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Electromechanical Engineering 

Systems Mid-Semester Case Study
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Course Mid-Semester Case Study

• This integrating experience is to take an existing 

physical system (electrical first-order system here, 

but it could be any physical system) and have it 

meet desired dynamic performance specifications.
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Process
– Can the system alone (i.e., open loop) meet the 

performance specifications, i.e., unit step 

response with desired rise time, overshoot, and 

settling time?

Physical System

• Make simplifying assumptions (e.g., 

pure and ideal resistors and 

capacitor, no loading) and create the 

physical model.

• Apply KVL and KCL, along with 

component constitutive equations, to 

obtain the mathematical model.
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– Analysis (use hand calculation or MatLab analysis) shows that 

the system time constant is too large and operating open-loop 

cannot meet the performance specifications.  What to do?

– Change the physical system!  Here we assume that the physical 

system cannot be changed.

– Apply closed-loop (feedback) control to obtain the desired 

response and use the PI (proportional-integral) controller. 
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90% of the 

controllers used 

in the world are 

PI Controllers!
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– Comparison of the actual transfer function with the 

standard-form transfer function gives the following 

relationships:

– We now have relationships between the control gains, 

Kp and Ki, and the dynamic performance indictors for a 

pure second-order dynamic system, ωn and ζ.
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– But Wait!  This is not a pure 2nd-order dynamic system.  

There are numerator dynamics – the numerator has a 1st-order 

term!  Not to worry – why?

– We know that for a pure 2nd-order dynamic system, with the 

damping ratio ζ between 0 and 1 (typical of most operating 

engineering systems), the roots of the differential-equation 

characteristic equation are complex conjugates (indicated by 

an x).  

The numerator dynamics, i.e., 

the 1st-order term, has a root -1/τ

called a zero, indicated with a o.  

As the zero moves along the real 

axis closer to the pole locations, 

system dynamic behavior is 

affected as shown.  Take this 

effect into account in the design!
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– Choose ωn = 118 and ζ= 0.64  → Ki = 1392 and Kp = 13.1

– The predicted performance values for a pure 2nd-order 

system are:
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Note the effect of the zero: 

tr ↓, Mp ↑, and ts ↑ 

pole locations: -75.5 ± 90.7i

zero location: -106.3

System Performance

tr = .0086  Mp = .185   ts =.063
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– Our design meets the performance specifications.  But 

what about the control effort?  We are going to first 

implement our design with analog op-amps and we 

know that the maximum output of an op-amp is about 

13 volts when powered by ± 15 V.  We use Simulink to 

check the control effort.
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Control Effort

M < 13 volts

Error Signal
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Analytical Closed-Loop Bode Plot

Note:  Frequency Response will be studied and used 

more extensively in the 2nd half of the course.

Bandwidth

33.3 Hz
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Difference Amp

PI Controller

Inverting Amp

Plant

Feedback Control Now 
Let’s 

Build It!
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PI Controller

Inverting Amp
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PI Analog Control of a 1st-Order Plant

Plant

Error
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Measurement: Closed-Loop Step-Response Plot – NI MyDAQ
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Measurement: Closed-Loop Bode Plot – NI MyDAQ


