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Introduction to Control Systems                                  K. Craig 2011 

   
Control system design is not a narrowly specialized mathematical exercise, but is a widely 

applied technology with close connections to, and important impacts on, overall system design. 

The ability to design and implement analog and digital control systems, with their associated 

analog and digital sensors, actuators, and electronics, is an essential skill of every engineer, as 

everything today needs controls!  Control design is not just for specialists anymore!   

 

 The intelligent design and use of control systems requires that one have: 

 Knowledge of the basic modes of control that have been devised and the characteristic 

performance features of each.  This allows one to generate one or more design concepts 

that have potential for success.  

 Familiarity with available hardware so that commercially-available components to 

implement the design concepts can be selected. 

 Competence in modeling of physical systems with suitable equations, using judicious 

assumptions. 

 Facility in the use of analytical, simulation, and experimental techniques for 

determination of system response and suggesting design changes. 

 

An engineer must strive to develop insight into the problems of control and intuition about 

methods to solve them, emphasizing design in parallel with analysis techniques, showing the 

unity among several individual design techniques, and synthesizing them into a toolbox of 

problem-solving methods.  The challenges to the engineer are many:  

 Design as well as analysis techniques need to be mastered. 

 Control is an active field of research and hence there is a steady influx of new concepts, 

ideas, and techniques that an engineer needs to evaluate for potential applications. 

 Control is an interdisciplinary field that requires an interdisciplinary background.  

 

All engineers must meet these challenges head on, as all engineers should be able to design and 

implement a control system as part of an overall design.  This document provides a brief 

introduction to this very important area. 

 

 

 Role of Control Systems in Engineering System Design 
 

Control systems play an important role in almost every area of engineering design and control 

concepts have a widespread and significant impact on many aspects of engineering.  All types of 

engineered products and services depend more and more on associated control systems for their 

optimum functioning.  These control systems are increasingly considered to be an integral part of 

the overall system rather than afterthought add-ons.  The list of the many applications of control 

systems seems endless: energy production, materials production, vehicles and transport systems, 

construction equipment, manufacturing equipment, agricultural equipment, consumer goods, 

computers and peripherals, military applications, communications, measurement systems, 

medical equipment.  The list seems to show that everything needs a control system.  Although 
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one does not have to be a controls specialist to design multidisciplinary engineering systems, one 

does have to have an understanding of the fundamentals of control system design and 

implementation. 

 

In every control system, there is some device to be controlled that is called the process, plant, or 

controlled system, as shown in Figure 1.  Process inputs are flows of energy and/or material that 

cause the process to react or respond.  Mathematically, inputs are considered to be known or 

assumed and are classified into manipulated inputs (subject to our control) and disturbance 

inputs (undesirable and unavoidable effects beyond our control).  Associated with the process are 

some response variables which we require to behave in some specified fashion.  The need for 

controls can arise from a requirement for command following, disturbance rejection, or both.  So 

one must be sufficiently clever in the control of the manipulated inputs to either cause a desired 

process response, or counteract the effects of disturbances, or both. 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Process Input / Output Configuration 

 

The design of every engineered device/system initially proceeds from specifications, a list of 

functions to be performed.  Following the cardinal rule of good design, to strive for simplicity, 

one attempts to configure the device/system so that specifications may be met with minimum 

equipment and no, or only the most rudimentary, controls.  If specifications cannot be met or, as 

seems to be inevitable, customers soon demand improved specifications, the device/system 

design must be refined.  This refinement always runs into practical or theoretical limitations.  

Then the addition of suitable controls often allows significant further improvements to be made 

that would have been unavailable by other means.  This evolutionary process of refinement of 

specifications and designs applies to all products and services.  Indeed, everything needs controls 

and today the original invention most often includes control aspects that are vital to performance.  

Conservation of energy and materials, and continual increase in labor productivity are vital to the 

maintenance and improvement of world living standards.  Since these goals invariably require 

improved performance of all technical processes, the increasingly important role of control in 

engineering design appears. 
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 Classification of Control System Types 
 

The broadest overall classification separates control systems into two fundamental types: open-

loop and closed-loop (feedback).  Figure 2 shows a functional block diagram of an open-loop 

control system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.   Basic Open-Loop Control System 

 

In open-loop systems, the process response variable of interest, the controlled variable, is 

determined by the combined effects of the disturbance input and manipulated input.  The 

manipulated input (flow of energy and/or material) is varied by the control actuator in response 

to signals from the controller.  The controller receives information input as to the desired value 

of the controlled variable and translates this into a control signal for the control actuator by 

implementing the control law that is built into the controller.  Open-loop systems of this basic 

type are often satisfactory if: 

 disturbances are not too great 

 changes in the desired value of the controlled variable are not too severe 

 performance specifications are not too stringent 

 

A refinement of the basic open-loop system is the input-compensated (feedforward) open-loop 

system.  There are two types of open-loop systems in this category: disturbance-compensated and 

command compensated.  

 

In a disturbance-compensated open-loop system, shown in Figure 3, the process manipulated 

input is derived not only from the desired value command but partially from a measurement of 

the disturbance.  Implementation of such a scheme requires that we: 

1. must be able to measure the disturbance 

2. must be able to estimate the effect of the disturbance on the controlled variable, so we can 

compensate for it 

Disturbance-compensation can be used by itself or in combination with feedback control. 
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Figure 3.   Disturbance-Compensated Open-Loop System 

 

Although not as common as disturbance compensation, command-compensated open-loop 

systems (and combinations of these with feedback schemes) also exist.  Here, based on 

knowledge of the process characteristics, the desired value command is augmented by the 

command compensator to produce improved performance.  This is shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Command-Compensated Open-Loop System 

Plant

Control

Director

Control

Effector

Desired Value
of

Controlled Variable

Controlled 
Variable

Plant Disturbance Input

Plant
Manipulated 

Input

Flow of Energy
and/or Material

Disturbance

Sensor

Disturbance

Compensation

Plant

Control

Director

Control

Effector

Desired Value
of

Controlled Variable

Controlled 
Variable

Plant Disturbance Input

Plant
Manipulated 

Input

Flow of Energy
and/or Material

Command

Compensator



 5 

Open-loop systems without disturbance or command compensation are generally the simplest, 

cheapest, and most reliable control schemes and should be considered first for any control task.  

If specifications cannot be met, disturbance and/or command compensation should be considered 

next.  Design of these various types of open-loop systems does not generally require any 

specialized control theory, basic system dynamics being sufficient in most cases.  When 

conscientious implementation of open-loop techniques by a knowledgeable designer fails to yield 

a workable system, the more powerful closed-loop (feedback) methods should be considered. 

Although the analytical design of feedback systems is currently based on a well-developed 

mathematical theory, the basic concept is quite obvious and reasonable.  Figure 5 makes clear the 

operating principle of feedback systems and their basic advantages over open-loop systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.   Basic Closed-Loop (Feedback) Control System 

 

An open-loop system can be converted to a closed-loop by adding the functions of: 

1. measurement of the controlled variable 

2. comparison of the measured and desired values of the controlled variable 

 

Errors between commanded and actual values of the controlled variable will tend to be corrected 

no matter what the source.  This includes errors due to changing commands, process 

disturbances, disturbances to equipment other than the process, and changes in hardware 

parameter values.  The one exception (which is often critical, however) is the controlled-variable 

sensor.  If this sensor gives wrong information, the feedback system has no way of correcting for 

this.  Feedback control depends vitally on accurate measurement. 

 

The fact that open-loop systems never measure the controlled variable is the basis of their 

possible inadequacies.  They fundamentally rely on conditions staying close to design values.  

When system parameters and/or disturbances depart from "normal" and cause the controlled 

variable to wander from the desired value, the open-loop system is unaware of such changes.  
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Even a disturbance-compensated open-loop system corrects only for the disturbance or 

disturbances measured; all others go uncorrected.  Furthermore, changes due to wear, aging, 

environmental effects, and the like in the disturbance sensor/comparator, control actuator, and/or 

process cause the compensation to be imperfect.  An associated problem, possible instability, 

accompanies the many benefits of feedback, however, this phenomenon is reasonably well 

understood and is controllable by proper design. 

 

 Basic Benefits of Feedback Control 
 

Although a detailed exploration of the possibilities and problems of feedback control require a 

considerable amount of study, some essential characteristics can be illustrated quite easily.  

Consider first the open-loop control of a first-order process, shown in Figure 6.  Note that the 

differential operator D in the first-order process mathematical model is defined as d/dt. 

 

Figure 6.   Open-Loop Control of a First-Order Process 

 

Controlled variable C is related to its desired value V and process disturbance Up by the 

differential equation: 

 

 

    

where P  process time constant, KC  controller sensitivity, KA  sensitivity of the reference 

input element, KNKP  process sensitivity to UP, KP  process sensitivity to M.  

 

Let's choose KA such that KAKCKP = 1.0, so that for any steady V, with no disturbance, C = V. 

With UP = 0, solving the differential equation for a step input VS of V gives: 
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We see that any change in KAKCKP from the design value of 1.0 results in a directly proportional 

error in C.  A disturbance UPS causes an additional error KNKPUPS.  While disturbance 

compensation (feedforward) schemes can reduce the error due to UPS, errors due to changes in 

KAKCKP are not amenable to such improvement.  Should faster response to V be desired, 

command compensation may be possible. 

 

Now consider the response of a closed-loop (feedback) control system to a step command, as 

shown in Figure 7. 

 

Figure 7.   Closed-Loop (Feedback) Control of a First-Order Process 

 

From Figure 7 we may write the following equations: 
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System linearity allows separate consideration of the three inputs V, UP, and US.  Let us first take 

V as a step input VS, and UP = US = 0.   

 

Therefore, solving the differential equation results in: 

 

 

 

 

 

 

 

 

In every feedback system, the static sensitivity (also called the steady-state gain) between signals 

E and B is the single most important design parameter.  It is given the name loop gain and the 

symbol K (here K  KCKPKH).  Generally, all aspects of control system performance (steady-state 

accuracy, speed of response, etc.) improve when K is made larger.  Therefore large K is a basic 

design goal.  There is, however, always an upper limit on K, beyond which system stability 

suffers. 

 

The time constant CL which governs the speed of response of the controlled variable C can be 

made much smaller (faster) than P if K (here K  KCKPKH) is made large compared with 1.0.  

Thus if the process design has brought P to its minimum feasible value, feedback control allows 

significant further improvements in the speed of response of C to V, without any changes in the 

process itself.  This capability for overcoming apparent limitations in basic hardware 

performance is one of the major contributions of feedback.  There is nothing magical about the 

speedup of C's response even though the process itself is as slow as before.  The manipulated 

variable M simply over responds initially, as can be seen from its differential equation (with US = 

0 and UP = 0): 
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Feedback control achieves this increased speed of response by the initial over-response of 

process input M.  Open-loop, feedforward, command compensation achieves a similar increased 

speed of response also by the initial over-response of process input M, but it does so by 

augmenting the command.  However, they share the basic limitation on the degree of 

improvement possible, i.e., saturation nonlinearity caused by attempting excessive peaking in M. 

 

Let's turn to steady-state behavior.  With UP = 0 and US = 0, we have seen: 
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error is 101 times less for the closed-loop system than for the open-loop system. 

 

Finally, take V = 0 and UP = 0 and US = step input USS.  The system differential equation reduces 

to: 
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In the steady state 

 

 

 

 

which does not go to zero for large K, whereas the error due to UP did go to zero, but rather 

approaches –USS/KH. 

 

In summary, the basic benefits of feedback discovered in this example, but typical in general of 

feedback systems with high loop gain, are: 

1. Cause the controlled variable to accurately follow the desired variable. 

2. Greatly reduce the effect on the controlled variable of all external disturbances in the 

forward path.  It is ineffective in reducing the effect of disturbances in the feedback path 

(e.g., those associated with the sensor), and disturbances outside the loop (e.g., those 

associated with the reference input element). 

3. Are tolerant of variations (due to wear, aging, environmental effects, etc.) in hardware 

parameters of components in the forward path, but not those in the feedback path (e.g., 

sensor) or outside the loop (e.g., reference input element). 

4. Can give a closed-loop response speed much greater than that of the components from 

which they are constructed. 

 

 

 Accuracy-Stability Tradeoff in Feedback Systems 
 

All feedback systems can become unstable if improperly designed.  Let's discuss qualitatively 

this instability phenomenon.  In any real-world component there is some kind of lagging behavior 
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balance between the strength of the corrective action (loop gain) and the system dynamic lags.  
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input (acting on old information) is now actually driving the controlled variable in the same 

direction as it is already going, rather than opposing its excursions, leading to a larger deviation.  

Eventually the reversed error does cause a reversed correction but by then the controlled variable 

has also reversed and the correction is again in the wrong direction.  The controlled variable is 

thus driven alternately in opposite directions and does not settle to an equilibrium condition.  

This oscillatory state is called instability and, except for certain classes of systems, is 

unacceptable as control system behavior. 

 

Consider the following example, shown in Figure 8.  The liquid level C in a tank of constant 

cross-sectional area A is manipulated by controlling the volume flowrate M of an incompressible 

fluid in and out of the tank by means of a three-position on/off controller.  The transfer function 

K/D between M and C represents the conservation of volume relation for the system, i.e., 

A(dC/dt) = M, which with K  1/A and D  d/dt, reduces to DC = KM, or  
C K

D
M D

 .  The 

pump that manipulates M is shut off (M = 0) if the error E between the desired tank level R and 

measured level B is less in absolute value than the error dead space EDS/2.  When the error 

exceeds these limits, the pump adds or removes liquid at a rate M0.  The liquid-level sensor is 

assumed to measure C perfectly but there is a data transmission delay of DT seconds in sending 

this information to the controller.  That is, signal B is identical in form to C but is delayed by DT 

seconds, a behavior given the name dead time.  Since instability can be triggered by either or 

both command and disturbance inputs, in this example we apply a step command input RS and 

examine system response.  Note that the loop gain (strength of the corrective action) in this 

system depends on both M0 and K. 

 

 

 

 

Figure 8.   Tank Liquid-Level Feedback Control System 
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Shown in Figure 9 is a MatLab/Simulink block diagram for the tank liquid-level feedback control 

system.  

 

Figure 9.    MatLab Simulink Block Diagram: 

Tank Liquid-Level Feedback Control System 
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Figure 10.    MatLab Simulation Results: 

Stable Behavior of the Tank Liquid-Level Feedback Control System 
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In Figure 10, modest values of M0 and K give a relatively slow, but stable, response of C.  The 

simulation results are shown for a step input of 3 inches at time t = 0 seconds, a dead zone of  

0.1 inches, a tank cross-sectional area A = 2.0 in
2
 (K = 0.5 in

-2
), a pump volume flowrate of M0 = 

 3 in
3
/sec, and a DT = 0.1 seconds. 

If specifications require a faster response, M0 and/or K may be increased (or DT may be 

decreased), but in Figure 11 the designer has gone too far with this, causing instability.  This 

figure clearly shows how, because of time lags, correction M acts in a direction to increase, rather 

than reduce, the excursions of C during large parts of the cycle, a general condition for instability 

discussed earlier.  In this case there is clearly an imbalance between the strength of the corrective 

action (M0 and K) and the system dynamic lag (DT) resulting in an unstable response.  If we now 

reduce the strength of the corrective action and/or reduce the system dynamic lag so that there is 

a balance between the two, stable behavior will result.  Shown in Figure 11 is the system 

response with M0 =  5 in
3
/sec and DT = 0.2 seconds. 
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Figure 11.   MatLab Simulation Results: 

Unstable Behavior of the Tank Liquid-Level Feedback Control System 


