Accelerating the pace of engineering and science

# sin

Sine of argument in radians

## Description

example

Y = sin(X) returns the sine of the elements of X. The sin function operates element-wise on arrays. The function accepts both real and complex inputs. For real values of X in the interval [-Inf, Inf], sin returns real values in the interval [-1 ,1]. For complex values of X, sin returns complex values. All angles are in radians.

## Examples

expand all

### Plot Sine Function

Plot the sine function over the domain .

x = -pi:0.01:pi;
plot(x,sin(x)), grid on


### Sine of Vector of Complex Angles

Calculate the sine of the complex angles in vector x.

x = [-i pi+i*pi/2 -1+i*4];
y = sin(x)

y =

0.0000 - 1.1752i   0.0000 - 2.3013i -22.9791 +14.7448i



## Input Arguments

expand all

### X — Input angle in radiansnumber | vector | matrix | multidimensional array

Input angle in radians, specified as a number, vector, matrix, or multidimensional array.

Data Types: single | double
Complex Number Support: Yes

## Output Arguments

expand all

### Y — Sine of input anglescalar value | vector | matrix | N-D array

Sine of input angle, returned as a real-valued or complex-valued scalar, vector, matrix or N-D array.

expand all

### Sine Function

The sine of an angle, α, defined with reference to a right angled triangle is

The sine of a complex angle, α, is

$\mathrm{sine}\left(\alpha \right)=\frac{{e}^{i\alpha }-{e}^{-i\alpha }}{2i}\text{\hspace{0.17em}}.$