
 Topics:
• Properties of linear dynamic systems
• Time-domain analysis of linear systems
• Numerical simulation of linear system
• Root-locus of linear systems
• Frequency-domain analysis of linear systems
• Introduction to model Reduction techniques

Analysis of Linear Control Systems

Properties of linear dynamic systems
• Linear systems obey the superposition principle
• Stability analysis

– Bounded-input bounded-output (BIBO) stability
• A system is stable if all its poles have negative real-parts

– Poles are the roots of the denominator of the system’s transfer function G(s)
– Zeros (transmission zeros) are the roots of the numerator of the system’s transfer

function G(s)

• Poles on the imaginary axis with multiplicity one are critically stable
• Poles on the imaginary axis with multiplicity more than one are unstable

• Matlab commands
• Find system poles using commands pole() and eig()

• Find system zeros using command zero()
• Sketch system’s poles and zeros using command pzmap()
• Use command isstable() to check system’s stability, returns 1=stable, 0=unstable

Example: Check the stability of system 𝐺 𝑠 =
𝑠3+7𝑠2+24𝑠+24

𝑠4+10𝑠3+35𝑠3+50𝑠+24

>> G=tf([1,7,24,24],[1,10,35,50,24]); eig(G); pzmap(G);
Or

>> s=tf(‘s’); G=(s^3+7*s^2+24*s+24)/(s^4+10*s^3+35*s^2+50*s+24); isstable(G);

Internal stability

• The system shown is internally stable iff:
1) The transfer function of 1+H(s)G(s)Gc(s) has no zeros in RHP

2) The loop transfer function H(s)G(s)Gc(s) has no pole-zero cancellation in RHP

Matlab command: intstable()
– Syntax: [V,c]=intstable(G,Gc,H);

• If system is internally stable , V=0 and c is empty

• If system is I/O unstable, V=1 and c holds the unstable closed-loop poles

• If system is I/O stable, but not internally stable, V=2 and c holds the cancelled unstable
poles

– Matlab command minreal() gives the simplified transfer function, after
pole-zero cancellation, which may not be internally stable

Properties of linear dynamic systems …

G(s) Gc(s)

H(s)

x1 u x2 y r
d

x3 v n
-

Controllability and observability analysis

• Controllability:
• The state xi(t) is said to be controllable if there exists an input that in finite

time can drive it to any specified value xi(tf) from the initial value xi(0)

• The system is fully controllable if all its states are controllable
– Full controllability of the system depends on the A and B matrices of its state-space model

• An nth-order system is fully controllable if its controllability matrix Tc=[B, AB, …, An-1B] has full rank

Matlab commands: ctrb(), ctrbf(), rank()
– Tc=ctrb(A,B); returns the controllability matrix Tc

– [Ac,Bc,Cc,Tc]=ctrbf(A,B,C); returns the equivalent state-space matrices (Ac,Bc,Cc)

in the stair-case form 𝐴𝑐 =
𝐴 𝑐 0

𝐴 21 𝐴 𝑐
, 𝐵𝑐 =

0
𝐵 𝑐

, 𝐶𝑐 = 𝐶 𝑐 𝐶 𝑐 , where (𝐴 𝑐, 𝐵 𝑐, 𝐶 𝑐)

represent the controllable subsystem 𝐺 𝑠 = 𝐶 𝑐 𝑠𝐼 − 𝐴 𝑐
−1
𝐵 𝑐 + 𝐷

– rank(Tc); generates the rank of the matrix Tc

Properties of linear dynamic systems …

• Observability
• The state xi(t) is said to be observable if for any tf>0, the initial state xi(0) can be

determined from the time history of the input u(t) and output y(t) in the
interval [0,tf]

• The system is fully observable if all system states are observable
– Full observability of the system depends on the A and C matrices of its state-space model

• An nth-order system is fully observable if its observability matrix 𝑇𝑜 =

𝐶
𝐶𝐴
⋮

𝐶𝐴𝑛−1

 has full rank

• Dual of controllability

Matlab commands: obsv(), obsvf()
– To=obsv(A,C); returns the observability matrix To

– [Ao,Bo,Co,To]=obsvf(A,B,C); returns the equivalent state-space matrices (Ao,Bo,Co)

in the stair-case form 𝐴𝑜 =
𝐴 𝑜 𝐴 12
0 𝐴 𝑜

, 𝐵𝑜 =
𝐵 𝑜
𝐵 𝑜

, 𝐶𝑜 = 0 𝐶 𝑜 , where (𝐴 𝑜, 𝐵 𝑜, 𝐶 𝑜)

represent the observable subsystem 𝐺 𝑠 = 𝐶 𝑜 𝑠𝐼 − 𝐴 𝑜
−1
𝐵 𝑜 + 𝐷

Properties of linear dynamic systems …

Controllability and observability Gramians
• Controllability and observability Gramians Wc and Wo show how controllable

and observable a system is, where 𝑊𝑐 = 𝑒𝐴𝑡𝐵𝐵𝑇𝑒𝐴
𝑇𝑡𝑑𝑡

∞

0
 and 𝑊𝑜 = 𝑒𝐴

𝑇𝑡𝐶𝑇𝐶𝑒𝐴𝑡𝑑𝑡
∞

0

– Wc and Wo satisfy the Lyapunov equations 𝐴𝑊𝑐 +𝑊𝑐𝐴
𝑇 = −𝐵𝐵𝑇 and 𝐴𝑇𝑊𝑜 +𝑊𝑜𝐴 = −𝐶𝑇𝐶

– Wc and Wo are positive definite if and only if (A,B) is controllable and (A,C) is observable

– The singular values of Wc indicate the contribution of the input signal to each state

– The singular values of Wo indicate the contribution of each state to the output signal

Matlab commands: lyap(), svd(), gram()
– Wc=lyap(A,B*B’); returns the controllability Gramian matrix Wc

– Wo=lyap(A’,C’*C); returns the observability Gramian matrix Wo

– [U,S,V]=svd(Wc); produces a diagonal matrix S, of the same dimension as Wc and
with nonnegative diagonal elements in decreasing order, and unitary matrices U
and V so that Wc = U*S*V‘

– W=gram(G,type); returns the gramian matrix W for a system with state-space
model G, where type is ‘c’ or ‘o’ for controllability or observability Gramians

Properties of linear dynamic systems …

Other Matlab commands:
• kalmdec(); produces Kalman decomposition of a given system

• timmomt(); produces time moments Mi of a given system, where
𝑀𝑖 = 𝑡𝑖𝑔 𝑡 𝑑𝑡

∞

0
, and 𝑔 𝑡 is the impulse response of the system G(s)

• markovp(); produces the Markov parameters di of a given system, where
𝑑0 = 𝐶𝐵 + 𝐷 and 𝑑𝑖 = 𝐶𝐴𝑖𝐵, i=1,2,…

Norm measures of signals and systems
• Norm measures of signals

– Lp-norm defines the size of a signal u(t) as 𝑢(𝑡) 𝑝 = 𝑢(𝑡) 𝑝𝑑𝑡
∞

−∞

1 𝑝
, where

p is a positive integer

• The L1-norm is 𝑢(𝑡) 1 = 𝑢(𝑡) 𝑑𝑡
∞

−∞

• The L2-norm is 𝑢(𝑡) 2 = 𝑢(𝑡) 2𝑑𝑡
∞

−∞

1 2
, (the measure of signal power)

• The L-norm is 𝑢(𝑡) ∞ = sup
𝑡

𝑢(𝑡) , (the least upper-bound of |u(t)|)

Properties of linear dynamic systems …

Norm measures of systems
• The size of a system G(s) is generally measured in H2-norm and H-norm

– The H2-norm is 𝐺(𝑠) 2 =
1

2𝜋𝑗
 𝐺(𝑗𝜔) 2𝑑𝜔
𝑗∞

−𝑗∞

1 2

= 𝑡𝑟 𝑔 𝑡 𝑇𝑔(𝑡) 𝑑𝑡
∞

0

1 2

• (square-root of the integral-squared of the impulse-response 𝑔(𝑡) of the system)

– The H-norm is 𝐺(𝑠) ∞ = sup
𝑢(𝑡)≠0

𝑦(𝑡) 2

𝑢(𝑡) 2
 = sup

𝜔
𝐺(𝑗𝜔)

• (peak-value of the magnitude of the frequency-response of the system)

• Properties of L and H norms:
– 𝑦(𝑡) 2 ≤ 𝐺(𝑠) ∞ 𝑢(𝑡) 2

– 𝑦(𝑡) ∞ ≤ 𝐺(𝑠) 2 𝑢(𝑡) ∞

– 𝐺1(𝑠)𝐺2(𝑠) ∞ ≤ 𝐺1(𝑠) ∞ 𝐺2(𝑠) ∞

Matlab command: norm()
– norm(X,P); X is a matrix, P is norm type 1, 2, inf, fro (Frobenius)

– norm(V,P); V is a vector, P is norm type (1, 2, …, inf (max), and –inf (min))

– norm(G); H2-norm of G(s)

– norm(G,inf); H-norm of G(s)

Properties of linear dynamic systems …

Analytical solutions to continuous-time responses

• Consider the system 𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡
𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢(𝑡)

 , with initial condition 𝑥 0 = 𝑥0

– The system response to an arbitrary input u(t), for 𝑡 ≥ 0, is:

•
𝑥 𝑡 = 𝑒𝐴𝑡𝑥0 + 𝑒𝐴 𝑡−𝜏 𝐵𝑢 𝜏 𝑑𝜏

𝑡

0

𝑦 𝑡 = 𝐶 𝑒𝐴𝑡𝑥0 + 𝑒𝐴 𝑡−𝜏 𝐵𝑢 𝜏 𝑑𝜏
𝑡

0
+ 𝐷𝑢(𝑡)

– Laplace transform of the solution is:
𝑋 𝑠 = 𝑠𝐼 − 𝐴 −1 𝑥 0 + 𝐵𝑈(𝑠)

𝑌 𝑠 = 𝐶 𝑠𝐼 − 𝐴 −1 𝑥 0 + 𝐵𝑈(𝑠) + 𝐷𝑈(𝑠)

Analytical solutions to discrete-time responses

• Consider the system 𝑥 𝑘 + 1 = 𝐴𝑥 𝑘 + 𝐵𝑢 𝑘
𝑦 𝑘 = 𝐶𝑥 𝑘 + 𝐷𝑢 𝑘

 , with sample-time T and 𝑥 0 = 𝑥0

– The system response to a sampled arbitrary input u(k), for 𝑘 = 0,1,2, …, is:

•
𝑥 𝑘 + 1 = 𝑒𝐴𝑇𝑥 𝑘 + 𝑒𝐴𝜏𝐵𝑑𝜏

𝑇

0
 𝑢 𝑘

𝑦 𝑘 = 𝐶 𝑒𝐴𝑇𝑥 𝑘 + 𝑒𝐴𝜏𝐵𝑑𝜏
𝑇

0
 𝑢 𝑘 + 𝐷𝑢(𝑘)

 , where 𝑦 𝑘 = 𝔷−1 𝐺 𝑧 𝑈(𝑧)

Time-Domain Analysis of Linear Systems

Second-order system analysis

• Consider a second-order linear system 𝐺 𝑠 =
𝜔𝑛

2

𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛
2

– The step response of the system is:

1. If 𝜁 = 0, 𝑦 𝑡 = 1 − cos (𝜔𝑛𝑡)

2. If 0 < 𝜁 < 1, 𝑦 𝑡 = 1 − 𝑒−𝜁𝜔𝑛𝑡 1

1−𝜁2
sin (𝜔𝑑𝑡 + 𝜃)

 where 𝜔𝑑 = 𝜔𝑛 1 − 𝜁2 and 𝜃 = 𝑡𝑎𝑛−1
1−𝜁2

𝜁

3. If 𝜁 = 1, 𝑦 𝑡 = 1 − 1 + 𝜔𝑛t 𝑒
−𝜔𝑛𝑡

4. If 𝜁 > 1, 𝑦 𝑡 = 1 −
𝜔𝑛

2 𝜁2−1

𝑒𝜆1𝑡

𝜆1
−

𝑒𝜆2𝑡

𝜆2

 where 𝜆1 = −𝜁 − 𝜁2 − 1 and 𝜆2 = −𝜁 + 𝜁2 − 1

More concisely:

– if 𝜁 ≠ 1, 𝑦 𝑡 = 1 − 𝜔𝑛 𝑒
−𝜁𝜔𝑛𝑡 cosh (𝜔𝑑𝑡)

𝜔𝑛
−

ζ sinh (𝜔𝑑𝑡)

𝜔𝑑

Numerical Simulation of Linear Systems

Qualitative specifications in step responses

• Second-order linear system 𝐺 𝑠 =
𝜔𝑛

2

𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛
2

– Specifications of the step response (shown):

– Steady-state value, yss: 𝑦𝑠𝑠 = lim
𝑠→0

𝑠𝐺 𝑠
1

𝑠
= 𝐺(0)

– Rise-time, tr: the time for the response to go from 10% to 90% of 𝑦𝑠𝑠

– Settling-time, ts: the time when 𝑦(𝑡) enters and stays in the range 𝑦𝑠𝑠 ± ∆𝑦

– Overshoot (maximum peak), Mp: percent overshoot 𝑀𝑝 =
𝑦𝑚𝑎𝑥−𝑦𝑠𝑠

𝑦𝑠𝑠
× 100%

Matlab commands: step(), dcgain(), impulse(), lsim(), grid
– step(G); draws the step response of G(s)

– [y,t]=step(G); evaluate the step response of G(s) and not draw it

– K=dcgain(G); calculate the steady state value yss of the output y(t)

– impulse(G); draw the impulse response of G(s)

– lsim(G,u,t); draw the response of G(s) to an arbitrary input u(t)

– grid; superimpose a grid on the plot

Numerical Simulation of Linear Systems

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Step Response

Time (sec)

A
m

p
li
tu

d
e

Unity feedback system

• Sketch the location of closed-loop poles

– Roots location of 1 + 𝐾𝐺 𝑠 = 0, where −∞ < 𝐾 < ∞

Matlab commands: rlocus(), grid
– rlocus(G); draws the root locus

– rlocus(G,K); draw root-locus for a given gain vector K

– [R,K]=rlocus(G); evaluate the closed-loop pole location R, not draw

– rlocus(G1,’-’,G2,’-.b’G3,’:r’); draw root-locus for several models

• Example: Draw the root-locus, where 𝐺 𝑠 =
𝑠2+4𝑠+8

𝑠5+18𝑠4+120.3𝑠3+357.7𝑠2+478.5𝑠+306

>> num=[1,4,8]; den=[1,18,120.3,375.5,478.5,306];

 G=tf(num,den); rlocus(G);

– Right click on the jw-axis crossing

• Critical gain k781

Root Locus of Linear Systems

G(s) K
-

-7 -6 -5 -4 -3 -2 -1 0 1
-8

-6

-4

-2

0

2

4

6

8
Root Locus

Real Axis

Im
a

g
in

a
ry

 A
x
is

Root Locus

Real Axis

Im
a

g
in

a
ry

 A
x
is

-7 -6 -5 -4 -3 -2 -1 0 1
-8

-6

-4

-2

0

2

4

6

8

System: G

Gain: 781

Pole: 0.00183 + 7.54i

Damping: -0.000242

Overshoot (%): 100

Frequency (rad/sec): 7.54

Frequency-domain plots of G(s), s=j
• Real and imaginary part representation

 𝐺 𝑗𝜔 = 𝑃 𝜔 + 𝑗𝑄 𝜔
– Nyquist plot draws Q 𝜔 = 𝐼𝑚(𝐺(𝑗𝜔)) v. P 𝜔 = 𝑅𝑒(𝐺(𝑗𝜔))

• Magnitude and Phase representation in separate plots
 𝐺 𝑗𝜔 = 𝐴 𝜔 𝑒−𝑗𝜙(𝜔)
– Bode plot draws the magnitude in decibels (M 𝜔 = 20𝑙𝑜𝑔(𝐴(𝜔))) and phase in

degrees versus the frequency in log scale

• Magnitude and Phase representation in a single plot
 𝐺 𝑗𝜔 = 𝐴 𝜔 𝑒−𝑗𝜙(𝜔)
– Nichols chart draws the magnitude versus phase

Matlab commands: nyquist, bode(), nichols(),
– nyquist(G); draws the Nyquist plot
– [R,I,K]=nyquist(G); evaluate the Nyquist data, not draw
– bode(G); draw the Bode plot of G(s)
– [A,,]=bode(G); evaluate the Bode data, not draw
– nichols(G); draw the Nichols chart of G(s)
– [A,,]=bode(G); evaluate the Nichols data, not draw

Frequency-Domain Analysis of Linear Systems

Example: Draw the Bode plot, Nyquist plot and Nichols chart for

 𝐺 𝑠 =
𝑠+8

𝑠 𝑠2+0.2𝑠+4 𝑠+1 𝑠+3

Matlab code:
close all; s=tf('s'); G=(s+8)/(s*(s^2+0.2*s+4)*(s+1)*(s+3));

figure(1), bode(G);

figure(2), nyquist(G); set(gca,'Ylim',[-1.5,1.5]);

figure(3), nichols(G); set(gca,'Xlim',[-400,-100],'Ylim',[-100,30]);

You may right-click on any of the figures and modify its properties (labels, limits, units, style, etc)

Frequency-Domain Analysis of Linear Systems

10
-10

10
-5

10
0

10
5

M
a

g
n

it
u

d
e

 (
a

b
s
)

10
-2

10
-1

10
0

10
1

10
2

-90

-45

0

P
h

a
s
e

 (
d

e
g

)

Bode Diagram

Frequency (rad/sec)

-1 -0.5 0 0.5
-1.5

-1

-0.5

0

0.5

1

1.5
0 dB

-20 dB

-10 dB

-6 dB

-4 dB

-2 dB

20 dB

10 dB

6 dB

4 dB

2 dB

Nyquist Diagram

Real Axis

Im
a

g
in

a
ry

 A
x
is

-360 -315 -270 -225 -180 -135
-100

-80

-60

-40

-20

0

20

 6 dB
 3 dB

 1 dB
 0.5 dB 0.25 dB

Nichols Chart

Open-Loop Phase (deg)

O
p

e
n

-L
o

o
p

 G
a

in
 (

d
B

)

Stability analysis in frequency-domain

• The closed-loop system is stable if:
– The Nyquist plot of G(s) encircles (counter-clockwise) the point (-1+0j) as

many times as the number of RHP poles of G(s)

• Example: For 𝐺 𝑠 =
2.7778 𝑠2+0.192𝑠+1.92

𝑠 𝑠+1 2 𝑠2+0.384𝑠+2.56
 is the closed-loop system stable?

Matlab code:
s=tf('s'); G=2.7778*(s^2+0.192*s+1.92)/(s*(s+1)^2*(s^2+0.384*s+2.56));

figure(1), nyquist(G); axis([-2.5,0,-1.5,1.5]); grid;

figure(2), nyquist(G); axis([-1.2,-0.8,-0.2,0.2]); grid;

figure(3), step(feedback(G,1,-1));

G(s)
-

Frequency-Domain Analysis of Linear Systems

-2.5 -2 -1.5 -1 -0.5 0
-1.5

-1

-0.5

0

0.5

1

1.5
Nyquist Diagram

Real Axis

Im
a

g
in

a
ry

 A
x
is

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Step Response

Time (sec)

A
m

p
li
tu

d
e

-1.15 -1.1 -1.05 -1 -0.95 -0.9 -0.85 -0.8
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
Nyquist Diagram

Real Axis

Im
a

g
in

a
ry

 A
x
is

Stable, but too oscillatory!

Gain and phase margins of a system

• Gain margin: 𝐺𝑚 =
1

𝐴(𝜔𝑐𝑔)

◦ 𝐴 𝜔𝑐𝑔 and 𝜔𝑐𝑔 are the magnitude and frequency where the Nyquist plot
intersects the negative real-axis

◦ The smaller the gain-margin, the faster the closed-loop system response

◦ If 𝐺𝑚 < 1, the closed-loop system is unstable

• Phase margin: 𝑃𝑚 = 𝜙 𝜔𝑐𝑝 + 180

◦ 𝜙 𝜔𝑐𝑝 and 𝜔𝑐𝑝 are the phase and frequency where the Nyquist plot intersects
the unit circle

◦ The larger the phase-margin, the less overshoot in closed-loop system response

◦ If 𝑃𝑚 < 0, the closed-loop system is unstable

• Example: For 𝐺 𝑠 =
2.7778 𝑠2+0.192𝑠+1.92

𝑠 𝑠+1 2 𝑠2+0.384𝑠+2.56
 find the closed-loop system margins

Matlab code:
s=tf('s'); G=2.7778*(s^2+0.192*s+1.92)/(s*(s+1)^2*(s^2+0.384*s+2.56));

[gm,pm,wg,wp]=margin(G);

  gm = 1.1050; pm = 2.0985; wg = 0.9621; wp = 0.9261 (closed-loop is stable)

G(s)
-

Frequency-Domain Analysis of Linear Systems

Introduction to Model Reduction Techniques

• Pade approximation to delay terms

– A delay term 𝑒−𝜏𝑠 can be approximated as rational transfer functions
𝑛𝑝(𝑠)

𝑑𝑝(𝑠)

Matlab Command: pade()

– Syntax: [np,dp]=pade(,n); where n is the order of the Pade approximation

• Example: Find the Pade approximation of a pure delay 𝐺 𝑠 = 𝑒−𝑠

Matlab code:
tau=1;

[n1,d1]=pade(tau,3); G1=tf(n1,d1); % 3rd-order Pade approx

[n2,d2]=pade(tau,6); G2=tf(n2,d2); % 5th-order Pade approx

[n3,d3]=pade(tau,9); G3=tf(n3,d3); % 7th-order Pade approx

step(G1,'-g',G2,'-.b',G3,':r'); % Compare plots

line([0,1,1+eps,3],[0,0,1,1]); % The step plot

0 0.5 1 1.5
-1

-0.5

0

0.5

1

1.5
Step Response

Time (sec)

A
m

p
li
tu

d
e

Introduction to Model Reduction Techniques

State space model reduction
• Balanced realization method:

1) Given a system model, find its unique balanced realization, where the
controllability and observability Gramians are equal (𝑊 = 𝑊𝑐 = 𝑊𝑜)

2) Partition the balanced realization and eliminate the states with small Gramians

Matlab Command: balreal(), modred()

• Example: For 𝐺 𝑠 =
𝑠3+7𝑠2+24𝑠+24

𝑠4+10𝑠3+35𝑠2+50𝑠+24
 find a 2nd-order approximate model

Matlab code:
num=[1,7,24,24]; den=[1,10,35,50,24];

G=tf(num,den); [Gb,g,T]=balreal(ss(G));

Gr=modred(Gb,[3,4]); zpk(Gr),

figure(1), bode(G,Gr), grid;

figure(2), step(G,Gr);

𝐺𝑟 𝑠 =
0.025974 𝑠+22.36 𝑠+4.307

𝑠+1.078 𝑠+2.319

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Step Response

Time (sec)

A
m

p
li
tu

d
e

10
-3

10
-2

10
-1

10
0

M
a

g
n

it
u

d
e

 (
a

b
s
)

10
-2

10
-1

10
0

10
1

10
2

10
3

-90

-45

0

P
h

a
s
e

 (
d

e
g

)

Bode Diagram

Frequency (rad/sec)

Introduction to Model Reduction Techniques

State space model reduction
• Schur’s balanced realization truncation method:

– Similar to modred(), but can handle unstable systems

• Optimal Hankel norm approximation
– Based on Hankel norm optimization technique

Matlab Commands: schmr(), ohklmr()

• Example: Find a 3rd-order approximate model for
𝐺 𝑠 =

68.6131𝑠5+80.3787𝑠4+67.087𝑠3+29.9339𝑠2+8.8818𝑠+1

0.0462𝑠6+3.5338𝑠5+16.5609𝑠4+28.4472𝑠3+21.7611𝑠2+7.6194𝑠+1

Matlab code:
num=[68.6131,80.3787,67.087,29.9339,8.8818,1];
den=[0.0462,3.5338,16.5609,28.4472,21.7611,7.6194,1];
G=ss(tf(num,den)); [Gb,g,T]=balreal(G);
Gr=modred(Gb,[4,5,6]); zpk(Gr),
Gs=schmr(G,1,3); zpk(Gs),
Gh=ohklmr(G,1,3); zpk(Gh),
figure(1), bode(G,Gr, '-g',Gs,'-.b',Gh,':r'); grid;
figure(2), step(G,Gr, '-g',Gs,'-.b',Gh,':r');

0 1 2 3 4
-2

0

2

4

6

8

10

12

14

16

18
Step Response

Time (sec)

A
m

p
li
tu

d
e

10
-2

10
0

10
2

M
a

g
n

it
u

d
e

 (
a

b
s
)

10
-2

10
0

10
2

10
4

-180

0

180

360

540

P
h

a
s
e

 (
d

e
g

)

Bode Diagram

Frequency (rad/sec)

𝐺𝑟 𝑠 =
−0.28747 𝑠−5398 𝑠2+0.3576𝑠+0.2519

𝑠+76.48 𝑠2+3.853𝑠+5.1111

𝐺𝑠 𝑠 =
1485.3076 𝑠2+0.1789𝑠+0.2601

𝑠+71.64 𝑠2+3.881𝑠+4.188

𝐺ℎ 𝑠 =
1527.8048 𝑠2+0.2764𝑠+0.2892

𝑠+73.93 𝑠2+3.855𝑠+4.585

