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Effective Level Set Image Segmentation
With a Kernel Induced Data Term
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Abstract—This study investigates level set multiphase image seg-
mentation by kernel mapping and piecewise constant modeling of
the image data thereof. A kernel function maps implicitly the orig-
inal data into data of a higher dimension so that the piecewise
constant model becomes applicable. This leads to a flexible and
effective alternative to complex modeling of the image data. The
method uses an active curve objective functional with two terms: an
original term which evaluates the deviation of the mapped image
data within each segmentation region from the piecewise constant
model and a classic length regularization term for smooth region
boundaries. Functional minimization is carried out by iterations
of two consecutive steps: 1) minimization with respect to the seg-
mentation by curve evolution via Euler-Lagrange descent equa-
tions and 2) minimization with respect to the regions parameters
via fixed point iterations. Using a common kernel function, this step
amounts to a mean shift parameter update. We verified the effec-
tiveness of the method by a quantitative and comparative perfor-
mance evaluation over a large number of experiments on synthetic
images, as well as experiments with a variety of real images such
as medical, satellite, and natural images, as well as motion maps.

Index Terms—Kernel mapping, level set image segmentation,
mean shift, multiphase, piecewise constant model.

I. INTRODUCTION

A central problem in computer vision, image segmentation
has been the subject of a considerable number of studies

[6]–[8], [10]–[13], [16]. Variational formulations [17], which
express image segmentation as the minimization of a functional,
have resulted in the most effective algorithms. This is mainly
because they are amenable to the introduction of constraints on
the solution. Conformity of region data to statistical models and
smoothness of region boundaries are typical constraints. The
Mumford–Shah variational model [17] is fundamental. Most
variational segmentation algorithms minimize a variant of the
piecewise constant Mumford–Shah functional
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where is a piecewise constant approximation of
the observed data , and is the set of boundary points of .

The piecewise constant image model [6]–[9], [17], [18], and
its piecewise Gaussian generalization [3], [19], [20], have been
the focus of most studies and applications because the ensuing
algorithms reduce to iterations of computationally simple up-
dates of segmentation regions and their model parameters. The
more general Weibull model has also been investigated [21]. Al-
though they can be useful, these models are not generally appli-
cable. For instance, synthetic aperture radar (SAR) images, of
great importance in remote sensing, require the Rayleigh dis-
tribution model [22]–[24] and polarimetric images, common in
remote sensing and medical imaging, the Wishart or the com-
plex Gaussian model [25], [26].

The use of accurate models in image segmentation is prob-
lematic for several reasons. First, modeling is notoriously diffi-
cult and time consuming [27]. Second, models are learned using
a sample from a class of images and, therefore, are generally
not applicable to the images of a different class. Finally, accu-
rate models are generally complex and, as such, are computa-
tionally onerous, more so when the number of segmentation re-
gions is large [25]. An alternative approach, which would not
be prone to such problems, would be to transform the image
data so that the piecewise constant model becomes applicable.
This is typically what kernel functions can do, as several pattern
classification studies have shown [28]–[31]. A kernel function
maps implicitly the original data into data of a higher dimension
so that linear separation algorithms can be applied [39]. This is
illustrated in Fig. 1 with a 2-D data example. The mapping is
implicit because the dot product, the Euclidean norm thereof,
in the higher dimensional space of the transformed data can be
expressed via the kernel function without explicit evaluation of
the transform. Several studies [28], [29], [32], [33] have shown
evidence that the prevalent kernels in pattern classification are
capable of properly clustering data of complex structure. In the
view that image segmentation is spatially constrained clustering
of image data [34], kernel mapping should be quite effective in
segmentation of various types of images.

This study investigates level set multiphase image segmen-
tation by kernel mapping and piecewise constant modeling of
the image data thereof. The method uses an active curve ob-
jective functional containing two terms: an original term which
evaluates the deviation of the mapped image data within each
segmentation region from the piecewise constant model and a
classic length regularization term for smooth region boundaries.
Functional minimization is carried out by iterations of two con-
secutive steps: 1) minimization with respect to the partition by
curve evolution via the Euler-Lagrange descent equations and
2) minimization with respect to the regions parameters via fixed
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Fig. 1. Illustration of nonlinear 2-D data separation with mapping: The data is non linearly separable in the data space. Mapping the data to a feature (kernel)
space and, then, separating it in the induced space with linear methods is possible. For the purpose of display, the feature space in this example is of the same
dimension as the original data space. In general, however, the feature space is of higher dimension.

point iteration. The latter leads, interestingly, to a mean shift up-
date of the regions parameters. Using a common kernel function,
we verified the effectiveness of the method by a quantitative and
comparative performance evaluation over a large number of ex-
periments on synthetic images. In comparison to existing level
set methods, the proposed method brings advantages with re-
gard to segmentation accuracy and flexibility. To illustrate the
flexibility of the method, we also show a representative sample
of the tests we ran with various classes of real images including
natural images from the Berkeley database, medical and satel-
lite data, as well as motion maps.

The remainder of this paper is organized as follows. The
next section reviews the Bayesian framework commonly used
in level set segmentation. Section III contains the theoretical
contribution. It describes an original kernel-based functional
and derives the equations of its minimization in both two-re-
gion and multiregion cases. Section IV describes the validation
experiments, and Section V contains a conclusion.

II. MULTIPHASE IMAGE SEGMENTATION

Let be an image function.
Segmenting into regions consists of finding a partition

of the image domain so that each region is homoge-
neous with respect to some image characteristics commonly
given in terms of statistical parametric models. In this case, it is
convenient to cast segmentation in a Bayesian framework [12],
[13], [25], [35]. The problem would then consist of finding a
partition which maximizes the a posteriori probability
over all possible -region partitions of

(2)

Assuming that is independent of for and taking
of (2), we have

(3)

where

(4)

The first term, referred to as the data term, measures the con-
formity of image data within each region , , to a
parametric distribution . The Gaussian distribution
has been the focus of most studies because the ensuing algo-
rithms are computationally simple [13]. The well known piece-
wise constant segmentation model [2], [6], [8], [34], [35] corre-
sponds to a particular case of the Gaussian distribution. In this
case, the data term is expressed as follows:

(5)

where , and is
the mean intensity of region . Although used most often,
the Gaussian model is not generally applicable. For instance,
natural images require more general models [21], and the spe-
cific, yet important, SAR and polarimetric images require the
Rayleigh and Wishart models [22], [23], [25].
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The second term in (4) embeds prior information on the seg-
mentation [13]. The length prior, also called regularization term,
is commonly used for smooth segmentation boundaries

(6)

where is the boundary of the region and is a positive
factor.

In the next section, we will propose a data term which ref-
erences the image data transformed via a kernel function, and
explain the purpose and advantage of doing so.

III. LEVEL SET SEGMENTATION IN A KERNEL-INDUCED SPACE

To explain the role of the kernel function in the proposed
segmentation functional, and describe clearly the ensuing algo-
rithm, we first treat the case of a segmentation into two regions
(Sections III-A and III-B). In Section III-C, a multiregion ex-
tension is described.

A. Two-Region Segmentation

The image data is generally non linearly separable. The basic
idea in using a kernel function to transform the image data for
image segmentation is as follows: rather than seeking accurate
image models and addressing a non linear problem, we trans-
form the image data implicitly via a kernel function so that the
piecewise constant model becomes applicable and, therefore,
solve a (simpler) linear problem.

Let be a nonlinear mapping from the observation space
to a higher (possibly infinite) dimensional feature space .

Let be a closed planar parametric curve.
divides the image domain into two regions: the interior of
designated by , and its exterior . Solving
the problem of segmentation in the kernel-induced space with
curve evolution consists of evolving in order to minimize a
functional corresponding to the mapped data. The functional
we minimize, , measures a kernel-induced non Euclidean
distance between the observations and the regions parameters

and [see (7), shown at the bottom of the page].
In machine learning, the kernel trick [30], [31] consists of

using a linear classifier to solve a nonlinear problem by mapping
the original nonlinear data into a higher dimensional space. Fol-
lowing the Mercer’s theorem [30], which states that any contin-

uous, symmetric, positive semi-definite kernel function can be
expressed as a dot product in a high-dimensional space, we do
not have to know explicitly the mapping . Instead, we can use
a kernel function, , verifying

(8)

where “ ” is the dot product in the feature space.
Substitution of the kernel functions in the data term yields the

following non-Euclidean distance measure in the original data
space:

(9)

To minimize , which depends both on and on the re-
gions parameters and , we adopt an iterative two-step algo-
rithm. The first step consists of fixing the curve and optimizing

with respect to the parameters. As the regularization term
does not depend on regions parameters, this is equivalent to op-
timizing the data term, referred to as . The second step con-
sists of evolving the curve with the parameters fixed.

1) Step 1: For a fixed partition of the image domain, the
derivatives of with respect to , yield the fol-
lowing equations:

(10)

Table I lists some common kernel functions. In all our exper-
iments we used the radial basis function (RBF) kernel, a kernel
which has been prevalent in pattern data clustering [28], [42],
[43]. With an RBF kernel, the necessary conditions for a min-
imum of with respect to region parameters are

(11)

(7)
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TABLE I
EXAMPLES OF PREVALENT KERNEL FUNCTIONS

where

(12)

The solution of (11) can be obtained by fixed point iterations.
This consists of iterating

(13)

For , sequence converges. A detailed
proof is given in Appendix A. Let be its limit. Thus,
is a fixed point of function and, consequently, is a solution of
(11).

The update of the region parameters obtained in (13) is a
mean-shift update. Mean-shift corrections have traditionally ap-
peared in data clustering and have been quite efficient [36], [37].
It is a mode search procedure which seeks the stationary points
of the data distribution. It is quite interesting that a mean-shift
correction appears in this context of active curve segmentation.
This correction occurs in the minimization with respect to the
region parameters due to the kernel induced data term, via the
RBF kernel. The effectiveness and flexibility of this kernel for-
mulation and the ensuing mean-shift update will be confirmed
by an extensive experimentation in Section IV.

2) Step 2: With the region parameters fixed, this step con-
sists of minimizing with respect to . The Euler-Lagrange
descent equation corresponding to is derived by embed-
ding the curve into a family of one-parameter curves

and solving the following partial differential
equation:

(14)

where is the functional derivative of with respect
to . Segmentation regions and are obtained from curve

at convergence, i.e., when time .
Using the result in [12] which shows that, for a scalar func-

tion , the functional derivative with respect to the curve of
is equal to , where is the outward unit

normal to , we have

(15)
The derivative of the length prior with respect to is [12]

(16)

Fig. 2. Representation of a 4-region partition.

where is the mean curvature function of . The final evolution
equation for a two-region segmentation in the kernel-induced
space is

(17)

In the case of an RBF kernel, the expression (9) of
simplifies to , , 2.

B. Level Set Implementation

To implement the curve evolution in (17), we use the well-
known level set method [38]. The evolving curve is implic-
itly represented by the zero level set of a function

at time , i.e., . This representa-
tion is numerically stable and handles automatically topological
changes of the evolving curve.

When the curve is evolving following [38]:

(18)

where , the corresponding level set function
evolves according to

(19)

Using this result, the level set function evolution corresponding
to (17) is given by

(20)
where the curvature function is given by

(21)
It should be mentioned that (20) applies only for points
on the curve . We extend this evolution equation to the whole
image domain [35]. The function evolves also for points out-
side its zero level according to (20) without affecting the process
of segmentation and, us such, is more stable numerically. More
details on the level set partial differential equation discretization
schemes and fast resolution algorithms are available in [38].

C. Multiregion Segmentation

Multiregion segmentation using several active curves can
lead to ambiguity when two or more curves intersect. The
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Fig. 3. Image intensity distributions: (a) small overlap; (b) significant overlap.

main issue is to guarantee that the curves converge to define
a partition of the image domain. There are several ways of
generalizing a two-region segmentation functional to a multi-
region functional to guarantee such a partition. For instance,
the generalization is done [3] via a term in the functional which
draws the solution toward a partition, an explicit correspon-
dence between the regions of segmentation and the interior of
curves and their intersections in [8] and [35], and a partition
constraint to use directly in the equations of minimization of
the functional in [2]. These and other methods are reviewed in
[35]. Here, we use the implementation of our generalization
described in [35] and used in other applications [21], [22].

This generalization is based on the following definition of a
partition. For a segmentation into regions, let
be simple closed plane curves and the regions
they enclose. Then, the following regions form a partition:

and ,
where is the complementary of in . This is illustrated
in Fig. 2 for four regions. The curve evolution equations and
the corresponding level-set equations, using this definition of a
partition, are given in Appendix B.

IV. EXPERIMENTAL RESULTS

To illustrate the effectiveness of the proposed method, we
first give a quantitative and comparative performance evalua-
tion over a large number of experiments on synthetic images
with various noise models and contrast parameters. The per-
centage of misclassified pixels (PMP) was used as a measure
of segmentation accuracy. To illustrate the flexibility of the
method, we also show a representative sample of the tests with
various classes of real images including natural images from
the Berkeley database, medical and satellite data, as well as
motion maps.

A. Quantitative and Comparative Performance Evaluation

The piecewise constant segmentation method and the piece-
wise Gaussian generalization have been the focus of most
studies and applications [6], [9] because of their tractability.
In the following, evaluation of the proposed method, referred
to as Kernelized Method (KM), is systematically supported by
comparisons with the Piecewise Gaussian Method (PGM) [3],
[19], [20]. The PGM method uses a Gaussian model in the data

Fig. 4. Segmentation of two exponentially noisy images with different con-
trasts: (a), (b) noisy images with different contrasts; �� �� �� � segmentation
results with PGM; �� �� �� � segmentation results with KM. Image size: 128
� 128. � � �.

term of (5). In all our experiments, the KM method uses the
RBF kernel (refer to Table I) with the same parameter .

We first show two typical examples of our extensive testing
with synthetic images and define the measures we used for per-
formance analysis: the contrast and the percentage of misclas-
sified pixels (PMP). Fig. 4(a) and (b) depicts two versions of
a two-region synthetic image, each perturbed with an exponen-
tial noise. Different noise parameters result in different amounts
of overlap between the intensity distributions within the regions
(Fig. 3). The larger the overlap, the more difficult the segmen-
tation [4].

Figs. 4 depict the segmentation results with the
PGM. Because the actual noise model is exponential, segmen-
tation quality obtained with the PGM was significantly affected
with the second image in Fig. 4 . However, the KM yielded
approximately the same result for both images (Fig. 4 ),
although the second image undergoes a relatively significant
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TABLE II
PERCENTAGE OF CORRECTLY CLASSIFIED PIXELS IN FIG. 4 FOR DIFFERENT VALUES OF THE REGULARIZATION WEIGHT

Fig. 5. (a) Synthetic images with Gamma (first row) and exponential (second row) noises; (b) segmentation results with PGM; (c) segmentation with the correct
model: Gamma model for the first row image and exponential model for the second row image; and (d) the KM. Image size: 241� 183. � � � for both methods.

overlap between the intensity distributions within the two
regions [Fig. 3(b)].

To demonstrate that the KM is a flexible and effective alter-
native to image modeling, we proceeded to a quantitative and
comparative performance evaluation over a very large number
of experiments. We run more than 100 experiments with a large
set of synthetic tow-region images generated from various noise
models and contrast values. The noise models we used include
the Gaussian, the exponential, and the Gamma distributions. We
recall the exponential distribution

(22)

and the Gamma distribution

(23)

Each image was generated from a combination of a noise
model and a contrast value. The latter was measured by the
Bhattacharyya distance between the intensity distributions
within the two regions of the actual image [4]

(24)

where and denote the intensity distributions within the
two regions and is the Bhattacharyya
coefficient measuring the amount of overlap between these dis-
tributions. Note that the higher the overlap, the lower the con-
trast. Each image was segmented by three methods: the PGM,
the KM and segmentation with the correct model, i.e., the noise
model used to generate the actual image. A comparative per-
formance analysis was carried out by assessing the effect of

the contrast on segmentation accuracy for the three segmenta-
tion methods. We adopted the percentage of misclassified pixels
(PMP) as a measure of segmentation accuracy

(25)

where and denote the background and foreground of the
ground truth (correct segmentation) and and denote the
background and foreground of the segmented image.

The value of parameter for the PGM method is chosen by
varying it in an interval about the value of 2. A value of ap-
proximately 2 was shown to be optimal for distributions from
the exponential family such as the piecewise Gaussian model
[4] and has an interesting minimum description length (MDL)
interpretation. This was confirmed by experiments in the study
[21] with other image data distributions. We used the percentage
of misclassified pixels to chose , as illustrated in Table II for
the example of Fig. 4.

A second typical example of our extensive testing with
synthetic data is depicted in Fig. 5. It shows two different noisy
versions of a piecewise constant two-region image perturbed
with a Gamma (first row) and exponential noises (second row).
The PGM yielded unsatisfying results [Fig. 5(b)]. Acceptable
results can be obtained when the correct model is assumed
[Fig. 5(c)]. Although no assumption was made as to the noise
model, The KM yielded a competitive segmentation quality
[Fig. 5(d)]. Thus, the proposed method allows much more
flexibility in practice because the model distribution of image
data does not have to be fixed.

We run more than 100 experiments to study the effect of the
contrast on the PMP. Several synthetic two-region images were
generated from the Gaussian, Gamma and exponential noises.
For each noise model, we varied the contrast between the two
regions, which yielded more than 30 images. For each image, we
evaluated the segmentation accuracy for three level set methods:
The KM, the PGM, and segmentation when the correct model
is assumed, i.e., the model used to generate the current image.
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Fig. 6. Evaluation of segmentation error for different methods over a large number of experiments (PMP as a function of the contrast): comparisons over the
subset of synthetic images perturbed with a Gaussinan noise in (a), the exponential noise in (b), and the Gamma noise in (c).

First, we applied both PGM and KM to the subset of images per-
turbed with a Gaussian noise, and plotted the PMP as a function
of the contrast [Fig. 6(a)]. The higher the PMP, the higher the
segmentation error. The KM yielded approximately the same
error as segmentation with the correct model, i.e., the Gaussian
model in this case. Second, we segmented all the images per-
turbed with an exponential noise with both PGM, KM and seg-
mentation with the correct model, i.e., the exponential model in
this case. We plotted the PMP as a function of the contrast in
Fig. 6(b). Both segmentation methods undergo high error gradi-
ents at some Bhattacharyya distance. Those results are consis-
tent with the experiments in [5]. When is superior to 0.8, both
methods yield a low segmentation error with a PMP less than
1%. However, the KM outperforms the PGM for a considerable
range of Bhattacharyya distance values. Furthermore, the KM
yielded a performance similar to segmentation with the correct
model [refer to Fig. 6(b)] until the contrast becomes very small

. Similar experiments were run with the subset of
images perturbed with a Gamma noise, and a similar behavior
was noticed [refer to Fig. 6(c)]. These results demonstrate the
ability of the KM to deal with various classes of image noises
for a large range of contrast values, which relaxes assumptions
as to the correct noise model.

The ability of the KM to deal with different noise models al-
lows segmenting regions which require different models.1 To
illustrate this important advantage of the KM, we consider a
synthetic image of three regions with different noise models as
shown in Fig. 7(a) with the initial curves in black and white.
The clearer region is generated with a Gaussian noise, the gray
region is derived from the Rayleigh distribution, and the darker
region from the Poisson distribution. The final position of the
curves following the KM is displayed in Fig. 7(b), and final seg-
mentation, in Fig. 7(c), where each region is represented by its
mean intensity value. Fig. 7(d)–(f) shows the segmentation re-
gions separately. As shown in Fig. 7(g)–(i), the Gaussian model
gives incorrect results as expected. The results demonstrate the
ability of our kernel method to discriminate different distribu-
tions within the same image.

Fig. 8 depicts the results with a simulation of a Synthetic
Aperture Radar (SAR) image. Segmentation of SAR images is
a difficult task due to the presence of speckle which is known

1In practice, the segmentation regions may require different models. For ex-
ample, in synthetic aperture radar (SAR) images, the intensity follows a Gamma
distribution in a zone of constant reflectivity and a K distribution in a zone of tex-
tured reflectivity [15]. The luminance within shadow regions in sonar imagery
is well modeled by the Gaussian distribution while the Rayleigh distribution is
more accurate in the reverberation regions [14].

Fig. 7. Image with different noise models: (a) initialization; (b) final posi-
tion of curves; (c) final segmentation; (d)–(f) segmentation regions separately;
(g)–(i) results with the PGM. Image size: 163� 158. � � � for both methods.

as strong and multiplicative noise. For single-look SAR images,
the intensity is given by , where and denote the
real and imaginary parts of the complex signal acquired from
the radar. For multilook SAR images, the L-look intensity is
the average of the L intensity images [22]. Fig. 8(a), with initial
curves, is a synthetic four-region image simulating an amplitude
multilook SAR image. Initial curves in black, white and gray are
placed arbitrarily about the middle of the image. Fig. 8(b) shows
final segmentation where each region is represented by its corre-
sponding parameter (weighted mean). Fig. 8(c)–(f) shows seg-
mentation regions separately.

B. Real Data

In the following, we illustrate the flexibility of the proposed
method by a representative sample of the tests with various
classes of real images including natural images from the
Berkeley database, medical and satellite data, as well as motion
maps.

Segmentation of a natural plane image into two regions is
depicted in Fig. 9. Initial, intermediate and final positions of the



SALAH et al.: EFFECTIVE LEVEL SET IMAGE SEGMENTATION WITH A KERNEL INDUCED DATA TERM 227

Fig. 8. Simulated multilook SAR image: (a) initialization; (b) final segmentation; (c)–(f) segmentation regions separately. Image size: 192 � 189. � � �.

Fig. 9. Real plane image: (a) initialization; (b) intermediate curve evolution step; (c) final position of the curve; (d) final segmentation. Image size: 110 � 70.
� � �.

Fig. 10. Monolook SAR image: (a) initialization; (b) intermediate curve evolution step (c) final position of the curve; (d) final segmentation. Image size: 151 �
361. � � �.

evolving curve are displayed, respectively, in Fig. 9(a)–(c). The
final segmentation regions, represented by their corresponding
parameters at convergence, are illustrated in Fig. 9(d).

To illustrate the robustness of the method with respect to ini-
tial conditions, initial curves were either big circles placed ar-
bitrarily about the middle of the image or tiny circles spread all
over the image.

Fig. 10 depicts the result with a monolook SAR image char-
acterized by a high multiplicative speckle noise. The noise level
depends on the image data: the higher the intensity, the stronger
the noise. Segmentation of this class of images is acknowl-
edged as a difficult problem [21], [22]. An intermediate and the
final positions of the evolving curve are shown respectively in
Fig. 10(b) and Fig. 10(c). Both segmented regions, represented
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Fig. 11. Panchromatic SPOT data of the Ampurias area: (a) initialization; (b) final position of the curve; (d) final segmentation. Image size: 512 � 512. � � �.

Fig. 12. Brain and Vessel images: �� � initialization; �� � final position of the curves; �� � final segmentation.

by their parameters, are displayed in Fig. 10(d). This example
demonstrates the ability of the method to deal effectively with
difficult SAR images where the level of speckle results in a
very low contrast within several locations.

Fig. 11 depicts the segmentation result into four regions of a
high resolution panchromatic spot image of the region of Am-
purias. This image shows several disjoint tiny blocks with dif-
ferent gray levels. Initial and final curves are displayed, respec-
tively, in Fig. 11(a) and (b). Segmentation regions are repre-
sented in Fig. 11(c) by their parameters at convergence.

Medical image segmentation is challenging and of a rapidly
growing interest. The brain image shown in Fig. 12 was
segmented into three regions. The choice of the number of re-
gions is based on prior medical knowledge. Fig. 12 de-
picts very narrow human vessels with very small contrast within
some spots. The curves obtained at convergence are displayed,
for both images, in Fig. 12 and . Segmentation regions,
represented by their parameters at convergence, are shown in
Fig. 12 and .

A representative sample of the experiments with natural im-
ages from the Berkeley database is depicted in Fig. 13. The

number of regions was based on visual inspection. The pro-
posed method yielded visually satisfying segmentation results
with natural images.

C. Motion

In this experiment, we segment optical flow images into mo-
tion regions. Optical flow at each pixel is a 2-D vector computed
following the method in [44]. We show two examples. The first
example uses the Road image sequence (first row of Fig. 14),
which contains two regions: a moving vehicle and a background.
The second example uses the Marmor sequence (second row),
which contains three regions: two moving objects and a back-
ground. Motion maps, initial and final curves are depicted, re-
spectively, in Fig. 14(a), (d), Fig. 14(b), (e), and Fig. 14(c), (f).

V. CONCLUSION

This study investigated multiphase piecewise image segmen-
tation in a kernel-induced space. This led to a flexible and effec-
tive alternative to complex modeling of image data. The method
used an active curve objective functional containing an original
term which references the image data transformed via a kernel
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Fig. 13. Example of segmentation results with natural images from the Berkeley database.

Fig. 14. Segmentation of the Road and Marmor sequences: (a) motion map of the Road sequence; (b), (e) initializations; (c), (f) final segmentations. � � �.

function. The algorithm iterated two consecutive steps: curve
evolution and mean shift update of the regions parameters. We
verified the effectiveness of the proposed method with a quanti-
tative and comparative performance evaluation over a very large
number of experiments on synthetic images. The flexibility of
the method was illustrated with a representative sample of the
experiments on various classes of real images including natural
images, medical and satellite data, as well as motion maps.

APPENDIX A

Let be the mean shift update function defined in (12).
In this Appendix, we prove the convergence of the following
sequence:

where is a region within and is the RBF kernel. A similar
result was obtained for the discrete case in [36]. With

, sequence can be written as follows:

(A1)

Define sequence as follows:

First, we demonstrate that sequence converges, and con-
sequently, is a cauchy sequence. Because

and , we have

(A2)

Thus, is bounded by the area of the image domain and it
suffices to show that is strictly monotonic increasing.
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Now for , , consider the following
expression:

(A3)

Using the fact that is convex, then for all such that
, we have

(A4)

As function verifies , then (A4) becomes

(A5)

Now, combining (A3) and (A5) gives

(A6)

Using (A1) in (A6) yields, after some manipulations

(A7)
Because for , the right term in (A7)
is strictly positive, and consequently, sequence is strictly
increasing. With inequalities (A2), this concludes that is
convergent.

Summing both sides in inequality (A7) over
gives

(A8)

where is the minimum of the integral
with respect to . Note that is strictly

positive.
Sequence is convergent, and consequently, is a Cauchy

sequence. This result combined with (A8) concludes that
is a Cauchy sequence. As a result,

converges in the Euclidean space.

APPENDIX B

For multiphase segmentation into regions , the
correspondence in Section III-C leads to coupled evolution
equations:

...

...

(A9)

where, for , , is the
parameter of region , is the outward unit normal to and

its curvature function, is the characteristic function of
, and is given by

Note that the update of the regions parameters follows directly
from the tow-region case.

As shown in Section III-B, deriving the level-set form of the
evolution equations corresponding to system (A9) is straightfor-
ward following (19). Indeed, each curve is represented by the
zero level set of a function , where only
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inside . As in [35], level-set evolution equations follow this
system of coupled partial differential equations

...

...

where is the curvature function of the level set , is the
indicator function of the set , and is given by
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