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ABSTRACT 

The purpose of this study is  to investigate image segmcntation 
from the viewpoint of image data regularized clustering. From 
this viewpiint. segmentation into a fixed but arbitrary number N 
of regions is  stated as the simultaneous minimizatiiin o f  N - 1 
energy functionals. each involving a single rcgion and its com- 
plement. The resulting Eulcr-Lagrange curve evolution equations 
yield a partition at convergencc provided the Curves are initialized 
so as to define an arbitrary partition of the image domain. The 
m e t h d  is  implemented via level sets. and results are shown on 
synthetic and natural vectorial images. 

1. INTRODUCTION 

Image segmentation is  a fundamental problem in digital image 
processing and computer vision. T h e  introduction of active con- 
tours and Icvel-sets brought forth a new class of tractable algo- 
rithms which have succeeded in segmenting difficult images. Ac- 
tive contour methods map regions to the interior o f  simple closed 
planar curves which cvolve to segment the image. Thc two-region 
segmentation problem i s  rather straightforward to statc. However. 
two-region algorithms are dilticult to generalize to an arbitrary, al- 
beit fixed. number of regions. The difficulty comes mainly from 
the Fact that while a simple closed curve unambiguously defines 
a partition of the image domain. thc interior and thc exterior o f  
the curve, two or more curves a n  intersect. causing regions they 
define to overlap and, therefore, ambiguity in segmentation, 
The classic study of  Zhu and Yuille [ I ]  has firmly established the 
capability of curve evolution methods in image segmentation. I n  
their method. each curve segment between two regions of an ini- 
tial partition ofthe image domain i s  made to evolve according to a 
region competition strategy that preserves a partition o f  the image 
domain at all times. The method dms not accommodate the level- 
set framework. and thus lacks the numerical stability and topol- 
ogy independence that level-sets afford. Also. a good initialization 
seems critical to a successful completion of thc algorithm. 
An alternative approach is  to use several curves. the interior of 
each corresponding to a region of segmentation [21 131 141 [51. 
In [21. Yezzi er al. use what they call a fully global functional to 
maximally separate the characteristics of the different regions of 
segmentation. Th is  method yields a partition at convergence. I t s  
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extension to more than two regions, however. is  quite complex be- 
cause it calls for the maximization of the volume of a polyhedmn 
with as many vertices as regions. Another difficulty is  that segmen- 
tntion in N regions requires an N- I-dimensional image function. 
In  131 Chan and Wse introduce what they refer to as multi-phase 
active contours. The method seeks a scgmentation into up to a 
power of 2 number of regions. There i s  no clrnr indication on the 
actual number o f  regions the method yields since this depends not 
just on the image but also on the weight of the regularization tenn. 
In some instances. unwanted division of regions can occur, as with 
image segments of planx intensity variation. 

Paragios and Deriche [4] and Samson rr al. [5 ]  use a weighed 
penalty term in the objective functional to penalize overlapping 
regions. If the weight of this partition arm i s  tw large, curve 
evolution is driven predominantly by this term and image data can 
he practically disregarded. On the other hand, i f  the weight i s  100 
small. overlapping can subside at convcrgence. I t  i s  not quite clear 
how to set the weight o f  this partition term. 
In  this study, image segmentation i s  stated as a problem of regular- 
ized clustering. leading to a fully global curve evolution method 
which we implement via level sets and demonstrate on vector- 
valued image partitioning. From the viewpoint of regularized clus- 
tering. segmentation into a fixed but arbitrary numher N o f  regions 
i s  stated as the simultaneous minimization of N - 1 energy func- 
tionals, cach involving a single region and its complement. The re- 
sulting Euler-Lagnnge curve evolution equetions yield a partition 
at convergence provided the curves are initialized so as to define 
an arbitrary partition of thc image domain. We show results on 
synthetic and natural vectorial images. 

2. PROPOSED APPROACH 

Let I : fl - W" be an image defined on fl c a'. Segmentation 
consists in determining a partition R = ( { R 1 } , E [ ~ , ~ ~ ,  Ri c fl} 
of N subsets of fl such that thc restriction o f  the image function 
to each region hest fits a given description, usually given through 
statistical models. 
The problcm is  commonly stated as the minimization o f  a func- 
tional containing two characteristic terms: a term o f  conformity 
to data and a regularization term. Let e.(.) be the function that 
measures conformity to daw i n  region Ri, and let 

E, = J,, ei(x) (1) 

Let us first look at the problem without spatial regularization. The 
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problem. then. consists o f  determining the partition that minimizes 
the following functional: 

h/ 

Let us rewrite (2) as follows: 

and note the following inequalities on the second term o f  the right 
hand side of (2) :  

3. CURVE E V O L U T I O N  EQUATIONS 

Int Ti : 10; I] i n, i = 1,. . . , N - 1 be simple closed planar 
curves parameterized by arc parameter s t [0, I].  We associate 
the interior o f  7; to region R,, i = 1,. . . , N - 1. To obtain 
the evolutinn equation of T;,  we embed the curve in a family o f  
one-parameter curves qi ( t )  : [0, 11 x W+ + Cl .  Assuming that 
functions e, o f  conformity to data are indepcndent o f  segmenta- 
tion, and with 

= A I  ds (9) 

the curve evolution equations for the minimization o f  En(T.11). 
i = 1,. . . , N - 1 are given by the corresponding Euler-Lagrange 
descent equations. These equations are, where K;  is the mean cur- 
vature function o f  ?;. and E; i ts  outward unit normal function, 

d.7, - ( x )  = - ( e"(x )  - $ i (x )  + h ( x ) ) E , ( x )  dt ( IO)  

These equations are fully global because each involves the region 

where R: denotes the complement 
characteristic function of region R;. 

and in the second line for a panition when C , + , e , ( x ) x , ( x )  = 
min(e, ( x ) ) .  this leads us to consider the problem from the view- 
i#. 
paint o f  clustering or quantization [6]. and formulate the problem 

of R, and x i ( x )  is the under consideratinn but the other regions as well. 
We wil l  nnw show t h ~ t  curvrs evolving according to these equa- 

tions wil l  not intenect if they do not initially. Let q% and C be two 
distinctcurves. If?, do not intersect initially. they must first 
meet at a set o f  points before they can intersect. Velocity o f  mo- 
tion o f a  curve. on the right-hand side of evolution equation (IO). 
has two terms. the curvature term [- ,k,E<) and the data term 

Because equality occurs in line of (dl for a 

o f  minimizing (2)as the simultaneous minimization o f  the follow- 
ing functionals. each corresponding to a two-region problem in- 
volving one region and i ts  complement: 

cL = /Ri e , (x )  d x + /  min(e,(x)) d x  i = I , .  . . , N - I ( 5 )  
R: 3#* 

with RN defined by: 
N-I 

R,,, = n R: (6)  

One can easily verify that the simultaneous minimization of the 
N - 1 functionals in (5) and convention (6) yield. just as in stan- 
dard clustering or quantization 161, a partition o f  the image domain 
with Cj,, e j ( x ) x l ( x )  = min,+*(ej(x)).  

However. image data i s  particular in the sense that i t  i s  laid out 
spatially. and functionals ( 5 )  ignore this layout. To account for 
th~s spatial layout. we include in (5) a standard regularization term 
related to the length o f  region contow. T h i s  has the effect of 
smwthing thcse contours and removing small region components. 
Functionals (5) become: 

.=1 

En(R,(I )=/  e i ( x ) d x + /  % b . ( x ) d x + ~ L ( . ( a R ~ )  1 (7) 
R. R: 

when + , ( x )  is shorthand for m i q + . ( q ( x ) ) .  aR, denotes the 
boundaty o f  region R ,  and C is a measure on the length of the 
boundary. The problem becomes: 

R, = argniin ( E ~ ( R , ~ I ) ) ,  i E [ 1 , N  - 11 
R. 

(8) N - I  

RN = i r = ,  

In  the next section we wi l l  derive curve evolution equations for the 
minimization pmblem (8). We wil l  also show curves evolving ac- 
cording to these equations will not intersect if they do not initially. 

( d , ( x )  = -(et(x) -$.(x))Z.) .  L e t ' u s e x m k  theeffectofeach 
of the two terms at a point o f  contact, 

3.1. Curvature term 

Figures I and 2 show the two possible configurations at a point of 
contact (up to a renaming of the curves). Let xo  be the point o f  
contact under consideration 

Fig. 1. Case I 

In the first case. both curvatures are positive (%I(%) 2 0, 
+ ( X U )  2 0). This means that both C U N ~ S  retract and, therefore 
wi l l  not cross at x g .  

In the second case. the curvatures are o f  opposite signs 
( K . ( X O )  2 0. %,(.U) 5 0). This  means that the curves move in 
the same direction. However, because I%,(x0)l 2 \ K ~ ( x o ) ~ ,  curve 
7, retracts faster than -7, advances and, therefore the two curves 
cannot cross at x g .  

3.2. Data term 

There are two cases to consider: 

1. e,(xo)  = inin ( e l (x0 ) )  ore,(m) = min (e l (xo))  
IEII.NI Itll.Nl 
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Fig. 2. Cuc 2 

2. en(x,) = min (el(xo)), k # i ,  k # j .  
IEI1,Nl 

In the first case. let us assume, without loss of generality, that 
e,(xu) = tninlsI,,,v ( ~ ( m ) ) .  This means that we have both 
&(xu) 5 Oandd,(xo) = ej(xo)-eL(xo) 2 0. 7herefore.qiand 
?? move in thesamedirection. with?, advancing and?? retracting. 
However, hecaiise ld,(xo)l 5 ld j (xo) l ,  retracts faster than 7. 
advances and the two curves wil l not cross at xo .  

In the second case, we have both di[xo) 2 0 2nd d,(xn) 2 0. 
Therefore. the two curves both retract and wil l not cross at xo, 
which complete showing that curves moving according to ( IO) will 
not intersect if they initially do not. 

4. LEVEL SETS IMPLEMENTATION 

A level set implementation of curve evolution equations has well 
known advantageous properties. such as numerical stability and 
independence to variations o f  the topology o f  the curves that can 
occur during evolution (71. The idea is  to embed curve 5 as the 
zero level-set of a function 4, : 8' i W. and evolve this function 
in such a way that its zero level evolves according to Eq. (IO). One 
can easily show [7] that if the evolution ofyi i s  descrihed by the 
equation: 

( 1 1 )  

where F, i s  a real-valued function defined on 8' x Kc. the evo- 
lution equation of function &., with the conventinn that 4, > 0 
inside the zero level-set, i s  then: 

d?t,(s,t) 
-- dt 1 7% s, t ) >  t ) G [ s ,  t )  

In our case, the evolution equation for function 4. is: 

where the curvature function kl is given in terms of the level set 
function by: 

(14) 

To implement the level set cquations. one must define extension 
velocities. i.e., proper velocities at  points that do not lie on the 
evolving curve 171. For instance. the extension velocity at a point 
is  the velocity at the point closest to it on the evolving curve [XI. 
Proper extension velocities can also be defined so that the level 

set function is  at all times the distance function from the evolving 
curve 171. Roth of these definitions. which are often implemented 
via narrow handing where the evolution of the level set function is  
effected only in a neighborhood o f  the zero level set. require the 
initial curves intersect the regions they segment. This is  impor- 
tant when a region has unconnected components. An alternative 
robust to initialization, which we use in our experiments, simply 
extends the expression ofvclocity on the evolving curve to the im- 
age domain, since this expression can he evaluated at every point 
of the imagc domain [9. IO. I l l .  However. the question arises 
whether this implementation preserves the property that initially 
non-intersecting curves evolve without intersection. The property 
has heen observed in our experiments and we are currently work- 
ing on the question for a formal answer. 

Note that the evolution equations (13) reduce to those o f  other 
methods. [ I?]  for instance. in the case of a segmentation in two re- 
gions. Note also that these equations have heen mentioned in [IO] 
as a possihle generalization of a two-region motion segmentation 
formulation. 

5. EXPERIMENTAL RESULTS 

We validated the algorithm and i t s  implementation in Several ex- 
periments. two of which we show here. We allow images to be 
vectorial, and use a Gaussian model for the intensities within re- 
gions: 

e.(X) = -log (pY. (1)) (15) 
= -log(2rr)f5log(l~:,I) 71 1 

2 

The Euler-Lagrange equations corresponding to the parameters of 
the Gaussian lead to the following estimates to he computed along 
with the segmentation (12, I]: 

where l , k  E { I ,  ..., n} and 71 i s  the dimension o f  the vectorial 
image. 

The image in the first example (Figure 3) is  a noisy gray level 
image with three regions differing in mean gray value'. The means 
are 0. I28 and 256. The noise for the white and grey regions i s  zero 
mean Gaussian with standard deviation a = 30. Noise for the 
background i s  Raleigh with c = 15. The initialization is  shown 
superimposed on the image in Figure 3a. An intermediate step 
of curve evolution i s  shown in b), and the segmentation at con- 
vergence in c). The three segmented regions represented by their 
mean grey value is  displayed in d). 

The image o f  the second example is a ClElah color image (Fig- 
ure 4a)'. Visual inspection indicates threr regions, corresponding 
to the cat. the car under which, and the ground on which, the cat 
is  laying. Each region exhibits texture and variations in color. The 

' Courtesy of MCH CMA lntemet B n i n  Segmentation Repository 
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Fig. 3. Noisy synthctic image with thrcc regions: a) initialization. 
b) evolution c) segmentation d) segmented regions with mean grey 
level value. 

results of segmentation are conform to expectation as shown in 
Figure 4c. The initialization is  shown in b) and the three regions 
of segmentation in d). e). and 0. 

6. CONCLUSlON 

We examined the problem o f  image segmentation from the per- 
spective o f  regularized clustering. This led ton fully global method 
where scgmentalion in N regions i s  obtained by simultmeous min- 
imizatioii o f  N - 1 energy functionals describing simpler two- 
region segmentation problems. each involving a region and i ts 
complement. The simple expression o f  these Sunctionals lends it- 
self to easy derivation o f  the Euler-Lagrangr equations which are 
implcmcnted via level sets. Experimental results demonstrate the 
validity o f  the method. 
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