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Abstract

The purpose of this study is to investigate a new representation of a partition of an image domain into a fixed but arbitrary number of
regions by explicit correspondence between the regions of segmentation and the regions defined by simple closed planar curves and their
intersections, and the use of this representation in the context of region competition to provide a level set multiregion competition algo-
rithm. This formulation leads to a system of coupled curve evolution equations which is easily amenable to a level set implementation
and the computed solution is one that minimizes the stated functional. An unambiguous segmentation is garanteed because at all time
during curve evolution the evolving regions form a partition of the image domain. We present the multiregion competition algorithm for
intensity-based image segmentation and we subsequently extend it to motion/disparity. Finally, we consider an extension of the algo-
rithm to account for images with aberrations such as occlusions. The formulation, the ensuing algorithm, and its implementation have
been validated in several experiments on gray level, color, and motion segmentation.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Image segmentation is a fundamental problem in image
processing and computer vision. It plays a central role in
numerous useful applications such as satellite image analy-
sis [1], biomedical image processing [2], scene interpretation
[3,4], video image analysis [5,6], content-based image data-
base retrieval [7], and many others.

With the introduction of active contours [8–11], various
algorithms have been developed following formulations of
segmentation as a Bayesian estimation problem or, more
generally, as a functional minimization problem, where
the solution is provided by evolution equations of closed
1077-3142/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.cviu.2005.07.008

* Corresponding author. Fax: +1 514 875 0344.
E-mail addresses: mansouri@deas.harvard.edu (A.-R. Mansouri),

mitiche@inrs-emt.uquebec.ca (A. Mitiche), vazquez@inrs-emt.uquebec.ca
(C. Vázquez).
simple plane curves. In general, these formulations are
curve evolution implementation variants of the Mum-
ford–Shah functional [12]. Some of these algorithms are
contour-based [13–15], where curve evolution is guided
solely by statistics on the active contours, while others
are region-based [16–24], where statistics of regions—
enclosed by the active contours—also contribute to curve
evolution.

Whether contour-based or region-based segmentation
formulations are difficult to extend beyond the two-region
case of foreground and background using the standard cor-
respondence between the regions of segmentation and the
regions bounded by the curves. This standard correspon-
dence leads to ambiguities in segmentation when the interi-
or of two or more curves overlap, because region
membership of points in the intersections is ambiguous.
How to guarantee that the functional minimization results
in a partition of the image domain is an important
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question. We address explicitly the question in this paper.
Current answers are the following:

(1) start with an initial partition into regions bounded by
N closed simple curves ci and evolve C = [ci accord-
ing to a functional that references C as a curve that
defines a partition. This is the approach adopted in
[17]. Its implementation requires careful initialization
and an explicit representation of C as a set of points
on the image domain grid that does not accommo-
date changes in the topology of the curves during
their evolution. The approach precludes the use of le-
vel sets since a single level set cannot represent a par-
tition into more than two regions. The level set
formalism is quite important in segmentation by ac-
tive contours because it allows changes in the seg-
mentation topology during curve evolution, and it
is implementable by stable numerical schemes
[25,26]. In this formalism, active contours are repre-
sented implicitly as zero level sets of functions over
the image domain. Advantages of the level set repre-
sentation of active contours over their explicit repre-
sentation as a set of points, as with snakes, are
generally acknowledged in gray-level image segmen-
tation as well as motion segmentation and tracking
[27–35],

(2) use a term in the functional that draws the solution
towards a partition [22,21]. This does not guarantee
a partition. Curve evolution will likely give an
ambiguous segmentation if the partition constraint
is not sufficiently enforced, and if it is strongly en-
forced, the curves will evolve more as a result of
the partition constraint than of image statistics,

(3) use a functional that results in curve evolution equa-
tions where the evolution of a curve involves a refer-
ence to the others. This is the approach adopted in
[24], referred to as a fully global approach. In this
case, minimization of the functional results in a par-
tition at convergence. However, the functional used
in [24] is peculiar in the sense that a segmentation
into N regions can be obtained only for vector imag-
es of dimension N � 1 or higher. For instance, the
functional cannot be used to segment an intensity
image into more than two regions, unless it is filtered
to be replaced by a vector valued image of intensity
statistics [36,37]. Also, the observation term in the
functional measures an (N � 1)-dimensional volume.
The complexity of the expression of this volume and
of the corresponding terms in the Euler–Lagrange
equations of minimization results in an excessive
computational demand,

(4) generalize directly the curve evolution equations of
the two-region case, rather than the functional itself.
This is the approach adopted in [29]. This allows the
use of non-differentiable operators that cannot be
introduced in the functional, such as min or max,
to express the competition for points between re-
gions. This is a convenient, practical generalization
although the computed solution looses its tie to the
original functional,

(5) establish an explicit correspondence between the re-
gions of segmentation and the regions defined by
the curves and their intersections. This is the ap-
proach proposed in [20], also used for vector valued
images in [23]. It guarantees a partition at all times
during the curves evolution, and the computed solu-
tion is one that minimizes the original functional.
Rather than for a fixed but arbitrary number of re-
gions, the problem is stated for a number N of re-
gions that is upper bounded by a power of 2, using
log2N level set functions. Some of these regions
can vanish, as shown on examples. Therefore, the
method seeks a segmentation into up to a power of
2 number of regions. There is no clear indication
on the actual number of regions the method yields
since this depends not just on the image but also
on the weight of the regularization term. In some
instances, unwanted division of regions can occur,
as with image segments of planar intensity variation.

The purpose of our study is to investigate a new repre-
sentation of a partition of an image domain into a fixed
but arbitrary number of regions by explicit correspondence
between the regions of segmentation and the regions de-
fined by simple closed planar curves and their intersections,
and the use of this representation in the context of region
competition [17] to provide a level set multiregion compe-
tition algorithm. The functional of this formulation leads
to a system of coupled curve evolution equations which is
easily amenable to a level set implementation, in contrast
with the functional in [17] which precludes the use of level
sets. It allows segmentation of images, scalar or vectorial,
into a fixed but arbitrary number of regions, in contrast
with the formulations in [24] which requires a vectorial im-
age of dimension N � 1 for segmentation into N > 2 re-
gions, and in [20] where the referenced number of regions
of segmentation is a power of 2. The functional minimiza-
tion guarantees an unambiguous segmentation because at
all time during curve evolution the evolving regions form
a partition of the image domain. This is due to a represen-
tation of an image partition in terms of evolving regions in
such a way that any family of simple closed plane curves
leads to an unambiguous segmentation. In contrast with
[17,29] and others, the computed solution is one that min-
imizes the stated functional.

We provide a statement of multiregion competition for
intensity-based segmentation. This is later extended to mo-
tion, and disparity-based segmentation to acknowledge
explicitly the fact that the problem of segmenting intensity
images is conceptually similar to the problem of segment-
ing motion or disparity fields, color images, and vector
images of statistics of intensity. We also provide an exten-
sion of the multiregion competition algorithm which ac-
counts, by an outlier rejection model, for distortions such
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as occlusions. To validate the formulation, the ensuing
algorithm and its implementation, we ran several
experiments on gray level, color, and motion segmentation.
With the experiment of motion-based image segmentation
we highlight the difference in segmentation that is obtained
with and without the extension for outliers rejection.

The remainder of this paper is organized as follows: Sec-
tion 2 states the problem of image partitioning via curve
evolution for intensity-based segmentation. Section 3 de-
tails the proposed representation of a partition into a fixed
but arbitrary number of regions, the multiregion competi-
tion functional, the corresponding Euler–Lagrange curve
evolution equations and their level set expression. In Sec-
tion 4, the formulation is extended to motion/disparity seg-
mentation. Section 5 discusses the extended image
formation model. Section 6 describes an experimental ver-
ification, and Section 7 contains a conclusion.

2. Image partitioning via curve evolution

2.1. Basic models

Here following is a statement of the problem of image
segmentation for intensity images. An extension to vectori-
al images, motion, and disparity-based segmentation will
be presented later in a subsequent section.

Let I : X ! Rn, be an intensity image function, with do-
main X � R2. The goal of image segmentation is to obtain
a partition of X from the image I, that is, a family fRigNi¼1 of
subsets of X which are pairwise disjoint and such that they
cover X. Formulating segmentation as a Bayesian estima-
tion problem, the segmentation estimate of maximum a
posteriori probability fRigNi¼1 is given by:

fR̂igNi¼1 ¼ argmax
fRi�Xg

P ðIjfRigÞP ðfRigÞ;

where P (I|{Ri}) is the likelihood of the segmentation, and
P ({Ri}) its prior. The image formation can be modeled
via a piecewise function, such that

eI ¼XN
j¼1

ðaj þ ljÞvRj
; ð1Þ

where vRj
is the indicator function of the set Rj, defined by

vR (x) = 1 (resp. 0) if x 2 R (resp. x 62 R), and lj is a station-
ary white Gaussian noise process with zero mean and
covariance matrix Rj. In Eq. (1) aj : X ! Rn is the restric-
tion to region Rj of the noiseless image underlying the ob-
served image, i.e., the observed image is an ideal noiseless
image plus noise.

We will assume that the aj are independent of the seg-
mentation {Ri}. We will also assume that the aj are either
computed prior to the segmentation, as in [21,29], for in-
stance, or are computed iteratively as suggested in [17] in
parallel with the segmentation. In both cases, the estima-
tion of the aj is a process separate from the segmentation
itself, and because it is highly problem-dependent and
well-studied, we will forego its inclusion here. In what fol-
lows, we shall therefore focus exclusively on the estimation
of the segmentation {Ri}, via curve evolution, and assume
the aj known.

The maximum a posteriori estimate fR̂igNi¼1 of the seg-
mentation then becomes:

fR̂igNi¼1 ¼ argmax
fRi�Xg

PðeIjI; fRigÞPðIjfRigÞP ðfRigÞ

and, assuming I is independent of the segmentation {Ri},
we obtain

fR̂igNi¼1 ¼ argmax
fRi�Xg

P ðeIjI; fRigÞP ðfRigÞ

¼ argmax
fRi�Xg

P
XN
j¼1

ðaj þ ljÞvRj
jI; fRig

 !
P ðfRigÞ

which in turn, leads to

fR̂igNi¼1 ¼ argmax
fRi�Xg

YN
j¼1

Y
x2Rj

NðIðxÞ � aj;RjÞ
 !

P ðfRigÞ
( )

using independence of the noise process lj (N(m,R) denot-
ing the Gaussian with mean m and covariance matrix R),
and finally, taking the logarithm of the right-hand side, this
Bayesian estimation problem is converted to the following
minimization problem:

fR̂igNi¼1 ¼ argmin
fRi�Xg

E½fRigNi¼1�;

where the energy E½fRigNi¼1� is defined by

E½fRigNi¼1� ¼
XN
j¼1

Z
Rj

njðxÞdx� log PðfRigÞ ð2Þ

and

njðxÞ � 1
2
log jRjj þ 1

2
ðIðxÞ � ajÞTR�1

j ðIðxÞ � ajðxÞÞ;

where | Æ | denotes determinant.

2.2. Image partitioning via curve evolution

Consider a family ~ci : ½0; 1� ! X; i ¼ 1; . . . ;N � 1 of
closed simple plane curves parametrized by the arc param-
eter s 2 [0,1]. Typically, the maximum a posteriori estima-
tion of the regions {Ri} is converted to a maximum a
posteriori estimation of plane curves by associating to re-
gion Rj the region R~cj inside the curve ~cj, for all
j = 1, . . . ,N � 1, and to region RN of the segmentation
the complement ð[N�1

j¼1 R~cjÞ
c of the union of the R~cj for

j = 1, . . . ,N � 1. This yields the following energy minimi-
zation problem:

f~̂cig
N�1
i¼1 ¼ argmin

f~ci:½0;1�!Xg
E½f~cig

N�1
i¼1 �;

where

E½f~cig
N�1
i¼1 � ¼

XN�1

j¼1

Z
R~cj

njðxÞ þ
Z
ð[N�1

j¼1
R~cj

Þc
nN ðxÞ � log P ðf~cigÞ
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Fig. 1. Representation of a partition of the image domain by explicit
correspondence between regions of segmentation and regions defined by
closed simple planar curves (illustration for four regions).
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the minimization being performed by Euler–Lagrange
curve evolution equations. The term � log P ðf~cigÞ is usual-
ly taken to be a function of curve length such as

� log P ðf~cigÞ ¼ k
XN�1

j¼1

I
~cj

ds. ð3Þ

For N = 2, i.e., in the case of two region (foreground/
background) segmentation, this functional is identical to
the region competition functional proposed in [17] for im-
age segmentation, while for more than two regions, the
functional obtained is identical to the extension proposed
in [24] of the Chan–Vese functional [38]. The Euler–La-
grange descent equations of the functional thus obtained
are given by embedding the family ~ci : ½0; 1� ! X; i ¼
1; . . . ;N � 1, of plane curves into one-parameter families
~ci : ½0; 1� � Rþ ! X; i ¼ 1; . . . ;N � 1, of plane curves con-
structed by solving the following system of evolution
equations:

d~cj
dt

¼ � dE
d~cj

; j ¼ 1; . . . ;N � 1;

where dE
d~cj

denotes the functional derivative of the energy
functional E with respect to the curve ~cj. The desired seg-
mentation is given by the family fR~cjg of regions obtained
for t fi 1.

The fundamental problem associated with this func-
tional is that the family of regions obtained after solving
the minimization problem does not generally form a par-
tition of the image domain, for although the R~cj together
with ð[N�1

j¼1 R~cjÞ
c do cover the image domain X, the R~cj

may not be pairwise disjoint. This lack of pairwise dis-
jointness leads in turn to ambiguity in the segmentation:
it is not possible to decide to what region a point does be-
long. To alleviate this problem, it is possible to enforce
the partition constraint by adding penalty terms to the
energy functional to bias the solution of the energy min-
imization problem towards pairwise disjoint families of re-
gions. Such penalty terms usually take the form of area
integrals computed over intersections of distinct regions,
such as

kP
2

XN�1

i¼1

X
j 6¼i

Z
R~ci

\R~cj

dx

and have been proposed in [21]. It is important to note
that the system obtained here is a system of coupled evo-
lution equations, the coupling reflecting the fact that the
various plane curves interact to reduce their overlap.
The problem with this approach is that the overlap prob-
lem is reduced but not totally eliminated, and the ambigu-
ity in segmentation persists. Furthermore, modifying the
energy functional by adding the overlap penalty terms
may bias the solution of the original problem away from
the intended solution, and may create excessive depen-
dence on the coefficient kP.
3. Multiregion competition algorithm

3.1. Representation of a partition into a fixed but arbitrary

number of regions: removing ambiguities

The ambiguity in segmentation described in the previous
section can be eliminated altogether without the use of any
penalty terms in the energy functional as in [23,21], by
establishing a suitable correspondence between regions en-
closed by closed simple plane curves and regions in the seg-
mentation. This correspondence is key to the multiregion
competition algorithm and guarantees that at all time the
partition constraint is maintained. Consider a family
~ci : ½0; 1� ! X; i ¼ 1; . . . ;N � 1, of plane curves parame-
trized by the arc parameter s 2 [0, 1]. We propose the
following correspondence between the family fR~cig of re-
gions enclosed by the curves f~cig and the segmentation
{Ri} of the image domain X: We associate to region R1

of the segmentation the region R~c1 inside the curve ~c1, as
in the standard case described in Section 2.2; to region
R2 of the segmentation, however, we associate the region
Rc
~c1
\ R~c2 described by the plane curves, in sharp difference

to the standard case; to region R3 of the segmentation, we
similarly associate region Rc

~c1
\ Rc

~c2
\ R~c3 , and continuing

this construction, we associate to region Rk of the
segmentation (for k 6 N � 1) the region Rc

~c1
\ Rc

~c2
\ � � � \

Rc
~ck�1 \ R~ck defined by the plane curves f~cig, while region

RN of the segmentation is finally associated to the region
Rc
~c1
\ Rc

~c2
\ � � � \ Rc

~ck�1
\ Rc

~cN�1
¼ ð[N�1

j¼1 RjÞc, as in the
standard case described in Section 2.2. The family
fR~c1 ; Rc

~c1
\ R~c2 ;R

c
~c1
\ Rc

~c2
\ R~c3 ; . . .g thus obtained is clear-

ly a partition of the image domain, for any family of plane
curves ð~ciÞ

N�1
i¼1 . The partition representation is illustrated on

four regions of segmentation (three curves) in Fig. 1.

3.2. Multiregion competition functional

With our choice of representation of a partition of the
image domain into N regions, the definition of n in
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Eq. (3) and with the prior term � log P ðf~cigÞ as in Eq. (3),
the energy functional Eq. (2) becomes:

E½f~cig
N�1
i¼1 � ¼

Z
R~c1

n1ðxÞdxþ
Z
Rc
~c1
\R~c2

n2ðxÞdxþ � � �

þ
Z
Rc
~c1
\Rc

~c2
\R~c3

n3ðxÞdxþ � � �

þ
Z
Rc
~c1
\Rc

~c2
\Rc

~c3
\���\R~cN�1

nN�1ðxÞdxþ � � �

þ
Z
Rc
~c1
\Rc

~c2
\Rc

~c3
\���\Rc

~cN�1

nN ðxÞdxþ � � �

þ k
XN�1

j¼1

I
~cj

ds. ð4Þ
3.3. Curve evolution equations

The minimization of the functional E in Eq. (4) with
respect to the curves ð~cjÞj is again performed by embedding
the family ~ci : ½0; 1� ! X; i ¼ 1; . . . ;N � 1 of plane curves
into a one-parameter family ~ci : ½0; 1� � Rþ ! X;
i ¼ 1; . . . ;N � 1 of plane curves constructed by solving
the following system of evolution equations:

d~cj
dt

¼ � dE
d~cj

; j ¼ 1; . . . ;N � 1.

The functional derivatives dE
d~cj

can be easily computed by
suitably rewriting the area integrals appearing in the energy
functional. Starting with~c1, we can rewrite the energy func-
tional Eq. (4) as follows:

E½f~cig
N�1
i¼1 � ¼

Z
R~c1

n1ðxÞdxþ
Z
Rc
~c1

U1ðxÞdxþ k
I
~c1

ds

þ k
XN�1

j¼2

I
~cj

ds; ð5Þ

where U1 (x) is defined as

U1ðxÞ ¼ n2ðxÞvR~c2
ðxÞ þ n3ðxÞvRc

~c2
ðxÞvR~c3

ðxÞ þ � � �

þ nN�1ðxÞvRc
~c2
ðxÞvRc

~c3
ðxÞ � � � vRc

~cN�2

ðxÞvR~cN�1
ðxÞ

þ nN ðxÞvRc
~c2
ðxÞvRc

~c3
ðxÞ � � � vRc

~cN�2

ðxÞvRc
~cN�1

ðxÞ.

Since U1 (x) and
PN�1

j¼2

H
~cj
ds have no dependence on ~c1,

the functional derivative dE
d~c1

is computed as for the stan-
dard region competition functional described in [17],
yielding:

dE
d~c1

ð~c1ðs; tÞÞ ¼ ½n1ð~c1ðs; tÞÞ � U1ð~c1ðs; tÞÞ þ kj1ðs; tÞ�~n1ðs; tÞ;

where ~n1 is the outward unit normal to~c1, and j1 the cur-
vature function of~c1.
To compute the functional derivative dE
d~c2

yielding the
evolution equation of ~c2, we rewrite the energy functional
Eq. (5) as follows:

E½f~cig
N�1
i¼1 � ¼

Z
R~c1

n1ðxÞdxþ
Z
R~c2

vRc
1
ðxÞn2ðxÞdx

þ
Z
Rc
~c2

vRc
1
ðxÞU2ðxÞdxþ k

I
~c2

ds

þ k
X
j 6¼2

I
~cj

ds; ð6Þ

where U2 (x) is defined as

U2ðxÞ ¼ n3ðxÞvR~c3
ðxÞ þ n4ðxÞvRc

~c3
ðxÞvR~c4

ðxÞ þ � � �

þ nN�1ðxÞvRc
~c3
ðxÞvRc

~c4
ðxÞ � � � vRc

~cN�2

ðxÞvR~cN�1
ðxÞ

þ nN ðxÞvRc
~c3
ðxÞvRc

~c4
ðxÞ � � � vRc

~cN�2

ðxÞvRc
~cN�1

ðxÞ.

Here again, since
R
R~c1

n1 ( x)dx, U2 (x), and
P

j 6¼2

H
~cj
ds

have no dependence on ~c2, the functional derivative of
the first term in the right-hand side of Eq. (6) is null and
the functional derivative dE

d~c2
is computed as for the standard

region competition functional, yielding:

dE
d~c2

ð~c2ðs; tÞÞ ¼ vRc
1
ð~c2ðs; tÞÞ½n2ð~c2ðs; tÞÞ � U2ð~c1ðs; tÞÞ�

�
þkj2ðs; tÞÞ~n2ðs; tÞ; ð7Þ

where ~n2 is the outward unit normal to~c2, and j2 the cur-
vature function of~c2. This equation defines the evolution of
~c2 outside the region R1, but says nothing about the evolu-
tion of the curve inside the region. Since the evolution of~c2
inside R1 does not affect the energy functional, we can de-
fine the evolution of ~c2 inside the region R1 in the better
way for the implementation. We have chose to simply ex-
tend to the whole curve the evolution strategy defined by
Eq. (7). This will prove useful later while implementing
the algorithm. The evolution equation for~c2 becomes:

dE
d~c2

ð~c2ðs; tÞÞ ¼ n2ð~c2ðs; tÞÞ � U2ð~c1ðs; tÞÞ þ kj2ðs; tÞð Þ~n2ðs; tÞ.

Proceeding similarly to compute the functional deriva-
tives dE

d~cj
for all j, the minimization of the multiregion com-

petition functional is achieved through the following
system of coupled curve evolution equations:

d~c1
dt ¼ �ðn1ð~c1Þ � U1ð~c1Þ þ kj1Þ~n1;
d~c2
dt ¼ �ðn2ð~c2Þ � U2ð~c2Þ þ kj2Þ~n2;

..

.

d~cj
dt ¼ �ðn2ð~cjÞ � Ujð~cjÞ þ kjjÞ~nj;

..

.

d~cN�1

dt ¼ �ðnN�1ð~cN�1Þ � UN�1ð~cN�1Þ þ kjN�1Þ~nN�1;

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð8Þ
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where~nj is the outward unit normal to and jj the curvature
function of~cj, for j = 1, . . . ,N � 1, and Uj (x) is given by

UjðxÞ ¼ njþ1ðxÞvR~cjþ1
ðxÞ þ njþ2ðxÞvRc

~cjþ1

ðxÞvR~cjþ2
ðxÞ þ � � �

þ nN�1ðxÞvRc
~cjþ1

ðxÞ � � � vRc
~cN�2

ðxÞvR~cN�1
ðxÞ

þ nNðxÞvRc
~cjþ1

ðxÞ � � � vRc
~cN�2

ðxÞvR~cc
N�1

ðxÞ

for j = 1, . . . ,N � 1.

3.4. Level set implementation

The system of Eq. (8) can be solved numerically by dis-
cretizing the interval [0,1] on which the curves ð~cjÞ

N�1
j¼1 are

defined, thus leading to a representation of ~cj
(j = 1, . . . ,N � 1) in terms of a finite number of points or
nodes. This leads to an explicit representation of~cj. A bet-
ter alternative is to represent the curve~cj implicitly by the
zero level set of a function uj : R

2 ! R (with
j = 1, . . . ,N � 1), with the region inside ~cj corresponding
to uj > 0. There are well-known advantages to such an
implicit representation [26], the most important being
numerical stability and topology independence. There is
also an additional advantage to using level set evolution
equations in lieu of curve evolution equations, owing to
the fact that region membership is explicitly maintained
in the level set representation. Indeed, the sign of the func-
tion uj determines which points are inside the curve~cj, and
which points are outside it. This is of crucial importance in
the context of our proposed multiregion competition func-
tional, since as can be seen in the system of Eq. (8) numer-
ous region indicator functions are involved, and bearing in
mind that region membership is computationally very
expensive to determine in the context of an explicit curve
representation.

One can easily show [26] that if the evolution of~cj is de-
scribed by the equation

d~cjðs; tÞ
dt

¼ F jð~cjðs; tÞ; tÞ~njðs; tÞ;

where Fj is a real-valued function defined on R2 � Rþ, then
the corresponding evolution of uj is given by:

oujðx; tÞ
ot

¼ �F jðx; tÞk ~rujðx; tÞk.

The level set evolution equations minimizing the func-
tional (4) are therefore given by the following system of
coupled partial differential equations:

ou1
ot ðx; tÞ ¼ n1ðxÞ�U1ðxÞþkj1ð Þk ~ru1ðx; tÞk

..

.

ouj
ot ðx; tÞ ¼ ðnjðxÞ�UjðxÞþkjjÞk ~rujðx; tÞk

..

.

ouN�1

ot ðx; tÞ ¼ ðnN�1ðxÞ�UN�1ðxÞþkjN�1Þk ~ruN�1ðx; tÞk;

8>>>>>>>>><>>>>>>>>>:
ð9Þ
where Uj (x) is given by

UjðxÞ ¼ njþ1ðxÞvfujþ1ðx;tÞ>0gðxÞ
þnjþ2ðxÞvfujþ1ðx;tÞ60gðxÞvfujþ2ðx;tÞ>0gðxÞþ � � �
þnN�1ðxÞvfujþ1ðx;tÞ60gðxÞ � � �vfuN�2ðx;tÞ60gðxÞvfuN�1ðx;tÞ>0gðxÞ
þnN ðxÞvfujþ1ðx;tÞ60gðxÞ � � �vfuN�2ðx;tÞ60gðxÞvfuN�1ðx;tÞ60gðxÞ

with v{uk(x,t) 6 0} = 1 if uk(x,t) 6 0 and 0 otherwise and
jj being the curvature of the level set of uj. The curva-
ture j is given as a function of u by the following
expression:

j ¼ ~r �
~ru

k ~ruk

¼
uxxu2y � 2uxuyuxy þ uyyu2x

ðu2x þ u2yÞ
3=2

. ð10Þ

We should note that the equations in system Eq. (9) are
only defined for points (x,t) on the curves~cj. There is, how-
ever, an easy way to extend this evolution equations to the
whole image domain. Given that the evolution of the func-
tion uk for all points not in the zero levelset does not affect
the energy, we can make these points evolve in the most
convenient way for the implementation. We chose simply
to use the same evolution equation for the whole image do-
main. This is possible because we have previously extended
the evolution of curves~ck to the whole image domain and is
a characteristic of our algorithm that is not present in other
algorithms.

Defining

RuiðtÞ ¼ fx 2 Xjuiðx; tÞ > 0g; i ¼ 1; . . . ;N � 1

the desired segmentation is then given by the family

fRu1ðtÞ;Ru1ðtÞ
c \ Ru2ðtÞ;

Ru1ðtÞ
c \ Ru2ðtÞ

c \ Ru3ðtÞ; . . . ; ð[N�1
j¼1 RujðtÞÞ

cg

as t fi 1. The system Eq. (9) of level set evolution equa-
tions is solved by replacing time derivatives by finite differ-
ences, and spatial derivatives by approximations using
forward and backward differences, as suggested in [26],
the key idea of such numerical approximations being that
the numerical domain of dependence of a function should
contain its mathematical domain of dependence [26]. We
refer the reader to [26] for a presentation and discussion
of level set partial differential equation discretization
schemes as well as for a presentation and analysis of algo-
rithms for fast computation of level set evolution
equations.

4. Motion/disparity-based segmentation

For motion/disparity segmentation we need to consider
a sequence of images. Let ðIkÞk : X ! Rn, k = 1, . . . ,K, be a
sequence of image functions, with common domain
X � R2. For motion- or stereo-based image segmentation,
(Ik)k contains two images (two images taken at consecutive
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instants of time in the case of motion, and a pair of stereo-
scopic images in the case of disparity).

The Bayesian formulation of the segmentation problem
becomes:

fR̂igNi¼1 ¼ argmax
fRi�Xg

P ððIkÞkjfRigÞPðfRigÞ;

where P ((Ik)k|{Ri}) is the likelihood of the segmentation,
and P ({Ri}) its prior. For motion, and stereo-based seg-
mentation, image formation can be modeled by:

Il ¼
XN
j¼1

ððIlþ1 � T jÞ þ ljÞvRj
ð11Þ

with Tj :Xfi X the motion (resp. stereo) transformation
corresponding to region Rj, i.e., two consecutive images
of the sequence differ in the placement of their moving re-
gions. Model Eq. (11) is common in motion (disparity) seg-
mentation [39].

We will assume, as in Section 2.1, that the Tj are inde-
pendent of the segmentation {Ri} and that they are either
computed prior to the segmentation or computed iterative-
ly in parallel with the segmentation.

It is important to note that for motion and stereo seg-
mentation, the image formation model given in Eq. (11)
does not account for occluded regions. Such regions are
negligible whenever the displacement or disparity is small,
but become important for large displacements and dispar-
ities and must somehow be incorporated in the image for-
mation model. In Section 5, we present an extension of the
model Eq. (11) that takes into account deviations from this
model.

With this model, and following a similar path as the one
taken in Section 2.1, we obtain the expression of the energy
to minimize:

E½fRigNi¼1� ¼
XN
j¼1

Z
Rj

njðxÞdx� log P ðfRigÞ ð12Þ

with the function nj redefined to reflect the new image for-
mation model:

njðxÞ � 1
2
log jRjj þ 1

2
ðIlðxÞ

� Ilþ1 � T j

� �
ðxÞÞTR�1

j ðIlðxÞ � ðIlþ1 � T jÞðxÞÞ. ð13Þ

The curve evolution algorithm developed in Section 3
can, therefore, be applied to solve this minimization
problem.
Fig. 2. Gray-level image segmentation. (A) Original image with initiali-
zation; (B) final segmentation represented by region�s means; four
segmented regions; (C) white matter; (D) gray matter; (E) dark zones;
and (F) black background.
5. Extended image formation model

The basic image formation model presented in the previ-
ous Section is accurate insofar as the image function Il can
be expressed, up to an additive noise term, as the linear
combination given in Eq. (11). As was mentioned in Sec-
tion 4, there are numerous cases where an image formation
model such as in Eq. (11) does not capture the complexity
of the observed image: this is the case for large range
motion, which leaves large portions of the image occluded
and hence unexplainable by any reasonable geometric
transformation, as well as for large disparity stereo, which
leads to numerous portions of one image which have no
correspondence in the other. We shall refer to image points
which cannot be explained by the image formation model
Eq. (11) as outliers. The multiregion competition algorithm
presented in Section 3 leads to an image partition which
does not account for outliers. As a result, outliers are dis-
tributed among the N regions of the partition, with each
outlier roughly assigned to the region which models it best.
It is often desirable to explicitly account for the outliers
and clearly discriminate them from the rest of the image
points. To do so, we assume the image domain X is
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partitioned into a family fRigNþ1
i¼1 of N + 1 regions, with re-

gion RN + 1 corresponding to the subset of outliers of the
image. The corresponding image formation model is then
given by

Il ¼
PNþ1

j¼1 ðIlþ1 � T jÞvRj
þ l on

SN
j¼1Rj;

m on RNþ1;

(
ð14Þ

where m is an independent stationary random process uni-
formly distributed at each point. Performing the same steps
as in Section 3, the Bayesian estimator of the segmentation
fRigNþ1

i¼1 is given by the following energy minimization
problem:
Fig. 3. Gray-level image segmentation. (A) Original image with initialization
means; three segmented regions; (D) green spaces; (E) paved zones and; (F) a
fR̂igNi¼1 ¼ arg min
fRi�Xg

E½fRigNþ1
i¼1 �;

where the energy E½fRigNþ1
i¼1 � is defined by

E½fRigNþ1
i¼1 � ¼

1

2r2

XN
j¼1

Z
Rj

ðIlðxÞ � ðIlþ1 � T jÞðxÞÞ2 dx

þ
Z
RNþ1

Cdx� log P ðfRigÞ; ð15Þ

where C is a constant. As in Section 3, the minimization of
this functional is done by first considering a family of plane
curves; however, given that N + 1 regions need now to be
; (B) algorithm evolution; (C) final segmentation represented by region�s
irport driveway.
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estimated, a family ð~cjÞ
N
j¼1 of N plane curves is defined (as

opposed to N � 1 in Section 3). In a manner similar to that
in Section 3, the correspondence between the family of
plane curves ð~cjÞ

N
j¼1 and the image segmentation is estab-

lished by assigning the region R~c1 inside the curve ~c1 to
region R1 of the segmentation, the region Rc

~c1
\ R~c2 to re-

gion R2 of the segmentation, the region Rc
~c1
\ Rc

~c2
\ R~c3 to

region R3 of the segmentation, . . ., the region Rc
~c1
\ Rc

~c2
\

� � � \ Rc
~cN�1

\ R~cN to region RN of the segmentation, and
finally the region Rc

~c1
\ Rc

~c2
\ � � � \ Rc

~cN�1
\ Rc

~cN
to region

RN + 1 of the segmentation, that is, the region consisting
of outliers. The energy functional to minimize as a function
of the curves f~cig is thus given by:
Fig. 4. Gray-level image segmentation. (A) Original image with initialization
regions; (C) green spaces and highway; (D) parking lot and building roofs; (E
E½ð~ciÞ
N�1
i¼1 � ¼

1

2r2

XN
j¼1

Z
R~cj

ðIlðxÞ � Ilþ1 � T j

� �
ðxÞÞ2 dx

( )

þ
Z
ð[N

j¼1
R~cj

Þc
Cdx� log Pðf~cigÞ.

The corresponding curve evolution equations are given
by the system of equations

d~cj
dt

¼ � njð~cjÞ � Ujð~cjÞ þ kjj

� �
~nj; j ¼ 1; . . . ;N ;

�
ð16Þ

where Uj (x) is given for j = 1, . . . ,N by
; (B) final segmentation represented by region�s means; four segmented
) river and; (F) wood.
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UjðxÞ ¼ njþ1ðxÞvR~cjþ1
ðxÞ

þ njþ2ðxÞvRc
~cjþ1

ðxÞvR~cjþ2
ðxÞ þ � � �

þ nN�1ðxÞvRc
~cjþ1

ðxÞ � � � vR~cN�1
ðxÞðxÞ

þ nNðxÞvRc
~cjþ1

ðxÞ � � � vRc
~cN�1

ðxÞvR~cN
ðxÞ

þ CvRc
~cjþ1

ðxÞ . . . vRc
~cN�1

ðxÞvR~cc
N

ðxÞ

for j = 1, . . . ,N. The corresponding level set evolution
equations are then given by the system:

ouj
ot

ðx; tÞ ¼ �ðnjðxÞ � UjðxÞ þ kjjÞk ~rujðx; tÞk;
�

ð17Þ

(j = 1, . . . ,N) where Uj (x) is given by

UjðxÞ ¼njþ1ðxÞvfujþ1ðx;tÞ>0gðxÞ
þ njþ2ðxÞvfujþ1ðx;tÞ60gðxÞvfujþ2ðx;tÞ>0gðxÞ þ � � �
þ nN�1ðxÞvfujþ1ðx;tÞ60gðxÞ � � � vfuN�2ðx;tÞ60gðxÞvfuN�1ðx;tÞ>0gðxÞ
þ nN ðxÞvfujþ1ðx;tÞ60gðxÞ � � � vfuN�1ðx;tÞ60gðxÞvfuN ðx;tÞ>0gðxÞ
þ Cvfujþ1ðx;tÞ60gðxÞ � � � vfuN�1ðx;tÞ60gðxÞvfuN ðx;tÞ60gðxÞ.
Fig. 5. Color image segmentation. (A) Original color image; (B)
luminance image with initialization; four segmented regions; (C) shirt;
(D) man and racket; (E) shorts and; (F) wall.
6. Experimental results

We ran several experiments to validate the formulation
and its implementation. We show results of some of these
experiments. These include segmentation of gray-scale
images, color images, and motion-based segmentation.

In the experiments on gray scale and color images, we
used the image model of Eq. (1). The parameter aj has been
taken to be the mean (gray scale or color) in region j. We
estimate the mean vector aj and covariance matrix Rj from
image I by:

aj ¼
R
Rj
IðhÞðxÞdxR
Rj

dx

" #

Rj ¼
R
Rj
IðhÞðxÞIðmÞðxÞdxR

Rj
dx

� aðhÞj aðmÞj

" #
; ð18Þ

where (h,m) 2 [1,n].
In the experiments on motion-based segmentation we

used the image models of Eqs. (11) and (14).

6.1. Segmentation of gray scale images

Fig. 2A shows a real image from an MRI brain scan.
The original position of the level set contours are superim-
posed on the image. The computed segmentation, with re-
gions represented by their means, is presented in Fig. 2B. In
Figs. 2C–F, the four segmented regions on a contrasting
background are shown.

Next, we show two examples of segmentation of aerial
images. In Fig. 3, we show the image of an airport. Three
regions can be identified in this image: the airport drive-
way, the paved zones and the green spaces. The computed
segmentation is shown in Fig. 3C with regions represented
by their means, and the three regions are shown on a con-
trasting background in Figs. 3D–F.

In Fig. 4, we show results for an urban scene. Fig. 4A,
shows the original image along with the initialization. In
this image there are four distinctive regions: the river and
other water surfaces; the parking and building roofs; the
wood; and the highway and green areas. The computed
segmentation is shown in Fig. 4B with regions represented
by their means, and the four segmented regions on a con-
trasting background are shown in Figs. 4C–F.

In all these examples the parameters of the regions
(mean and covariance matrix) has been estimated progres-
sively with the algorithm, thus no a priori information on
the statistical characteristics of the regions has been used
in the segmentation process. The computed segmentation
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is very good and in conformity with expectations from
visual inspection of the images.

6.2. Segmentation of color images

Many color spaces can be used to describe the color
information in images, the more common being the
RGB, YCMK, and YCbCr spaces. These spaces, however,
are not perceptually uniform, making them a bad choice
for color image segmentation. More uniform spaces from
the point of view of color perception by the viewer have
been developed. In our experiments, we use the CIElab col-
or space [40, chapter 7]. The images used have been con-
verted from their original color space to CIElab and the
vector composed by the chrominance components (a,b)
has been used as input to our algorithm. The luminance
information has not been included.

We show the segmentation results for the image ‘‘Ping-
pong,’’ extracted from the homonymous video sequence
which is a YCbCr 4:2:2 interlaced sequence. The color
components have been then interpolated horizontal and
vertically to match the size of the luminance image which
is used as a reference to represent the evolution of the algo-
Fig. 6. Motion segmentation with the multiregion competition algorithm. (A)
image at time t + 1 (I1); Segmentation results obtained by level set evolution ac
rithm. The original color image is shown in Fig. 5A. The
initial level set contours are shown in Fig. 5B superimposed
on the luminance image. The final four segmented regions
are presented in Figs. 5C–F. The segmentation is very
good. The shirt, shorts, and wall regions has been almost
perfectly segmented. The region corresponding to the
man and the racket includes some bordering regions be-
tween the shirt and the wall or shorts. This is due to the
interpolation process that smoothes the edges between re-
gions, facilitating the capture of a thin border band by
another region, in this case the man.

6.3. Motion-based segmentation

The purpose with this last example is twofold: to show the
applicability of the algorithm to motion-based segmenta-
tion, and to demonstrate the extension of the algorithm on
images with severe occlusions. The test images are natural
images with synthetic long-range motion. As was noted in
Section 2.1, long-range motion induces non-negligible zones
of occlusion and provides a good testing ground for compar-
ing the segmentation results derived from the basic model
(corresponding to the system of coupled level set Eq. (9))
Image at time t (I0); (B) moving regions (excluding background) in I0; (C)
cording to the system Eq. (9); (D) generator; (E) cameraman; (F) figurine.
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and those derived from the extended model (corresponding
to the system of coupled level set Eq. (17)).

Fig. 6A is constructed by pasting onto the first frame of
the (left) aqua stereoscopic sequence cutouts extracted from
the first frame of the (left) tunnel stereoscopic sequence.
There are three such cutouts: the generator, to the lower
left of Fig. 6A, the little figurine, to the upper left of
Fig. 6A, and the little cameraman figurine in the upper-
right portion of Fig. 6A. Fig. 6B shows these three cutouts
on a plain background. Fig. 6C shows the result of induc-
ing translational motion on the three cutouts as well as on
the background of Fig. 6A: the figurine to the left has
moved slightly up and to the right, the cameraman figurine
to the right has moved slightly right and down, the gener-
ator has moved down and right, and the background has
moved left. The goal of motion segmentation is to recover
the individual cutouts depicted in Fig. 6B from the images
in Fig. 6A (I0) and (C) (I1). As mentioned in Section 2.1, we
assume the translation parameters of each of the four re-
gions to be known prior to the segmentation: We describe
in detail in [21] how motion parameters can be recovered
prior to, and independently of, any motion segmentation.
Fig. 7. Motion segmentation with the multiregion competition algorithm. (A)
to the system Eq. (9). Segmentation results obtained by level set evolution acco
(E) background; (F) occlusion regions.
Figs. 6D–F and Fig. 7A show the results of motion-based
segmentation via the multiregion competition algorithm
given by level set evolution Eq. (9) for the generator, cam-
eraman, figurine, and background, respectively. As can be
seen in all four images, the individual regions have been
precisely recovered; however, due to the fact that the evo-
lution Eq. (9) provide no outliers rejection mechanism, sub-
stantial portions of the occluded regions have been
assigned to the four motion regions. This problem is con-
siderably reduced by considering the system of level set
evolution Eq. (17) corresponding to multiregion competi-
tion with outliers rejection. The results of this segmentation
are shown in Figs. 7B–E for the generator, cameraman, fig-
urine, and background, respectively. As can be seen in all
four images, the individual motion regions have been pre-
cisely segmented as before; this time however, far fewer
outliers have been assigned to the motion regions. In
Fig. 7D, no outliers has been assigned to the motion region
of the figurine, while in Figs. 7B and 7C some outliers have
been assigned to the motion regions corresponding to the
generator and the cameraman, respectively. This is due to
the fact that those outliers have been accidentally well
Segmentation of the background obtained by level set evolution according
rding to the system Eq. (17); (B) generator; (C) cameraman; (D) figurine;
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explained (in the sense of low motion residual) by the mo-
tion transformations of the regions to which they have been
assigned. Decreasing the value of the constant C reduces
such regions, while increasing C increases these regions.
Fig. 7E shows the segmented background region: it is
important to note here that both the motion regions and
the regions they occlude have been excluded from the back-
ground, as should be the case, and in sharp contrast to the
background segmentation obtained in Fig. 7A. Fig. 6F
shows the occluded regions obtained by the multiregion
competition algorithm: There are four such regions, the
three shapes to the right corresponding to the occlusion re-
gions of the three cutouts, and the vertical strip to the left
corresponding to the occlusion region of the background
(recall the background is moving leftwards).

7. Conclusion

We have presented a level set multiregion competition
algorithm, a natural level set extension to multiple regions
of the well-known region competition algorithm. Our pro-
posed algorithm reduces to the standard region competition
algorithm whenever only two regions are considered. Its
main feature is that the resulting segmentation, into a fixed
but arbitrary number of regions, is guaranteed to be a par-
tition of the image domain. This ensures that no ambiguities
arise when assigning points to the various segmented re-
gions. Our starting point was a Bayesian formulation of
the segmentation problem, leading to curve evolution equa-
tions which are then formulated as level set partial differen-
tial equations. We have presented an extension of the
multiregion competition algorithm which accounts for
modeling inaccuracies and imperfections, leading to an out-
liers rejection mechanism. The experimental results we have
shown clearly illustrate the fact that the final segmentation
remains a partition of the image domain; they also clearly
highlight the difference in segmentation that is obtained
with and without the extension for outliers rejection.

Acknowledgment

This research was supported in part by the Natural Sci-
ences and Engineering Research Council of Canada under
strategic Grant STR224122.

References

[1] C. Papin, P. Bouthemy, P. Perez, Unsupervized segmentation of low
clouds from infrared METEOSTAT images based on a contextual
spatio-temporal labeling approach, IEEE Trans. Geosci. Remote
Sensing 40 (1) (2002) 104–114.

[2] D.L. Pham, C. Xu, J. Prince, Current methods in medical image
segmentation, Ann Rev. Biomed. Eng. 2 (1) (2000) 315–338.

[3] J. Odobez, P. Bouthemy, Direct model-based image segmentation
for dynamic scene analysis, in: S.Z. Li et al. (Eds.), Recent
Developments in Computer Vision, Springer Verlag, Berlin, 1996,
pp. 91–100.

[4] Q. Cai, J. Aggarwal, Human motion analysis: A review, Comput. Vis.
Image Understand. 73 (3) (1999) 428–440.
[5] E. Sifakis, G. Tziritas, Moving object localization using a multi-label
fast marching algorithm, Signal Process.: Image Commun. 16 (2001)
963–976.

[6] I. Celasun, A. Tekalp, M. Gokcetekin, D. Harmanci, 2-D mesh-based
video object segmentation and tracking with occlusion resolution,
Signal Process.: Image Commun. 16 (2001) 950–962.

[7] F. Idriss, S. Panchanathan, Review of image and video indexing
techniques, J. Vis. Commun. Image Represent. 8 (2) (1997) 146–166.

[8] M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models,
Inter. J. Comput. Vis. 1 (1987) 321–331.

[9] D. Terzopoulos, A. Witkin, Constraints on deformable models:
recovering shape and non-rigid motion, Artif. Intell. 36 (1988) 91–
123.

[10] A. Blake, A. Yuille, Active Vision, MIT Press, Cambridge, MA, 1992.
[11] V. Caselles, F. Catte, T. Coll, F. Dibos, A geometric model for active

contours in image-processing, Numer. Math. 66 (11) (1993) 1–31.
[12] D. Mumford, J. Shah, Optimal approximations by piecewise smooth

functions and associated variational-problems, CPAM 42 (5) (1989)
577–685.

[13] L. Cohen, On active contour models and balloons, CVGIP: Image
Understand. 53 (1991) 211–218.

[14] V. Caselles, R. Kimmel, G. Sapiro, Geodesic active contours, Intern.
J. Comput. Vis. 22 (1) (1997) 61–79.

[15] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, A. Yezzi,
Conformal curvature flows: from phase transitions to active vision,
ARMA 134 (3) (1996) 275–301.

[16] R. Fonfard, Region-based strategies for active contour models,
Intern. J. Comput. Vis. 13 (2) (1994) 229–251.

[17] S. Zhu, A. Yuille, Region competition: unifiying snakes, region
growing, and bayes/MDL for multiband image segmentation, IEEE
Trans. Pattern Anal. Mach. Intell. 18 (9) (1996) 884–900.
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