOPDT model
— FOPDT model of a system can be derived experimentally
— System’s step response is S-shaped, as

y(t)
Tuning procedure: Y
1. Step reaction curve experiment: i t
* Measure the system’s step-response, experimentally 8_7 T

* Estimate the parameters K, L,and T (or a = %)

* Find the PID controller parameters from the Table:

Controller From Step Response
Type

K, T, T,
P 1/a
P| 0.9/a 3L

PID 1.2/a 2L L/2

PID Tuning

Example:
10 .
For the fourth-order plant G(s) = DI design a PID controller based on
PID —» Plant T

Ziegler-Nichols tuning rule.

Open-Loop Step Response

Matlab code:
s=tf('s'");
G=10/(s+1)/(s+2)/(s+3)/(s+4);
step(G); K=dcgain(G), R B

From step response: K = 0.4167,L = 0.76, T = 1.96,and a = 0.1616

From Ziegler-Nichols’ Table:
Step Response

P Control: K, = - = 6.1895 L4 [
p N

K 12|- /\“\Q’ P\D CO\"UO\

| /¢« PIControl

PI Control: K, = > = 6.1895, T; = 3L = 2.28 i
am

22 = 74274, T, = 2L = 152, T, = - = 0.38 : / \ ‘
[\
s

PID control: K,, =

o
)

Amplitude

o
o

L=0.76; T=1.96; a=K*L/T; /. b control
< ontro

Gcp=(1/a); Gcll=feedback(G*Gcp,1);

Gcepi=(0.9/a)*(1+1/3/L/s); Gel2=feedback(G*Gcpi,1);

Gepid=(1.2/a)*(1+1/2/L/s+L/2*s); Gcl3=feedback(G*Gcpid,1); ;
0 é er 1f5

step(Gcl1,Gcl2,Gcl3);
Time (sec)

o
S
T

>
N
T

20

o

PID Tuning

Ziegler-Nichols tuning formula
* First-order plus dead-time (FOPDT) plant models: G(s) = —e~s %

14+sT < B>

e System’s Nyquist plot is as: Re

Im
A
w,
Tuning procedure: \J

2. Closed-loop cycling experiment with proportional control:

* Draw the system’s Nyquist plot, experimentally
* Estimate the critical frequency and gain, w, and K, from the plot
— Experimentally: r e u y
* Increase gain K, until system 2 Ky, [»| Plant
response becomes oscillatory (this is -
the critical gain K.)
* Estimate the frequency of oscillation

as critical frequency @,
* Find the PID controller Type K T; Ty
parameters from the Table, P 0.5K,
where T, = 2 PI 0.4K, 0.8T,
wc PID 0.6K, 0.5T. 0.12T,

* Typically T; > 4T,

PID Tuning

Example:

* For the fourth-order plant G(s) =
Ziegler-Nichols tuning rule.

10
(s+1)(s+2)(s+3)(s+4)’

design a PID controller based on

Nyquist Diagram

) PID | Plant
Matlab code: : T
s=tf('s");
G=10/(s+1)/(s+2)/(s+3)/(s+4);
nyquist(G); axis([-0.2,0.5,-0.4,0.4]);
[Gm,Pm,wcg,wcp]=margin(G) L R T S R TR T

Real Axis

From Nyquist plot: K, = G, = 12.6, w. = wq = 2.2361, T, = i—” = 2.8099

c

From Ziegler-Nichols’ Table:
P Control: K, = 0.5K, = 6.3 14

Step Response

Pl Control: K, = 0.4K, = 5.04, T; = 0.8T, = 2.2479 . | le PO Contro!

PID control: K, = 0.6K, = 7.56, T; = 0.5T, = 1.405, Ty = 0.12T, = 0.3372 I\ PI Control
Kc=Gm; we=wcg; Tc=2*pi/wc; P / \”
Gcp=0.5*Kc; Gell=feedback(G*Gcp,1); éoeﬁ ‘! \]
Gcpi=0.4*Kc*(1+1/0.8/Tc/s); Gel2=feedback(G*Gcpi,1); < / < P Control
Gcpid=0.6*Kc*(1+1/0.5/Tc/s+0.12*Tc*s); Odr “/
Gcl3=feedback(G*Gcpid,1); 02| ||
step(Gcll,Gcl2,Gcl3); ./ | | |

0 5 10 15

Time (sec)

Automatic Tuning of PID Controller

Example:
10 .
For the fourth-order plant G(s) = IDGIDGINGE design a PID controller
based on Ziegler-Nichols tuning rule. r e u y
—:?—» PID ¥ plant T
Automatic PID Tuning with SISOTool]
1. Import system model into SISOTool LI — .

Matlab code: LN |
s=tf('s'); G=10/(s+1)/(s+2)/(s+3)/(s+4); | | *_ “ley .
sisotool(G) g S

2. In CETM, from “Analysis Plot” tab, launch e] ——
closed-loop step response] | e |
-
,,,,,,,, | g P
L,_.m e — -

Automatic Tuning of PID Controller

Automatic PID Tuning with SISOTool ...

3. InCETM, from “Automated Tuning”tab, under
“Optimization Based Tuning”, select “PID Tuning”

4. Choose the controller type:

« P PI, PID, PID with derivative filter
* Here, choose “PID with derivative filter”

5. Select “Tuning algorithm”
* Robust response time
 Parameter search
e Ziegler-Nichols open-loop
e Ziegler-Nichols closed-loop
* Internal Model Control (IMC)
* Here, choose “Robust response time”

W Control and Estimation Teols Manager:

File Edit Help

&5 d

PID ¥ Plant

2 B e . .

4 Workspace
= 4 SISO Design Task
& [Design History

Architecture | Compensator Editor | Graphical Tuning | Analysis Plots| Automated Tuning

Requires the Simulink Design Optimization product,

Optimize Compensators.

Show Architecture Store Design Help

{5150 Design Tesk Node.

File Edit Help

"B Control and Estimation Tools Manager.

SHd|9 ™
4 Workspace
= #5150 Design Task

i+-[[7] Design History

O | B)
. . ——
Architecture | €. Editor | Graphical Tuning | Analysis Plots| Automated Tuning
Design method: | PID Tuning
Compensator
c rl=1
Specifications. (|
Controller type: P o@n PID =
PID with der e filter 1/(1+5/N). N frequency: | 100 I
[
Tuning algorithm: | Robust re
Bandwidth: I
< il
00705
Phase marain:

Update Compensator

SISO Design Task Node.

Automatic Tuning of PID Controller

Automatic PID Tuning with SISOToo SO

PID ¥ Plant

6. Click on “Update Compensator” button

File Edt Help
Sd|9 ™
[t Workspace Architecture | Compensator Editor | Graphicsl Tuning | Analysis Plots| Automated Tuning
=144) SISO Design Task. .
(& [3) Design History Design method: |PID Tuning -

Compensator

Tuned PID controller: :

Specifications I
Controller type: € @P ©PD =
(1 S) (1 S) ©) PID with derivative filter 1/(1 +s/N). N frequency: | 100 I
+—= +—) |
1.2 1.2 Tuning algorithm: | Robust response time -] =
’ S — - - Robust responcetime
cpid . S |
S 1 +— = Ziegler-Nichols open loop |
1 4'80 002 Ziegler-Nichols closed loop

00706

Internal Model Control (IMC)

Phase marain: 2

Update Compensator

Show Architecture | | Store Design Help

SISO Design Task Node.
B v 550 D ==
File Edit Window Help
D& %S E
File Edit Help
Step Response gd|9 ™
14 H H j #J\SMPHE Architecture | Compensator Editor | Graphical Tuning | Anslysis Plots | Automated Tuning
: | s :
: : 51 Design History Design method: | PID Tuning =
Closed-loop step response:| ‘o ‘
L] H L+s12)(1+s12)
: c |- s —————
S Sl SO S i s (L + s/Lde+002)
! Specifications |
® Controller type:)Pl ©PD =
© 08 i
_42 | @ PID with derivative filter 1/(1+5/N). N frequency: | 100
a : I
E 06 H Tuning algorithm: | Robust response time - =
<L |
' Bandwidth:
0.4 : €] 5, 0 t2eas
012 12 2 |
02 : Phase margin: o
|
0 L Show Architecture
Time (sec) 2
LTI Wiewer Real Tims Update = — — — —

Automatic Tuning of PID Controller

Automatic PID Tuning with Simulink

PID | Plant >

Example:
10
For the fourth-order plant G(s) = IO . - =
design a PID controller using automated tuning in = il g PSTETETEY Seore

Simulink Control Design tool.

1. Build the system model in Simulink with a PID
control block in a negative unity feedback

structure
* Add a “Step” input block and set its step-time =0
* Add a “Scope” and a “Mux” to view system response

2. Double click on the PID block and choose:

* Continuous-time or Discrete-time | A —
* Here, choose Continuous-time L.
e PID,PI,PD,PI
* Here, choose “PID” (it includes derivative filter)

Automatic Tuning of PID Controller

Automatic PID Tuning with Simulink]

+
3. In the PID block’s parameter window, click on “Tune...”
button

* The “Step reference tracking” plot will appear in “PID Tuner” window

4. In “PID Tuner” window, press “Show parameters”
* The window expands and shows the tuned parameter values

5. In “PID Tuner” window, you may
* Adjust the response time with the slider
* Select a different plot type
* Step reference tracking
* Step disturbance rejection
* Open-loop Bode plot
* Open-loop Nichols chart

PID

Plant

* Automatically update block parameters

Tuned PID controller:

Gepia(s) = 3.1456 + 22222 4 0.7867 aues:

S 1+

u Scope - ‘ l":"Eh&1
SREPLLY ARE PAF ~[f 2

Time (sec)

