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Abstract—The purpose of this study is to investigate Synthetic Aperture Radar (SAR) image segmentation into a given but arbitrary

number of gamma homogeneous regions via active contours and level sets. The segmentation of SAR images is a difficult problem

due to the presence of speckle which can be modeled as strong, multiplicative noise. The proposed algorithm consists of evolving

simple closed planar curves within an explicit correspondence between the interiors of curves and regions of segmentation to minimize

a criterion containing a term of conformity of data to a speckle model of noise and a term of regularization. Results are shown on both

synthetic and real images.

Index Terms—Image segmentation, active contours, level sets, statistical modeling, synthetic aperture radar.
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1 INTRODUCTION

AUTOMATIC interpretation of Synthetic Aperture Radar

(SAR) images is an important component of many
applications domains such as agriculture [1], urban plan-

ning [2], and geology [3]. Segmentation is a crucial step in

synthetic aperture radar (SAR) images’ automatic inter-

pretation. Due, in part, to the presence of speckle, which can

be modeled as strong multiplicative noise, segmentation of

SAR images is generally acknowledged as a difficult

problem. To cope with the influence of speckle noise on

image segmentation, a large number of methods have been
proposed. Several edge-based segmentation schemes have

been developed. These schemes are based on edge detection

filters developed for SAR images with proper modeling of

speckle [4], [5], [6], [7]. It has been shown in [8] that the

results of these filters depend on the architecture of

analyzing windows defined a priori. Furthermore, the

problem of forming closed boundaries from separated edge

segments given by a filter is difficult and, although many
solutions have been proposed, such as morphological

closing [7] and the watershed algorithm [9] used in [5],

these schemes require postprocessing steps to prevent

oversegmentation. Traditional region-based schemes, such

as those based on histogram thresholding [10] and region

growing [11], have also been used, but they lead to similar

limitations. Furthermore, they need speckle reducing

techniques [12], [13]. Such schemes instantiate mostly local
operations and, thus, lack the robustness and tractability of

variational methods [14], [15], particularly those, more

recent, based on curve evolution and level sets which have

been applied mainly to optical images [16], [17], [18], [19],

[20], [21], [22], [23], [24]. For SAR images, a classical snake

model [25] is used in [26]. In this region-based scheme, a

contour is iteratively deformed to locate the boundary of a

region, guided by a statistical criterion. The scheme was

shown to improve on the traditional likelihood ratio filter
method [4]. The same snake based method was previously

used in [27] with different physical noise models. The

classical active contour model presents, however, several

limitations. First, it discretizes a curve using a set of points

and, as a result, topological changes which occur during the

evolution of the curve are difficult, if at all possible, to

effect. Second, segmentation depends on parameterization

and errors in the representation can be significantly
amplified during evolution. To extend the classical snake

model to multiregion segmentation, another approach

based on the statistical polygonal snakes, i.e., a set of nodes

joined by segments, is proposed in [28]. This method

requires a good initial segmentation to succeed in locating

the boundaries of regions. Furthermore, it does not address

the segmentation of nonsimply connected regions. Galland

et al. [29] generalized polygonal snakes to nonsimply
connected regions.

In this study, we use active curves evolution via level

sets [30] to segment SAR images into a fixed but arbitrary

number N of Gamma-homogeneous regions. Level-sets

have the significant advantage of allowing, in a natural and

numerically stable manner, variations in the topology of

active curves. When the two-region segmentation problem

is straightforward to state with active contours and level

sets, the extension to an arbitrary fixed number of regions is

difficult. The difficulty comes from the fact that, while a

simple closed curve unambiguously defines a partition of

the image domain into disjoint regions (the interior of the

curve and its exterior), the interiors of two or more curves
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(N > 2) may overlap, leading to ambiguous segmentation.

To garantee a segmentation that is a partition of the image

domain, we use a representation of a partition of the image

domain by explicit correspondence between the regions of

segmentation and the interior of curves, developed in [20],

[21] and demonstrated in the context of motion segmenta-

tion and segmentation of optical images. Our SAR func-

tional contains two terms. One term measures the

conformity of the data to a Gamma representation. The

other is of regularization to obtain regular segmentation

boundaries. The minimization of this functional is saught

following the Euler-Lagrange descent equations, implemen-

ted via curves evolution and level sets.

The remainder of the paper is organized as follows: In

the next section, we present the image model. In Section 3,

we derive the statistical multiregion criterion in the

likelihood sense. Section 4 describes the curve evolution

formulation for two-region segmentation, its generalization

to multiple regions, and level set implementation. In

Section 5, we show experimental results for both synthetic

and real images.

2 IMAGE MODEL

Let I : � ! IRn be the intensity SAR image to be segmented,

defined on � � IR2. The goal of the segmentation process is

to derive a partition of the image domain from the image I,

i.e., a family R ¼ fRigi2½1;N �;Ri � � of N subsets of � such

that they are pairwise disjoint, Ri \Rjj8i 6¼j ¼ ;, and cover

the image domain, [N
i¼1Ri ¼ �, each region being homo-

geneous with respect to some image characteristics.
When a radar senses a large area, the acquired complex

signal is the result of several elementary scatters within a

resolution cell. For a single-look SAR image, the intensity is

given as I ¼ a2 þ b2, where a and b denote the real and

imaginary parts of the complex signal. In the case of

multilook SAR images, the L-look intensity is obtained by

averaging the L intensity images. Following the fully

developed speckle hypothesis [31], we model the image in

each region Ri; ði 2 ½1; N�Þ by a Gamma distribution of

mean intensity �Ri
and a number L of looks:

P�Ri
;LðIðxÞÞ ¼

LL

�Ri
�ðLÞ

IðxÞ
�Ri

� �L�1

e
� LIðxÞ

�Ri : ð1Þ

The image in each region Ri; ði 2 ½1; N �Þ is therefore
characterized by its mean �Ri

and the number of looks L,
which we take to be the same for all regions. The
distribution given by (1) reduces to the exponential
distribution in the 1-look case. This model has been
extensively used in SAR image applications such as speckle
reduction [13], edge detection [4], and segmentation [28],
[29], [5], [26].

3 SEGMENTATION CRITERION

Assuming that IðxÞ is independent of IðyÞ for x 6¼ y, the

problem of segmentation consists of finding the family of

regions R̂R that maximizes the likelihood LðRjIÞ:

R̂R ¼ argmax
R

LðRjIÞ

¼ argmax
R

Y
x2R1

P�R1
;LðIðxÞÞ

Y
x2R2

P�R2
;LðIðxÞÞ� � �

Y
x2RN

P�RN
;LðIðxÞÞ:

ð2Þ

Maximizing L is equivalent to minimizing � logðLÞ. If we

estimate �R by the average of I inside R for all R 2 R, i.e., if

we take:

�R ¼
R
R IðxÞ dxR

R dx
; ð3Þ

then, following the computation in [29], using (1), and after

some algebraic manipulations, we obtain:

� logðLðRjIÞÞ ¼ L
XN
i¼1

aRi
: log�Ri

þ cðL; IÞ; ð4Þ

where cðL; IÞ is a constant which depends only on the

image and the number of looks and, therefore, is

independent of the segmentation, and aR denotes the

area of R for R 2 R:

aR ¼
Z
R

dx: ð5Þ

The problem to solve becomes to determine R̂R that

minimizes the following segmentation criterion:

C ¼
XN
i¼1

aRi
: log�Ri

: ð6Þ

We note that this functional is independent of the number

of looks and that the means and areas depend on the

segmentation and, consequently, are to be estimated along

with the segmentation process. In the next section, we will

solve the minimization of (6) by curve evolution, through

the associated Euler-Lagrange descent equations imple-

mented robustly via level sets. We first treat the case of

segmentation into two regions (Section 4.1), which we

subsequently generalize to a fixed but otherwise arbitrary

number of regions (Section 4.2).

4 SOLUTION BY CURVES EVOLUTION

4.1 Two-Region Segmentation

To solve the problem of minimizing C by curve evolution in

the case of two regions, we consider a simple closed planar

curve ~��ðsÞ : ½0; 1� ! � parameterized by arc parameter

s 2 ½0; 1�, and we associate its interior to region R1: R1 ¼
R~�� and its exterior to R2: R2 ¼ Rc

1. The Euler-Lagrange

descent equation corresponding to C is obtained by

embedding the curve ~�� into a family of one-parameter

curves ~��ðs; tÞ : ½0; 1� � IRþ ! � and solving the partial

differential equation:

d~��

dt
¼ � @C

@~��
; ð7Þ

where @C
@~�� denotes the functional derivative of the functional

C with respect to curve ~��. The segmentation is defined by
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the partition R ¼ fR1;R2g at convergence, i.e., when
t ! 1. We have:

@C
@~��

¼ @ðaR1
log�R1

þ aR2
log�R2

Þ
@~��

¼ log�R1

@aR1

@~��
þ aR1

�R1

@�R1

@~��
þ log�R2

@aR2

@~��
þ aR2

�R2

@�R2

@~��
:

ð8Þ

Using the result in [14] which shows that, for a scalar
function f , the functional derivative with respect to curve ~��
of

R
R~��

fðxÞdx is f~nn, where ~nn is the external unit normal of ~��,
we have:

@aR1

@~��
¼ ~nn

@aR2

@~��
¼ �~nn ð9Þ

and, with the notation sR ¼
R
R IðxÞ dx 8R 2 R, we also have:

@�R1

@~��
¼

@
sR1

aR1

� �
@~��

¼ aR1
rsR1

� sR1
raR1

a2R1

¼ ðI � �R1
Þ

aR1

~nn

@�R2

@~��
¼

@
sR2

aR2

� �
@~��

¼ aR2
rsR2

� sR2
raR2

a2R2

¼ �ðI � �R2
Þ

aR2

~nn:

ð10Þ

Note that the minus sign in the second equation of (10) is
due to the fact that ~nn, being the external unit normal of the
boundary of R1, the external unit normal of the boundary of
its complement, R2, is �~nn. By substituting (9) and (10) into
(8) and after some algebraic manipulations, we arrive at the
evolution equation for curve ~��:

d~��

dt
¼ �ðlog�R1

þ I

�R1

� log�R2
� I

�R2

Þ~nn; ð11Þ

which will define the segmentation at convergence, i.e.,
when t ! 1.

In order to avoid the occurrence of small, isolated
regions in the final segmentation, we add to C a regulariza-
tion term Sð~��Þ which is defined related to the length of the
curve ~��:

Sð~��Þ ¼ �

I
~��

ds; ð12Þ

where � is a positive real constant to weigh the contribution
of S against C. The derivative of Sð~��Þ with respect to ~�� is:

@Sð~��Þ
@~��

¼ ���~nn; ð13Þ

where � is the mean curvature function of ~��. With this
regularization term, the final evolution equation for ~�� is:

d~��

dt
¼ � log�R1

þ I

�R1

� log�R2
� I

�R2

þ ��

� �
~nn: ð14Þ

4.2 Generalization to Multiple Region Segmentation

4.2.1 Representation of a Partition

For segmentation into multiple regions, i.e., into a fixed but
arbitrary number of regions, we consider a family ~��i :
½0; 1� ! �; i ¼ 1; . . . ; N � 1 of plane curves parametrized by
the arc parameter s 2 ½0; 1�. As mentioned in Section 1, the

use of two or more curves required for the segmentation of
N regions, with N > 2, may lead to ambiguous segmenta-
tion results when the interior of curves overlap. To
guarantee an unambiguous segmentation, i.e., a partition
of the image domain �, we use the following explicit
correspondence between the family fR~��ig of regions
enclosed by the curves f~��ig and the regions of partition
R ¼ fRigi2½1;N � of the image domain � [20], [21]:

R1 ¼ R~��1

R2 ¼ Rc
~��1
\R~��2

� � �
Rk ¼ Rc

~��1
\Rc

~��2
\ � � � \Rc

~��k�1
\R~��k

� � �
RN ¼ Rc

~��1
\Rc

~��2
\ � � � \Rc

~��k�1
\Rc

~��N�1

ð15Þ

for any family of plane curves ð~��iÞ
N�1
i¼1 , the family fRigi2½1;N �

thus obtained is, by construction, a partition of the image
domain. The partition representation is shown in Fig. 1 for
five regions. Under this representation of a partition, we
will now write our curve evolution equations for segmenta-
tion into a fixed but arbitrary number of regions.

4.2.2 Curve Evolution Equations

With the above choice of representing a partition of the
image domain into N regions and with a regularization
term related to the length of curves, the criterion to
minimize is:

C ¼
XN
i¼1

aRi
: log�Ri

þ
XN
i¼1

Sð~��iÞ: ð16Þ

To compute the functional derivatives �C
�~��i

, we start with ~��1
and we rewrite the areas and the means appearing in the
the criterion C as follows:

aR1
¼
Z
R~��1

dx

aR2
¼
Z
Rc

~��1

�R~��2
dx

. . .

aRk
¼
Z
Rc

~��1

�Rc
~��2
. . .�Rc

~��k�1
�R~��k

dx

. . .
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aRN
¼
Z
Rc

~��1

�Rc
~��2
. . .�Rc

~��k
. . .�Rc

~��N�1
dx

sR1
¼
Z
R~��1

IðxÞdx

sR2
¼
Z
Rc

~��1

�R~��2
IðxÞdx

. . .

ð17Þ

sRk
¼
Z
Rc

~��1

�Rc
~��2
. . .�Rc

~��k�1
�R~��k

IðxÞdx

. . .

sRN
¼
Z
Rc

~��1

�Rc
~��2
. . .�Rc

~��k
. . .�Rc

~��N�1
IðxÞdx

�R ¼ sR
aR

8R 2 R;

where �R is the characteristic function of R, i.e., �R ¼ 1 if

x 2 R and �R ¼ 0 if x 2 Rc. Using the same computation

method as in Section 4.1, we derive each term in the first

sum in C as follows:

@aR1
log�R1

@~��1
¼ �R1

� 1ð Þ~n1n1

@aR2
log�R2

@~��1
¼ ��R~��2

�R2
� 1ð Þ~n1n1

. . .

@aRk
log�Rk

@~��1
¼ ��Rc

~��2
. . .�Rc

~��k�1
�R~��k

�Rk
� 1ð Þ~n1n1

. . .

@aRN
log�RN

@~��1
¼ ��Rc

~��2
. . .�Rc

~��k
. . .�Rc

~��N�1
�RN

� 1ð Þ~n1n1;

ð18Þ

where

�R ¼ log�R þ I

�R
8R 2 R ð19Þ

and ~n1n1 is the outward unit normal to ~��1. Since
PN�1

j¼2

H
~��j
ds

has no functional dependence on ~��1, the functional

derivative of the second sum in C is:

@
PN�1

j¼1

H
~��j
ds

@~��1
¼

@
H
~��1
ds

@~��1
¼ ��1~n1n1: ð20Þ

Because fR~��2 ; R
c
~��2
\R~��3 ; R

c
~��2
\Rc

~��3
\R~��4 ; . . . ; R

c
~��2
\ � � � \

Rc
~��k�1

\Rc
~��N�1

g is a partition, we have:

1 ¼ �R~��2
þ �Rc

~��2
:�R~��3

þ � � � þ �Rc
~��2
:�Rc

~��3
� � ��Rc

~��N�1
: ð21Þ

This identity simplifies the sum of the N equations in (18)

and the curvature equation (20), to give the following

evolution equation of the curve ~��1:

d~��1ðs; tÞ
dt

¼ ½�1ð~��1ðs; tÞÞ � �1ð~��1ðs; tÞÞ þ ��1ðs; tÞ�~nn1ðs; tÞ;

ð22Þ

where �1 is defined for all x 2 � by:

�1ðxÞ ¼ �R2
ðxÞ�R~��2

ðxÞ þ �R3
ðxÞ�Rc

~��2
ðxÞ�R~��3

ðxÞ þ . . .

þ �RN�1
�Rc

~��3
ðxÞ . . .�Rc

~��N�2
ðxÞ�R~��N�1

ðxÞ

þ �RN
ðxÞ�Rc

~��2
ðxÞ�Rc

~��3
ðxÞ . . .�Rc

~��N�2
ðxÞ�Rc

~��N�1
ðxÞ:

Using

1 ¼ �R~��j
þ �Rc

~��j
� �R~��jþ1

þ � � � þ �Rc
~��j
� �Rc

~��jþ1
. . .�Rc

~��N�1
8j ð23Þ

because fR~��j ;R
c
~��j
\R~��jþ1

;Rc
~��j
\Rc

~��jþ1
\R~��jþ2

; . . . ;Rc
~��j
\ � � � \

Rc
~��k�1

\Rc
~��N�1

g is a partition for all j, and proceeding

similarly to compute the functional derivatives �C
�~��j

for all j,

the Euler-Lagrange descent equations of the curves evolu-

tion for the minimization of the criterion C are given by:

d~��1
dt

¼� �R1
ð~��1Þ � �1ð~��1Þ þ ��1ð Þ~nn1

d~��2
dt

¼� ð�Rc
1
ð~��2Þ½�R2

ð~��2Þ � �2ð~��2Þ� þ ��2Þ~nn2

. . .

d~��j
dt

¼� ð�Rc
1
ð~��jÞ . . .�Rc

j�1
ð~��jÞ½�Rj

ð~��jÞ � �jð~��jÞ� þ ��jÞ~nnj

. . .

d~��N�1

dt
¼� ð�Rc

1
ð~��N�1Þ . . .�Rc

N�2
ð~��N�1Þ½�RN�1

ð~��N�1Þ

� �N�1ð~��N�1Þ� þ ��N�1Þ~nnN�1;

ð24Þ

where ~nnj is the outward unit normal to ~��j, �j is the

curvature function of ~��j, for j ¼ 1; . . . ; N � 1, and �j is

defined for all x 2 � by:

�jðxÞ ¼ �Rjþ1
ðxÞ�R~��jþ1

ðxÞ þ �Rjþ2
ðxÞ�Rc

~��jþ1
ðxÞ�R~��jþ2

ðxÞ þ . . .

þ �RN�1
ðxÞ�Rc

~��jþ1
ðxÞ . . .�Rc

~��N�2
ðxÞ�R~��N�1

ðxÞ

þ �RN
ðxÞ�Rc

~��jþ1
ðxÞ . . .�Rc

~��N�2
ðxÞ�Rc

~��N�1
ðxÞ:

4.3 Level-Set Implementation

We use the level-set formalism [32] to implement the

system of curves evolution equations (24). The level-set

representation has well-known advantages over an explicit

representation such as snakes [30]. There are indeed

several problems with an explicit representation. First,

topological changes, which occur during evolution, are

difficult if at all possible to effect. Second, results depend

on parametrization and errors in representation can

significantly compound during evolution. In contrast, a

level sets representation allows topological changes in a

natural way and can be implemented by stable numerical

schemes. With level-sets, curve ~��j is represented implicitly

by the zero level set of a function uj : IR
2 ! IR (with

j ¼ 1; . . . ; N � 1), i.e., we define ~��j as the set where uj ¼ 0,

with the convention that uj > 0 inside ~��j and uj < 0

outside ~��j. Then,

~nnj ¼
~rruj

k ~rrujk
ð25Þ
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and the curve ~��j may change topology while uj remains a

function. For a point x 2 ~��j, we have: ujðx; tÞ ¼ 0 8t. This

implies that

dujðx; tÞ
dt

¼ @uj

@t
ðx; tÞ þ ~rruj �

d~��j
dt

¼ 0: ð26Þ

Using (25) and (26), the evolution equation of the form
d~��j
dt ¼

F~nnj leads to the level-set equation of the form
@uj
@t ðx; tÞ ¼ �Fk ~rrujk. The level-set evolution equations

corresponding to (24) are then given by the following

system of coupled partial differential equations:

@u1

@t
ðx; tÞ ¼ � ð�R1

ðxÞ � �1ðxÞ þ ��u1Þk ~rru1ðx; tÞk

. . .

@uj

@t
ðx; tÞ ¼ � ð�fu1ðx;tÞ�0g . . .�fuj�1ðx;tÞ�0g½�Rj

ðxÞ � �jðxÞ�

þ ��ujÞk ~rrujðx; tÞk
. . .

@uN�1

@t
ðx; tÞ ¼ � ð�fu1ðx;tÞ�0g . . .�fuN�2ðx;tÞ�0g½�RN�1

ðxÞ

� �N�1ðxÞ� þ ��uN�1
Þk ~rruN�1ðx; tÞk;

ð27Þ

where �fukðx;tÞ�0g ¼ 1 if ukðx; tÞ � 0 and 0 otherwise, and �uj

is the curvature of the zero level-set of uj with �u being

given as a function of u by:

�u ¼ � ~rr � ~rru=k ~rruk
� �

: ð28Þ

The positive weight � of the curvature term is set exper-

imentally. Defining RuiðtÞ ¼ fx 2 �juiðx; tÞ > 0g; i ¼
1; . . . ; N � 1, the segmentation is then given as t ! 1 by

the family: fRu1ðtÞ; Ru1ðtÞ
c \Ru2ðtÞ; Ru1ðtÞ

c \Ru2ðtÞ
c \

Ru3ðtÞ . . . ð[N�1
j¼1 RujðtÞÞ

cg. Discretization of level-set equa-

tions is detailed in [30]. We should note that the evolution

equation for a curve ~��j is only valid for points on the

curve x 2 ~��j. However, with the representation of partition

we use, we can extend this equation to the evolution of uj

over �.

5 EXPERIMENTAL RESULTS

To verify the SAR image intensity model and the segmenta-
tion method we proposed, we first simulate a 1-look case by
the synthetic image of Fig. 2. It consists of four regions, as
visual inspection can quickly indicate. It has been obtained
by multiplying a perfect reflectivity synthetic image by a
white exponential speckle noise. We simulated the 8-look
case by the synthetic image of Fig. 3. It contains three regions
and it is obtained by averaging the intensities of a 1-look
synthetic image. Fig. 2a and Fig. 3a show the initial position
of the evolving curves for the two images, Fig. 2b and Fig. 3b
show an intermediate position of these curves, Fig. 2c and
Fig. 3c show final position, and, finally, Fig. 2d and Fig. 3d
display the segmented regions represented by their mean
gray value at convergence. Initial curves in Fig. 2a are
represented by circles in the middle of the image to
illustrate the fact that the result is independent of the
initialization. Regions in the 8-look simulated image have
disjoint components to illustrate the ability of the algorithm
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Fig. 2. Synthetic 1-look white speckle image of four regions: (a) initial

curves, (b) intermediate curves, (c) final positions, and (d) computed

segmentation.
Fig. 3. Synthetic 8-look image of three regions: (a) initial curves,
(b) intermediate curves, (c) final positions, and (d) computed
segmentation.



to handle automatically topological changes of curves. The
regularization parameter was set to 0.2 for the simulation of
Fig. 2 and to 0.1 for the simulation of Fig. 3. The
computational time depends on the initialization and the
size of the image. On a 1.7 MHZ PC, the algorithm needed
954s to process the 256� 256 pixels to produce the result of
Fig. 2, but only 246s to produce the same number of pixels
in the simulation of Fig. 3. Indeed, the initialization of Fig. 3
is closer to the result than the initialization of Fig. 2. Results
of both segmentations are conform to expectation. We also
experimented with a real 16-look NASA/JPL SAR image of
the Belize region, shown in Fig. 4. Finally, we applied the

algorithm to an ERS-1 intensity 1-look real SAR image of an
agricultural scene and to the high speckle noise 1-look
NASA/JPL SAR image of the Landes forest shown,
respectively, in Fig. 5 and Fig. 6. We segmented the Belize
image into two regions, the ERS image into three regions,
and the Landes forest image into three regions (the choice of
the number of regions is based on visual inspection). The
regularization parameter was set to 0.1 for the Belize image
and to 0.2 for the ERS image and the Landes forest image.
The algorithm needed 183s to process the 128� 274 pixels
of the Belize image, 907s to process the 250� 250 pixels of
the ERS image, and 1848s to process the 771� 445 pixels of
the Landes forest image. We show regions corresponding to
segmentations in Figs. 5d, 5e, 5f, 6d, 6e, and 6f. All results
show an excellent performance of the method. Despite the
level of speckle in the Landes forest image, the method
succeeded in locating the boundaries of the fine linear
structures which appear in the image.
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Fig. 4. Belize SAR image: (a) initial curves, (b) intermediate curves,
(c) final positions, and (d) computed segmentation.

Fig. 5. ERS SAR image: (a) initial curves, (b) final positions,

(c) computed segmentation, and (d), (e), and (f) regions segmentation.



6 CONCLUSION

We presented a curve evolution algorithm for segmenting a

synthetic aperture radar (SAR) image into a fixed but

arbitrary number of Gamma-homogeneous regions. This

algorithm consists in evolving curves in order to minimize a

statistical criterion. This led to partitions of the image

domain following an explicit correspondence between

segmentation regions and regions enclosed by evolving

curves. The algorithm was illustrated on both synthetic and

real SAR images. The proposed technique can be improved

by introducing a way to estimate the number of regions and

can be extended to other representations of SAR images

such as vector valued polarimetric SAR images. We are

currently addressing both improvements.
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