# Documentation

### This is machine translation

Translated by
Mouse over text to see original. Click the button below to return to the English verison of the page.

# abs

Absolute value and complex magnitude

## Syntax

• ``Y = abs(X)``
example

## Description

example

````Y = abs(X)` returns the absolute value of each element in array `X`.If `X` is complex, `abs(X)` returns the complex magnitude.```

## Examples

collapse all

```y = abs(-5) ```
```y = 5 ```

Create a numeric vector of real values.

```x = [1.3 -3.56 8.23 -5 -0.01]' ```
```x = 1.3000 -3.5600 8.2300 -5.0000 -0.0100 ```

Find the absolute value of the elements of the vector.

```y = abs(x) ```
```y = 1.3000 3.5600 8.2300 5.0000 0.0100 ```
```y = abs(3+4i) ```
```y = 5 ```

## Input Arguments

collapse all

Input array, specified as a scalar, vector, matrix, or multidimensional array. If `X` is complex, then it must be a `single` or `double` array. The size and data type of the output array is the same as the input array.

Data Types: `single` | `double` | `int8` | `int16` | `int32` | `int64` | `uint8` | `uint16` | `uint32` | `uint64` | `duration`

collapse all

### Absolute Value

The absolute value (or modulus) of a real number is the corresponding nonnegative value that disregards the sign.

For a real value, `a`, the absolute value is:

• `a`, if `a` is greater than or equal to zero

• `-a`, if `a` is less than zero

`abs(-0)` returns `0`.

### Complex Magnitude

The complex magnitude (or modulus) is the length of a vector from the origin to a complex value plotted in the complex plane.

For a complex value, $|a+bi|$ is defined as $\sqrt{{a}^{2}+{b}^{2}}$.

### Tall Array Support

This function fully supports tall arrays. For more information, see Tall Arrays.