2008-01-2709

Verification, Validation, and Test with Model-Based Design

Copyright © 2008 The MathWorks, Inc

ABSTRACT

Model-Based Design with automatic code generation
has long been employed for rapid prototyping and is
increasing being used for mass production deployment.
With the focus on production usage, comes the need to
implement a comprehensive V&V strategy involving
models and resulting code.

A main principal of Model-Based Design is that
generated code should behave like the simulation
model. It should also be possible to verify that the model
or design was fully implemented in the code. As a result,
the transformation of models into generated code must
be done in a way that facilitates traceability between the
model and code. Also automated tests should be
performed to determine that the code executes properly
in its final software and hardware environments.

For example in a typical commercial vehicle application,
the control algorithm and plant model are simulated
together in a system simulation environment. Once the
system model satisfies the requirements, the control
model is checked to ensure that it has been fully
exercised or covered. Once checked, code is then
generated for production applications. The code is
analyzed, tested, and compared to the original model
results. Common model and code verification activities
include software-in-the-loop (SIL), processor-in-the-loop
(PIL), and hardware-in-the-loop (HIL) testing. In addition
to functional results, it is important especially for high-
integrity systems, that the model and code have been
checked and assessed to known standards.

This paper describes recent advances in verification,
validation, and test technologies involving Model-Based
Design with production code generation.

INTRODUCTION TO MODEL-BASED DESIGN

A model represents a dynamic system whose response
at any time is a mathematical function based on its
inputs, current state, and current time. Historically,
system engineers have used block diagrams as shown

Tom Erkkinen
The MathWorks, Inc.

Mirko Conrad
The MathWorks, Inc.

in Figure 1 to create models and design algorithms
within numerous engineering areas such as Feedback
Control and Signal Processing. In recent years,
graphical modeling environments consisting of block
diagrams and
state machines have been used to analyze, simulate,
prototype, specify, and deploy software algorithms within
a variety of embedded systems and applications. Model-
Based Design refers to the use of models and modeling
environments as the basis for embedded system
development.

Input Output

Embedded Plant
= System P|Environment >

Figure 1: Feedback controller model.

Systems developed using Model-Based Design include:
e Commercial vehicle electronics

e Power plant regulators

e Digital motor controllers

Model-Based Design is used throughout the system
development life cycle and provides design flows that
include continuous verification and validation of
requirements, designs, and implementations. This
approach is important for formal software processes
such as IEC 61508 [1] and for other projects seeking
error prevention and early error detection.

The main development activities that occur during
Model-Based Design include:

¢ Modeling and simulation

e Rapid prototyping

e Production code generation and integration

Verification and validation (V&V) occurs continuously
during Model-Based Design and includes many

activities. This article focus on two key activities: model
checking and processor-in-the-loop testing.
MODEL CHECKING

An important group of model V&V activities comprise
different static analyses and checking tools. Model
advisors check a model for conditions and configuration
settings that can result in inaccurate or slow simulation,
problematic maintenance, or generation of inefficient
production code.

Reports are generated that list identified suboptimal
conditions and settings. Advice is provided suggesting
better modeling approaches and settings. There are
several types of checks.

Basic Model Checks: Automated model advice is
provided using basic checks, requirements consistency
checks, and industry model standard checks. Basic
checks range from support for updating the model to be
compatible with the current product release version, to
identifying unconnected lines and ports, to checking the
root model interfaces.

To invoke the advisor, select the checks and then run
them as shown in the left- and right-hand sides of Figure
2, respectively.

Mol Advisor - multi_ieno_fuslspsfutsys

Fie Edt Run View Help
Task Herarchy: mul_dema_fuslsysTuelsys | Siomsliedk

Model Advsor

ok madel, loca

renced models for known upgrade issues fun Selected (hedks

. end autput perts E

MATLAS\E2008x wrork sipr{imodelachesor

008 13:40:58
P om0 b warning: 3

ntify disabled bbrary

g To process Al enabied e in this folder and gasaraty 8 new fepert,
sty parameteraw

Right-chck to select or deselect il ibems in this folder,
T estiatically driglay tha sagesrt aitar procasisng, sbeet "Shom rapert

To displry the leat report generated, click the “Report” path k.

hthep Esbedded Coder
dver for code generation

Feor o st of ol possbla bctors, Fight-chck an e o the Task leeraschy,

“Identdy questonsble foed-paint aper
mubri Verification and Vabdation I]
By Task & —

Figure 2: Model advisor basic checks - invocation

After performing the checks, results are displayed as
shown in Figure 3. Hyperlinks are provided in the report,
automating navigating to the dialog or menu where the
setting can be adjusted based on the reported advice.

The basic model checks should be performed and
reported deviations considered before other quality
assurance measures such as peer reviews or industry
model standard checks are done.

Moded Advisor - C:\Program | iles MATLABR2 008a work'siprfmodeladvisorumulti__demo__fuelsysifuelsysireport_2btml
Ak L.

Sidentify unconnected Bnes. input ports, and cutput ports

LCheck root model Inport block specifications

Your model contains root-level Inport blocks with undefined altributes, such as dimensions, sample time. or data type. If you do not exphcitly
chefirn: these atribules, Simulink will use back-propagation from downstrearn blocks 1o assign values 1o the atiibutes when updating the modl
This can kead o undesired simuiation results. To avoid this, fully define the atinbutes of al of your mocels rook-level INpon locks

Thee oliowing root-beved Inpart blacks have undesined aftribubes

LCheck optimization settings

You shoukd tum on the following oplimezaigpisk

= The Apphcation ifie span has been set as infinite. This could lead 10 expersive 64.bit counter usage. Choose
apprapeiabe Siop ime if this i$ nal inended
= Remove intemnal state Zero intiakzation

@Check for parameter tunability Ignared for

Figure 3: Model advisor basic checks - results

Requirements Consistency Checks: If the model is
linked with requirements in third-party requirement
management tools or databases, these checks identify
inconsistent, missing, or changed requirements.
Requirements consistency checks can also identify and
repair requirements with missing documents and
inconsistent requirements descriptions. See Figure 4.

Model Advisor - multi_demo_fuelsys/fuelsys

File Edit Run View Help
Task Hierarchy: multi_demo_fuelsys/fuelsys
=I-[Z1Model Advisor Task Manager
;--@Ey Product
- LA Simulink
H-[)Real-Time Workshop Embedded Coder
=+ [=1Simulink Verification and Validation
+ = Modeling Standards
;"JRequirements Consistency
[¥/[“I1dentify requirement links with missing documents
~ ¥ [“]1dentify requirement links that specify invalid locations within documents
[¥/[“]1dentify selection-based links having description that do nat match their requirements
- [-] 1dentify requirement links with path type inconsistent with preferences
-[2By Task

Figure 4. Requirements consistency checks

Modeling Standards Checks: Many projects use in-
house or industry specific software and modeling
development standards.

Model checks have already been developed for some
industry standards including:

e DO-178B
e« MAAB
e |EC 61508

DO-178B is an aerospace standard that will not be
discussed here.

MathWorks Automotive Advisory Board (MAAB) checks
facilitate designing and troubleshooting models for
automotive applications. A new version of MAAB was
made available in 2007, MAAB v2.0.

MAAB checks include:

e Prohibited blocks inside controllers
e Port and signal name mismatches
e Unconnected signals

IEC 61508 is a generic, application-independent
standard for electrical / electronic / programmable
electronic safety-related systems (E/E/PES) that is
supposed to ease the development of sector-specific
norms for E/E/PES. It is applied transitionally in the
development of E/E/PES in those areas for which a
domain-specific norm does not yet exist. IEC 61508-3 is
concerned with the requirements for software
development.

IEC 61508 can be considered as a prescriptive
standard, which provides detailed lists of techniques and
measures with recommendations.

IEC 61508 model checks analyze the model and report
on items such as model usage, model metrics, and
configuration management information as shown in
Figure 5.

Madel Advisor - C:\Program FilesUMATLABR2 0088 warkislpr]imodeladvisar\multi_demo__fuelsysifuctsysice.... [|[B][K]
b AT

@Display configuration management data

Model Version: 1.261

Author: terkkine

Date: Tus Jun 24 13:52:27 2008

Model Checksum: 281148170 3888740450 2471073679 1590846488

@ Check for proper usage of Simulink
a) Check for proper usags of Abs blocks

Identify Absolute Value blocks that can have unreachable code or produce overflows
References to standards and guidelines

+ |EC 61508-3, Table A3 (2) "Strongly typed programming language’
= [EC 61508-3, Table A.3 (3) 'Language subset’

+ [EC 51508-3, Table A 4 (3) 'Defensive programming’

+ [EC 61508-3, Table B.8 (3) ‘Conirol Flow Analysis'

+ MISRA.C:2004, Rule 141

+ MISRA-C2004, Rule 21.1

There are no Absclute Value blocks in this model.
Passed

b) Check for proper usage of blocks that compute relational operators

Identify relational operator blocks that compare data types or equate floating-point types.
References to standards and guidelines:

+ [EC 51508.3, Table A 3 (3) ‘Language subset’

« [EC 61508-3, Table A 4 (3) 'Defensive programming’
+ MISRA-C 2004, Rule 133

Do

Figure 5: IEC 61508 checks - report

Model Complexity Measurement allows one to measure
the complexity of the entire model as well as the
individual subsystems. Cyclomatic model complexity is a
measure of the structural complexity of a model. It is
calculated with the IEC 61508 checks and approximates
the McCabe complexity measure for code generated
from the model. Model complexity measurement helps to
achieve a modular approach on the model level and
especially to maintain an appropriate module size limit.

Finally, if the built-in checks are not sufficient, a model
advisor API is available that facilitates the development

of custom rule checks by engineers using Model-Based
Design.

PROCESSOR-IN-THE-LOOP TESTING

Simulation of models is an early verification and
validation (V&V) technique. Testing models via
simulation is a more rigorous approach than the ad-hoc
simulation runs used in early algorithm development.
Model testing requires a systematic approach to test
case creation and execution. Special blocks, such as
signal builders and assertions, facilitate this type of
rigorous test procedure. New capabilities for V&V on
models now exist such as structural coverage analysis
and test case generation. In-the-loop testing techniques
allow one to reuse the model test cases and test
environment for execution with the production
application during various stages of integration.

Software-in-the-loop (SIL) testing involves executing the
production code for the controller within the modeling
environment for non-real-time execution with the plant
model and interaction with the user. The code executes
on the same host platform that is used by the modeling
environment. A code wrapper of the generated code
provides the interface between the simulation and the
generated code. See Figure 6.

p. Plant Model

Simulink

Controller Model

Code
Generation

L7

/

Host-Compiled C
with S-Function

wrapper (DLL)

Figure 6: Software-in-the-loop testing.

For hardware-in-the-loop (HIL) testing, the code is
generated just for the plant model. It runs on a highly
deterministic, real-time computer. Sophisticated signal
conditioning and power electronics are needed to
properly stimulate the ECU inputs (sensors) and receive
the ECU outputs (actuator commands). Whereas rapid
prototyping is often a development or design activity, HIL
serves as a final lab test phase before final system
integration and field tests commence. See Figure 7.

Note that an on-target rapid prototyping and production
code example using Model-Based Design based on
case study by John Deere was presented at the SAE
Commercial Vehicle conference in 2007 [2].

Simulink

Controller Model Plant Model

Code
Generation
Code
Generation

Harness

XPC Target

Figure 7. Hardware-in-the-loop testing.

Processor-in-the-loop (PIL) testing occurs after SIL but
before HIL testing. As with SIL, PIL exercises the
production code for the controller in non-real-time.
However the code executes on the actual embedded
processor or an instruction set simulator, using the
embedded cross-compiler. Thus, it verifies the
embedded object code functional behavior.

With PIL, the model does a single calculation iteration.
The inputs are calculated and passed to a PIL block.
The PIL block serves as a conduit and passes the model
inputs to the code running on the embedded
microprocessor, or emulated processor if an instruction
set simulator is used. Once the target processor
receives the model inputs, it executes a single time step
and computes the output data. The outputs are then
passed back to model using the PIL block. The model
then continues to simulate while the target processor
waits for new inputs.

See Figure 8 for a PIL example using an Instruction Set
Simulator (ISS).

Simulink

Controller Model). Plant Model

/

Cross-Compiled C
Instruction Set
Simulatoer (1S3)

Figure 8: Processor-in-the-loop testing on the host

Code
Generation

i

PIL testing can occur simultaneously with model testing
or done separately. The tests can be interactive or done
in batch mode via scripts. Batch processing is most
convenient for repetitive, production tasks such as
regressing testing.

Plots comparing the model's functional (expected)
results to the PIL (actual) results can be developed and
analyzed. Integer or fixed-point results should be bit-
wise accurate. Floating point results will need to be
assessed based on an acceptable margin of error, or
epsilon. Differences in floating point results often occur
between host and target platform due to factors such as
variations in floating point math library implementation.

One may execute PIL tests on multiple target platforms
in order to assess an algorithm’s robustness to
variations in floating point implementations using various
hardware, compiler, and even compiler version
combinations.

PIL is also useful for testing behavior that cannot be
tested in a modeling environment. One example is the
use of target optimized code. Some processors have
special built-in instructions that are not ANSI or I1ISO-C
compliant. These instructions may use special hardware
on the processor that processes certain routines
extremely fast, such as FFTs or IIRs used in signal
processing applications. Some processors have built-in
overflow protection for fixed-point calculations.

When target optimized code is used within Model-Based
Design, one cannot execute or test the final code within
the host-based model simulation environment. With PIL,
however, the optimized code can easily be tested using
the modeling environment as the test harness.

Figure 9 shows a PIL test occurring simultaneous with a
model test and an output plot comparing the two results.

SEE)

noepE B EE REE

DS -

Figure 9: Processor-in-the-loop testing example

CONCLUSION

Automatic code generation with Model-Based Design is
an important technology that offers embedded system
developers a number of advanced options for designing
and deploying production software. Model-Based Design
also provides a rich verification and validation
environment for embedded systems. Recent techniques
were described herein that support model checking and
processor-in-the-loop tests.

REFERENCES

1. IEC 61508-3:1998. International Standard IEC
61508 Functional safety of electrical/electronic/
programmable electronic safety-related systems —
Part 3: Software requirements. 1* edition, 1998

2. Tom Erkkinen, The MathWorks, Scott Breiner, John
Deere, Automatic Code Generation — Technology
Adoption Lessons Learned from Commercial Vehicle
Case Studies, SAE CV 2007, 08AE-22,

www.mathworks.com/mason/tag/proxy.html?dataid=9939&fileid=44540

© 2008 The MathWorks, Inc. MATLAB and Simulink are registered
trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks.
Other product or brand hames may be trademarks or registered
trademarks of their respective holders.

