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Electrical / Magnetic Circuit Analogy
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Magnetic Levitation System Derivation
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Emitter Current = 10 mA
Detector Voltage = 0-5 V
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From Equilibrium:
As i ↑, x↓, & Vsensor ↓
As i ↓, x ↑, & Vsensor ↑( )
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At Equilibrium:

Equation of Motion:
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Linearization:

Magnetic Levitation System
Control System Design
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Absolute Stability
• If  a system in equilibrium is momentarily excited by 

command and/or disturbance inputs and those inputs are 
then removed, the system must return to equilibrium if it is 
to be called absolutely stable.

• If action persists indefinitely after excitation is removed, 
the system is judged absolutely unstable.

• The analytical study of stability becomes a study of the 
stability of the solutions of the closed-loop system’s 
differential equations.

• A complete and general stability theory is based on the 
locations in the complex plane of the roots of the closed-
loop system characteristic equation, stable systems 
having all of their roots in the LHP.



Characteristic Equation & 
Stability: 
For absolute stability, all roots of 
the characteristic equation must 
have negative real parts, i.e., they 
must lie in the left-half plane, as 
shown.  Note the following:
– If the system characteristic 

equation itself shows any sign 
changes, the system is always be 
unstable.

– If there are any gaps (zero 
coefficients) in the characteristic 
equation, the system is always 
unstable.

– Note, however, that a lack of gaps 
or sign changes is a necessary 
but not a sufficient condition for 
stability.

STABLE
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