Analysis of Linear Control Systems

Topics:
* Properties of linear dynamic systems
* Time-domain analysis of linear systems
* Numerical simulation of linear system
* Root-locus of linear systems
* Frequency-domain analysis of linear systems
* Introduction to model Reduction techniques



Properties of linear dynamic systems

* Linear systems obey the superposition principle
e Stability analysis
— Bounded-input bounded-output (BIBO) stability

e Asystem is stable if all its poles have negative real-parts
— Poles are the roots of the denominator of the system’s transfer function G(s)

— Zeros (transmission zeros) are the roots of the numerator of the system’s transfer
function G(s)

* Poles on the imaginary axis with multiplicity one are critically stable
e Poles on the imaginary axis with multiplicity more than one are unstable

 Matlab commands
* Find system poles using commands pole() and eig()
* Find system zeros using command zero()
» Sketch system’s poles and zeros using command pzmap()
* Use command isstable() to check system’s stability, returns 1=stable, O=unstable

. 53+75%+245+24
Example: Check the stability of system G(s) = ————————
>> G=tf([1,7,24,24],[1,10,35,50,24]); eig(G); pzmap(G);

Or
>> s=tf(‘s’); G=(sA3+7*s"2+24*s+24) /(s 4+10*s”3+35*sA2+50*s+24); isstable(G);



Properties of linear dynamic systems ...
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 The system shown is internally stable iff:

1) The transfer function of 1+H(s)G(s)Gc(s) has no zeros in RHP
2) The loop transfer function H(s)G(s)Gc(s) has no pole-zero cancellation in RHP

Matlab command: intstable()
— Syntax: [V,c]=intstable(G,Gc,H);

* |f system is internally stable , V=0 and c is empty
* If systemis I/O unstable, V=1 and c holds the unstable closed-loop poles
» If system is I/O stable, but not internally stable, V=2 and c holds the cancelled unstable
poles
— Matlab command minreal() gives the simplified transfer function, after
pole-zero cancellation, which may not be internally stable



Properties of linear dynamic systems ...

Controllability and observability analysis

Controllability:

The state x,(t) is said to be controllable if there exists an input that in finite
time can drive it to any specified value x(t;) from the initial value x,(0)

The system is fully controllable if all its states are controllable

Full controllability of the system depends on the A and B matrices of its state-space model
* An nth-order system is fully controllable if its controllability matrix T.=[B, AB, ..., A"1B] has full rank

Matlab commands: ctrb(), ctrbf(), rank()

Tc=ctrb(A,B); returns the controllability matrix Tc

[Ac,Bc,Cc,Tc]=ctrbf(A,B,C); returns the equivalent state-space matrices (Ac,Bc,Cc)

. . A; 0 0 A4 . A4

in the stair-case form A, = [ L€ P ] B, = lgcl, C.=[Cs C.], where (4., B, C¢)
21 c

represent the controllable subsystem G(s) = C.(sI — 4.)

'B.+D
rank(Tc); generates the rank of the matrix Tc



Properties of linear dynamic systems ...

e Observability

The state x(t) is said to be observable if for any t>0, the initial state x,(0) can be
determined from the time history of the input u(t) and output y(t) in the

interval [O,t]

The system is fully observable if all system states are observable
— Full observability of the system depends on the A and C matrices of its state-space model
C

c4

* An nth-order system is fully observable if its observability matrix T, = has full rank

CA'n—l
* Dual of controllability

Matlab commands: obsv(), obsvf()

— To=o0bsv(A,C); returns the observability matrix To
— [Ao,Bo,Co,To]=0bsvf(A,B,C); returns the equivalent state-space matrices (Ao,Bo,Co)

A; A
in the stair-case form 4, = [ 12] [A ] 1, where (4,, B,, C,)

represent the observable subsystem G(s) = CO(S] A ) B,+D



Properties of linear dynamic systems ...

Controllability and observability Gramians

* Controllability and observability Gramians W_and W, show how controllable
and observable a system is, where W, = ["e4‘BBTe4 tdt and W, = [ e tCTCetdt
— W_and W, satisfy the Lyapunov equations AW, + W, AT = —BBT and ATW, + W,A = —CTC
— W_.and W, are positive definite if and only if (A,B) is controllable and (A,C) is observable
— The singular values of Wc indicate the contribution of the input signal to each state
— The singular values of Wo indicate the contribution of each state to the output signal

Matlab commands: lyap(), svd(), gram()
— Wec=lyap(A,B*B’); returns the controllability Gramian matrix Wc
— Wo=lyap(A’,C’*C); returns the observability Gramian matrix Wo

— [U,S,V]=svd(Wc); produces a diagonal matrix S, of the same dimension as Wc and
with nonnegative diagonal elements in decreasing order, and unitary matrices U
and V so that Wc = U*S*V’

— W=gram(G,type); returns the gramian matrix W for a system with state-space
model G, where type is ‘c’ or ‘0’ for controllability or observability Gramians



Properties of linear dynamic systems ...

Other Matlab commands:
* kalmdec(); produces Kalman decomposition of a given system

e timmomt(); producestime moments M, of a given system, where
M; = f0°° ttg(t)dt, and g(t) is the impulse response of the system G(s)

* markovp(); produces the Markov parameters d, of a given system, where
dy=CB+Dand d; = CA'B, i=1,2,...

Norm measures of sighals and systems

 Norm measures of signals
— L,-norm defines the size of a signal u(t) as llu(®)ll, = (f_"c’oolu(t)lpdt)l/p, where
p is a positive integer
* The L1-normis [[u(t)]l; = ffooolu(t)ldt
. 00 2 1/2 )
* The L2-norm is [[u(t)]|, = (f_oolu(t)l dt) , (the measure of signal power)
* The Loo-normis ||u(t)|| = sup|u(t)|, (the least upper-bound of |u(t)])
t



Properties of linear dynamic systems ...

Norm measures of systems
e The size of a system G(s) is generally measured in H,-norm and H_-norm

— The H,-norm is |[G(s)I|, = (% ff;oooIG(jw)|2dw)1/z _ (fooo tr(g(t)Tg(t))dt)l/z

(square-root of the integral-squared of the impulse-response g(t) of the system)

— The H_-norm s ||G(s)|lc = sup Iy@l, - _ sup |G(jw)]
(2o O %

* (peak-value of the magnitude of the frequency-response of the system)

* Properties of L and H norms:

= lly@llz £ 16 lleo lu()l2
= lly®lleo = G2 llu(®)leo
= [161()G2()le0 < [1G1() 0]l G2 ()0

Matlab command: norm()
— norm(X,P); Xis a matrix, P is norm type 1, 2, inf, fro (Frobenius)
— norm(V,P); Vis a vector, P is norm type (1, 2, ..., inf (max), and —inf (min))
— norm(G); H,-norm of G(s)
— norm(G,inf); H_-norm of G(s)



Time-Domain Analysis of Linear Systems

Analytical solutions to continuous-time responses

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)’

— The system response to an arbitrary input u(t), fort > 0, is:

* Consider the system { with initial condition x(0) = x,

x(t) = eftxy + foteA(t"T)Bu(T)dT
y(t)=C (eAtxO + foteA(t"T)Bu(T)dT) + Du(t)

X(s) = (sI — A)~1(x(0) + BU(s))

— Laplace transform of the solution is: {Y(S) = C(sI — A)"2(x(0) + BU(s)) + DU(s)

Analytical solutions to discrete-time responses

x(k+1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

— The system response to a sampled arbitrary input u(k), for k = 0,1,2, ..., is:

* Consider the system { , with sample-time T and x(0) = x,

{x(k +1) =e4Tx(k) + fOTeATBdT u(k)
. , where y(k) =37"(G(2)U(2))

y(k) = € (eTx(k) + [} eA"Bdr u(k)) + Du(k)



Numerical Simulation of Linear Systems

Second-order system analysis

Wn 2
2 2
S“+2{wnS+wy

* Consider a second-order linear system G(s) =

— The step response of the system is:
1. If{ =0, y(t) = 1 — cos(wyt)

2. f0<{<1, y(t)=1—ef@nt

sin(wgt + 0)

1-2
where wy = wn\/TZZ and 9 = tan™! \/1(—{2_
3. If{=1, y(£) =1—-(1+ wpt)e™nt
B W e)llt e}'Zt
4. If{ > 1, y(t)—l—z (2—1</11 ﬂz)

where 1;, = —(—/{?—1and 1, = —-{+7%2—-1

More concisely:

cosh(wgt) _ Zsinh(wdt))
Wn wdq

— ifg# 1, y(t) = 1— w, e=%nt (



Numerical Simulation of Linear Systems

Qualitative specifications in step responses

Wn

2 12
* Second-order linear system G(s) = E A

S2+20wpS+wn?
— Specifications of the step response (shown):

— Steady-state value, y,;:  y =lim SG(s)< = G(0)

Time (sec)

— Rise-time, t.: the time for the response to go from 10% to 90% of y;,
— Settling-time, t.: the time when y(t) enters and stays in the range y,; + Ay

— Overshoot (maximum peak), M : percent overshoot M, = Ymax-yss % 100%

Yss

Matlab commands: step(), dcgain(), impulse(), Isim(), grid

— step(G); draws the step response of G(s)

— [y,t]=step(G); evaluate the step response of G(s) and not draw it
— K=dcgain(G); calculate the steady state value y of the output y(t)
— impulse(G); draw the impulse response of G(s)

— Isim(G,u,t); draw the response of G(s) to an arbitrary input u(t)

— grid; superimpose a grid on the plot



Root Locus of Linear Systems

v

Unity feedback system —>ﬁg—> K [—>{ G(s)

e Sketch the location of closed-loop poles
— Roots location of 1 + KG(s) = 0, where —o0 < K < o

Matlab commands: rlocus(), grid

— rlocus(G); draws the root locus

— rlocus(G,K); draw root-locus for a given gain vector K

— [R,K]=rlocus(G); evaluate the closed-loop pole location R, not draw
— rlocus(G1,-,G2,-.b’G3,:r’); draw root-locus for several models

s2+4s+8
$°+185%+120.353+357.752+478.55+306

e Example: Draw the root-locus, where G(s) =
>> num=[1,4,8]; den=[1,18,120.3,375.5,478.5,306];

G=tf(num,den); rlocus(G); g | T
— Right click on the jw-axis crossing ;. — o o =

e Critical gain k=781 s o o

-8, -8,
77777777777777777777777777777777



Frequency-Domain Analysis of Linear Systems

Frequency-domain plots of G(s), s=jw
* Real and imaginary part representation

G(jw) = P(w) +jQ(w)
— Nyquist plot draws Q(w) = Im(G(jw)) v. P(w) = Re(G(jw))

 Magnitude and Phase representation in separate plots
— Bode plot draws the magnitude in decibels (M(w) = 20log(A(w))) and phase in
degrees versus the frequency in log scale

 Magnitude and Phase representation in a single plot
— Nichols chart draws the magnitude versus phase

Matlab commands: nyquist, bode(), nichols(),
— nyquist(G); draws the Nyquist plot
— [R,1,K]=nyquist(G); evaluate the Nyquist data, not draw
— bode(G); draw the Bode plot of G(s)
— [A,0,0]=bode(G); evaluate the Bode data, not draw
— nichols(G); draw the Nichols chart of G(s)
— [A,¢,0]=bode(G); evaluate the Nichols data, not draw



Frequency-Domain Analysis of Linear Systems

Example: Draw the Bode plot, Nyquist plot and Nichols chart for
G(s) =

s+8
s(s240.25+4)(s+1)(s+3)

Matlab code:
close all; s=tf('s'); G=(s+8)/(s*(s"2+0.2*s+4)*(s+1)*(s+3));
figure(1), bode(G);
figure(2), nyquist(G); set(gca,'Ylim',[-1.5,1.5]);
figure(3), nichols(G); set(gca,'Xlim',[-400,-100],'Ylim',[-100,30]);

You may right-click on any of the figures and modify its properties (labels, limits, units, style, etc)
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Frequency-Domain Analysis of Linear Systems

\ 4

Stability analysis in frequency-domain _ﬁ?e G(s)

* The closed-loop system is stable if:
— The Nyquist plot of G(s) encircles (counter-clockwise) the point (-1+0j) as
many times as the number of RHP poles of G(s)

2
* Example: For G(s) = SZ(ZZZ;((SS2100'13982::2'9526)) is the closed-loop system stable?

Matlab code:

s=tf('s'); G=2.7778*(s"2+0.192*s+1.92)/(s*(s+1)*2*(s"2+0.384*s+2.56));
figure(1), nyquist(G); axis([-2.5,0,-1.5,1.5]); grid;

figure(2), nyquist(G); axis([-1.2,-0.8,-0.2,0.2]); grid;

figure(3), step(feedback(G,1,-1));

Nyquist Diagram

Nyquist Diagram

Step Response

Stable, but too oscillatory!




Frequency-Domain Analysis of Linear Systems

Gain and phase margins of a system

—> G(s)
* Gain margin: szA((j ) "
cg

o A(wcg) and w4 are the magnitude and frequency where the Nyquist plot
intersects the negative real-axis

The smaller the gain-margin, the faster the closed-loop system response
If G,,, < 1, the closed-loop system is unstable

* Phase margin: B, = ¢(wp) + 180

(o]

v

(e]

[e]

gb(a)cp) and w,, are the phase and frequency where the Nyquist plot intersects
the unit circle

(e]

The larger the phase-margin, the less overshoot in closed-loop system response
If B,, < 0, the closed-loop system is unstable

[e]

) _ 2.7778(s2+0.1925+1.92) . .
* Example: For G(s) = SoT12(750384552.56) find the closed-loop system margins
Matlab code:

s=tf('s'); G=2.7778%(s"2+0.192*5+1.92)/(s*(s+1)"2*(s"2+0.384*s+2.56));
[gm,pm,wg,wp]=margin(G);

= gm= 1.1050; pm = 2.0985; wg= 0.9621; wp= 0.9261 (closed-loop is stable)



Introduction to Model Reduction Techniques

* Pade approximation to delay terms

Ny (S)

— A delay term e~ *° can be approximated as rational transfer functions 2.0
p

Matlab Command: pade()
— Syntax: [np,dp]=pade(t,n); where n is the order of the Pade approximation

 Example: Find the Pade approximation of a pure delay G(s) = e~*
Matlab code:

tau=1;
[n1,d1]=pade(tau,3); G1=tf(n1,d1); % 3-order Pade approx 15 P Resore
[n2,d2]=pade(tau,6); G2=tf(n2,d2); % 5™-order Pade approx :

[n3,d3]=pade(tau,9); G3=tf(n3,d3); % 7t"-order Pade approx
step(G1,'-g',G2,'-.b',G3,":r'); % Compare plots
line([0,1,1+eps,3],[0,0,1,1]); % The step plot

0.5

Amplitude

-0.5H

0 0.5 1 15



Introduction to Model Reduction Techniques

State space model reduction

 Balanced realization method:

1) Given a system model, find its unique balanced realization, where the
controllability and observability Gramians are equal (W =W, = W,)

2) Partition the balanced realization and eliminate the states with small Gramians

Matlab Command: balreal(), modred()

* Example: For G(s) = S4+i¥i§§3:§f+24 find a 2"d-order approximate model
Matlab code: Bode Diagram
num=[1,7,24,24); den=[1,10,35,50,24]; L
G=tf(num,den); [Gb,g,T]=balreal(ss(G)); ;“0 :
Gr=modred(Gb,[3,4]); zpk(Gr), \—SewReworse %
figure(1), bode(G,Gr), grid; EZ %,457 /
figure(2), step(G,Gr); 1 5-930»7 — /\~

0.025974(s+22.36)(s+4.307 02
Gr(s) = (s+1€078)(s+¥319) :




Introduction to Model Reduction Techniques

State space model reduction  seowm

 Schur’s balanced realization truncation method:
— Similar to modred(), but can handle unstable systems

* Optimal Hankel norm approximation
— Based on Hankel norm optimization technique

Matlab Commands: schmr(), ohklmr() = - o
 Example: Find a 379-order approximate model for ) Step Response
G(s) = 68.61315°+80.37875*+67.08753+29.933952+8.8818s+1 i
 0.046256+3.533855+16.56095%+28.447253+21.761152+7.61945+1 ol
Matlab code: |

Amplitud

num=[68.6131,80.3787,67.087,29.9339,8.8818,1];
den=[0.0462,3.5338,16.5609,28.4472,21.7611,7.6194,1]; : :
G=ss(tf(num,den)); [Gb,g,T]=balreal(G); 2! M - ;
Gr=modred(Gb,[4,5,6]); zpk(Gr), )
Gs=schmr(G,1,3); zpk(Gs),

-0.28747(s—5398)(5%2+0.35765+0.2519)

Gr(s) = > S
Gh=ohkimr(G,1,3); zpk(Gh), N
figure(1), bode(G,Gr, '-g',Gs,'-.b',Gh,":r"); grid; s(s) = (s+71.64)(52+3.8815+4.188)
figure(2), step(G,Gr, '-g',Gs,"-.b",Gh,":r'); G (s) = 1527.8048(s2+0.27645+0.2892)

(s+73.93)(s2+3.8555+4.585)



