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ABSTRACT

This study investigates a new multiphase minimization scheme which
embeds a simple, efficient partition constraint directly in multiple
level set evolution. Starting from an arbitrary initial partition, the
minimization of the N-region segmentation functional is carried out
following a first order expansion of the data term with an embed-
ded partition constraint: if a point leaves a region, it goes to single
other region. The method has a computational advantage over pre-
vious multiphase schemes, is stepwise optimal, i.e., permit to effect
the maximum decrease of the functional at each evolution step, and
is robust to initialization. The method is discussed by comparison
with previous methods and experimental results are included to this
effect.

Index Terms- Image segmentation, active curves, multiphase
level set evolution, functional minimization.

1. INTRODUCTION

The variational formalism based on active contours and level sets
has recently led to effective segmentation algorithms of difficult im-
ages and numerous useful applications [1] [2] [3] [4] [5] [6] [7]. The
use of more than one curve required for the segmentation of N re-
gions, with N > 2, may lead to ambiguous segmentation results
when the interior of curves overlap. The partition problem in mul-
tiphase level set segmentation has been addressed in several ways.
Zhao et al. [9] proposed to add to the functional a term that draws
the solution toward a partition. The same principle is also used in
[7]. This method does not guarantee a partition at all times. Curve
evolution will likely gives an ambiguous segmentation if the parti-
tion constraint is not sufficiently enforced, and if it is strongly en-
forced the curves will evolve more as a result of the partition con-
straint than of image statistics. This method requires an additional
ad hoc parameter and there is no clear indication on how to fix this
parameter sufficiently without weakening the role of the data term.
Authors in [5] proposed a correspondence between the characteristic
functions of regions and the different combinations of level set signs
such as to guarantee a partition all the time. The method proposed
recently in [1], and which we used in [2], establishes an explicit cor-
respondence between the curves, their intersections and the regions
of segmentation. Both curve/region correspondence methods [5] [1]
embed cumbersome combinations of the characteristic functions of
regions in the functional and the resulting PDEs, and consequently
the complexity increases significantly with the number of regions as
will be discussed in section 2.3. Apart from the high computational
complexity when dealing with large number of region, the method
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in [5] lacks robustness to initialization [5], and with a large number
of regions, it becomes difficult to handle initial conditions correctly.
Authors in [6] used a functional which results in curve evolution
equations where the evolution of a curve involves a reference to the
others. However, a segmentation into N regions can be obtained
only for vector images of dimension N -1 or higher. Also, the
observation term in the functional measures an N -1 dimensional
volume, resulting in excessive computational demand. Authors in
[4] proposed to minimizes N -1 functionals instead of the initial
N-region segmentation functional. The resulting N -1 PDEs are
demonstrated to guarantee a partition, but it is not clear that they
minimizes the initial functional.

In this study, we propose a minimization scheme which embeds
directly an efficient simple partition constraint in curve evolution
without resorting to cumbersome modifications of the segmentation
functional. The method has a computational advantage over pre-
vious multiphase schemes, is stepwise optimal, i.e., permits to ef-
fect the maximum decrease of the functional at each evolution step,
and is robust to initializations. We will discuss the advantages the
proposed minimization scheme by comparisons with previous mul-
tiphase methods further in section 2.3. Experimental results are in-
cluded to this effect.

2. FUNCTIONAL MINIMIZATION

Let I: Q C R- R' be an image function defined on Q C R2.
An N-region segmentation of I is a partition P = {Ri}iE[1,N] of
the image domain such that the restriction of the image to each re-
gion best fits a given description, usually given through statistical
models. Level set segmentation is commonly stated as the mini-
mization of a functional containing two characteristic terms: a tenn
of conformity to data and a regularization tenn.
Data term: The data tenn measures how well the data fits a statistical
model within each segmentation region:

N

'D = j, (1)
i=l

where

(2)Ji= ei (x)dx,
Ri

and ei is the function which evaluates the conformity to data in re-
gion Ri.
Regularization term: The regularization term permit to obtain smooth
segmentation boundaries and to avoid small, isolated segmentation
fragments.

N

= E/7 ds.
i=i Ri

(3)

1-4244-0481-9/06/$20.00 C2006 IEEE 1641 ICIP 2006



The functional to minimize is a weighed sum of the data and regu-
larization terms:

N N

f({R}i}1) ji+ A f ds, (4)
i=l i=l aRi

where &Ri is the boundary of Ri and A is a positive real constant to
weigh the relative contribution of the two terms of the functional.

For a clearer exposition of the algorithm, we treat the binary
segmentation problem first (Section 2.1). We generalize to multi-
ple regions in Section 2.3. In the case of N-region segmentation
(N > 2), we will see that the issue is to embed an efficient partition
constraint directly in the functional minimization.

2.1. Curve evolution for binary segmentation

In the case of two regions, we consider a closed planar parametric
curve'7: [0, 1] - Q. Let R1 = RI be the region in the interior of
$ and R2 R' its complement (the region in the exterior of'7).

The minimization of I with respect to '7is obtained by embed-
ding the curve '7(s) in a one-parameter family of curves: '7(s, t)
[0,1] x R+ - Q, and solving the partial differential equation
(PDE):

dt 0-'
AD OR
aty a-y (5)

where At+ (s) = el (s) is the variation of the data term D corre-
sponding to the variation of (i when a pixel s enters the region Ri.
A\i- (s) =e2 (s) is the variation of the data term D corresponding
to the variation of (i when a pixel s leaves the region Ri. Using (9),
(8), and (7) gives:

,2 = (i\4Ar(s) - A$+(s)).&y
(el (s) -e2 (s))).S ' (10)

We also have: &-y = n, where n' is the external unit normal to &-y at
point s. Therefore, the functional derivative of D with respect to '7
is:

(1 1)

When '7is shrinking at s, we have A\1 (s) A= + (s) =e1 (s),
A\2(S) A 2(S) = C2(s), and -y = -n-. Thus, when y is
shrinking at s we obtain the same expression of the velocity as in
(1 1).

The computation of '9R is classical and follows the standarda,
calculus of Euler-Lagrange equations [10]:

0Z== =AK-n (12)

where 0 is the functional derivative of F with respect to'7.
To derive the data term with respect to -', we propose a com-

putation based on its first order expansion rather than the standard
Euler-Lagrange equation. This leads to the same velocity expression
as the Euler-Lagrange equation but has the advantage of leading to
a clear interpretation of how to embed a simple, efficient partition
constraint directly in the multiphase minimization scheme.

Let -y= (aX, by)T = ii.n be an elementary local deformation
of'Y (I 1&-y =1) around a pixel s = (X, y), where n' is the external
unit normal to 'y at s = (X, y). The first order expansion of D gives:

D('-+ dry) D(x+ 6x, y + 6y)
&D &D

=D(x, y) + 6x + aDyOx ay

=D(-y) + &7<. (6)

Multiplying each side in (6) by &-y yields:

Let 6aR is the elementary variation of the area of region R. 6aR =
1 if the curve is locally expanding around a pixel s = (x, y) to con-
tain it, and 6aR =-1 when the curve is shrinking. Let A\j (s) be
the elementary variation of (i. Consider the local variation AD(s)
D('7 + &y) D('7). We have:

A\D(s) = Ail (s) + At2(s)
= 6aR1el(s) + 6aR2e2(s) (8)

Suppose, without loss of generality, that '7is expanding to contain s,
i.e., 6aR, = 1 and 6aR2 =-aR, =-1 because R2 = R', then:

A\4l (S) = \4+ (S) = el (s)
A\42(S) = i4T(s) = -C2(S), (9)

where K is the mean curvature function of '. The final evolution
equation of ' is given by:

(Ar+(s)- A$+(s) + AK) .n (13)

2.2. Level set implementation

We use the level set representation [8] to implement the evolution
equation (13). With the level set representation, curve ' is repre-
sented implicitly as the zero level-set of a function u: R2 - R, i.e.,
_' is the set {u = 0}. The level set evolution equation corresponding
to (13) is [8]:

au(xIt) (A\+(x) -A+(x)+Atiu) IIV-u(x,t) (14)

where At+ (x) = ei (x), i = 1, 2, Vx e Ri. K,t is the curvature of
{u = 0}.

2.3. Extension to multiphase segmentation

In this section, we generalize the method to an arbitrary, but fixed
number of regions. The issue is to guarantee that the algorithm leads
to a partition. Consider a family of simple closed curves ' k 1, N 1
and let Rk = R, k1, ,N- 1 Let RN = nk=l Rk. RC denotes
the complement of R. We will impose a simple, efficient partition
constraint directly on the multiphase curve evolution as follows:

Partition constraints: 1) Start from an initial partition Po
{R }kE [1,N].

2) Suppose we have a partition p = {R'}kel,N] at iteration
t, and let x e Q. If x e R', i e [1, .., N] and x leaves region R',
it must move to another region Rj, j e [1..N], j :7 i, and only one
other region, i.e., x e R'+' and Vk :7 j, x V R'+'. To satisfy
condition 2), the curve evolution equations at pixel x must involve
at most two curves, i.e., only two regions: region Ri which contains
pixel x and another region Rj, j :7 i. To obtain the multiphase curve
evolution equations satisfying 2), we fix curves '7k, k f {i, j}, and
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minimize the functional with respect to the variation of$ if i 74 N,
and '7 if j 74 N, i.e.,

if i 74 N, a i +
a

d

&Jyi &(t+yj) &Ayds (15)

if j 74 N, (+.

Therefore, multiphase segmentation reduces to a binary problem cor-
responding to the variation A\j + A\j of D in the domain Ri U Rj.
Following the computation in the two-region case, the level-set curve
evolution equations corresponding to the minimization of F with re-
spect to $, if i 7: N, and with respect to -5, if j 7: N are given
by:

if i 74 N,

0at (x, t) = - (A/j+(x) - A/tj(x) + AK,i,) Iu(x, t)
if j 74 N,

atJ00t (x, t) = -(A\(j+(x) -A/(j+(x) + Aimlj) IIVuy(x, t) 1

(16)

where Uk is the level-set function corresponding to tyk, k C [1..N-
1], and hUk,, is the curvature of the zero level-set of Uk. It is clear
that the curve evolution equations defined in system (16) satisfy the
partition condition 2). If i = N or j = N, the system (16) is
equivalent to only one evolution equation corresponding to the two-
region segmentation problem in the domain Ri U Rj. If i :A N
and j 74 N and if we ignore the contribution of the curvature term,
the two evolving curves $ and - have opposite velocities at point x.
Thus, if$ shrinks at x, '7j expands to contain it and vice versa. If the
contribution of the curvature term is important, both evolving curves
shrink and x leaves the interior of one curve to enter the background
region RN.

definition of Rj The problem now is the definition of the region
Rj, j C [iN], j 74 i, that will be involved in system (16) at a given
pixel x C Q.

Let x C Ri and suppose x leave Ri to enter Rj, j C [1..N], j 74
i. The resulting variation of the data term D is A<\+ (x)- A + (x).
Since we aim to minimize F, the best variation is given by:

jo = arg min (A j+ (x)
{jE[1 .N], xoRjl} A(+(x))

=arg min Aj (x) (17)
a jE[L.N], xoRj}

This leads to the following multiphase level set equations, for all
x c Q: Vi c [i.N], if x C Ri, do

if i 7z N,

0au' (t) = -(A\(+(x) -~\(+(x) + 0lu)IVixt
if jo 74 N,

(x,t) = (A\ (x) -A+(x) + A vujo (X,t)
(18)

where i C [1..N] is the index of the region containing x and jo is
given by (17).

As with previous multiphase methods [5] [1] [9] [7], this method
converges to a local minimum since it is based on gradient descent.

However, it is stepwise optimal because it effects the maximum de-
crease in the functional at each curve evolution step. This comes
directly from the definition of jo in equation (17). We will give in
section 3 experimental illustrations of the stepwise optimality.

This multiphase method has a computational advantage over the
methods in [5][1][9] [7]. It activates at most two PDEs at each iter-
ation. The CPU time varies approximately linearly with the number
of regions due to the search for index jo. The methods in [5][1]
[9][7] activate the PDEs corresponding to all the level sets at each
iteration and the complexity of the corresponding PDEs increases
with the number of regions The methods in [5][1] also evaluate an
expensive point membership function. For the method in [1], this in-
volves, for a given level set, checking the sign of all lower numbered
level sets. For the method in [5], this involves checking the signs of
all level set intersections. This results in a variation of the compu-
tation time versus the number of regions faster than linear. Figure
1 illustrates this. It shows the CPU time spent at an iteration as a
function of the number of regions for this method and the method in
[1]. The growth of the curve for the method in [5] would be similar
to the one for the method in [1] or steeper.

60 1 l_

The proposed method
50 _ +- Region/curve correspodne.

40

a~

D30

+.

2 4 6 8 10 12 14 16 18 20
Number of regions

Fig. 1. CPU time versus the number of regions.

3. EXPERIMENTATION

The proposed minimization scheme has been tested in several exper-
iments and the results are conclusive. In the following, we present
some representative results using gray level images and the piece-
wise constant model. The first example uses the brain image shown
in Figure 2 a) with initial curves. We show the final position of the
curves in Figure 2 b), the final segmentation in Figure 2 c), and three
of the four regions of segmentation in Figure 2 d), e) and f). The
obtained partition is conform to our expectation. Due to the step-
wise optimality, the method requires a number of iterations less than
previous methods. With the example of the brain image, and using
the same parameters and initialization, the proposed minimization
scheme requires about 60 iterations to converge, whereas the method
in [1] requires about 400 iterations.

To illustrate the robustness of the method with respect to ini-
tial conditions and its ability to deal efficiently with a large num-
ber of regions, we use the 7-region image in Figure 3 (with initial
curves). The contrast between some regions is low and a Gaussian
noise was added to this image. We tested the three different initial-
izations shown in Figure 3 a), b), and c), and plotted the minimized
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energies versus the number of iterations in Figure 4. For both ii-
tializations, the evolution of the minimized energies has almost the
same behavior and the same minimum is reached after about 50 iter-
ations.Tiisasdutotesewsopiaiyaddmnrts
th robustness of the method to initia conditions. We show te fnal
position of curves in Figure 3 d), the obtained segmentation in 3 D),
and the true segmentation in 3 f).

a) b) c)
4. CONCLUSION

We described a minimization scheme which embeds an efficient sim-
ple partition constraint directly in multiple level set evolution, and
without resorting to modifying the segmentation functional by a par-
tition term or cumbersome region/cuirve correspondences. We in-
cluded experimental results which demonstrated the advantages of

d) e) f) the proposed minimization scheme over previous methods.

Fig. 2. Results with the brain image: a) initial curves, b) final curves, 5. REFERENCES
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