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Abstract—This study investigates a level set method for complex polarimetric image segmentation. It consists of minimizing a functional

containing an original observation term derived from maximum-likelihood approximation and a complex Wishart/Gaussian image

representation and a classical boundary length prior. The minimization is carried out efficiently by a new multiphase method which

embeds a simple partition constraint directly in curve evolution to guarantee a partition of the image domain from an arbitrary initial

partition. Results are shown on both synthetic and real images. Quantitative performance evaluation and comparisons are also given.

Index Terms—Polarimetric images, complex Wishart distribution, complex Gaussian distribution, level set active contour

segmentation, maximum-likelihood approximation.

Ç

1 INTRODUCTION

THE variational, active contour/level set formalism leads to
effective segmentation algorithms [1], [2], [3], [4], [5], [6],

[7]. This formalism has been developed for and mainly
applied to intensity data acquired by conventional cameras
[8],[9], [1] [2], [3], [4], [5]. For such images, the piecewise
constant and Gaussian models are often sufficient and almost
all investigations have used them. However, there are other
important and quite different images, polarimetric, for
instance, for which these models are inadequate, as studies
have shown [10], [7]. The study in [10] shows the influence of
the noise model on level set segmentation, demonstrating the
necessity to use an appropriate model. In [7], we investigated
a segmentation functional with a Gamma distribution
observation model for Synthetic Aperture Radar (SAR)
images. Such radar images are quite poorly modeled by
piecewise constant and Gaussian models.

Following on from our initial effort in [7] to develop
efficient level set segmentation algorithms for important
classes of images, the present study investigates polarimetric
image segmentation. Segmentation of polarimetric images
plays an essential role in medical imaging [11] and remote
sensing [12]. A polarimetric image sensor applies a wave
scattering mechanism and different transmission/reception
wave polarizations to acquire a signal which consists, at each
pixel, of a 3� 3 complex matrix containing both amplitude
and phase information. Segmentation of such images is
significantly complicated by the complexity of the data, the

occurrence of multiplicative random speckle noise due to
signal interference and, highly overlapped region distribu-
tions. The presence of speckle in polarimetric images has been
addressed in several ways, notably edge detection filters [13],
clustering [14], region merging [12], and Markov random
field modeling [15]. Local operations, preprocessing, post-
processing, and several threshold parameters are generally
involved, resulting in methods which lack the flexibility and
robustness of variational level set methods. The purpose of
this study is to investigate a variational method for multi-
phase segmentation of polarimetric images, both mono-look
and multilook, using a complex Wishart/Gaussian observa-
tion model [14], [13], [16] and active contours via level-sets.
The objective functional contains an original data term,
derived from a probabilistic interpretation, which measures
the conformity of the data to a complex Wishart/Gaussian
distribution in each segmentation region and the classic
boundary length prior for smooth segmentation boundaries.
We also investigate an efficient minimization scheme which
results in an unambiguous multiphase segmentation, i.e., a
partition of the image domain. This scheme embeds a simple
partition constraint directly in the region competition: if a
point leaves a region, it goes to a single other region. We will
show that the resulting evolution of curves is robust to
initialization and is more efficient than with other schemes
which define partitions by mapping regions to the interior of
closed curves and their intersections [3], [5] or add a term to
the objective functional so as to draw the segmentation
toward a partition [17], [1]. The complexity of the methods in
[3], [5] increases significantly with the number of regions as
will be discussed in Section 2.6. The methods in [17], [1] do not
guarantee a partition. Curve evolution will likely gives an
ambiguous segmentation if the partition constraint is not
sufficiently enforced and if it is strongly enforced the curves
will evolve more as a result of the partition constraint than of
image statistics.

We describe experiments which verify the method and
its implementation. We include a quantitative evaluation
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and comparisons. We also provide experiments to verify the

robustness of the method to initial conditions.

2 FORMULATION

Let � � IR be the domain of a polarimetric image. The image

consists, at each pixel x 2 �, of a 3� 3 complex Hermitian

positive definite matrix DðxÞ. Let P ðD=RÞ be the assumed

distribution of D in a region R � �. A segmentation is a

partition fRkgNk¼1 of the image domain. Segmentation into

N regions as Bayesian estimation consists in determining a

partition fR̂kgNk¼1 of maximum a posteriori probability over

all N-region partitions:

fR̂kgNk¼1 ¼ arg max
Rk��

P fRkgNk¼1=D
� �

¼ arg max
Rk��

P D=fRkgNk¼1

� �
P fRkgNk¼1

� �
:

ð1Þ

Assuming conditional independence between DðxÞ and

DðyÞ for x 6¼ y, and taking the negative of the logarithm in

(1), this Bayesian estimation is converted to the following

minimization problem:

fR̂kgNk¼1 ¼ arg min
Rk��

E½fRkgNk¼1�; ð2Þ

where the energy E½fRkgNk¼1� is defined by:

E fRkgNk¼1

h i
¼
XN
k¼1

Z
x2Rk

� logP ðDðxÞ=RkÞdx

� logP fRkgNk¼1

� �
:

ð3Þ

2.1 Segmentation via Active Curves

Consider a family of closed parametric curves ~�k : ½0; 1� !
�; k ¼ 1; . . . ; N � 1, their interior R~�k defining the regions

Rkjk¼1;...;N�1. Let region RN be the intersection of the exteriors

of all curves: RN ¼
TN�1
k¼1 Rc

k. The maximum a posteriori

partition estimation is converted to a maximum a posteriori

estimation of plane curves:

f~̂�kgN�1
k¼1 ¼ arg min

~�k:½0;1�!�
E f~�kgN�1

k¼1

h i
; ð4Þ

where:

E f~�kgN�1
k¼1

h i
¼

XN
k¼1

Z
x2Rk

� logP ðDðxÞ=RkÞdx
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

L

� logP f~�kgN�1
k¼1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

P

: ð5Þ

For smooth segmentation boundaries, we take the prior

term P as the classic boundary length term [8]:

P ¼ � logP f~�kgN�1
k¼1

� �
¼ �

XN�1

k¼1

I
~�k

ds: ð6Þ

The likelihood term L is specified by an observation model,

as will be described subsequently.

2.2 The Complex Wishart Observation Model

In the case of multilook polarimetric images, DðxÞ is

assumed to be a random complex matrix following the

Wishart distribution [12], [13], [14]:

P DðxÞjRð Þ ¼
detDðxÞð ÞL�nexpf�L:tr ��1

R DðxÞ
� �

g
KðL; nÞðdet �RÞL

; ð7Þ

where �R is the covariance matrix of region R and

KðL; nÞ ¼ �
nðn�1Þ

2 �ðLÞ . . . �ðL� nþ 1Þ. The accuracy of the

Wishart distribution to model multilook polarimetric images

has been verified in previous studies [13], [14]. Functional (5)

now depends on two groups of variables: The segmentation

curves and the distribution parameters, i.e., the covariance

matrices of the segmentation regions. The minimization of

such a functional is usually done by an iterative two-step

algorithm [9]:

1. fixing the curves f~�kgN�1
k¼1 , i.e., the partition, and

minimizing E with respect to the covariance
matrices and

2. fixing the covariance matrices, and minimizing E
with respect to the curves.

Minimizing E with respect to f�Rk
gNk¼1 is equivalent to

finding the corresponding maximum-likelihood estimates

f�̂Rk
gNk¼1. The maximum-likelihood estimate �̂R is the

empirical covariance matrix [12]R
x2R DðxÞdxR

x2R dx
;

i.e.,

�̂Rði; jÞ ¼
R

x2R DðxÞði; jÞdxR
x2R dx

8i 2 ½1::n�; 8j 2 ½1::n�: ð8Þ

Therefore, the algorithm consists of updating f�̂Rk
gNk¼1

using the empirical covariance matrices and minimizing

with respect to the curves the maximum-likelihood approx-

imation of E, i.e.,

Ê ¼ Ejf�Rk
gNk¼1¼f�̂Rk

gNk¼1
:

Using f�̂Rk
gNk¼1 in the likelihood term L and after some

algebraic manipulations, yields:

L̂¼A:ðL:nþ logKðl; nÞÞþ ðL� nÞ:
Z

x2�

logðdetDðxÞÞdx

þ L
XN
k¼1

aRk
logðdet �̂Rk

Þ;
ð9Þ

where A is the area of the image domain and aR is the

area of a region R. The expression A:ðL:nþ logKðl; nÞÞ þ
ðL� nÞ:

R
x2� logðdetDðxÞÞdx is independent of the parti-

tion and can be discarded. Therefore, the problem becomes

to minimize the following functional with respect to the

curves:

F ¼
XN
k¼1

aRk
logðdet �̂Rk

Þ þ �
XN�1

k¼1

I
~�k

ds: ð10Þ
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2.3 The Complex Gaussian Observation Model

In the case of mono-look polarimetric images [16], [12], the
image consists, at each pixel, of a complex vector DðxÞ of
dimension 3. In each region R, DðxÞ is assumed to follow a
zero-mean circular complex Gaussian distribution [16], [12]:

P DðxÞjRð Þ ¼ 1

�n det �R
exp �DðxÞy��1

R DðxÞ
h i

; ð11Þ

where y denotes the Hermitian conjugate. A classical but
nontrivial calculus [18] demonstrates that the maximum-
likelihood estimate of �R in the case of the complex Gaussian
distribution is given by the empirical covariance matrix

�̂R ¼
R

x2R DðxÞDðxÞ
yR

x2R dx
:

Using the same computation as for the Wishart distribution,
we can show that the problem of segmenting mono-look
polarimetric images is equivalent to minimizing the func-
tional defined in (10), with �̂Rk

given its new meaning.

2.4 Curve Evolution Equations

To solve the problem of minimizing F by curve evolution in
the case of two regions, we consider a simple closed
parametric curve ~�ðsÞ : ½0; 1� ! �. We define R1 ¼ R~� and
R2 ¼ Rc

1. The descent equation corresponding to F is
obtained by embedding the curve ~� into a family of one-
parameter curves ~�ðs; tÞ : ½0; 1� � <þ ! � and solving the
partial differential equation:

d~�

dt
¼ � @F

@~�
¼ � @aR1

logðdet �̂R1
Þ þ aR2

logðdet �̂R2
Þ

@~�
� @P
@~�

:

ð12Þ

The segmentation is defined by the partition fR1;R2g
at convergence, i.e., when t!1. The computation of @P

@~� is
classical and follows the standard calculus of Euler-Lagrange
equations [9]:

@P
@~�
¼
@�
H
~� ds

@~�
¼ ��~n; ð13Þ

where � is the mean curvature function of~� and~n its outward
unit normal. To derive the data term D ¼ aR1

logðdet �̂R1
Þ þ

aR2
logðdet �̂R2

Þwith respect to~�, we propose a computation
based on its first order expansion rather than the Euler-
Lagrange equation. This has the advantage of leading to a
clear interpretation of how to embed a simple, efficient
partition constraint directly in multiphase curve evolution.
Let ~�� ¼ ð�x; �yÞT ¼ ��:~n be an elementary local deformation
of ~� ðjj ~��jj ¼ 1Þ around a pixel s ¼ ðx; yÞ, where ~n is the
external unit normal to ~� at s ¼ ðx; yÞ. We have:

Dð~� þ ~��Þ ¼ Dðxþ �x; yþ �yÞ

¼ Dðx; yÞ þ @D
@x

�xþ @D
@y

�y

¼ Dð~�Þ þ @D
@~�

: ~��:

ð14Þ

This implies:

@D
@~�

:jj ~��jj ¼ @D
@~�
¼ Dð~� þ ~��Þ � Dð~�Þ
� �

: ~��: ð15Þ

Consider the local variation �DðsÞ ¼ Dð~� þ ~��Þ � Dð~�Þ. We

have: �DðsÞ ¼ �R1
ðsÞ þ�R2

ðsÞ, where:

�RðsÞ ¼ ðaR þ �aRÞ logðdet �̂R þ � det �̂RÞ
� aR logðdet �̂RÞ;R ¼ ðR1;R2Þ:

ð16Þ

�aR is the elementary variation of the area of R. �aR ¼ 1 if

the curve is locally expanding around a pixel s ¼ ðx; yÞ to

contain it and �aR ¼ �1 when the curve is shrinking.

� det �̂R is the elementary variation of det �̂R. We also have:

logðdet �̂R þ � det �̂RÞ ¼ logðdet �̂RÞ

þ @ logðdet �̂RÞ
@ det �̂R

:� det �̂R: ð17Þ

To compute the elementary variation � det �̂R, we need to

compute the variation ��̂Rði; jÞ; 8i; j. We describe a computa-

tion for the multilook case, but the same method applies to the

mono-look case. Let SRði; jÞ ¼
R

x2R DðxÞði; jÞdx. We have:

��̂Rði; jÞ ¼
SRði; jÞ þ �aRDðsÞði; jÞ

aR þ �aR
� SRði; jÞ

aR

¼ �aR

aR þ �aR
DðsÞði; jÞ � �̂Rði; jÞ
� �

:

ð18Þ

Then, the first order expansion of det �̂R is, after algebraic

manipulations and where n¼3 is the data matrix dimension:

� det �̂R ¼
X
i;j

@ det �̂R

@�̂Rði; jÞ
��̂Rði; jÞ

¼ �aR

aR þ �aR
det �̂R trð�̂�1

R DðsÞÞ � n
� �

:

ð19Þ

Combining (16), (17), and (18), we have, after some

algebraic manipulations:

�RðsÞ ¼ �aR logðdet �̂RÞ þ trð�̂�1
R DðsÞÞ � n

� �
: ð20Þ

Suppose, without loss of generality, that ~� is expanding

to contain s, i.e., �aR1
¼ 1 and �aR2

¼ ��aR1
¼ �1 because

R2 ¼ Rc
1, then,

�R1
ðsÞ ¼ �þR1

ðsÞ ¼ logðdet �̂R1
Þ þ trð�̂�1

R1
DðsÞÞ � n

� �
;

�R2
ðsÞ ¼ ��þR2

ðsÞ ¼ � logðdet �̂R2
Þ þ trð�̂�1

R2
DðsÞÞ � n

� �
:

ð21Þ

�þRðsÞ is the variation of the data term D corresponding to

the variation of aR logðdet �̂RÞ when a pixel s enters the

region R. Using (15) and (20) yields:

@D
@~�
¼
�

�þR1
ðsÞ ��þR2

ðsÞ
�
: ~�� ¼

�
logðdet �̂R1

Þ þ trð�̂�1
R1
DðsÞÞ

� logðdet �̂R2
Þ � trð�̂�1

R2
DðsÞÞ

�
: ~��:

ð22Þ

When ~� is expanding, we also have: ~�� ¼ ~n. Therefore, the

functional derivative of D with respect to ~� is:

@D
@~�
¼ �þR1

ðsÞ ��þR2
ðsÞ

� �
:~n: ð23Þ
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When ~� is shrinking at s leads to the same expression.

Adding (13) to (23), and using (12) give the final evolution

equation for ~�:

d~�

dt
¼ � @F

@~�
¼ � �þR1

ðsÞ ��þR2
ðsÞ þ ��

� �
~n: ð24Þ

2.5 Level Set Implementation

We use the level set representation [19] to implement the

evolution equation (24). With the level set representation,

curve ~� is represented implicitly as the zero level set of a

function u : IR2 ! IR, i.e., ~� is the set fu ¼ 0g. The level set

evolution equation corresponding to (24) is [19]:

@u

@t
ðx; tÞ ¼ � �þR1

ðxÞ ��þR2
ðxÞ þ ��u1

� �
k ~ruðx; tÞk; ð25Þ

where �þRðxÞ ¼ logðdet �RÞ þ trð��1
R DðxÞÞ � n; 8x 2 R. �u

is the curvature of fu ¼ 0g.

2.6 Extension to Multiphase Segmentation

Consider a family of simple closed curves ~�kjk¼1;...;N�1 and

let Rk ¼ R~�k jk¼1;...;N�1. Let RN ¼
TN�1
i¼1 Rc

i . We will impose a

simple, efficient partition constraint directly on the multi-

phase curve evolution as follows:
Partition Constraints.

1. Start from an initial partition P0 ¼ fR0
kgk2½1;N �.

2. Suppose we have a partition Pt ¼ fRt
kgk2½1;N � at

iteration t, and let x 2 �. If x 2 Rt
i; i 2 ½1; ::; N � and x

leaves region Rt
i, it must move to another region

Rj; j 2 ½1::N �; j 6¼ i, and only one other region, i.e., x 2
Rtþ1
j and 8k 6¼ j;x 62 Rtþ1

k .

To satisfy Condition 2, the curve evolution equations at

pixel x must involve at most two curves, i.e., only two

regions: region Ri which contains pixel x and another

region Rj; j 6¼ i. To obtain the multiphase curve evolution

equations satisfying Condition 2, we fix curves ~�k; k 62 fi; jg,
and minimize the functional with respect to the variation of

~�i if i 6¼ N , and ~�j if j 6¼ N , i.e.,

if i 6¼ N; @F
@~�i

¼
@ aRi

log detð�̂Ri
Þ þ aRj

log detð�̂Rj
Þ

� �
@~�i

þ
@�
H
~�i
ds

@~�i
;

if j 6¼ N; @F
@~�j

¼
@ aRi

log detð�̂Ri
Þ þ aRj

log detð�̂Rj
Þ

� �
@~�j

þ
@�
H
~�j
ds

@~�j
:

ð26Þ

Therefore, multiregion segmentation reduces to a two-

region problem corresponding to the variation �Ri
þ�Rj

of

D in the domain Ri [Rj. Following the computation in the

two-region case, the level-set curve evolution equations

corresponding to the minimization of F with respect to ~�i, if

i 6¼ N , and with respect to ~�j, if j 6¼ N are given by:

if i 6¼ N; @ui
@t
ðx; tÞ ¼ � �þRi

ðxÞ ��þRj
ðxÞ þ ��ui

� �
k ~ruiðx; tÞk;

if j 6¼ N; @uj
@t
ðx; tÞ ¼ � �þRj

ðxÞ ��þRi
ðxÞ þ ��uj

� �
k ~rujðx; tÞk;

ð27Þ

where uk is the level-set function corresponding to
~�k; k 2 ½1::N � 1�, and �uk , is the curvature of the zero level-

set of uk. It is clear that the curve evolution equations defined

in system (27) satisfy the partition condition 2. If i ¼ N or

j ¼ N , the system (27) is equivalent to only one evolution
equation corresponding to the two-region segmentation

problem in the domain Ri [Rj. If i 6¼ N and j 6¼ N and if

we ignore the contribution of the curvature term, the two

evolving curves~�i and~�j have opposite velocities at point x.

Thus, if~�i shrinks at x,~�j expands to contain it and vice versa.
If the contribution of the curvature term is important, both

evolving curves shrink and x leaves the interior of one curve

to enter the background region RN . The problem now is the

definition of the region Rj; j 2 ½1::N �; j 6¼ i, that will be

involved in system (27) at a given pixel x 2 �. Let x 2 Ri

and suppose x leave Ri to enter Rj; j 2 ½1::N �; j 6¼ i. The
resulting variation of the data term D is �þRj

ðxÞ ��þRi
ðxÞ.

Since we aim to minimize F , the best variation is given by:

j0 ¼ arg min
fj2½1::N �;x 62Rjg

�þRj
ðxÞ ��þRi

ðxÞ
� �

¼ arg min
fj2½1::N �; x 62Rjg

�þRj
ðxÞ:

ð28Þ

This leads to the following multiphase level set equations,
for all x 2 �:

8i 2 ½1::N �; if x 2 Ri; do

1Þ if i 6¼ N; @ui
@t
ðx; tÞ

¼ �
�

�þRi
ðxÞ ��þRj0

ðxÞ þ ��ui
�
k ~ruiðx; tÞk;

2Þ if j0 6¼ N;
@uj0
@t
ðx; tÞ

¼ �
�

�þRj0
ðxÞ ��þRi

ðxÞ þ ��uj0

�
k ~ruj0ðx; tÞk;

ð29Þ

where i 2 ½1::N � is the index of the region containing x and
j0 is given by (28).

As with other multiphase methods, this method con-

verges to a local minimum. However, it is stepwise optimal

because it effects the maximum decrease in the functional at
each curve evolution step. This comes directly from the

definition of j0 in (28).
This multiphase method has a computational advantage

over the methods in [3], [5], [17], [1]. It activates at most two
level sets at each iteration. The CPU time varies approxi-

mately linearly with the number of regions due to the

search for index j0. The methods in [3],[5], [17], [1] activate

all the level sets at each iteration and the complexity of the

corresponding PDEs increases with the number of regions.
The methods in [3], [5] also evaluate an expensive point

membership function. For the method in [5], this involves,

for a given level set, checking the sign of all lower

numbered level sets. For the method in [3], this involves
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checking the signs of all level set intersections. This results

in a variation of the computation time versus the number of

regions faster than linear. Fig. 1 illustrates this. It shows the

CPU time spent at an iteration as a function of the number

of regions for this method and the method in [5]. The

growth of the curve for the method in [3] would be similar

to the one for the method in [5] or steeper.

3 EXPERIMENTATION

The proposed algorithm has been tested on a wide range of

real, fully polarimetric NASA-JPL images and on three

synthetic images to evaluate quantitatively and compara-

tively the method. In the following, we present few

representative results.

Simulated data: The first synthetic image is generated

using the ideal segmentation image in Fig. 3a and the complex

Gaussian distribution. The region parameters are taken from

homogeneous regions in a real image. To display the image,

we use only the first coefficient of the pixel matrix D(x), i.e., the

real image DðxÞð1; 1Þ. For viewing purposes only, we

enhanced the contrast (Fig. 3b). Otherwise, the gray-level

value in regions would be overlapped as displayed in Fig. 3c.

An illustration of the overlap between the distribution of

regions in DðxÞð1; 1Þ is given in Fig. 2. The same display

method is used for the other results, and the displayed images

are just modified gray-level representations of the full

complex data. Thus, the visual interpretation of the results

is insufficient and quantitative evaluation using ideal

segmentation image as a reference is required. We show the

BEN AYED ET AL.: POLARIMETRIC IMAGE SEGMENTATION VIA MAXIMUM-LIKELIHOOD APPROXIMATION AND EFFICIENT MULTIPHASE... 1497

Fig. 1. CPU time versus the number of regions.

Fig. 2. Region distributions in the image D(.)(1,1) corresponding to the

synthetic circle data.

Fig. 3. Results of the synthetic circle data: (a) ideal segmentation, (b) display of D(.)(1,1) with histogram modification, (c) display of D(.)(1,1) without

histogram modification, (d) and (e) results with � ¼ 0:2, (f) and (g) results with � ¼ 0:001, (h) and (i) results with � ¼ 0, and (j) result using the

Gaussian model and D(.)(1,1).



final position of curves in Fig. 3d and the segmentation result
in Fig. 3e for � ¼ 0:2 (each curve is represented by a color). To
show the effect of the regularization parameter �, we display
the results with � ¼ 0:001 and � ¼ 0 in Figs. 3f, 3g, 3h, and 3i.
We obtain many small islands in the result with a smaller
weight of the regularization term. To illustrate the influence of
the observation model, we show in Fig. 3j the result obtained
by applying the Gaussian model to D(.)(1,1). The green curve
disappeared and the red curve gave erroneous results.

To simulate realistic situations, we take a segmentation
result of a real polarimetric image as the ideal segmentation
to generate two 512� 512 images of four regions. The first
is mono-look, generated from the complex Gaussian
distribution, and the second is 8-look, generated from the
complex Wishart distribution. Fig. 4a show initial curves for
the two simulated images. Fig. 4b and Fig. 4d show,
respectively, the final position of the curves for the 1-look
image and the 8-look image. Figs. 4c and 4e display the
segmentation results.

Comparative Evaluation: We compared the performance

of the proposed method, which we refer to as LACLM (Level

Set Active Contour Likelihood Maximization) to the recent

segmentation method developed in [12] and based on

hierarchical region merging, which we refer to as RMLM

(Region Merging Likelihood Maximization). We chose this

method for comparison because it optimizes a global like-

lihood criterion, as with the proposed method. We notice that

the merging of neighboring regions in RMLM cannot classify

directly the image into regions with disjoint segments as our

method did. To obtain a classification into four classes, we

need to classify the connected segments given by RMLM. To

compare directly RMLM and LACLM, we used contour

information in the segmentation result of each method (i.e.,

pixels where the image gradient in the segmentation result is

not equal to zero). We compare with the RMLM segmentation

into 250 segments. As expected, the LACLM gives more

regular boundaries than RMLM, especially for the one-look

image. Moreover, as shown in Table 1, and although the level

of details is more important with RMLM than with LACLM,

the percentage of correctly detected contour pixels is better

with LACLM. To examine more carefully the performance of

the proposed method, we added a supervised Bayesian

classification (SBC) to the segmentation results of RMLM, i.e.,

we used the region parameters to classify the 250 connected

segments produced by RMLM into four classes. This is not a

point of relevance in practice because the region parameters

are unknown in real situations. We notice, in our method, that

the region parameters are estimated iteratively along the

segmentation process in an unsupervised way. Although the

method based on RMLM and SBC is supervised, the

proportion of correctly classified pixels with LACLM is, as

shown in Table 1, better.
We show results on two multilook fully polarimetric

NASA-JPL images. The first image, represented in Fig. 5a

(with final curves) is an extract of 512� 800 pixels from the

NASA-JPL image of Flevoland (Netherland). The second

image, represented in Fig. 5c (with final curves) is an extract of

512� 800 pixels from the NASA-JPL image of Altona

(Canada). We segmented the two images into six regions.

Figs. 5b and 5d display the segmentation results. The visual

display of the results illustrates the performances of the

method. To evaluate the robustness of the method with

respect to initial conditions, we tested the four different

initialization represented in Figs. 6a, 6b, 6c, and 6d, and

plotted the minimized energies versus iterations in Fig. 7. All

the minimized energies converge to the same minimum. This

demonstrates the robustness of the method to initialization.

4 CONCLUSION

We presented a level set curve evolution algorithm for
segmenting polarimetric images into a fixed but arbitrary
number of complex Wishart/Gaussian distributed regions.
We defined an efficient multiphase system of multiple curve
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Fig. 4. Results of the 1-look synthetic data: (a) initial curves, (b) final position of the curves, and (c) segmentation result. Results of the eight-look

synthetic data: (d) final position of the curves and (e) segmentation result.

TABLE 1
Comparisons



evolution equations which minimize the sum of an original

data term derived from the maximum-likelihood approx-

imation and a prior term related to the length of the curves.

The algorithm was illustrated on both simulated and real

polarimetric images. We provided quantitative evaluation

of the method as well as comparisons with another recent

method. The method is also shown to be robust to initial

partition.
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Fig. 5. Results for the real images: (a) final position of the curves for the Flevoland data, (b) segmentation result for the Flevoland data, (c) final

position of the curves for the Altona data, and (d) segmentation result for the Altona data.

Fig. 6. Four different initializations.
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Fig. 7. Energy versus iterations for different initializations.


