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References for Mechanical Systems

• System Dynamics, E. Doebelin, Marcel Dekker, 

1998.  (This is the finest reference on system 

dynamics available; many figures in these notes 

are taken from this reference.)

• Modeling, Analysis, and Control of Dynamic 

Systems, W. Palm, 2nd Edition, Wiley, 1999.

• Vector Mechanics for Engineers: Dynamics, 7th

Edition, F. Beer, E.R. Johnston, and W. Clausen, 

McGraw Hill, 2004.



Mechanical System Modeling K. Craig     3

Mechanical System Elements

• Three Basic Mechanical Elements

– Spring (elastic) element

– Damper (frictional) element

– Mass (inertia) element

• Translational and Rotational versions

• These are passive (non-energy producing) devices

• Driving Inputs

– force and motion sources which cause elements 

to respond 
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• Each of the elements has one of two possible 

energy behaviors:

– stores all the energy supplied to it

– dissipates all energy into heat by some kind of 

“frictional” effect

• Spring stores energy as potential energy

• Mass stores energy as kinetic energy

• Damper dissipates energy into heat

• Dynamic Response of each element is important

– step response

– frequency response
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Spring Element

• Real-world design situations

• Real-world spring is neither pure nor ideal

• Real-world spring has inertia and friction

• Pure spring has only elasticity - it is a 

mathematical model, not a real device

• Some dynamic operation requires that spring 

inertia and/or damping not be neglected

• Ideal spring: linear

• Nonlinear behavior may often be preferable and 

give significant performance advantages
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• Device can be pure without being ideal (e.g., 

nonlinear spring with no inertia or damping)

• Device can be ideal without being pure (e.g., device 

which exhibits both linear springiness and linear 

damping)

• Pure and ideal spring element

• Ks = spring stiffness (N/m or N-m/rad)

• 1/Ks = Cs = compliance (softness parameter)
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• Energy stored in a spring

• Dynamic Response: Zero-Order Dynamic System 

Model

– Step Response

– Frequency Response

• Real springs will not behave exactly like the 

pure/ideal element.  One of the best ways to 

measure this deviation is through frequency 

response.
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Spring Element
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Frequency Response

of

Spring Elements
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Zero-Order Dynamic System Model

Step Response Frequency Response



Mechanical System Modeling K. Craig     11

More Realistic Lumped-Parameter Model for a Spring
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Linearization for a Nonlinear Spring
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• Real Springs

– nonlinearity of the 

force/deflection curve

– noncoincidence of the 

loading and unloading 

curves (The 2nd Law of 

Thermodynamics 

guarantees that the area 

under the loading  f vs. x

curve must be greater 

than that under the 

unloading  f vs. x curve.  

It is impossible to recover 

100% of the energy put 

into any system.)



Mechanical System Modeling K. Craig     14

• Several Types of Practical 

Springs:

– coil spring

– hydraulic (oil) spring

– cantilever beam spring

– pneumatic (air) spring

– clamped-end beam spring

– ring spring

– rubber spring (shock mount)

– tension rod spring

– torsion bar spring
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• Spring-like Effects in 

Unfamiliar Forms

– aerodynamic spring

– gravity spring (pendulum)

– gravity spring (liquid 

column)

– buoyancy spring

– magnetic spring

– electrostatic spring

– centrifugal spring
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Damper Element

• A pure damper dissipates all the energy supplied 

to it, i.e., converts the mechanical energy to 

thermal energy.

• Various physical mechanisms, usually associated 

with some form of friction, can provide this 

dissipative action, e.g., 

– Coulomb (dry friction) damping

– Material (solid) damping

– Viscous damping
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• Pure / ideal damper element provides viscous 

friction.

• All mechanical elements are defined in terms of 

their force/motion relation.  (Electrical elements 

are defined in terms of their voltage/current 

relations.)

• Pure / Ideal Damper

– Damper force or torque is directly proportional 

to the relative velocity of its two ends.
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– Forces or torques on the two ends of the 

damper are exactly equal and opposite at all 

times (just like a spring); pure springs and 

dampers have no mass or inertia.  This is NOT 

true for real springs and dampers.

– Units for B to preserve physical meaning:

• N/(m/sec)

• (N-m)/(rad/sec)

– Transfer Function
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– Operational Transfer Functions

• We assume the initial conditions are zero.

– Damper element dissipates into heat all 

mechanical energy supplied to it.

• Force applied to damper causes a velocity in same 

direction.
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• Power input to the device is positive since the force 

and velocity have the same sign.

• It is impossible for the applied force and resulting 

velocity to have opposite signs.

• Thus, a damper can never supply power to another 

device; Power is always positive.

• A spring absorbs power and stores energy as a force 

is applied to it, but if the force is gradually relaxed 

back to zero, the external force and the velocity now 

have opposite signs, showing that the spring is 

delivering power.

• Total Energy Dissipated

   
2

dx dx
P dt B dt B dx f dx

dt dt

   
     

   
   



Mechanical System Modeling K. Craig     21

Damper Element

Step Input Force

causes instantly 

(a pure damper 

has no inertia) a 

Step of dx/dt

and a 

Ramp of x
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Frequency Response

of

Damper Elements
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• Sinusoidal Transfer Function

– M is the amplitude ratio of output over input

– φ is the phase shift of the output sine wave with 

respect to the input sine wave (positive if the 

output leads the input, negative if the output lags 

the input)
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• Real Dampers

– A damper element is used to model a device 

designed into a system (e.g., automotive shock 

absorbers) or for unavoidable parasitic effects 

(e.g., air drag).

– To be an energy-dissipating effect, a device 

must exert a force opposite to the velocity; 

power is always negative when the force and 

velocity have opposite directions.

– Let’s consider examples of real intentional 

dampers.
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Viscous (Piston/Cylinder) Damper

A relative velocity between the 

cylinder and piston forces the 

viscous oil through the clearance 

space h, shearing the fluid and 

creating a damping force.
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Simple Shear Damper

and

Viscosity Definition

fluid viscosity

shearing stress F / A

velocity gradient V / t

 

 

2A
F V

t

F 2A
B

V t





 



Mechanical System Modeling K. Craig     27

Examples

of

Rotary Dampers
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Commercial Air Damper

laminar flow

linear damping

turbulent flow

nonlinear damping

(Data taken with valve shut)

Air Damper

• much lower viscosity

• less temperature dependent

• no leakage or sealing problem
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Eddy-Current Damper

• Motion of the conducting 

cup in the magnetic field 

generates a voltage in the 

cup.

• A current is generated in 

the cup’s circular path.

• A current-carrying 

conductor in a magnetic 

field experiences a force 

proportional to the current.

• The result is a force 

proportional to and 

opposing the velocity.

• The dissipated energy 

shows up as I2R heating of 

the cup.
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Temperature Sensitivity

of

Damping Methods



Mechanical System Modeling K. Craig     31

Other Examples

of

Damper Forms
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• The damper element can also be used to represent 

unavoidable parasitic energy dissipation effects in 

mechanical systems.

– Frictional effects in moving parts of machines

– Fluid drag on vehicles (cars, ships, aircraft, etc.)

– Windage losses of rotors in machines

– Hysteresis losses associated with cyclic stresses in 

materials

– Structural damping due to riveted joints, welds, 

etc.

– Air damping of vibrating structural shapes
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Hydraulic Motor Friction 

and its Components
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Inertia Element

• A designer rarely inserts a component for the 

purpose of adding inertia; the mass or inertia 

element often represents an undesirable effect 

which is unavoidable since all materials have 

mass.

• There are some applications in which mass itself 

serves a useful function, e.g., accelerometers and 

flywheels.
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Useful Applications

of

Inertia

Flywheels are used as 

energy-storage devices or as 

a means of smoothing out 

speed fluctuations in engines 

or other machines.

Accelerometer
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– Newton’s Law defines the behavior of mass 

elements and refers basically to an idealized 

“point mass”:

– The concept of rigid body is introduced to deal 

with practical situations.  For pure translatory 

motion, every point in a rigid body has identical 

motion.

– Real physical bodies never display ideal rigid 

behavior when being accelerated.

– The pure / ideal inertia element is a model, not 

a real object.

  forces mass acceleration
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Rigid and Flexible Bodies: Definitions and Behavior
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– Newton’s Law in rotational form for bodies 

undergoing pure rotational motion about a single 

fixed axis:

– The concept of moment of inertia J also considers 

the rotating body to be perfectly rigid.

– Note that to completely describe the inertial 

properties of any rigid body requires the 

specification of:

• Its total mass

• Location of the center of mass

• 3 moments of inertia and 3 products of inertia

  torques moment of inertia angular acceleration
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Rotational Inertia

J (kg-m2)

  

    

tangential force

mass acceleration

2 rL dr r



     

 
R 2 2

3 2

0

R MR
total torque 2 L r dr R L J

2 2
         



Mechanical System Modeling K. Craig     40

Moments of Inertia

for

Some Common Shapes
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– How do we determine J for complex shapes 

with possibly different materials involved?

• In the design stage, where the actual part 

exists only on paper, estimate as well as 

possible!

• Once a part has been constructed, use 

experimental methods for measuring inertial 

properties.  How?
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Experimental Measurement

of

Moment of Inertia
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– Actually the oscillation will gradually die out 

due to the bearing friction not being zero.

– If bearing friction were pure Coulomb friction, 

it can be shown that the decay envelope of the 

oscillations is a straight line and that friction 

has no effect on the frequency.

– If the friction is purely viscous, then the decay 

envelope is an exponential curve, and the 

frequency of oscillation does depend on the 

friction but the dependence is usually negligible 

for the low values of friction in typical 

apparatus.
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Inertia Element

Real inertias may be 

impure (have some 

springiness and friction) 

but are very close to 

ideal.
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– A step input force applied to a mass initially at 

rest causes an instantaneous jump in 

acceleration, a ramp change in velocity, and a 

parabolic change in position.

– The frequency response of the inertia element is 

obtained from the sinusoidal transfer function:

• At high frequency, the inertia element becomes very 

difficult to move.

• The phase angle shows that the displacement is in a 

direction opposite to the applied force.
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Useful Frequency Range

for

Rigid Model 

of a 

Real Flexible Body

A real flexible body 

approaches the 

behavior of a rigid body 

if the forcing frequency 

is small compared to 

the body’s natural 

frequency.
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– max is the highest frequency for which the real 

body behaves almost like an ideal rigid body.

• Frequency response is unmatched as a technique 

for defining the useful range of application for all 

kinds of dynamic systems.

 o

2

i
max

n

max n

x 1
i 1.05

x
1

0.308 E
0.218

L

  
 

 
 

   


96200 cycles/min

for a 6-inch

steel rod



Mechanical System Modeling K. Craig     49

1st-Order Mechanical Systems

2nd-Order Mechanical Systems
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Motion Transformers

• Mechanical systems often include mechanisms 

such as levers, gears, linkages, cams, chains, and 

belts.

• They all serve a common basic function, the 

transformation of the motion of an input member 

into the kinematically-related motion of an output 

member.

• The actual system may be simplified in many 

cases to a fictitious but dynamically equivalent

one.
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• This is accomplished by “referring” all the 

elements (masses, springs, dampers) and driving 

inputs to a single location, which could be the 

input, the output, or some selected interior point of 

the system.

• A single equation can then be written for this 

equivalent system, rather than having to write 

several equations for the actual system.

• This process is not necessary, but often speeds the 

work and reduces errors.
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Motion Transformers
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Translational 

Equivalent

for

A Complex System

x1, x2, 

are 

kinematically related

Refer all elements and 

inputs to the x1 location 

and define a fictitious 

equivalent system 

whose motion will be 

the same as x1 but will 

include all the effects 

in the original system.
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– Define a single equivalent spring element 

which will have the same effect as the three 

actual springs.

– Mentally apply a static force f1 at location x1

and write a torque balance equation:
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– The equivalent spring constant Kse refers to a 

fictitious spring which, if installed at location 

x1, would have exactly the same effect as all the 

springs together in the actual system.

– To find the equivalent damper, mentally 

remove the inertias and springs and again apply 

a force f1 at x1:    1 1 1 1 1 2 2 2
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– Finally, consider only the inertias present.

– While the definitions of equivalent spring and 

damping constants are approximate due to the 

assumption of small motions, the equivalent 

mass has an additional assumption which may 

be less accurate; we have treated the masses as 

point masses, i.e., J = ML2. 
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– To refer the driving inputs to the x1 location we 

note that a torque T is equivalent to a force T/L1

at the x1 location, and a force f2 is equivalent to 

a force (L2/L1)f2.

– If we set up the differential equation of motion 

for this system and solve for its unknown x1, 

we are guaranteed that this solution will be 

identical to that for x1 in the actual system.

– Once we have x1, we can get x2 and/or 

immediately since they are related to x1 by 

simple proportions.
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– Rules for calculating the equivalent elements 

without deriving them from scratch:

• When referring a translational element (spring, 

damper, mass) from location A to location B, where 

A’s motion is N times B’s, multiply the element’s 

value by N2.  This is also true for rotational elements 

coupled by motion transformers such as gears, belts, 

and chains.

• When referring a rotational element to a 

translational location, multiply the rotational 

element by 1/R2, where the relation between 

translation x and rotation  (in radians) is x = R .  

For the reverse procedure (referring a translational 

element to a rotational location) multiply the 

translational element by R2.
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• When referring a force at A to get an equivalent 

force at B, multiply by N (holds for torques).  

Multiply a torque at  by 1/R to refer it to x as a 

force.  A force at x is multiplied by R to refer it as a 

torque to .

– These rules apply to any mechanism, no 
matter what its form, as long as the 
motions at the two locations are linearly 
related.
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Mechanical Impedance

• When trying to predict the behavior of an 

assemblage of subsystems from their calculated or 

measured individual behavior, impedance methods 

have advantages.

• Mechanical impedance is defined as the transfer 

function (either operational or sinusoidal) in which 

force is the numerator and velocity the 

denominator.  The inverse of impedance is called 

mobility.
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Mechanical Impedance for the Basic Elements
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• Measurement of impedances of subsystems can be 

used to analytically predict the behavior of the 

complete system formed when the subsystems are 

connected.  We can thus discover and correct 

potential design problems before the subsystems 

are actually connected.

• Impedance methods also provide “shortcut” 

analysis techniques.

– When two elements carry the same force they are said 

to be connected in parallel and their combined 

impedance is the product of the individual impedances 

over their sum.
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– For impedances which have the same velocity, we say 

they are connected in series and their combined 

impedance is the sum of the individual ones.

– Consider the following systems:

Parallel Connection

Series Connection f, v

x1, v1

B

K

K

f, v

B
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– Parallel Connection

– Series Connection

 

K
B

f KBDD
Kv BD K

B
D

 




 
f K BD K

D B
v D D


  
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Force and Motion Sources

• The ultimate driving agency of any mechanical 

system is always a force not a motion; force causes 

acceleration, acceleration does not cause force.

• Motion does not occur without a force occurring 

first.

• At the input of a system, what is known, force or 

motion?  If motion is known, then this motion was 

caused by some (perhaps unknown) force and 

postulating a problem with a motion input is 

acceptable.
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• There are only two classes of forces:

– Forces associated with physical contact between 

two bodies

– Action-at-a-distance forces, i.e., gravitational, 

magnetic, and electrostatic forces

• There are no other kinds of forces! (Inertia force is a 

fictitious force.)

• The choice of an input form to be applied to a system 

requires careful consideration, just as the choice of a 

suitable model to represent a component or system.

• Here are some examples of force and motion sources.
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Force and Motion Inputs

acting on a 

Multistory Building
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A Mechanical Vibration

Shaker:

Rotating Unbalance

as a 

Force Input
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Electrodynamic Vibration Shaker as a Force Source
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Force Source

Constructed from a

Motion Source

and a

Soft Spring
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• Energy Considerations

– A system can be caused to respond only by the source 

supplying some energy to it; an interchange of energy 

must occur between source and system.

– If we postulate a force source, there will be an 

associated motion occurring at the force input point.

– The instantaneous power being transmitted through this 

energy port is the product of instantaneous force and 

velocity.

– If the force applied by the source and the velocity 

caused by it are in the same direction, power is supplied 

by the source to the system.  If force and velocity are 

opposed, the system is returning power to the source.
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– The concept of mechanical impedance is of some help 

here.

– The transfer function relating force and velocity at the 

input port of a system is called the driving-point 

impedance Zdp.

– We can write an expression for power:

dp

dp

f
Z (D) (D)

v

f
Z (i ) (i )

v



  

2

dp dp

f f
P fv f

Z Z
  
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– If we apply a force source to a system with a high value 

of driving-point impedance, not much power will be 

taken from the source, since the force produces only a 

small velocity.  The extreme case of this would the 

application of a force to a perfectly rigid wall (driving-

point impedance is infinite, since no motion is produced 

no matter how large a force is applied).  In this case the 

source would not supply any energy.

– The higher the driving-point impedance, the more a real 

force source behaves like an ideal force source.

– The lower the driving-point impedance, the more a real 

motion source behaves like an ideal motion source.
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– Real sources may be described accurately as 

combinations of ideal sources and an output impedance 

characteristic of the physical device.

– A complete description of the situation thus requires 

knowledge of two impedances:

• The output impedance of the real source

• The driving-point impedance of the driven system


