
Our experience has made us skeptical

Why there isn’t a para ll el MAT LA B

A 16-node hypercube
parallel computer. Each
node can send messages
directly to its nearest
neighbors and indirectly 
to all other nodes.

T here actually have been a few experimental versions
of MA T L A B for parallel computers. None of them
has been effective enough to justify development
beyond the experimental prototype. But we have

learned enough from these experiences to make us skeptical
about the viability of a fully functional MA T L A B running on
today’s parallel machines. There are three basic difficulties:

● Memory model
● Granularity
● Business situation

Memory model
The most important attribute of a parallel computer is its
memory model. Large-scale, massively parallel computers have
potentially thousands of processors and distributed memory,
that is, each processor has its own memory. Smaller scale
machines, including some high-end workstations, have only a
few processors and shared memory.

A good example of a distributed memory parallel computer
is one of the first commercially available parallel computers,
the Intel iPSC, where we tried to make our first parallel
MATLAB almost ten years ago. It had up to 128 nodes—each a
separate single board computer with an Intel microprocessor
and maybe half a megabyte of memory. In principle, each node
could execute a different program, but we usually ran the same
program on all of them. Each node could send messages
directly to its nearest neighbors and indirectly to all the other
nodes. The whole machine was controlled by a front-end host,
which initiated tasks, collected results, and handled all I/O. 

We ran MATLAB on the host and gave names with capital
letters to the functions in the parallel math library. So INV(A)
or FFT(X) would start with a matrix in the host memory, split
it into equally sized submatrices, send each of the submatrices
to a node, invoke the parallel routine, and then collect the
results back on the host. It took far longer to distribute the data
than it did to do the computation. Any matrix that would fit
into memory on the host was too small to make effective use of
the parallel computer itself.

The situation hasn’t changed very much in ten years. 

MATLAB is a lot bigger, and parallel computers are a lot faster.
But distributed memory is still a fundamental difficulty. One of
MATLAB’s most attractive features is its memory model. There
are no declarations or allocations—it is all handled automat-
ically. The key question is: Where are the matrices stored? It is
still true today that any matrix that fits into the host memory
should probably stay there.

Granularity
A little over five years ago, we had a parallel MA T L A B on a shared
memory multiprocessor, the Ardent Titan, but we didn’t tell the
world about it. The most effective use of this machine, as well as
today’s multiprocessor workstations, is already done automati-
cally by the operating system. MA T L A B should run on only one
processor, while other tasks, like the X-Windows server, use the
other processors. In typical use, MA T L A B spends only a small
portion of its time in routines that can be parallelized, like the
ones in the math library. It spends much more time in places like
the parser, the interpreter, and the graphics routines, where any
parallelism is difficult to find.  

There are some special situations where parallel compu-
tation within MA T L A B would be effective. For example, suppose
I want to find what fraction of a large number of matrices have
eigenvalues in the left half plane. The obvious place to
parallelize this is on the outer loop. It’s not necessary to use
more than one processor to generate a single matrix or to
compute its eigenvalues. The only place the processors would
need to cooperate is in merging their final counts. However, to
get MA T L A B to handle this kind of parallelism would require
fundamental changes to its architecture.

Business situation
It doesn’t make good business sense for us to undertake 
fundamental changes in MATLAB’s architecture. There are not
enough potential customers with parallel machines. Most of
the MATLAB community would rather see us devote our efforts
to improving our conventional, uniprocessor software. So, we
will continue to track developments in parallel computing, but
we don’t expect to get seriously involved again in the near
future.   ■

C l e v e ’ s  C o r n e r

by Cleve Moler

Cleve Moler is chair-
man and co-founder 
of The MathWorks. 
His e-mail address is 
m o l e r @ m a t h w o r k s . c o m


